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Abstract 23 

There are fundamental gaps in our understanding of the fates of microplastics in the ocean, 24 

which must be overcome if the severity of this pollution is to be fully assessed. The predominant 25 

pattern is high accumulation of microplastic in subtropical gyres. Using in situ measurements 26 

from the 7th Continent expedition in the North Atlantic subtropical gyre, data from satellite 27 

observations and models, we show how microplastic concentrations were up to 9.4 times higher 28 

in the anticyclonic eddy explored, compared to the cyclonic eddy. Satellite-observed 29 

chlorophyll-a was also more abundant inside the anticyclonic eddy (on average 30%). Although 30 

our sample size is small, this is the first suggestive evidence that mesoscale eddies might trap, 31 

concentrate and potentially transport microplastics. As eddies are known to congregate 32 

nutrients and organisms, this phenomenon should be considered with regards to the potential 33 

impact of plastic pollution on the ecosystem in the open ocean. 34 
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Introduction 52 

Because of the durability of plastic and the constantly increasing inputs, plastic debris is 53 

accumulating in every environment. Plastic debris is found inland even in remote places like 54 

deserts (1). In aquatic environments, plastic has been found in rivers (2, 3), lakes (4, 5), bays 55 

(6), gulfs (7) and oceans (8). While the denser debris accumulates in rivers and estuarine sea 56 

floors (6), buoyant plastic mostly ends up in open oceans (9) where, after being transported 57 

over long distances, buoyant plastic debris  tends to converge in subtropical gyres (10).  58 

The impact of plastic pollution in the oceans affects the whole ecosystem. The direct effects are 59 

entanglement and ingestion. Plastic fragmentation results in a continuum of debris sizes (11), 60 

leading to microscopic and even nanometric fragments (12). Thus ingestion concerns both the 61 

larger animals, like cetaceans (13, 14), turtles (15), sea birds (16-18), and the smaller ones, like 62 

fishes (19); even zooplankton are concerned (20, 21). It has been demonstrated that plastic 63 

ingestion can significantly alter the feeding capacity and decrease the reproductive output of 64 

organisms (22). Another effect is the transportation of invasive species across oceans, which 65 

could potentially affect the equilibrium of ecosystems (23, 24). There are also toxic chemicals 66 

associated with plastic debris since the plastic contains additives, persistent organic pollutants 67 

and heavy metals (25). The transfer of these substances into the food web when plastic debris 68 

is ingested by animals has already been demonstrated for certain organisms (26-30).  69 

Floating marine plastic debris converges in subtropical gyres (31-34). Some convergence areas 70 

have been much more surveyed than others, e.g. the western North Atlantic Ocean (31, 35) and 71 

the eastern North Pacific Ocean (33, 36). The southern hemisphere has been studied far less 72 

(32, 37). The vast majority of the sea surface has not been surveyed for plastic pollution and 73 

there is an evident lack of experimental measurements at sea. By means of circulation models, 74 

the weight of the global plastic debris floating at sea has been estimated at several hundred 75 

thousand metric tons (between 90 000 and 250 000 metric tons) (37, 38). These estimates 76 
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correspond to only 1% of the global plastic waste input into the ocean in 2010 (9). There is an 77 

obvious need to better understand where plastic debris is located at sea. This is a crucial step 78 

toward assessing the severity of the impact of plastic pollution on marine life. 79 

Because ocean motion is complex and variable, it is difficult to determine precisely the 80 

boundaries of subtropical gyres (39) and we do not know, in real time, exactly where plastic 81 

particles are located and how they are distributed inside the accumulation areas. Simulations 82 

and models exist and are good indicators for a global approach (8, 40, 41). A recent article 83 

comparing existing models concluded that distributions of plastic within gyres were in relative 84 

agreement even if methods and inputs were different (38). 85 

It has often been reported that the amount of plastic collected in trawls can show large 86 

variability, sometimes up to an order of magnitude within only a few tens of kilometers, but 87 

this has never been rationalized (38). Knowing that eddies (vortices of 50 to 200 km in diameter 88 

that are ubiquitous in the ocean) can trap and transport fluid parcels including nutrients, 89 

chlorophyll, and zooplankton (42-44), we set out to test the hypothesis that plastic distribution 90 

at the sea surface could be partly attributed to the presence of eddies. Traditionally, the 91 

paradigm is that anticyclonic eddies (clockwise in the Northern Hemisphere) capture material 92 

drifting at the surface, while cyclonic eddies (anticlockwise in the Northern Hemisphere) tend 93 

to expel material (44).  However, the mechanisms are complex and some studies have shown 94 

that cyclonic eddies can also capture material very effectively (39, 45, 46).  95 

Satellites providing near-surface information on ocean physics and biology are the only 96 

practical means of obtaining dense, global observations of the open ocean. But the direct 97 

observation of plastic debris in oceans is not yet possible via satellites since methods like remote 98 

sensing cannot observe small particles of plastic directly because of the instrument resolution. 99 

Moreover, concentrations of microplastics are not high enough to modify the backscatter signal 100 

of the sea surface detectable by RADAR (used for monitoring hydrocarbon spills for instance). 101 
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In this study, we propose to correlate satellite observations with in situ microplastic 102 

concentrations.  103 

During the sea campaign Expedition 7th Continent in June 2015, we performed in situ 104 

measurements while navigating around and across two individual cyclonic (CE) and 105 

anticyclonic eddies (AE) in the North Atlantic gyre. The localization of the eddies was 106 

beforehand determined by current forecasts. The aim of this study is to rationalize in situ 107 

microplastic surface concentrations with the altimetry data and model surface currents that are 108 

available globally at daily resolution. 109 

Materials and Methods 110 

2015 North Atlantic sea campaign routing 111 

The sea campaign Expedition 7th Continent took place in the western North Atlantic subtropical 112 

gyre between 15 and 30°N and 55 and 65°W from 28th May to 16th June 2015 (Figure 1). The 113 

boat was guided day by day from Toulouse (France) using Copernicus Marine Environment 114 

Monitoring Service portal (CMEMS, http://marine.copernicus.eu). The forecasts were 115 

delivered by Mercator Ocean. The boat was guided day by day from Toulouse (France) thanks 116 

to CMEMS global ocean forecasts produced by Mercator Ocean. The CMEMS data was 117 

referenced as GLOBAL_ANALYSIS_FORECAST_PHYS_001_002 (global ocean analysis 118 

and forecast model) and was available daily with a resolution of 1/12°. Our area of interest was 119 

mapped every day to forecast the following day’s surface currents and sea surface height (SSH). 120 

In the area to be explored, SSH was between 3 and 40 cm and we planned to sample the whole 121 

range of SSH and to explore two mesoscale eddies. We tried to allocate sampling time evenly 122 

over the whole range of SSH but this was limited by logistical considerations, mainly the 123 

navigation speed and weather conditions. 124 

 125 

 126 
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Net tow sampling  127 

On the sailing vessel Guyavoile, net tows were conducted using Neuston nets with a standard 128 

mesh size of 300 µm. Plastics were collected in a 0.5 m × 0.4 m rectangular frame fitted with a 129 

2 m long net. The net was equipped with a mechanical flow meter (Digital Flow Meter Model 130 

438 110, Hydro-bios, Altenholz Germany). The plastic debris was collected from the surface-131 

layer at a depth of 0-20 cm. Tow durations were set to 30 min and were all undertaken while 132 

the vessel was travelling at a speed of 1 to 2.5 knots. The tows covered distances between 1.1 133 

to 2.5 km. The wind speed was measured with an anemometer fixed on top of the mast at 27 m. 134 

The Beaufort number was deduced from the wind speed measurements. The captain estimated 135 

the sea state of each sampling period. During this 17 day long campaign, 41 nets were towed. 136 

The date, GPS location, Beaufort number and sea state for each net tow is reported in table SI 137 

1. 138 

 139 

 140 

Figure 1 : Map of subtropical North-Western Atlantic Ocean. The route of the boat is 141 

represented by the green line, the red squares mark the location of each net tow and the yellow 142 

shading corresponds to the plastic accumulation area according to Lebreton et al. (41). 143 

Microplastics sorting, counting, weighing and preservation 144 
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On the boat, the contents of the tows were filtered on 300 µm sieves. Most of the plastic debris 145 

was removed with tweezers and stored at -5°C in glass vials. The remaining mixture of plankton 146 

and the smallest plastic debris was stored in flasks in a formol/sea water solution (5% vol 147 

formol) to preserve the plankton for identification and numbering. Under laboratory conditions 148 

and using a binocular microscope (magnification by 5 and 10), the small plastic debris was 149 

manually separated from natural matter with forceps. The remaining sample was inspected 150 

again on a glass plate. The plate was placed successively on top of white, black and red paper 151 

in order to sort out all the plastic debris. Sargassum was carefully inspected as plastic lines were 152 

often entangled in it. Microplastic is defined as plastic debris with a size below 5 mm (47). In 153 

this study, plastic debris were sampled using a mesh size of 300 µm. All plastic debris was 154 

counted, including the mesoplastic (5 mm – 20 cm).  Mesoplastics represented about 10% in 155 

number of the debris collected. Plastic pieces were arranged in 20 cm diameter glass petri dishes 156 

according to their size and color (Figure SI 1). Lines (the fibers were about one millimeter in 157 

diameter and were attributed to fishing lines because clothing fibers are typically thinner) were 158 

treated separately; they were measured manually with a ruler because they were often twisted. 159 

The petri dishes containing the pieces were scanned. The image was treated with ImageJ 160 

software. The pieces of plastic debris were individually identified and their length and width 161 

determined. Of the two dimensions established by ImageJ, the larger one was attributed to the 162 

length and the other to the width. All plastic debris were then weighed to the nearest 0.01 mg. 163 

Finally, they were stored individually in glass vials at -18°C for further characterization. The 164 

uncorrected sea surface concentrations of microplastics (Ntow) were expressed in number of 165 

pieces per square kilometer and are reported in Table SI 1.  166 

Surface concentrations correction 167 

The surface concentrations of microplastics were corrected in order to remove the variations 168 

induced by wind mixing (N). We based our correction on the model described by Kukulka et 169 
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al. (48) and an adjustment of the plastic debris rising velocity from Reisser et al. (49). The detail 170 

of the correction is given in section SI 1 and values are reported in Table SI 1. Reisser et al. 171 

compared the correction model with in situ measurements between 0 and 5 m below the surface 172 

and observed a good correlation at Beaufort between 1 to 4. Hence, all stations at Beaufort 5 173 

were excluded from the discussion because the data were outside the limits of validity of the 174 

correction model. The mass concentrations were not corrected by the Kukulka model because 175 

the equations are based on the number of particles only.  176 

Sea Level Anomalies 177 

Sea level anomalies (SLA) are produced from satellite observations and, even if interpolation 178 

comes into play, these observations are much more precise than the SSH products from 179 

CMEMS used for routing the boat. Therefore SLA were used for the correlation with 180 

microplastic surface concentrations. We collected SLA observation products distributed by 181 

CMEMS portal and referenced as 182 

SEALEVEL_GLO_SLA_MAP_L4_REP_OBSERVATIONS_008_027. Data is produced by 183 

the Centre National d’Etudes Spatiales (CNES) in partnership with Collecte, Localisation, 184 

Satellites (CLS). Data is gridded and merged (interpolated from several satellites). Data is 185 

available daily and given with a formal mapping error of around 1 cm (depending on the 186 

location). The resolution is ¼°. The SLA of the area explored were between -2.5 and 18 cm 187 

(details in Table SI 1). The SLA range was divided into three equal intervals: low (-2.5 to 5 188 

cm), medium (5 to 10 cm) and high (10 to 18 cm).  189 

Eddy identification 190 

Petersen et al.’s algorithm (50) was used to detect and track the mesoscale eddies in the sampled 191 

area using the Okubo-Weiss (OW) parameter. The OW parameter (W) is based on the velocity 192 

gradient tensor and highlights the flow part where vorticity dominates strain, which correspond 193 

to a negative parameter W. This parameter was calculated from surface current data available 194 
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from the CMEMS portal. This is a model product, referenced as 195 

GLOBAL_ANALYSIS_FORECAST_PHYS 001_002. It is available daily with a resolution of 196 

1/12°. The algorithm made available on line by Petersen et al. (50) was used and was adapted 197 

to the format of the present data files (NetCDF). W can be calculated over the whole globe but 198 

this parameter needs a threshold depending on the region of the ocean to identify the eddy edge 199 

( !
"#

≤	−0.2 is usually used, where σW is the standard deviation of W over the region of interest) 200 

(50). We considered that translational motion of the eddy from east to west was negligible over 201 

the 15 days of the sampling period. We calculated the outlines of both eddies daily and defined 202 

their edges as the average over the 15 days.  203 

Chlorophyll concentrations  204 

Chlorophyll-a (CHL-a) surface concentrations (in mg.m-3) were obtained from the CMEMS 205 

portal (produced by ACRI-ST Company). They were near real time (NRT) observations 206 

referenced as OCEANCOLOUR_GLO_CHL_L4_NRT_OBSERVATIONS_009_033. The 207 

data was based on images from the Moderate-Resolution Imaging Spectroradiometer (Modis) 208 

and Visible Infrared Imaging Radiometer Suite (Viirs) merged products. The daily data 209 

corresponded to a mesh of 4 km x 4 km (1/25°). The optimal interpolated L4 products were 210 

considered to avoid (interference from clouds.  211 

Results and Discussion 212 

Microplastic surface concentrations will be either discussed uncorrected (Ntow expressed in 213 

pieces per square kilometer, Table SI 1), or corrected according to Kukulka model (N) (48). 214 

(48). The uncorrected data are available in the supporting material section and the corrected 215 

data are presented in the article; most studies present corrected data (37). Microplastic 216 

concentrations were typical of what is measured in the North Atlantic subtropical gyre 217 

(hundreds of thousands of pieces per square kilometer)(31).  218 
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 219 

 220 

Correlation with Sea Level Anomalies 221 

During the sampling campaign, the explored area corresponded to SLA between -2.5 cm and 222 

+18 cm (Figure 2). This range was divided into three equal intervals.  223 

 224 

Figure 2: Map of the sampled area within the North Atlantic subtropical gyre correlated with 225 

Sea Level Anomalies satellite observations obtained from the CMEMS portal (on 1st June 226 

2015). The boat track is shown as a black line and was obtained by the Argos system; the 227 

sampling site locations are marked as white squares. 228 

In total, we performed 41 measurements, 29 of which were within the subtropical gyre 229 

delimitated by Lebreton et al. (41). On average, microplastic abundance concentrations were 230 

6.2 times higher inside the gyre than outside. In the subtropical gyre, microplastic corrected 231 

concentrations varied from 5,000 to 360,000 pieces/km². The rest of the discussion concerns 232 

only the distribution of microplastics inside the subtropical gyre, where there were high 233 

variations (up to 70 fold). In spite of the dispersed values, N increased systematically with 234 

increasing SLA categories (Figure 3). The uncorrected correlation with SLA is given in figure 235 

SI 2 and show the same tendency. The statistical Mann Whitney test at 5% indicated that 236 

microplastic concentrations were significantly different at low and high SLA (mean N at low 237 
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SLA of 18000 pieces/km² and 138 000 pieces/km². at high SLA, p=1.3%). Between these two 238 

categories, the mean N differed by a factor of 7.7.  239 

 240 

 241 
 242 

 NDD D 243 
Figure 3: Corrected sea surface concentrations of microplastics (N, pieces/km²) according to 244 

Sea Level Anomaly categories (SLA, cm). Whiskers correspond to 1.5 times the interquartile 245 

range. Values are represented by crosses, min. and max. values by triangles, and mean values 246 

by stars. This graph was obtained from 24 net tows (3 measurements at low SLA, 9 at medium 247 

and 13 at high SLA).  248 

Correlation with model currents 249 

In addition to investigating the correlation between the distribution of microplastics and SLA, 250 

the variations in local ocean circulation and particularly mesoscale eddies will be discussed. 251 

Eddies are coherent mesoscale vortices of water that play a key role in the ocean. They have a 252 

dynamic influence in the ocean, especially on the transport of heat, salt, and water masses. They 253 

also have a biological influence through upwelling of cold water rich in nutrients for the growth 254 

of phytoplankton or, on the contrary, downwelling (depending on the sense of rotation).  255 

There are various methods to identify eddies and determine their contour, using SLA is a first 256 

one, where the eddy boundaries are set to SLA above a given threshold (51, 52). There are also 257 

methods based on the Okubo-Weiss (OW) parameter using velocity fields under vorticity-258 

dominated flows. We used this parameter and, as described in Figure 5, the two eddies explored 259 
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had well defined boundaries, which were determined by taking the average of the outlines found 260 

over 15 consecutive days. A movie showing the OW parameter over the 15 days of sampling is 261 

available in SI (Movie SI 1). Peterson et al. used a minimum lifetime cutoff of 28 days for well-262 

defined eddies (50). We ensured indeed that the two eddies explored had a lifetime well above 263 

that limit, they indeed already existed 6 months earlier (Figure SI 3). In June 2015, the cyclonic 264 

eddy was approximately 200 km by 150 km and the anticyclonic eddy was 200 km by 100 km. 265 

The centers of their ellipsoids were about 400 km apart and, edge to edge, they were around 266 

200 km apart. It took 5 days with to sail from one eddy to the other in bad weather conditions. 267 

As expected, the eddy edges were correlated with SLA values (see Figure SI 4) even though 268 

there was not a perfect match. This was principally due to a difference in resolution between 269 

the two data sets.  270 

A)      B)    271 

 272 
 273 

Figure 5: A) Example of daily Okubo-Weiss parameter calculated using surface currents data 274 

from the CMEMS portal (data from 14th June 2015). The yellow areas correspond to an OW 275 

parameter that is negative with respect to a flow dominated by vorticity. The anticyclonic and 276 

cyclonic eddies boundaries explored are represented by red and blue lines respectively. B) Map 277 

representing the mean surface current vectors between 1st and 15th June 2015, the boat track 278 
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of the 7th Continent expedition is reported as a black line. The daily calculated eddy boundaries 279 

are represented by thin lines. In bold line was represented the average of the outlines calculated 280 

over 15 consecutive days. As the translational east-west motion of eddies was negligible over 281 

this time period, their boundaries were defined as the mean (bold line). 282 

Microplastic surface concentrations were then compared within the two eddies (Figure 6, for 283 

uncorrected data see Figure SI 5). The mean N value in the cyclonic eddy was 20,000 284 

pieces/km² compared to 170,000 pieces/km² in the anticyclonic eddy. The averaged 285 

microplastic surface concentration was 9.4 higher in the anticyclonic eddy. There is an 286 

important plastic concentration at the south east of the AE (Figure 6), it is just at the limit of its 287 

boundaries and it illustrates the uncertainties of the mathematic delimitation of eddies edges. 288 

This measurement could have been included in the calculation of the ratio AE/CE that would 289 

then equal 10.3 . There was also significant plastic debris concentrations at the east of the AE, 290 

it was located between two AE as can be seen in figure 2. There are very complicated turbulent 291 

effects at the eddies edges, convergence and divergence at small scale features could occur and 292 

influence plastic distribution at the surface. It would be very interesting to study these 293 

phenomenon in the future. In summary, from our in situ measurements, we observe that the 294 

anticyclonic eddy tended to accumulate more floating microplastic than the cyclonic eddy.  295 

New figure 6 296 
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 297 

Figure 6: Corrected surface microplastic concentrations (N) inside the gyre correlated with 298 

delimitation of eddies calculated using the Okubo-Weiss (OW) parameter. The route taken by 299 

the boat is shown as a black line, eddy boundaries are marked in blue and red for the cyclonic 300 

(3 measurements) and anticyclonic eddies (6 measurements), respectively. 301 

Mesoscale eddies contribute to horizontal and vertical nutrient fluxes within the euphotic zone 302 

(44). They cause nutrient-rich water to upwell by various mechanisms, thus stimulating the 303 

growth of phytoplankton and increasing the amount of chlorophyll in the eddy core (53-56). 304 

CHL-a surface concentrations from satellite observations were compared between the two 305 

eddies on a daily basis in order to eliminate the variations induced by local parameters (e.g. 306 

temperature, sunshine). The two eddies were close enough (around 200 km apart edge to edge) 307 

to make this comparison possible. Daily CHL-a surface concentrations were averaged over the 308 

entire area of the eddy. Over the sampling period, CHL-a mean surface concentrations were, on 309 

average, 30% higher in the anticyclonic eddy than in the cyclonic eddy (see table SI 2 for 310 

details).  311 

In conclusion, this study presents the first direct observation of different concentrations of 312 

plastic between a cyclonic and an anticyclonic mesoscale eddy. Although the sample size is 313 

small, the results here corroborate the hypothesis that mesoscale ocean dynamics impact plastic 314 

debris distribution at the sea surface within subtropical gyres. We strongly encourage further 315 
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analysis of this effect in other trawl datasets. As anticyclonic eddies also tend to trap and 316 

transport nutrients, chlorophyll and zooplankton, the environmental impact of plastic pollution 317 

should be considered from this perspective. Real-time surveys of the sea surface by space based 318 

instruments may therefore help to plan future campaigns with respect to the mesoscale 319 

convergence in eddies. Vortices in turbulence are often envisaged as rotating bodies of fluid, 320 

traveling as coherent islands in an incoherent ambient flow (45, 57) and it would be interesting 321 

to estimate the proportion of debris gathered and entrapped from the early stage of the eddy 322 

existence and the proportion of material captured and swallowed as the eddy travels east-west 323 

inside the gyre. Of course, the leakage of material from eddies must also be considered. Finally, 324 

this study has only considered microplastics at the sea surface and the investigation of 325 

microplastics throughout the water column needs to be undertaken. As anticyclones are 326 

generally downwelling, how abundant would microplastic be at greater depths, especially at the 327 

core of eddies where the geostrophic speed is locally maximum at a certain depth (58)? 328 

 329 

  330 
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