
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Energy-Efficient Event Detection by Participatory
Sensing Under Budget Constraints

Chi Harold Liu, Senior Member, IEEE, Jianxin Zhao, Honggang Zhang, Senior Member, IEEE,
Song Guo, Senior Member, IEEE, Kin K. Leung, Fellow, IEEE, and Jon Crowcroft, Fellow, IEEE

Abstract—Dynamic event detection by using participatory sens-
ing paradigms has received growing interests recently, where
detection tasks are assigned to smart-device users who can poten-
tially collect needed sensory data from device-equipped sensors.
Typical applications include, but are not limited to, noise and air
pollution detections, people gathering, even disaster prediction.
Given this problem, although many existing centralized solutions
are effective and widely used, they usually cause heavy communi-
cation overhead. Thus, it is strongly desired to design distributed
solutions to reduce energy consumption, while achieving a high
level of detection accuracy with limited sensing task budget. In
this paper, we first present two novel centralized detection algo-
rithms as the performance benchmark, which make use of the
Minimum Cut theory and support vector machine (SVM)-based
pattern recognition techniques. Then, we introduce a novel dis-
tributed and energy-efficient event detection framework under
task budget constraint, where we formulate an optimization prob-
lem and derive an optimal utility function. Finally, based on a
real trace-driven data set in an urban area of Beijing, extensive
simulation results demonstrate the effectiveness of our proposed
algorithms.

Index Terms—Distributed event detection, energy efficiency,
incentive budget, participatory sensing.

I. INTRODUCTION

P ARTICIPATORY sensing is an emerging paradigm that
aims at collecting useful data from a large number of

surrounding smart-device users. These smart devices are usu-
ally equipped with a variety of sensors, e.g., accelerometer,
gyroscope, GPS, light sensor, microphone, and camera, that
can monitor almost every aspect of our daily surrounding
environment. Participatory sensing can successfully reduce the

Manuscript received November 12, 2015; revised February 15, 2016;
accepted February 20, 2016. This work was supported by the National Natural
Science Foundation of China under Grant 61300179. Early results were
reported at IEEE ICC 2015 [1]. (Corresponding author: Chi Harold Liu.)

C. H. Liu is with the School of Software, Beijing Institute of Technology,
Beijing 100081, China, and also with the Department of Computer Information
and Security, Sejong University, Seoul 143-747, South Korea (e-mail:
chiliu@bit.edu.cn).

J. Zhao is with the School of Software, Beijing Institute of Technology,
Beijing 100081, China (e-mail: rho.ajax@gmail.com).

H. Zhang is with the Department of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou 310027, China (e-mail: hong-
gangzhang@zju.edu.cn).

S. Guo is with the School of Computer Science and Engineering, University
of Aizu, Fukushima 965-8580, Japan (e-mail: sguo@u-aizu.ac.jp).

K. K. Leung is with the Electrical and Electronic Engineering and
Computing Departments, Imperial College, London SW7 2BT, U.K. (e-mail:
kin.leung@imperial.ac.uk).

J. Crowcroft is with the Computer Laboratory, University of Cambridge,
Cambridge CB2 1TN, U.K. (e-mail: jon.crowcroft@cl.cam.ac.uk).

Digital Object Identifier 10.1109/JSYST.2016.2533538

infrastructure deployment costs and enable us to sense the
world at an unprecedented spatiotemporal granularity. These
features make it quite suitable to be applied in a wide range
of applications, e.g., monitoring of noise level [2], air quality
[3], and street-parking availability [4] in urban areas.

Among many applications of participatory sensing, dynamic
event detection has received a growing amount of research
attention. Specifically, our focus in this paper is motivated by an
application scenario as follows. A group of smart-device users
move inside a certain spatial sensing region, while subscrib-
ing to a central server (CS). Periodically, a selected crowd of
participants collect sensory data by using their smart-device-
embedded sensors. Sometimes, local data processing is also
needed. These participants then transmit necessary data to the
CS via built-in communication interfaces such as 3G/LTE or
WiFi. By processing these data, the CS is able to identify tar-
get event areas inside the sensing region with certain detection
accuracy. Such events could be abnormal noise level in a spe-
cific region, residential fire in forests, or meteorological hazards
[5]–[7], etc.

There are mainly two types of technical approaches to enable
the running of the aforementioned application scenario. First
is the centralized approaches, where participants transmit the
collected raw data to the CS for further processing [7] (it is
worth noting that the processing can also take place in a dis-
tributed cluster, e.g., Hadoop/Spark). Centralized approaches
usually require some degree of knowledge of all sensory data,
and thus yield detection results with high precision. However,
the communication overhead can cost significantly to both the
infrastructure and participants’ devices. The other type is dis-
tributed approaches that require to process the data locally
on each participant’s smart device and reach local conclu-
sions/decisions by interacting with neighboring devices through
short-range machine-to-machine (M2M) communications such
as Bluetooth [8] and WiFi-Direct. For example, computing the
maximum value of sensor readings can be done in a distributed
manner using the well-known max/min consensus protocol [9].
Distributed approaches scale well with the structural change
of the network, but may suffer from a low detection accu-
racy, if certain detection policy is not carefully designed and
enforced. Apart from these two types of approaches, using
pattern-matching techniques is another new trend for dynamic
event detections [10]. It could be applied both in the CS and
distributedly on each participant’s smart device.

The temporal property of time-varying events and the large
number of participants involved in an event detection pro-
cess make the application of dynamic event detection quite

1932-8184 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

a challenging problem. It becomes even harder when energy
consumption of smart devices is considered, since participants
tend to refuse to cooperate if an application consumes too much
energy from their devices. Although existing research efforts
declare that power consumption could be reduced by mini-
mizing the active period of time for devices or reducing the
packet size [11], [12], so far they have not built up solid math-
ematical foundation to establish the synergy between energy
consumption and detection accuracy. Another key design ele-
ment is how to motivate participants to contribute high quality
data. Along this direction, a large amount of research activities
have been performed recently. For example, References [13]
and [14] propose mechanisms to motivate participants by either
real payment or virtual credit. Nevertheless, regardless of the
form of incentives, no platform/CS can afford unlimited budget
to recruit participants, and no more sensing tasks can be accom-
modated when the budget runs out. Finally, over-simplified
data model is sometimes used in experiments, such as gener-
ating data by normal distribution [15], which is insufficient in
many cases. Therefore, real-world-data-based simulations are
necessary to verify the performance of proposed approaches.

Toward this end, in this paper, we propose a set of novel
dynamic event detection algorithms, to explicitly consider the
relationship between energy consumption, detection accuracy,
and task budget allocation. The contribution of this paper is
summarized as follows.

1) We propose two novel centralized event detection algo-
rithms that make use of the Minimum Cut (Min-cut)
theory and the support vector machine (SVM) pattern-
matching technique.

2) We propose a distributed, energy-efficient event detection
framework under task budget constraint, in which partic-
ipants calculate events’ regions by negotiating with their
neighbors.

3) We propose a novel utility function from the solution
of an optimization problem to embed in the distributed
framework, to achieve the long-term detection accuracy
while minimizing the energy consumption and providing
satisfactory incentives to participants.

4) The effectiveness and flexibility of the proposed algo-
rithms are extensively evaluated by real trace-driven
experiments.

This paper is organized as follows. Section II reviews the
related research activities. Section III establishes formal model
of our system. Section IV describes two centralized event
detection approaches, as Min-cut-based and SVM-based algo-
rithms. Section V describes our proposed distributed event
detection framework and utility function. Section VI exten-
sively evaluates the performance of the proposed strategy by
real trace-driven simulations, and finally Section VII concludes
this paper.

II. RELATED WORK

A straight-forward solution for event detection is to predefine
some threshold values and trigger alarm messages when sensor
readings are higher than the thresholds [12]. This, however, may
not fit the spatiotemporal properties of most dynamic events,
thus may not be practical. Currently, there are mainly two other

categories of approaches to tackle this problem. One of them is
the centralized approach. In [7], Sakaki et al. take advantage of
the real-time nature of Twitter posts to construct an earthquake
reporting system. Each Twitter user is regarded as a “sensor.”
If a user detects some possible events, he/she tweets directly
to a CS, where complex models are used to distill earthquake
information from these large amounts of tweets precisely.

The other category of approaches is distributed. In [16],
Zhu et al. propose a completely localized Coordinated wAkeup
Scheduling algorithm (CAS), to cooperatively determine sensor
wake-up schedules. Without relying on location information,
CAS is easy to implement and scalable to network density.
Distributed processing/event detection is also an important
research direction in control systems. Olfati-Saber presents
three novel distributed Kalman filtering algorithms for sensor
networks in [17], where each sensor in the network observes
part of some process and estimate it based only on local infor-
mation from its neighbors. Although it is not directly applicable
in our application scenario, it is still a promising approach.

Using pattern-matching techniques is another trend for
dynamic event detection. It could be applied distributedly on
each participant as in [10], or applied in the CS as in [18]. Along
this direction, some research works use complicated yet accu-
rate algorithms based on techniques such as SVM [19], Naïve
Bayes [20], and the pattern-matching techniques are well sum-
marized and compared in [21]. However, in some cases, the
exemplary training data for time-varying events are very hard
to generate.

All the above research activities fail to consider the device
energy consumption when participating the sensing tasks.
Existing research declares that power consumption could
be reduced by minimizing the active time of devices [11].
Furthermore, in [12], the authors claim that reducing the packet
size can also effectively bring down energy depletion, and
[22] proposes an energy-efficient information diffusion pro-
tocol for mobile crowd sensing. Reference [23] proposes a
system for energy-efficient crowdsourcing of mobile sensor
data by exploiting data collection opportunities among mobile
phone users such as making phone calls or using applica-
tions. However, neither of them has built up solid mathematical
foundations to explicitly establish the synergy between energy
consumption and detection accuracy (in a distributed manner),
as the central theme of our work in this paper.

Another key issue in participatory sensing is how to moti-
vate participants to contribute high quality data. By attract-
ing participants and paying rewards as a return, incentive
mechanisms play important roles in guaranteeing a stable
scale of participants and improving the accuracy, coverage
or timeliness of the sensing results. Following this direc-
tion, a large amount research efforts have been conducted
recently. Lee and Hoh [13] introduce the reverse-auction based
dynamic pricing (RADP) incentive mechanism, where par-
ticipants send their incentive expectations to the platform,
and those with lowest expectations are chosen as winners to
perform sensing task. Reference [14] enhances this mecha-
nism by replacing real payment with virtual credit to keep
a more reasonable price competition. This paper also largely
extends our previous work [1], where in this paper 1) a new

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ENERGY-EFFICIENT EVENT DETECTION BY PARTICIPATORY SENSING UNDER BUDGET CONSTRAINTS 3

centralized event detection algorithm based on SVM pattern-
matching technique is proposed and extensively evaluated;
2) computational complexity of min-cut-based centralized
event detection algorithm is theoretically given; 3) deep theoret-
ical analysis on the proposed utility function from the solution
of an optimization problem is given, including the detailed
computational complexity analysis; and 4) all three centralized
and distributed are extensively evaluated and compared with
existing CAS [16] approach by real trace-driven experiments.

III. SYSTEM MODEL

In this paper, we assume that a crowd of smart-device-
equipped people move in some urban region, such as park,
shopping mall, and plaza. We model the entire sensing region
as a two-dimensional (2-D) map, denoted by M. To detect
interested events in this region, e.g., noise, people gathering,
or some other urban breaking events, the platform publishes
related sensing tasks, and those who are willing to take part in
the tasks and to contribute data are “participants.” Each partic-
ipant’s smart device is embedded with the required sensors for
specific sensing tasks. We focus on detecting events by using
only one kind of sensor in this paper; however, the proposed
framework can be easily applied to other cases where multiple
sensors are needed. The sensory data collected by participants
are finally used to estimate whether or not some events happen
and their whereabouts. We note that detecting strict boundary
of event is both a nontrivial and unnecessary task. Instead, we
assume that if a mobile node found an event, the target event
exists within its sensing range. Therefore, by analyzing the sen-
sory information of participating nodes, we can efficiently get
the knowledge of target events.

We assume that each sensing task runs continuously for a
long period of time, which contains many consecutive detection
cycles. Each detection cycle consists of a Control plane and
Data plane. Necessary control messages exchange occurs in the
Control plane, and the Data plane comprises three steps: 1) data
collection; 2) transmission; and 3) centralized processing. That
is, the participants collect data from the environment, perform
some local message exchange and computation if needed, and
then transmit the necessary data to a CS for final processing.

We define participants as a set P � {i|i = 1, 2, . . . , P},
where P denotes the size of the crowd. For the rest of this paper,
we refer to a particular participant i and his/her associated col-
lective attributes together as a participant, or simply a user.
These attributes are denoted by a tuple pi = (xi, yi, vi, ei, bi),
where xi and yi are a participant’s coordinates, vi is the sensory
reading collected from his/her smart device, ei is the device-
remaining energy level, and bi denotes the amount of incentives
required by participant i. Also, the initial energy reserve of
participant i before performing all sensing tasks is denoted by
e0i . The incentive can be in the form of real money or virtual
credits. Without loss of generality, we simply assume that each
sensing task has a fixed incentive budget B. We also assume
the participants move around in M randomly. Mathematically,
event detection means to partition all the participating nodes
into those nodes in an event (i.e., abnormal nodes), and the
other normal nodes. That is, given the information of each

user pi, compute a group of users who are in the event region.
Specifically, in participatory sensing campaigns, nodes “in an
event region” refer to those with “relatively high” sensory read-
ings. Note that sensor reading can have different meanings
depending on applications, e.g., temperature, noise level, and
moisture.

In a centralized scenario, we model the sensing region as
a graph G(P , E), where E = {lij |∀i ∈ P ∀j ∈ P} is the edge
set (lij of the edge between users i and j). An edge denotes
some relationship of two neighboring nodes based on their
attributes. Specifically, here the weight wij for each edge
lij ∈ E is calculated as: wij = exp (−|vi − vj |/d(i, j)), where
d(i, j) denotes the distance between two participants i and j.
This metric reflects the change of sensory readings between two
neighboring users.

In a distributed scenario, we assume that a participant has
necessary computing capability, and all participants have a
common, but tunable wireless communication range denoted
by δ. This range can guarantee the successful data transmission
and reception higher than an signal-to-noise-plus-interference-
ratio (SINR) threshold. Extending this range will enforce
devices to use higher transmission power, and since this paper
is more application oriented, the related Physical (PHY) layer
techniques are out of our scope. We define the neighbor set of
any participant i as

N (i) = {j|j ∈ P, d(i, j) < δ}. (1)

For a user i, each of his/her neighbor j ∈ N (i) is associated
with a utility value Uj (to be explained in detail in Section V) to
explicitly represent the benefit of choosing user i. In addition,
the nearest neighbor of a participant i is defined as the one
achieving maximum defined utility value among all one-hop
neighbors within the communication range, as

N 1(i) = argmax
j

Uj ∀j ∈ N (i) (2)

where Uj is the utility value of user j. Similarly, its Top-K
nearest neighbors NK(i) is a set that contains its K nearest
neighbors.

Note that during multiple detection cycles, sensory data from
a participant changes accordingly. Thus, all the variables above
can be combined with the factor of time. For instance, we use
vi(t) and ei(t) to denote the time-varying sensory reading and
remaining energy of user i in cycle t. However, in centralized
algorithms, for the sake of simplicity, we only need to focus on
one detection cycle, since all cycles have identical actions (that
does not imply the same effect due to system dynamics), and
thus we ignore the time factor in Section IV.

Some important notations used in this paper are listed in
Table I.

IV. CENTRALIZED APPROACHES

As mentioned above, for centralized algorithms, after par-
ticipants collect data from the environment, the raw data are
transmitted to the CS for further processing. Since data trans-
mission methods (e.g., WiFi, Bluetooth, 3G/LTE) have been
thoroughly studied, and the centralized approach does not
require control messages exchange before the Data plane starts,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

TABLE I
LIST OF IMPORTANT NOTATIONS AND THEIR DESCRIPTIONS

Algorithm 1. Min-cut Based Centralized Event Detection
Algorithm

1: Input: Participants sets P;
2: Initialize graph G(P , E);
3: Removing non-neighboring edges and generate G′(P , E ′);
4: Ec,Pin = ∅;
5: Pout = P;
6: while maxPout

−minPout
> Δ do

7: Calculating edge weights;
8: Applying Min-Cut algorithm on G′ to identify Ec;
9: Update Pin and Pout;

10: end while
11: Allocate incentives to all participants.
12: Output: Pin.

we focus on the data processing step of Data plane in this
section. In the following part, we will introduce two novel cen-
tralized algorithm, both of which aims at separating nodes in
the event area from the other normal nodes.

A. Min-Cut-Based Centralized Algorithm

In G(P , E), the core step is to use an improved Min-cut
algorithm [24] to find a subset Ec ⊂ E that connects two neigh-
boring participants within and out of the area of an event. Then,
all users in an event region can be separated out. The detection
algorithm is presented in Algorithm 1.

As an example, Fig. 1 shows the steps of how participants
in an event region are recognized in a mini-network with five
participants p1 – p5. Obviously, with its abnormally high read-
ing, user p5 is identified in an event region. Thus, edges p1p5,
p2p5, p3p5, and p4p5 all connect one user inside an event area
and one that is outside. Our algorithm can recognize these four
edges, as shown in Fig. 1(c). Once these edges are removed, the
participants in an event region (just one user p5 in this simple
case) are identified [see Fig. 1(d)]. The detailed process of this
algorithm is explained below.

Step 1: Initialization. To initialize E , every two participants
in P are connected, thus E = {lij |∀i ∈ P ∀j ∈ P, i �= j}. In

other words, a fully connected graph is formed, as shown
in Fig. 1(a). The three values besides each node denote the
coordinates and sensory reading of each participants, respec-
tively. The information of residual energy and incentive require-
ment are concealed in this example for simplicity.

Step 2: Edge removal. To reserve only those edges con-
necting neighboring users, those between nonadjacent users
are removed. Note that by “adjacent,” we mean users who
are within the predefined communication range of each other.
Extending this range (e.g., through increasing the transmission
power) will allow any particular user to have more neighbors,
and the network will become more connected but at the same
time more challenging to analyze. Given the coordinates of
each edge’s vertexes, the number of crosses by other edges can
be calculated. To further simplify the fully connected graph,
we employ one practical strategy as follows. The edges hav-
ing most crosses with others are removed from E iteratively.
If two edges have one common intersection, the longer one is
removed. Detecting and omitting the crossing links is an essen-
tial step in construct a suitable graph for subsequent steps, since
a graph with crossing links cannot be processed by Min-cut
algorithms properly. After this step, remaining edges consist of
a new set E ′.

Step 3: Calculating edge weights. The weight wij for each
edge lij ∈ E ′ is calculated. The bigger sensory readings change
among two neighboring vertexes, the lower weight is assigned
to the edge lij , as shown in Fig. 1(b).

Step 4: Min-cut. Finally, the Min-cut algorithm is applied. A
minimum cut Ec of a graph is a cut that divide the vertexes into
two nonempty disjoint sets Pin and Pout and has the smallest
sum of weights possible, where Pin ∪ Pout = P , Pin ∩ Pout =
∅, i ∈ Pin, j ∈ Pout ∀lij ∈ Ec. In our case, it represents the
edges that connect two set that are within and out of the
events.

Step 5: Repeat for multiple events. Let minPout
�

min(vi), maxPout
� max(vi) ∀i ∈ Pout. Δ is a predefined

upper-bound of abnormal reading. Once an event region is
detected, the judgment condition (maxPout

−minPout
) ≥ Δ

is updated. If there is still another event to be detected, the
Min-cut algorithm loops to find other event regions.

Step 6: Incentive allocation. After each detection cycle, the
incentives are issued to all participants as they have required,
and a new detection cycle resumes from Step 1 until the budget
runs out.

When no more event regions can be detected, edges in Ec
are computed, and the users in Pin are revealed. These are
exactly the participants in the region of events. This algorithm
does not assume a predefined threshold for events. Besides, it
can detect multiple event regions. Moreover, by traversing all
possible edges between any two users, this algorithm provides
precise detection result.

However, despite its high precision, it consumes much com-
putational resources and runs slowly, which can be confirmed
in the simulation section. According to [24], the Min-cut algo-
rithm has an overall running time of Θ(|V ||E|+ |V |2 log |V |),
where |V | and |E| denote the number of vertexes and edges in
a graph, respectively.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ENERGY-EFFICIENT EVENT DETECTION BY PARTICIPATORY SENSING UNDER BUDGET CONSTRAINTS 5

Fig. 1. Example of Min-cut-based centralized algorithm. (a) Connect every two vertexes. (b) Remove edges connecting nonadjacent vertexes and calculate
weights. (c) Apply Min-cut algorithm and recognize edges to be removed. (d) Final detection result.

B. SVM-Based Centralized Algorithm

We present a SVM-based centralized algorithm in this
section. The intuition is that real-world events usually exhibit
some spatiotemporal patterns, and since our data are collected
over space and time domains in the sensing region, the data
may eventually show these patterns. This intuition can be con-
firmed by the observations in [25], and then an event detection
problem can be transformed into a pattern-matching problem,
where SVM technique is used in our approach. SVM is a kind
of supervised learning algorithms that used for patterns classifi-
cation and regression analysis. Given a set of training examples,
each marked as belonging to one of two categories (in our case,
is or is not in an event region), an SVM training algorithm
builds a model that assigns new examples into one category or
the other.

Similar with the Min-cut-based algorithm, the participants’
information, including their sensory readings and locations, for
SVM-based algorithm, are required to be transmitted to the CS.
Detailed procedure is explained as follows.

Step 1: Training. To train an SVM, we have to provide a
set of exemplary training data, i.e., participants’ information
and corresponding labels showing whether a user is in an event
region or not. The algorithm first acquires a series of labeled
training data, which can be collected by running Min-cut-based
algorithm. Given training set and proper parameters, we train
an SVM model in the CS. Then, the trained SVM model infers
an approximate region of the event.

Step 2: Detection. After the training phase is completed,
the sensory data are transmitted to the CS for classification.
Collected sensory data are fed into the SVM model that will
judge whether a user is in an event region or not.

Step 3: Incentive allocation. The SVM-based detection
algorithm uses the same budget allocation strategy as the
Min-cut-based approach. That is, the required amount of incen-
tives are allocated to all participants at the end of the current
detection cycle, and the new detection cycle starts with Step 1.

Suppose that the pattern between training data and real sen-
sory data is similar, i.e., the event does not change too much
over time and space domains, this algorithm can detect the event
region precisely and efficiently.

The time-complexity analysis of running SVM is a non-
trivial task, where the costs are coming from the training and
test phases. As discussed in [26], the training time depends on
both Q3 (where Q is the number of free support vectors) and
nS (where n denotes the number of training samples and S

denotes the number of support vectors). In general, although
these parameters depend on specific techniques being used,
training time is usually expected to be in the order of O(n2)
for state-of-the-art linear SVMs or approximate solvers [26],
[27]. On the other hand, in the detection phase, the prediction
time is linear with respect to the number of support vectors and
features, where [26] discusses it in detail.

Compared to the Min-cut-based algorithm, SVM-based
approach runs much faster, and has a good detection precision.
However, training sets are required before detection, but the
exemplary training data can be very hard to generate in most
practical but complicated applications.

C. Summary

Although centralized detection approaches are easy to
implement for each participant, it requires all sensory data
to be transmitted to the CS for centralized computations.
Communication overhead when uploading participants’ sen-
sory data can cost significantly to both the infrastructure and
participants. Furthermore, they do not scale well with the size
and structure change of the network, nor the energy consump-
tion has been clearly considered. To this end, we aim to present
a distributed approach in the next section.

V. DISTRIBUTED EVENT DETECTION APPROACH

Different from all centralized algorithms, in a distributed
approach, participants not only collect data, but also need to
exchange control messages and make local decisions so that the
data can be processed locally. Then they transmit the processed
data (e.g., event detection result) back to the CS, where CS has
no further processing task to perform. Therefore, the key part of
a distributed approach is to design how each user makes deci-
sions locally in an optimal way, as in the Control plane. In this
section, we propose a distributed detection framework that pro-
vides as accurate detection results as possible, and takes energy
conservation into account at the same time. Without loss of gen-
erality, we assume that the threshold to recognize an event has
already been given to each user, but the value can be easily
changed in different applications.

A. Distributed Event Detection Framework

The essence of our proposed approach is described as fol-
lows. While each user can detect events according to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

Fig. 2. (a) Information and utility of seven participants. (b) Each participant chooses its Top-2 nearest neighbors as initial decision. (c) By exchanging initial
decision information, each participant accepts or declines link petitions. (d) Each participant makes his final decision. (e) By exchanging final decision information,
participants form different groups. (f) In each group, a participant keeps awake to perform sensing work, and the others are in sleep state. (g) Employed algorithm
procedure of the distributed algorithm.

predefined threshold, many participants tend to provide simi-
lar detection results due to their similar geographical locations.
Accordingly, we group participants with “similar” neighbors
together, so that they are very likely to yield the same detec-
tion result. Therefore, in a detection cycle, when one user is
monitoring the environment, its companions, i.e., other mem-
bers in the same group, do not have to monitor in the same
cycle. As a result, energy is conserved. In this process, a user
chooses its companions according to their predefined utility
values. A proper utility definition is obviously a vital part
in our detection framework, and it will be theoretically dis-
cussed in detail later; as for now we focus on the detection
framework.

At the beginning of each detection cycle, each user in region
M selects its Top-K nearest neighboring users, referred as the
“linking petition” to these neighbors. For convenience, we refer
to the initially selected neighbors of participant i as its desired
users. Conversely, participant i is a petitioner of its desired
users. Due to the distributed nature of our framework, each
user has no prior knowledge of its neighbors’ initial decisions
before making its own decision, and thus it is highly possible
that a user makes an improper decision that may create selection
conflicts.

Fig. 2(a)–(f) shows an example to illustrate the proposed
procedure. Fig. 2(a) shows the initial information of seven par-
ticipants in a target region. The tuple near each participant
represents each his/her coordinates, collected sensory reading,
remaining energy level, and incentive requirement. To illus-
trate a neighboring relationship, all participants are connected
to their one-hop neighbors. The number on each line denotes
the utility value between two users. In practice, the utility can be
derived by using various methods, and it is possible that the util-
ity from pi to pj is different from that from pj to pi. However,
for simplicity, we assume identical utility values in this exam-
ple. In Fig. 2(b), each user finds its Top-2 (i.e., K = 2) nearest
neighbors, i.e., the maximum allowed number of companions

are two in this example. An arrow in the figure points from
a petitioner to its desired user. However, we note that, in our
case, user p5 chooses p3 whereas p3 chooses his/her another
two neighbors p4 and p6, which creates a conflict situation.
Our solutions is that: if participant pi finds its desired user
pj’s desired user is not pi itself, pi gives up its petition. The
reason is that from pj’s perspective, by connecting its own
desired user instead of pi, it could achieve better accuracy.
Therefore, in Fig. 2(c), the linking petition of user p5, together
with other unqualified petitions, is declined after their initial
decisions are exchanged. The result of their petition decisions is
shown in Fig. 2(d). Fig. 2(e) and (f) shows that users exchange
information and decide to stay awake or sleep during this detec-
tion cycle. Note that although not mentioned, we assume that
the communication range can assure one-hop communication
between users. Below is a formal description of our distributed
event detection framework.

Step 1: Exchange user information. Each user sends its
equipped sensor information to its neighbors. Based on this,
each user computes the utility of its neighbors.

Step 2: Make initial decision. According to the associated
utility, each user chooses K neighbors to be its desired users.

Step 3: Exchange initial decision. Each user’s initial deci-
sion is transmitted to all neighboring participants by sending
control messages.

Step 4: Make petition decision. With knowledge of each
user’s petitioner, the strategy described above is applied to
decide whether it should accept linking petitions from its
petitioners.

Step 5: Exchange petition decision. Each user notifies its
petitioners whether they are accepted. Then, each user makes its
final decision on whether it should form a group with its desired
users or not. Finally, each user either forms a group with other
users or stands alone.

Step 6: Make sleep–wake (S–W) decision. Once a group is
formed, a node exchanges the information within its own group.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ENERGY-EFFICIENT EVENT DETECTION BY PARTICIPATORY SENSING UNDER BUDGET CONSTRAINTS 7

Each user decides whether herself should maintain sleeping
state in this cycle. If she is not in a group, she stays awake,
otherwise she will check its companions’ residual energy and
whoever has more energy stays awake during this cycle.

Step 7: Incentive allocation. Awake users are issued their
required amount of incentives, and a new detection cycle starts
with Step 1.

After running the above algorithm distributedly, participants
start to collect data from the environment, as in the Data plane.
If any event is detected, the corresponding users send alerts to
the CS that contains information as short as 1 bit to notify the
CS that an event happens within its detection range.

B. Computational Complexity Analysis

Our proposed framework requires exchanges of three types
of control messages: the utility value of each neighbors, the ini-
tial decision message (ID), and final decision message (FD) of
each participant. Besides, the participants also need to make
local decisions on his/her ID, FD, and S–W status. The dis-
tributed algorithm procedure and its relationship with the whole
detection cycle is presented in Fig. 2(g). The Control plane
contains all six steps of our proposed framework. Thus the
runtime of the framework consists of the time periods to com-
plete: 1) the control message exchange as in Steps 1, 3, and 5;
and 2) the decision-making process as in Steps 2, 4, and 6. In
the information exchange steps, each participant only needs to
broadcast his information to his neighbors. We could reason-
ably assume that these steps all run within a fixed amount of
time. Therefore, the running time mainly depends on Steps 2,
4, and 6.

Consider a network in which average neighbor number of
each user is μ. In the graph G(P , E) where users in P are
all connected to their one-hop neighbors by edges in E , μ =
2Nedge/Nvertex (Nedge is the number of edges and Nvertex is
the number of users). Besides, we assume that all information
exchange steps last for T1 units of time, and all the primitive
operations take a fixed amount of T2 time units. Thus, running
time analysis is performed as follows.

1) All three information exchange steps take T1 time units.
2) In Step 2, for each user, utility information of its μ

neighbors are stored in its local memory. A simple max
procedure is applied to find the neighbor with maximum
utility. A analysis of this for-loop procedure is given
below.
In worse case where the statements in the for-loop have to
be run in every iteration, the running time for this phase
is μ× 6T2 + 2T2.

3) In Step 4, the main part is also a for-loop. Similarly,
analysis goes here. A loop contains computation of one
absolute operation, one minus operation (2T2), three
value fetches (3T2), a comparison (T2), label a petitioner
whether it is acceptable or not (one value fetch and one
store = 2T2). Thus, the running time for this phase is
approximately μ× (5T2 + T2 + 2T2).

4) In Step 6, each user fetches its own energy value and its
companion’s, then compare them (two value fetches +
one operation = 3T2).

The total running time for our proposed distributed algorithm is
equal to

3T1 + μ× 6T2 + 2T2 + μ× 8T2 + 3T2 ≈ 3T1 + 14 μT2.
(3)

Since T1, T2, and μ are all constants, the running time of
this algorithm is in the order Θ(1). In other words, the dis-
tributed approach is a scalable approach whose running time
is independent of participants numbers.

To summarize, the distributed approach has the following
advantages.

1) It runs fully distributedly.
2) It achieves linear time complexity, and can be signifi-

cantly faster than the centralized algorithms.
3) It is robust and scales well with the size or structural

change of the network.
4) It is energy-efficient. By sending alert information when

necessary instead of raw data, it reduces the energy
consumption. Furthermore, by S–W scheduling in the
detection process, the energy is reserved to a large extent.

C. Energy-Efficient Utility Definition

To complete our proposed distributed event detection
algorithm, a proper definition of the utility is important.
Theoretically any proper function could be plugged in our
framework to compute a utility of a user. For example, a simple
random-neighbor strategy could be applied, where a partici-
pant randomly chooses a neighbor to make the initial decision.
However, we need to build up explicit synergies between detec-
tion accuracy, energy consumption, and incentive allocation for
all user.

We assume that each participant has an average sensory read-
ing v̄i(t) up to cycle t. An intuition is to let a user pick the
neighbor that has the most similar average reading with itself.
In this regard, we calculate the target accuracy of neighbor k of
any user i as

Ti(k, t) = exp (− |v̄i(t)− v̄k(t)|) . (4)

However, when a participant’s device energy consumes, the
detection accuracy is also decreased. Thus, a neighbor with
more remaining energy and less incentive requirement should
be given higher priority to join the detection task. Therefore, for
user i, we define its possible achieved accuracy when selecting
neighbor k to complete a detection task at cycle t, as

ωi(k, t) = exp (− |vi(t)− vk(t)|)× φk(t)

φ0
(5)

where

φk(t) =
ek(t)

bk(t)
, φ0 =

e0k
bmax

(6)

bmax denotes the highest required incentive among all par-
ticipants. φk(t) combines both the energy consumption and
incentive allocation factors, representing the affordable remain-
ing energy per unit budget costs of neighbor k at detection cycle
t, and then φ0 normalizes φk(t).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Suppose that user i has m neighbors, then our goal is to
define an appropriate utility with which the long-term average
accuracy of all neighbors Ai = {Ai(1), Ai(2), . . . , Ai(m)}
is proportional to the target accuracy Ti. Here, Ai(k, t) =∑t

l=1 wi(k, l)/t. In order to define the utility, we decompose
the analysis process into two lemmas. The first one formulate
an optimization problem for any user i, then the second lemma
proves that the optimal solution A∗

i to the optimization problem
is proportional to the target Ti = {Ti(1), Ti(2), . . . , Ti(m)}.
Note that for simplicity, we drop the time factor in these
lemmas.

Lemma V.1: If each user maximizes the following objective
function over Ai:

max f(Ai) =
m∑

k=1

Ti(k) · log (Ai(k))

s.t.
m∑

k=1

Ai(k) ≤ m

m∑
k=1

bi(k) ≤ B

(7)

where m upper bounds the total average accuracy of all neigh-
bors of user i. The upper bound is achieved when ωi(k, t) =
1 ∀k = 1, 2, . . . ,m. Then, the optimal solution A∗

i is propor-
tional to Ti.

Proof: This problem is a classic constrained optimiza-
tion problem, thus could be solved with Lagrange multipliers.
Specifically, we have

L =

m∑
k=1

Ti(k) · log (Ai(k))− λ1
i ·

(
m∑

k=1

Ai(k)−m

)

− λ2
i ·

(
m∑

k=1

bi(k)−B

)
.

(8)

The first-order (necessary) optimality condition for (8) is

�L = 0 and λi

(
m∑

k=1

Ai(k)−m

)
= 0. (9)

Since the constraint is binding and λ �= 0, the first part in (9)
could be solved as

Ti(k)

A∗
i (k)

= λi. (10)

This means that after some iterations the average accuracy A∗
i

is proportional to Ti element-wisely. �
Then, we define a utility function and prove that if this utility

is enforced in our proposed distributed framework, the objective
function in (7) converges to the optimal solution.

Lemma V.2: If user i uses the following utility for its neigh-
bors:

Ui(k, t) = Ti(k)
ωi(k)

Ai(k)
(11)

the algorithm maximizes the objective function in (7)
iteratively.

Proof: Since the objective function in (7) is convex, the
sufficient and necessary condition of optimality for this prob-
lem is

�f |Ai
· (Ai −A∗

i) ≤ 0 (12)

where Ai could be any arbitrary energy consumption vector.
This equation could be further broken into two parts

m∑
k=1

Ti(k)
Ai(k)−A∗

i (k)

Ai(k)
(13)

where Ai(k) and A∗
i (k) are the average of ei(k) in time, so this

equation could be rewrite as

m∑
k=1

Ti(k)
E[ωi(k)]

Ai(k)
−

m∑
k=1

Ti(k)
E[ω∗

i (k)]

Ai(k)
(14)

where E denotes the expectation of target accuracy for a series
of cycles. Then, maximizing the following will maximize the
second part of (14):

max
ωi

Ti(k)
ωi(k)

Ai(k)
. (15)

Since ei in the first part in (14) is not optimal as in (15), the
second part must be greater than the first term in (14). So this
equation holds. That is, use the metric in (11) maximizes the
objective function in (7). �

In practice, let us put the time factor back into consideration,
and (11) is rewritten as

Ui(k, t) = Ti(k)
ωi(k, t− 1)

Ai(k, t− 1)
. (16)

VI. PERFORMANCE EVALUATION

In this section, we first present the simulation settings and
discuss the used real data set, and then show the simulation
results.

A. Simulation Settings

We assess them with the Microsoft Research Asia GeoLife
data set [28], where real movement traces of ordinary citizens
are used to represent mobile users in the considered scenario.
The GeoLife project has collected 182 volunteers’ trajectories
in an urban area of Beijing for 3 consecutive years.

As all traces spread in different parts of Beijing, a specific
rectangular region where the traces mostly appear is needed.
We thus store all trajectories in a geographical MySQL database
and find a 200× 500 m2 region that is of high user density, as
shown in Fig. 3(a), which happens to be around the area of the
Microsoft Research Asia site. There are totally 612 trajecto-
ries in the considered region. Each trajectory is marked by a
sequence of time-stamped GPS points that contain users’ lat-
itude, longitude at a given time. Fig. 3(b) shows all 612 user
trajectories. Since these trajectories are recorded at different

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ENERGY-EFFICIENT EVENT DETECTION BY PARTICIPATORY SENSING UNDER BUDGET CONSTRAINTS 9

Fig. 3. (a) Simulation region in Beijing, China (red rectangle). (b) User trajectories. (c) Generated noise levels based on overlaid user trajectories. (d)–(f) Detection
results of Min-cut-based, SVM-based, and distributed algorithms, respectively.

times, in our simulations, we simply neglect their time index
and overlay them into the same time period.

Based on this data set, we consider a noise level monitoring
application in this area. Without loss of generality, we use the
number of visits on each area for a certain period of time to
indicate the noise level (i.e., more visit can potentially indicate
that that area is more crowded and thus with higher noise level,
compared with sparsely visited areas). Specifically, we consider
the noise level data as the sensory reading. Given that the best
GPS accuracy is about 5 m, we then divide the whole region
into 40× 100 small cells, each with a size of 5 m×5 m. We use
them as the participants’ location instead of the original GPS
coordinates, i.e., the horizontal axis of the whole map M ranges
from 0 to 40 and vertical axis is from 0 to 100. Fig. 3(c) shows
the generated noise levels, where we observe two concentrated
noisy regions.

The communication range of each participant is set to 10 m.
We employ the energy dissipation model [29], and the energy
cost to transmit a L-bit message between two users is given by

Etx(L, d) =

{
Lεtx + Lεfsd

2, if d < d0
Lεtx + Lεmpd

4, if d ≥ d0

where d denotes the distance between two users, εtx is the
energy dissipation per bit to run the transmitter circuit, εfs
and εmp are transmitter amplifiers, and d0 =

√
εfs/εmp. We

adopt the same parameter settings in [29]: εtx = 50nJ/bit,
εfs = 10pJ/bit/m

2, and εfs = 0.0013 pJ/bit/m
4. The energy

dissipated in event monitoring per round is 0.001 mJ, and the
initial energy of each user is set to 5 mJ. There are three dif-
ferent kinds of packets transmitted in the network: the raw data
packet in centralized algorithms, the choice packet exchanged
between neighbors in the proposed distributed algorithm, and
the event alert packet a user sends to the CS. Their sizes are set
to 256, 128, and 64 bits, respectively.

B. Results and Discussion

We assess the performance of our proposed Min-cut/SVM-
based centralized algorithms as the benchmark for our proposed
distributed approach, where the defined utility and simply
selecting a random neighbor are also compared. Besides, to val-
idate the performance of our proposed distributed algorithm,
we also compare it with “CAS” approach [16], i.e., an energy-
efficient and totally localized algorithm for event detection. The
key idea of CAS is to evenly distribute the wakeups of each
node and its neighbors.

First, we show the detection results of the three proposed
algorithms. We use 200 participants in the simulations. As
shown in Fig. 3(d)–(f), all three approaches successfully divide
users into two groups: users that are inside, and out of the
event region, but the results are presented in different manners.
That is, Min-cut-based centralized algorithm connect all non-
event users together, leaving out those with high noise levels in
the event region [see Fig. 3(d)]; SVM-based algorithm directly
classifies whether each user is in an event region with trained
model [see Fig. 3(e)]; and users form local groups by our pro-
posed distributed algorithm [see Fig. 3(f)], where members in
each group share common detection results. Lines with deeper
color represent higher noise levels, as the event region.

Next, we verify the convergence of our proposed utility in
the distributed detection framework. We set a simple scenario
where one user i interacts with six neighbors. In each itera-
tion, participant i selects one of his/her neighbors according to
their utilities specified in (16). We assign each user a random
sensory reading, to compute the target accuracy Ti(k) ∀k =
1, 2, . . . , 6. The time-averaged accuracy of each edge is also
recorded and compared to the target accuracy. To validate the
convergence performance, we propose to use a ratio αi(k, t) =
Ai(k, t)/Ti(k). Since our target in this utility is to let Ai(k, t)
and Ti(k) be proportional to each other, it would be ideal if

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

Fig. 4. Convergence performance of the proposed utility.

TABLE II
RUNNING TIME OF THREE ALGORITHMS WITH DIFFERENT NUMBER

OF PARTICIPANTS (STANDARD DEVIATION)

αi(k, t) for all k becomes similar given a large enough t. We
use the normalized mean deviation of α for each iteration,
as: Ci(t) =

1
6

∑6
i=1 |(αi(k, t)− μ(t)) /μ(t)|, where μ(t) is the

mean of αi(k, t). Fig. 4 shows that our proposed algorithm
successfully converges to the target accuracy after around 400
iteration steps.

We then compare the running time of our proposed algo-
rithms in each detection cycle with different number of par-
ticipants in the sensing region. As shown in Table II, the
Min-cut-based algorithm runs in the scale of minutes, and
sometimes even hours, which is unacceptable in most applica-
tions, let along real-time multimedia services. On the contrary,
our proposed distributed approach can run 9.67 times faster
than the SVM-based algorithm. It can also be observed that with
the state-of-the-art solvers and optimized codes, the running
time of SVM does not change dramatically with the increase
in the number of participants in this order of magnitude.

Fig. 5 shows the total energy consumption with 200 users.
When a user has less than 1% energy left, it is regarded as a
dead user. When the detection process continues, the distributed
algorithm consumes much less energy than two centralized
algorithms. When the maximum allowed companion number
increases, the energy consumption decreases further. Fig. 6(c)
shows the network lifetime. With the increase in the number of
participants, the network lifetime achieved by Min-cut-based
centralized detection algorithm barely grows, while our pro-
posed distributed algorithm achieves much higher and increases
significantly. Here we define a network (or sensing region) as
“not functional,” when 90% users run out of battery.

We also observe that the network lifetime is prolonged 38.3%
achieved by our proposed algorithm, than that of the Min-cut-
based centralized approach, and 86% more if the companion
number increases from 1 to 2. CAS’s network lifetime perfor-
mance is better than the centralized algorithm. However, our

Fig. 5. Network lifetime performance: remaining energy of all participants
after each detection cycles of different approaches.

distributed algorithm can still (with one companion) outper-
forms it by 13%, because our solution not only consider a user’s
neighbors but also all users who have similar situation around,
by link petition mechanism.

Since the centralized algorithms detect events more accu-
rately, we use its detection result as the performance bench-
mark. As for the distributed algorithm, we investigate its per-
formance with two utilities: our proposed one in (16) and the
random-neighbor strategy (i.e., to randomly select a neighbor to
make initial decision). We use detection precision, recall as two
metrics to evaluate their performance, calculated as follows.
Suppose TP denotes the number of detected event users that are
true event users, FP denotes the number of detected event users
that are actually nonevent users, and FN denotes the number of
detected nonevent users that are actually event users, the pre-
cision (P) and recall (R) are then defined as P = TP/(TP +
FP). R = TP/(TP + FN). Fig. 6(a) and (b) shows the results.
It can be seen that our proposed solution can maximally achieve
86% precision and 82% recall, if compared with the optimal
Min-cut-based algorithm. Besides, our proposal shows better
performance than the SVM-based centralized approach. That
is, on average, it achieves 4.3% more precision and 9.5% more
recall. Since the focus of CAS approach is on the coverage
reliability rather than the detection accuracy, it performs bet-
ter than the random-neighbor approach, but are outperformed
by all other methods.

Next, we explore the impact of using different maximum
allowed number of companions on the performance of our dis-
tributed algorithm. Specifically, each user can choose its Top-K
nearest neighbors to form a group, where K ranges from 1 to
4. Fig. 6(d) and (e) shows the detection precision performance
with different number of participants. Similarly, Fig. 6(f) shows
the network lifetime. It is clear that the more neighbors one user
can choose and the more enduring a network is, the less precise
the detection result becomes. Despite the number of partici-
pants, if the companions number is set as 4 instead of 1, the
network lifetime is prolonged 85% on average. On the other
hand, the detection precision and recall also decrease 13.1%
and 25.6%, respectively.

Then, we investigate the impact of task budget. We com-
pare our proposed distributed approach with two centralized
algorithms, which serve as the performance benchmark. In

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ENERGY-EFFICIENT EVENT DETECTION BY PARTICIPATORY SENSING UNDER BUDGET CONSTRAINTS 11

Fig. 6. (a)–(c) Precision, recall, and network lifetime with different number of participants. (d)–(f) Precision, recall, and network lifetime performance with
different maximum allowed number of connected neighbors.

Fig. 7. Simulation results of experiments on budget factor. (a) Remaining incentive budget after each detection cycle. (b) Supported number of detection cycles
versus task budget. (c) Supported number of detection cycles versus maximum allowed companion number.

our proposed distributed algorithm, we change the maximum
allowed number of companions, and after the task budget runs
out, the sensing task will no longer be supported. To bet-
ter examine the effect of budget constraint, we suppose that
participants’ smart devices have ample initial energy reserve
during the lifetime of sensing tasks. Fig. 7(a) shows the trend
of remaining task budget after participants are selected and
paid at each detection cycle. We observe that two centralized
algorithms spend much faster than the distributed approach,
and tasks are no longer supported after around 400 tasks. In
comparison, distributed algorithm endures much longer, as 600
tasks, and can be even longer (i.e., 900 tasks) when the allowed
number of companions are 2 and 3, respectively.

We next investigate the impact of task’s total incentive bud-
get on different approaches. For three approaches, we increase
the task budget from 10 000 to 30 000 units. Fig. 7(b) shows
that the supported number of detection cycles by two central-
ized algorithms are 21.5% lower than our proposed distributed
approach. When the companion numbers increases from 2 to
3, the supported number of cycles by distributed algorithm also
increases to 61.7% higher than the centralized algorithms. This
is due to the fact that more budget leads to more supported
cycles. Moreover, in our distributed algorithm, when a partic-
ipant is in sleeping state, he/she does not have to be granted a
share of budget, whereas the centralized algorithms recruit all
participants during a sensing task.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

In the proposed distributed algorithm, we explore the impact
of using different companions on its supported number of
detection cycles. We allow the maximum allowed companion
number K to range from 1 to 4. Fig. 7(c) shows the achieved
task duration with three different amount of budget: 10 000,
15 000, and 20 000 units. From this figure, we observe that with
more task budget and/or by allowing more companions, the task
endures longer. If K is set to 4 instead of 1, the task duration
can be prolonged 60.77% on average. Note that the benefit of
supported cycles per unit companion also increases when K
becomes bigger. That is, when K increases from 1 to 2, the task
duration is prolonged 5.75% on average, and this number goes
to 14.46% and 40.56% when K changes from 2 to 3 and 3 to
4, respectively. This is because that our distributed framework
allows for more companions, and thus potentially more sleep-
ing participants in the sensing task, consequently saving more
budget expenses.

VII. CONCLUSION AND FUTURE WORK

Dynamic event detection like noise level and air pollution by
using participatory sensing paradigms is a promising research
direction. In this paper, we first proposed two novel central-
ized detection algorithms, based on Min-cut theory and SVM
pattern recognition techniques as the performance benchmark.
To solve the computational complexity problem of central-
ized approaches, we proposed a distributed detection frame-
work, where an optimization problem is formulated to derive
an optimal utility that ensures the long-term detection preci-
sion and energy-efficiency of the algorithm under task budget
constraints. Extensive experimental results, based on a real
trace-driven data set in an urban area of Beijing, showed that
our proposed distributed algorithm successfully detect events
efficiently, accurately in an energy-efficient manner while min-
imizing the allocated task budget to all participants. As for the
future, we plan to investigate the impact of participant contact
frequencies on the system performance.

REFERENCES

[1] J. Zhao, C. H. Liu, M. Chen, X. Lu, and K. K. Leung, “Energy-efficient
dynamic event detection by participatory sensing,” in Proc. IEEE Int.
Conf. Commun. (ICC’15), 2015, pp. 3180–3185.

[2] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell,
“Soundsense: Scalable sound sensing for people-centric sensing applica-
tions on mobile phones,” in Proc. ACM 7th Int. Conf. Mobile Syst. Appl.
Serv. (MobiSys’09), 2009, pp. 165–178.

[3] S. Devarakonda, P. Sevusu, H. Liu, R. Liu, L. Iftode, and B. Nath,
“Real-time air quality monitoring through mobile sensing in metropoli-
tan areas,” in Proc. 2nd ACM SIGKDD Int. Workshop Urban Comput.
(UrbComp’13), 2013 p. 15.

[4] S. Mathur et al., “Parknet: Drive-by sensing of road-side parking statis-
tics,” in Proc. ACM 8th Int. Conf. Mobile Syst. Appl. Serv. (MobiSys’10),
2010, pp. 123–136.

[5] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu, “Ear-
phone: An end-to-end participatory urban noise mapping system,” in
Proc. ACM/IEEE 9th Int. Conf. Inf. Process. Sensor Netw. (IPSN’10),
2010, pp. 105–116.

[6] C. Vu, R. Beyah, and Y. Li, “Composite event detection in wireless
sensor networks,” in Proc. IEEE Int. Perform. Comput. Commun. Conf.
(IPCCC’07), Apr. 2007, pp. 264–271.

[7] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
Real-time event detection by social sensors,” in Proc. ACM 19th Int. Conf.
World Wide Web (WWW’10), 2010, pp. 851–860.

[8] G. Wittenburg, N. Dziengel, C. Wartenburger, and J. Schiller, “A sys-
tem for distributed event detection in wireless sensor networks,” in Proc.
ACM/IEEE 9th Int. Conf. Inf. Process. Sensor Netw. (IPSN’10), 2010,
pp. 94–104.

[9] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[10] E. Ould-Ahmed-Vall, B. H. Ferri, and G. F. Riley, “Distributed fault-
tolerance for event detection using heterogeneous wireless sensor net-
works,” IEEE Trans. Mobile Comput., vol. 11, no. 12, pp. 1994–2007,
Dec. 2012.

[11] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy con-
servation in wireless sensor networks: A survey,” Ad Hoc Netw., vol. 7,
no. 3, pp. 537–568, 2009.

[12] Y. Li, C. Ai, C. T. Vu, Y. Pan, and R. Beyah, “Delay-bounded and
energy-efficient composite event monitoring in heterogeneous wireless
sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 9,
pp. 1373–1385, Sep. 2010.

[13] J.-S. Lee and B. Hoh, “Sell your experiences: A market mechanism based
incentive for participatory sensing,” in Proc. IEEE Int. Conf. Pervasive
Comput. Commun. (PerCom’10), 2010, pp. 60–68.

[14] J.-S. Lee and B. Hoh, “Dynamic pricing incentive for participatory
sensing,” Pervasive Mobile Comput., vol. 6, no. 6, pp. 693–708, 2010.

[15] Z. Zhou and G. Qu, “An energy efficient adaptive event detection scheme
for wireless sensor network,” in Proc. IEEE Int. Appl.–Specific Syst.
Archit. Processors (ASAP’11), Sep. 2011, pp. 235–238.

[16] Y. Zhu, Y. Liu, L. Ni, and Z. Zhang, “Low-power distributed event detec-
tion in wireless sensor networks,” in Proc. IEEE Int. Conf. Commun.
(INFOCOM’07), May 2007, pp. 2401–2405.

[17] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
Proc. IEEE 46th Conf. Decis. Control, Dec. 2007, pp. 5492–5498.

[18] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour map matching for event
detection in sensor networks,” in Proc. ACM Int. Conf. Manage. Data
(SIGMOD’06), 2006, pp. 145–156.

[19] V. Traag, A. Browet, F. Calabrese, and F. Morlot, “Social event detection
in massive mobile phone data using probabilistic location inference,” in
Proc. IEEE 3rd Int. Conf. Soc. Comput. (SocialCom’11); Privacy, Secur.,
Risk Trust (PASSAT’11), Oct. 2011, pp. 625–628.

[20] K. Tang, L. Fei-Fei, and D. Koller, “Learning latent temporal structure for
complex event detection,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR’12), Jun. 2012, pp. 1250–1257.

[21] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detection techniques for
wireless sensor networks: A survey,” IEEE Commun. Surv. Tuts., vol. 12,
no. 2, pp. 159–170, May 2010.

[22] T. Higuchi, H. Yamaguchi, T. Higashino, and M. Takai, “A neigh-
bor collaboration mechanism for mobile crowd sensing in opportunistic
networks,” in Proc. IEEE Int. Conf. Commun. (ICC’14), Jun. 2014,
pp. 42–47.

[23] N. D. Lane et al., “Piggyback crowdsensing (PCS): Energy efficient
crowdsourcing of mobile sensor data by exploiting smartphone app
opportunities,” in Proc. ACM 11th Conf. Embedded Netw. Sensor Syst.
(SenSys’13), 2013, pp. 7:1–7:14.

[24] M. Stoer and F. Wagner, “A simple min-cut algorithm,” J. ACM, vol. 44,
no. 4, pp. 585–591, 1997.

[25] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from a
sensor network expedition,” in Wireless Sensor Networks. New York, NY,
USA: Springer, 2004, pp. 307–322.

[26] L. Bottou, C.-J. Lin, “Support vector machine solvers,” in Large Scale
Kernel Machines, L. Bottou, O. Chapelle, D. Decoste, J. Weston, Eds.
Cambridge, MA, USA: MIT Press, 2007, pp. 301–320.

[27] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers
with online and active learning,” J. Mach. Learn. Res., vol. 6, pp. 1579–
1619, 2005.

[28] Y. Zheng, X. Xie, and W. Ma, “Geolife: A collaborative social network-
ing service among user, location and trajectory,” IEEE Data Eng. Bull.,
vol. 33, no. 2, pp. 32–40, 2010.

[29] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670, Oct.
2002.

