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Highlight  22 

We highlight exciting advances in modulation of autophagy during plant-microbe interactions 23 
with a particular focus on reprograming of plant defence-related autophagy by pathogens. 24 
 25 

Abstract 26 

In plants, the highly conserved catabolic process of autophagy has long been known as a 27 
means of maintaining cellular homeostasis and coping with abiotic stress conditions. 28 
Accumulating evidence has linked autophagy to immunity against invading pathogens, 29 
regulating plant cell death and antimicrobial defences. In turn, it appears that phytopathogens 30 
have evolved ways to not only evade autophagic clearance but also to modulate and co-opt 31 
autophagy for their own benefit. In this review, we summarise and discuss the emerging 32 
discoveries concerning how pathogens modulate both host and self-autophagy machineries to 33 
colonize their host plants, delving into the arms race that determines the fate of inter-34 
organismal interaction. 35 
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Figure 1. Modulation of autophagy by plant pathogens during infection. (Colour) 68 
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 70 

Introduction  71 

Autophagy is a fundamental cellular digestion process conserved across eukaryotic 72 

organisms.  Almost all cellular components including large organelles such as the chloroplasts 73 

that are 3-10 µm in length can be degraded via autophagy (Xie et al., 2015). Although 74 

initially thought to be a mechanism to maintain cell survival under nutrient deprivation, it is 75 

now clear that the more than 1.5 billion-year-old process has evolved to counteract various 76 

types of physiological and environmental stress conditions. To coordinate diverse cellular 77 

activities, autophagy has become specialized to capture specific cargoes and acquired 78 

additional non-degradative roles such as non-conventional protein secretion. For instance, in 79 

the mammalian immune system, a selective form of autophagy known as xenophagy 80 

functions in targeting intracellular pathogens for degradation whereas secretory autophagy 81 

mediates cytosol to cell surface delivery of pro-inflammatory cytokines (Knodler and Celli, 82 

2011; Dupont et al., 2011). Although the defence related roles of autophagy in cell 83 

autonomous immunity are well established, it is becoming clear that adapted pathogens can 84 

subvert and employ host autophagy machinery for their own benefit (Deretic and Levine, 85 

2009). 86 
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 87 

In plants, previous studies have revealed that autophagy contributes to immunity by 88 

regulating the defence hormone levels and the hypersensitive response, a form of programmed 89 

cell death that restricts the spread of microbial infection (Liu et al., 2005; Yoshimoto et al., 90 

2009; Coll et al., 2014b). However, the molecular mechanisms that underpin defence-related 91 

selective autophagy in plants, and how it is manipulated by adapted pathogens are poorly 92 

understood. The defence related roles of autophagy against pathogens have been difficult to 93 

dissect with standard genetic approaches. This is mainly because autophagy proteins also 94 

execute many non-autophagy functions, and autophagy mutants often show pleiotropic effects 95 

that perturb plant development and various other cellular processes. Nevertheless, several 96 

recent studies which employed pathogen produced proteins that target plant autophagy 97 

machinery uncovered novel autophagy related defence components and shed light on the 98 

functioning of defence related autophagy (Dagdas et al., 2016; Haxim et al., 2017; Hafrén et 99 

al., 2017). In this review, we analyse the emerging role of selective autophagy in plant 100 

immunity and delve into how both the host plants and the pathogens modulate autophagy for 101 

their own benefit. 102 

 103 

Autophagy is a multi-step process that can be highly selective. 104 

 While originally described as a bulk, non-selective degradation process that maintains 105 

cellular homeostasis under environmental stress conditions (Tsukada and Ohsumi, 1993), 106 

more recent studies have demonstrated that autophagy can be a highly selective process. In 107 

plants, autophagy contributes to stress tolerance, senescence, development, and immunity 108 

(Patel and Dinesh-Kumar, 2008; Vanhee and Batoko, 2011; Lenz et al., 2011; Li and Vierstra, 109 

2012; Teh and Hofius, 2014; Lv et al., 2014).  110 

 111 

The mechanisms of autophagy are conserved in yeast, plants and metazoans. At its core, 112 

more than 30 AuTophaGy-related genes (ATGs), often organised in groups, are responsible 113 

for distinct but continuous steps of the autophagic process (Kellner et al., 2017). The central 114 

player involved in the 3 steps of autophagosome formation (initiation, expansion and closure) 115 

and selective cargo recruitment is the ubiquitin-like protein ATG8 (Slobodkin and Elazar, 116 

2013). Upon activation by stress or recognition of cargo, the serine/threonine kinase, ATG1, 117 

in complex with ATG13 mediates formation of the phagophore, the initial membranous 118 

cistern involved in autophagosome biogenesis. At the phagophore assembly site, the ATG1 119 
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complex activates the phosphatidylinositol-3-kinase (PI3K) complex including other core 120 

autophagy proteins ATG6, ATG14 and VPS15, which mediate the nucleation step of 121 

autophagosome formation (Kaur and Debnath, 2015). Subsequently, a ubiquitination-like 122 

system involving the orchestrated action of ATG7 (E1-activating-like enzyme), ATG3 (E2-123 

conjugating-like enzyme) and the ATG12-ATG5-ATG16 (E3 ubiquitin ligase-like enzyme) 124 

complex mediates anchoring of lipidated ATG8 to the outer and inner membrane of the 125 

growing phagophore (Hanada et al., 2007, Geng and Klionsky, 2008). ATG8 lipidation 126 

involves proteolytic processing of C-terminal residues of proATG8 by ATG4 exposing a 127 

terminal glycine residue, which is conjugated to phosphatidylethanolamine (PE) by a 128 

ubiquitination like process mediated by ATG7 and ATG3. This enables ATG8 to be anchored 129 

into the developing autophagosomal membranes. On the outer membrane of autophagosomes, 130 

ATG8 mediates transport and docking of autophagosomes to the lysosomes. The lipidation 131 

reaction is reversible; de-conjugation of ATG8s from PE by ATG4 allows recycling of ATG8 132 

to the cytoplasm and enables fusion with lysosomes (Yu et al., 2012). 133 

ATG8 decorating the inner autophagosomal membrane serves as a port for autophagy 134 

cargo receptors that recruit selective autophagy cargoes. Cargo receptors bind to ATG8 via a 135 

conserved ATG8 interacting motif (AIM) (Ichimura et al., 2008). The AIM motif consists of 136 

the consensus sequence starting with one of the aromatic amino acids W/F/Y followed by 137 

XX-L/I/V, where X represents any other residue.  138 

ATG8 appears to have gone through a series of duplication events and diversified to encode 139 

different isoforms in higher eukaryotes (Shpilka et al., 2011). Although yeast encodes one 140 

ATG8 protein, higher plants carry up to 22 ATG8 isoforms that are subdivided into two 141 

clades (Kellner et al., 2016). It is believed that different ATG8 isoforms, redundantly and 142 

independently of each other, contribute to different selective autophagy processes. However, 143 

experimental evidence assigning specific biological functions to different ATG8 isoforms in 144 

plants is lacking.  145 

 146 
 147 
Modulation of autophagic activity in filamentous plant pathogens; autophagy is 148 

required for host cell penetration. 149 

 150 

Filamentous plant pathogens including fungi and oomycetes pose a major threat to global 151 

food security. Many of the aggressive forms, including the rice blast pathogen Magnaporthe 152 

oryzae, form intimate interactions with their hosts and are highly efficient in penetrating 153 
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through preformed plant barriers. For instance, upon germination on the leaf surface, rice 154 

blast pathogen forms a dome-shaped cellular structure known as an appressorium that builds-155 

up a massive turgor pressure to breach the host cuticle and mediate subsequent rupture of the 156 

cell wall (Talbot, 2003). This step is critical for the pathogen to penetrate host cells and gain 157 

access to the nutrient rich environment of the host. Formation of the appressorium requires 158 

major changes in cellular organization and formation of a highly specialized apparatus that 159 

accumulates glycerol essential to build-up the turgor pressure. The building blocks and energy 160 

(glycogen and lipids) for glycerol accumulation are transported from neighbouring conidia 161 

cells that undergo autophagy related cell death (Wilson and Talbot, 2009). Hence, autophagy 162 

mutants fail to produce proper appressoria and are unable to penetrate the host. Likewise, 163 

ATG1 protein is induced in the fungal pathogen Botrytis cinerea during host colonization and 164 

ATG1 mutants are impaired in appressorium formation [Ren et al., MPMI 2016] supporting 165 

the view that autophagy dependency of appressorium formation is widespread in fungi. 166 

Consistent with this, knockout mutants for a small Rab GTPase known as MoYPT7 that 167 

localizes to the lysosomal membranes, were shown to be impaired in autophagy and 168 

appressorium development in M. oryzae (Liu et al., 2015) providing a link between autophagy 169 

and vesicle transport systems in plant pathogenic fungi. Interestingly, several essential 170 

components of the retromer membrane trafficking machinery are also detected on lysosomal 171 

membranes. Gene replacement mutants for components of the retromer were shown to be 172 

defective in autophagy induction, mobility of glycogen and lipid bodies that are required for 173 

developing appressorial pressure, and subsequent host penetration (Zheng et al., 2015). 174 

Whether MoYPT7 colocalizes with these retromer components and has retromer related 175 

functions to regulate autophagy remains to be determined. In M. oryzae, five autophagy 176 

proteins (ATG1, ATG2, ATG3, ATG17, and ATG18) displayed increased phosphorylation 177 

during appressorium formation while decreased phosphorylation was only observed for a 178 

single site on ATG13, implicating post-translational ATG modifications in host cell 179 

penetration (Franck et al., 2015). The autophagy process that mediates appressoria maturation 180 

does not appear to be affected by deficiency in other forms of autophagy as mitophagy and 181 

pexophagy mutants did not affect host penetration and colonization of M. oryzae. However, a 182 

pexophagy mutant of the anthracnose fungus Colletotrichum orbiculare showed host 183 

penetration defects following appressoria maturation, indicating some selective autophagy 184 

pathways could execute essential tasks during host invasion in diverse filamentous pathogens. 185 

Recently, stimulation of autophagy was detected in haustorial mother cells of leaf rust 186 

pathogens and found to be essential for host colonization (Liu et al., 2017). How this 187 
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increased autophagic activity contributes to host colonization remains unclear. It is possible 188 

that autophagy is activated to transport and recycle nutrients absorbed from the host, serve as 189 

an alternative secretory system, or mediate host cell penetration.  190 

Our understanding of the role of autophagy in oomycete pathogens remains mostly 191 

unexplored due to technical difficulties in genetic transformation of these organisms. 192 

However, a recent study demonstrated that autophagy related genes are induced during 193 

infection along with an increase in autophagic activity. Silencing of the PsATG6a gene in 194 

Phytophthora sojae reduces its ability to colonize the host plant (Chen et al., 2017). Finally, 195 

host autophagy could also be important for beneficial microbes. For instance, in the 196 

mycorrhizal fungus Glomus intraradices, transcripts of genes encoding plant core autophagy 197 

proteins ATG8f and ATG4a were found to be upregulated in both cortical cells and arbuscule-198 

containing cells of mycorrhiza-colonized roots (Gaude et al., 2012). However, it remains 199 

unknown whether the upregulation of autophagic activity in mycorrhizal fungus is essential 200 

for formation of symbiotic relationship or arbuscules. 201 

 202 

Autophagy deficiency leads to perturbations in plant immunity and in defence 203 

related cell death. 204 

 205 

To prevent penetration attempts of filamentous pathogens and to protect against various 206 

other invaders, plants rely on innate immunity. This involves detection of microbes, activation 207 

of counter-invasion mechanisms, and subsequent accumulation of defence related components 208 

at the sites of invasion. The detection of microbes is achieved by surface localized or 209 

intracellular immune receptors. Surface-localized recognition receptors recognize pathogen-210 

associated molecular patterns (PAMPs) and activate so-called PAMP/pattern-triggered 211 

immunity (PTI) (Jones and Dangl, 2006). To counteract PTI and interrupt other plant 212 

processes, adapted pathogens deploy effector proteins at the cell surface or inside the host 213 

cells. Nevertheless, some specialized surface immune receptors and a set of 214 

cytoplasmic/intracellular immune receptors known as nucleotide-binding domain and leucine-215 

rich repeat-containing (NLRs) proteins can sense effector proteins. Activation of NLRs 216 

initiate effector-triggered immunity that is often accompanied by HR related cell death 217 

(Duxbury et al., 2016; Wu et al., 2017). The recognition of effectors by NLRs is mostly 218 

indirect and frequently involves modulation of host proteins targeted by effectors guarded by 219 

the NLRs. Hence, accurate deployment of immune receptors, guardees and defence 220 
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components at particular sites and in correct amounts is critical not only for immune 221 

recognition but also for execution of downstream mechanisms leading to pathogen 222 

elimination.  223 

In metazoans, the role of autophagy in selective clearance of intracellular pathogens and 224 

defence related non-conventional secretion is well-documented (Deretic and Levine, 2009; 225 

Dupont et al., 2011). Although there are debates on whether autophagy can be manipulated to 226 

serve pathogens, autophagy cargo receptors and adaptors as well as components that generate 227 

eat-me signals for pathogen clearance are well defined (Deretic and Levine, 2009; Zaffagnini 228 

and Martens, 2016). In contrast, the role of autophagy in plant immunity remains poorly 229 

understood. Autophagy has been implicated in execution of HR and its local restriction. The 230 

precise molecular mechanisms and pathways are the subject of controversy in the literature. 231 

Most of our knowledge originates from studies that aim to block bulk autophagy rather than 232 

selective autophagy components. Nevertheless, some recent insights on the role of selective 233 

autophagy in plant immunity are emerging. 234 

Earlier studies revealed that autophagy enhances hypersensitive cell death induced by 235 

avirulent pathogens, whereas it restricts unnecessary spread of cell death throughout the 236 

uninfected tissue (Patel and Dinesh-Kumar, 2008).  Silencing of autophagy genes including 237 

PI3K/VPS34, ATG3, and ATG7 or expression of an ATG6/Beclin1 antisense transgene in 238 

tobacco plants carrying a resistance gene against the Tobacco mosaic virus (TMV) leads to 239 

uncontrolled spread of HR beyond primary virus infection sites. The unrestrained spread of 240 

HR in autophagy deficient plants also occurred upon treatment with elicitors from diverse 241 

pathogens. This phenomenon is also observed in ATG6-deficient Arabidopsis (Arabidopsis 242 

thaliana) challenged with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) 243 

harbouring the effector protein AvrRpm1 recognised by the RPM1 disease resistance protein. 244 

Consistently, Arabidopsis atg (atg5, atg7, atg10 and atg18a) loss of function mutants showed 245 

uncontrolled spread of cell death when challenged with the necrotrophic fungal pathogens 246 

Alternaria brassicicola or B. cinerea (Lai et al., 2011; Lenz et al., 2011).  247 

However, different studies did not find any uncontrolled spread of pathogen-associated cell 248 

death following inoculation with the avirulent pathogens in Arabidopsis atg5, atg7, atg9 and 249 

atg18a mutants (Hofius et al., 2009; Coll et al., 2014b). In contrast, cell death was reduced 250 

and delayed in Arabidopsis upon challenge by the avirulent Pst DC3000 (AvrRps4) or the 251 

avirulent isolate Noco2 of the oomycete pathogen, Hyaloperonospora arabidopsidis (Hofius 252 

et al., 2009). The controversy in the execution of HR under autophagy deficiency is attributed 253 
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to the age of the plants used in different studies; although 7-8 week old plants had spreading 254 

cell death upon activation of HR as previously described, younger plants (4-5 weeks) showed 255 

a slight delay but no symptoms of trailing PCD (Yoshimoto et al., 2009).  The enhanced PCD 256 

in old plants was shown to be due to increased defence hormone salicylic acid (SA) levels 257 

where the SA transducer NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 258 

(NPR1) is essential. Nevertheless, it is now widely accepted that spreading HR observed in 259 

older autophagy mutants is due to enhanced cellular stress build-up over time. 260 

An earlier study found that the latency in execution of the HR occurred upon activation of 261 

Toll/Interleukin-1 receptor-NLR (TNLR) type but not Coiled-Coil-NLR (CNLR) types of 262 

cytoplasmic immune receptors providing the first clue on the specificity of the perturbation of 263 

HR during autophagy deficiency (Hofius et al., 2009). However, a subsequent study found 264 

that HR triggered by activation of the CNLR, RPM1, is also suppressed in an autophagy 265 

deficient background (Coll et al., 2014b). Interestingly, a constitutive active mutant form of 266 

the small GTPase RabG3b (RabG3bCA) was shown to mimic autophagy mutants in leading 267 

to spreading PCD upon HR activation. However, in contrast to autophagy mutants, 268 

RabG3bCA accelerated PCD occur much faster, and is stimulated non-specifically by both a 269 

TNLR and a CNLR.  Although RabG3bCA was shown to promote autophagic activity, 270 

whether the accelerated PCD triggered by the mutant is due to perturbation in autophagy 271 

remains to be elucidated.  It is possible that RabG3b contributes to acceleration of PCD via 272 

recently described parallel independent cell death pathways (Coll et al., 2011).    273 

As autophagy is branched to execute specialized cellular tasks in different conditions, 274 

identifying links between diverse cellular activities and autophagy should help understanding 275 

the complicated role of autophagy in plant HR associated cell death. Recently, cytosolic 276 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) the key enzyme in the glycolytic 277 

pathway with various other moonlighting functions, was found to interact with ATG3 and 278 

negatively regulate ATG3 triggered autophagy (Han et al., 2015a). In contrast, Bax inhibitor-279 

1 (BI-1), a highly conserved cell death and ER stress regulator, was found to interact with 280 

ATG6 and positively regulate autophagy (Xu et al., 2017). Intriguingly, depletion of GAPDH, 281 

that enhances autophagy or depletion of BI-1 that supresses autophagy, both activated TMV-282 

triggered HR on plants carrying the TNLR type resistance gene N (Han et al., 2015b; Xu et 283 

al., 2017). Moreover, GAPDH silencing did not lead to any change in HR cell death 284 

symptoms induced by Pst DC3000 unlike the previously described autophagy mutants. These 285 

conflicting differences in activation of HR compared to previous observations could be 286 

attributed to the non-autophagy related roles of the genes that are studied.  287 
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Nevertheless, it appears that autophagy deficiency does not significantly influence the 288 

outcome of the incompatible interactions in most instances. This notion is further validated in 289 

a more recent study which showed that autophagy deficiency, metacaspase AtMC1 290 

deficiency, or both combined, leads to suppression of HR in Arabidopsis challenged with 291 

avirulent pathogens but does not give rise to susceptibility (Coll et al., 2014a). 292 

Whether autophagy actively plays a direct role on NLR-mediated HR cell death remains 293 

unclear. First, as discussed earlier, additional non-autophagy related functions of many of the 294 

targeted genes makes it difficult to derive precise conclusions. Secondly, shutting down 295 

autophagy fully will lead to defects in multiple cellular processes and uncontrolled 296 

accumulation of components that are toxic. For instance, autophagy mediates programmed 297 

recycling of damaged organelles such as chloroplasts and mitochondria (Michaeli and Galili, 298 

2014). The uncontrolled release of death signals from these damaged organelles, such as the 299 

reactive oxygen species and cytochrome c, can trigger accelerated cell death upon further 300 

stress. Particularly, it has been shown that entire photo-damaged chloroplasts are targeted to 301 

central vacuole for degradation, whereas immobile non-active forms accumulate in autophagy 302 

mutants (Izumi et al., 2017). A build-up stress and damage in aging chloroplasts which cannot 303 

be cleared up by autophagy, can lead to uncontrolled release of chloroplast-generated salicylic 304 

acid (SA) precursors to the cytosol.  In line with this, mutations in the chloroplast-targeted SA 305 

biosynthetic SID2 (salicylic acid induction deficient 2) prevented uncontrolled spread of HR 306 

in Arabidopsis (Yoshimoto et al., 2009; Coll et al., 2014a).  307 

In addition, inefficient degradation of ubiquitinated protein aggregates, enhanced ER stress 308 

and cell death were also observed in autophagy mutants (Munch et al., 2014). Accumulation 309 

of protein aggregates will put more pressure on proteasomes which are themselves degraded 310 

by autophagy when damaged (Waite et al., 2016). Therefore, variation in cell death activation 311 

by different types of immune receptors could also be due to differential accumulation of 312 

immune receptors themselves and/or other components such as their guardees as well as 313 

avirulence products. Thus, variation in cell death activation by different types of immune 314 

receptors can be attributed to cumulative effects of various independent distorted cellular 315 

processes. Autophagy cargo receptors or adaptors that specifically participate in these 316 

processes would be necessary to identify the precise role of autophagy in HR-associated cell 317 

death.  318 

 319 
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Autophagy deficiency in host plants favours pathogens with necrotrophic 320 

lifestyle over biotrophic; one man's heaven is another man's hell. 321 

 322 

Apart from the conflicting views on activation of plant cell death upon infection with 323 

avirulent pathogens, there is generally an agreement regarding the role of autophagy in basal 324 

immunity depending on the lifestyle of the infectious agent. A number of studies have 325 

provided convincing evidence attributing a positive role of autophagy activation in resistance 326 

against necrotrophic pathogens (Lai et al., 2011; Lenz et al., 2011; Katsiarimpa et al., 2013). 327 

This is not surprising as the autophagy-deficient plants are more sensitive to cell death 328 

induction and devoid of potential autophagy-related defences, which could favour 329 

necrotrophic pathogen lifestyle. This essential role played by autophagy in immunity against 330 

necrotrophic pathogens is further supported by the discovery of the host autophagy-331 

suppressing mechanisms employed by the necrotrophic fungal pathogen Sclerotinia 332 

sclerotiorum (Kabbage et al., 2013).  333 

In contrast, autophagy mutants generally display increased resistance to biotrophic 334 

pathogens. This is mainly believed to be due to defects originating from general shutdown of 335 

plant autophagy machinery leading to enhanced SA accumulation and impaired cellular 336 

survival under stress conditions (Han et al., 2011). However, it is possible that a selective 337 

form of autophagy also contributes to basal immunity against biotrophic pathogens, which is 338 

masked by pleiotropic effects of autophagy deficiency. Consistent with this view, selective 339 

autophagy cargo receptor NBR1/Joka2 was found to contribute to defence against the 340 

hemibiotrophic Irish potato famine pathogen Phytophthora infestans (Dagdas et al., 2016). 341 

Interestingly, similar to plant-biotroph interactions, autophagy proteins PI3K, ATG6 and 342 

Target Of Rapamycin (TOR) were also implicated in plant symbiotic relationships (Estrada-343 

Navarrete et al., 2016; Nanjareddy et al., 2016).  344 

The autophagy machinery exerts a crucial antiviral role and mediates clearance of viruses 345 

in metazoans (Shoji-Kawata and Levine, 2009) In contrast, some viruses avoid autophagic 346 

clearance and manipulate autophagy to propagate and replicate (Dong and Levine, 2013). 347 

Although autophagy contributes to antiviral defence in plants, underlying molecular 348 

mechanisms are poorly understood (Shoji-Kawata and Levine, 2009). More recently however, 349 

autophagy has been shown to have a more direct antiviral function in plants, degrading viral 350 

proteins associated with dsRNA-induced RNA silencing, an essential immune evasion 351 

strategy used by viral phytopathogens (Agius et al., 2012; Nakahara et al., 2012). It appears 352 
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that in plant antiviral immunity, autophagy takes on a more direct function, targeting viral 353 

particles and proteins for degradation.  354 

 355 

Selective autophagy contributes to plant defence; catch me if you can. 356 

 357 

Currently, very little is known about the mechanisms involved in defence-related selective 358 

autophagy and the strategies employed by the pathogens to evade it. Recent discoveries on 359 

defence related roles of selective autophagy sparked excitement and interest the in plant 360 

autophagy field (Nakahara et al., 2012; Dagdas et al., 2016; Haxim et al., 2017; Hafrén et al., 361 

2017). 362 

An earlier study found that tobacco calmodulin-like protein rgs-CaM (also known as 363 

NtCAM) targets viral RNA silencing suppressors for degradation by autophagy (Nakahara et 364 

al., 2012). However, how rgs-CaM mediates selective autophagic clearance of viral particles 365 

remains unclear. A different study showed that Cotton leaf curl Multan virus (CLCuMuV) 366 

encoded protein βC1 is degraded by autophagy through recruitment to autophagosomes by 367 

directly interacting with the host ATG8 proteins (Haxim et al., 2017). βC1-ATG8 interaction 368 

did not involve any AIMs and did not require autophagy cargo receptor NBR1/JOKA2. 369 

Intriguingly, a single amino acid mutation in βC1-ATG8 interaction interface abolished 370 

autophagic clearance of the viral protein. However, it is puzzling how several different ATG8 371 

isoforms have evolved to bind βC1 to mediate its autophagic degradation. Whether ATG8s 372 

evolved to recognize βC1 and natural βC1 alleles that avoid ATG8 binding exist, remains to 373 

be elucidated.  374 

A different study showed NBR1/Joka2 can target Cauliflower mosaic virus (CaMV) non-375 

assembled and virus-forming capsid proteins for degradation through the autophagic pathway 376 

in Arabidopsis (Hafrén et al., 2017). In response, the virus attempts to avoid degradation by 377 

forming inclusion bodies (virus factories), which help the sequestration and assembly of 378 

capsid proteins. However, as a result of the evolutionary arms race, viruses have developed a 379 

balanced infection rate not to kill the host plant too fast to enable and ensure spread to other 380 

hosts (Clavel et al., 2017; Hafrén et al., 2017; Haxim et al., 2017).  381 

Finally, selective autophagy has recently been found to contribute to defence against the 382 

oomycete Phytophthora infestans. Overexpression of NBR1/Joka2 limits pathogen growth 383 

whereas its depletion leads to enhanced pathogen growth (Dagdas et al., 2016). How 384 

NBR1/Joka2 mediates defence related selective autophagy remains to be elucidated. It is 385 
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possible that NBR1/Joka2 associates with defence related cargoes to regulate their autophagic 386 

clearance or secretion. A new study revealed that NBR1/Joka2 labelled puncta accumulates 387 

around the haustoria of P. infestans suggesting that NBR1/Joka2 could mediate deployment 388 

of defence related cargoes to pathogen interface or it is further manipulated by the pathogen to 389 

remain inactive (Dagdas et al., 2017 BioRxiv).  390 

 391 

 392 

Reprogramming of host autophagy by pathogens: avoiding immunity and 393 
rerouting cellular resources? 394 
 395 

In metazoans, there is ample evidence for modulation of autophagy by invading pathogens. 396 

In particular, manipulation of autophagy for nutrients is an emerging theme employed by a 397 

diverse range of microbes. For example, Toxoplasma gondii induces autophagy to promote its 398 

parasitic growth, while it prevents fusion of autophagosomes with the parasitophorous 399 

vacuole that it resides in, a process which can lead to destruction of the parasite (Wang et al., 400 

2009; Muniz-Feliciano et al., 2013). Although inhibition of autophagy decreases T. gondii 401 

replication, supplementing exogenous amino acids rescued this phenotype (Wang et al., 402 

2009). Interestingly, several other mammalian pathogens were also found to manipulate host 403 

cell autophagy for nutrient uptake while evading autophagic degradation via different 404 

mechanisms (Wang et al., 2009; Niu et al., 2012; Steele et al., 2015). These findings suggest 405 

a beneficial role for host cell autophagy in the development of the parasites. Although the 406 

precise role of autophagy in supporting intracellular fitness of these pathogens remains 407 

unknown, nutrient acquisition is proposed as a potential explanation. 408 

 409 

In contrast to animal pathosystems, our knowledge in modulation of host autophagy by 410 

plant pathogens is limited. Several recent studies provided insights into how pathogens can 411 

modulate plant autophagy for their own benefit. The clues to co-option of host autophagy by 412 

plant pathogens were first discovered in plant-polerovirus interactions. A viral RNA silencing 413 

suppressor from polerovirus, P0 has been reported to mediate autophagic degradation of 414 

ARGONAUTE 1 (AGO1), an essential component of the RNA-induced silencing complex 415 

(RISC) (Derrien et al., 2012, Baumberger et al., 2007). The precise mechanisms by which P0 416 

coordinates autophagic clearance of AGO1 are not clear. Interestingly, P0 carries an F box 417 

domain, typically implicated in ubiquitination of target proteins for degradation. Whether P0 418 

acts as a canonical cargo receptor connecting AGO1 to ATG8 or if it functions as an adaptor 419 
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to link AGO1 to autophagy indirectly via autophagy cargo receptors remains to be 420 

determined.  421 

A recent study demonstrated that host calmodulin-like protein NbCaM, induced by 422 

geminivirus encoded βC1 protein, serves as a susceptibility factor to mediate autophagic 423 

clearance of components of the plant RNA silencing machinery (Li et al., 2017). NbCAM 424 

interacts with and promotes autophagic degradation of N. benthamiana Suppressor of Gene 425 

Silencing 3 (NbSGS3), a protein that functions alongside RNA-dependent RNA polymerase 6 426 

(RDR6) to mediate dsRNA synthesis (Fukunaga and Doudna, 2009). The SGS3/RDR6 427 

complex has been known to be targeted by various virulence factors including a viral genome-428 

linked protein (VPg) from Turnip mosaic virus (TuMV). VPg leads to destruction of the 429 

complex by eliminating SGS3 through both autophagy and the proteasome (Cheng and Wang, 430 

2016).  Thus, viruses have evolved diverse strategies to interfere with host RNA silencing 431 

machinery by stimulating autophagic degradation of essential host components. It would be 432 

interesting to discern whether NbCAM or VPg have ATG8 binding capacities like autophagy 433 

cargo receptors or if they require NBR1/Joka2, or a yet uncharacterized cargo receptor, for 434 

SGS3 depletion. 435 

A new study revealed an interesting interplay between plant autophagy and CaMV. It 436 

appears that CaMV might form viral inclusion bodies in an effort to avoid immune clearance 437 

mediated by host selective autophagy (Hafrén et al., 2017). Remarkably, whereas NBR1 438 

mediates autophagic depletion of viral particles, a virus-triggered NBR1-independent 439 

autophagy pathway prevents extensive cell death. Thus, it is proposed that by delaying host 440 

cell suicide, the virus gains extra time to be picked up by transmission vectors (Hafrén et al., 441 

2017). On the other hand, an independent study suggested that CaMV encoded viral 442 

suppressor P6 protein that interacts with TOR kinase (Schepetilnikov et al., 2011), promotes 443 

TOR activation to suppress oxidative burst and salicylic acid dependent autophagy (Zvereva 444 

et al., 2016). Although how CaMV coordinates these contrasting processes in host autophagy 445 

regulation remains unclear, it appears that this particular virus has developed multiple ways to 446 

simultaneously suppress host selective autophagy while modulating the process for its own 447 

replicative purposes. 448 

The TOR modulation appears to be a common target for invading plant pathogens as the 449 

bacterial wilt pathogen Ralstonia solanacearum, deploys the AWR5 effector to inhibit TOR 450 

related activity and stimulate autophagy in yeast (Popa et al., 2016). It remains unclear if 451 

AWR5 has the same effect on autophagy in plants and if so, whether AWR5 directly or 452 

indirectly inhibits TOR, and what benefit the pathogen gains by activation of autophagy. 453 
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Interestingly, during symbiosis, TOR expression is upregulated and its promoter activity 454 

can be observed in growing infection threads, nodule primordial cells and Rhizobium infected 455 

cells in mature nodules. RNAi-mediated silencing of TOR caused an arrest of infection thread 456 

within root hair cells and reduction in nodule number and ability to fix nitrogen. A further 457 

ultrastructural study showed that in the TOR RNAi nodules, rhizobium-infected cells are 458 

smaller and contain abundant autophagosomes but fewer, less-developed symbiosomes. It was 459 

suggested that upon TOR suppression, activation of autophagy treats the bacterial symbiont as 460 

an intruder and leads to abortion of symbiosis (Nanjareddy et al., 2016).  This is in a way 461 

reminiscent to the innate immune response against intracellular pathogens (Jo et al., 2013).  462 

Finally, filamentous plant pathogens also appear to be proficient modulators of host 463 

autophagy. Many filamentous pathogens including P. infestans, vigorously reprogram cellular 464 

trafficking through secretion of effector proteins through hyphal extensions that grow into the 465 

host cells known as haustoria (Bozkurt et al., 2011, 2015). Remarkably, P. infestans RXLR 466 

effector PexRD54 has evolved a canonical AIM to bind potato ATG8CL isoform with 10 fold 467 

increased affinity compared to ATG8IL isoform, which suggests a selective perturbation in 468 

the host autophagy machinery (Dagdas et al., 2016). Through this motif, the effector depletes 469 

NBR1/Joka2 from ATG8CL complexes and antagonizes the defence-related autophagy 470 

coordinated by NBR1/Joka2. Interestingly, PexRD54 boosts formation of ATG8CL 471 

autophagosomes suggesting co-option of plant autophagy by P. infestans (Dagdas et al., 472 

2016). Moreover, during infection, PexRD54/ATG8CL autophagosomes are diverted towards 473 

the haustoria. It is proposed that PexRD54 might recruit beneficial cargo that either replaces 474 

or neutralizes defence-related cargo targeted to pathogen interface (Dagdas et al., 2017 475 

BioRxiv). Nevertheless, the mechanisms that facilitate re-routing of autophagosomes to 476 

pathogen contact sites, and the nature of the autophagy cargo sequestered by PexRD54 and 477 

Joka2 are of great interest as they will help clarify pathogen’s efforts to subvert host 478 

autophagy. 479 

 480 

Thus, although as a common strategy pathogens try to avoid or suppress autophagy-related 481 

defences, some viruses, bacteria, and filamentous plant pathogens appear to develop strategies 482 

to stimulate autophagy. A provocative hypothesis is that these parasites hijack the host 483 

autophagy machinery to promote recycling of host cellular resources to absorb nutrients using 484 

the plant cell machinery in a similar manner as certain animal pathogens (Heaton and Randall, 485 

2010; Niu et al., 2012; Steele et al., 2015). 486 
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Concluding remarks  487 

A lot remains to be addressed surrounding autophagy in plants, how it contributes to 488 

immunity and how pathogens have developed means to modulate it for their own benefits. Up 489 

until recently, the bulk of the information about the molecular mechanisms of autophagy stem 490 

from studies done in atg knockout mutants. Being such a key cellular homeostatic, membrane 491 

trafficking and alternative secretory process, knocking out fundamental components of the 492 

autophagic machinery inevitably leads to unspecific pleiotropic effects. As a result, it is hard 493 

and often misleading to draw specific conclusions regarding molecular functions of 494 

autophagy. The study of plant microbial interactions proves to be especially problematic when 495 

using general atg mutants as it introduces a pathogenic organism in turn triggering various 496 

immune responses, often leading to additional unspecific effects such as uncontrolled spread 497 

of cell death. Instead, more precise approaches such as targeting individual host cargo 498 

receptors and autophagic adaptors or using pathogen effectors as molecular probes would give 499 

us a clearer insight into the intricate molecular mechanisms of autophagy in plant microbial 500 

interactions.   501 
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 730 
Figure 1. Modulation of autophagy by plant pathogens during infection. 731 
 732 
Autophagy plays a vital role against invading plant pathogens. As a result, microbes have evolved 733 
means to evade and even modulate autophagy for their own benefit during infection. The polerovirus 734 
RNA silencing suppressor P0 mediates autophagic degradation of ARGONAUTE 1 (AGO1), an 735 
essential component of the RNA-induced silencing complex. It remains unknown whether P0 acts as 736 
an ATG8 binding cargo receptor or as an autophagic adaptor, trafficking AGO1 to a host cargo 737 
receptor for degradation. The Turnip mosaic virus (TuMV) protein VPg mediates autophagic 738 
degradation of the host Suppressor of Gene Silencing 3 (SGS3)/RNA-dependent RNA polymerase 6 739 
(RDR6) complex. Furthermore, the geminivirus protein βC1 induces the host susceptibility factor 740 
NbCaM that mediates autophagic degradation of the SGS3/RDR6 complex.   741 
 742 
The oomycete pathogen Phytophthora infestans secreted effector PexRD54 outcompetes the plant 743 
defence related cargo receptor Joka2 for binding of the core autophagy protein ATG8CL, in turn 744 
stimulating autophagosome formation. These ATG8CL autophagosomes appear to be rerouted to the 745 
pathogen interface for a yet unknown purpose.  746 
 747 
The Cauliflower mosaic virus (CaMV) protein P6 has been found to promote activation of the host 748 
Target of Rapamycin (TOR) to inhibit activation of oxidative burst and salicylic acid dependent 749 
autophagy through an unknown mechanism. Interestingly, the Ralstonia solanacearum protein 750 
AWR5 has been found to directly or indirectly inhibit activation of TOR to instead stimulate 751 
autophagy during infection.     752 
 753 




