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Abstract 

Hybrid materials of ionic liquids (IL) confined in metal organic frameworks (MOF) are 

promising materials for energy storage. The effects of exposing or treating such composite 

materials with molecular solvents, e.g. with the aim to extract and replace the IL, have not been 

studied to date. In this study, acetone, isopropanol, methanol, and water were used to remove the 

IL 1-ethyl-3-methylimidazolium ethyl sulfate confined in a Cu-based metal organic framework 

(CuBTC). The consequences of the solvent extraction process were analyzed using vibrational 

spectroscopy (FTIR), powder X-ray diffraction (PXRD), N2 adsorption, scanning electron 

microscopy (SEM), and transmission electron microscopy (TEM). Methanol was identified as 

the best solvent for IL removal as it shows high extraction efficiency without affecting the 

porous geometry and crystal structure of the MOF. On the other hand, acetone and isopropanol 

were not able to completely remove the IL from CuBTC under the conditions employed. Water 

effectively removed the IL, but it has a significant detrimental effect on the CuBTC structure. 

This impact manifests as changes in the infrared spectra and the PXRD patterns as well as in the 

electron micrographs. The degraded CuBTC exhibits a non-porous structure that presents itself 

as non-uniformly agglomerated micro-rods along with very few hexagonal/amorphous phases. 

The confinement of acetone, isopropanol, and methanol in the MOF was also investigated. The 

results show that CuBTC is stable in acetone, isopropanol, and methanol but unstable in water.  

 
 
 
INTRODUCTION 

Ionic liquids (ILs) have attracted significant attention because of their potential applications in 

areas as diverse as carbon capture, diesel fuel desulfurization and biomass processing.1–3 ILs 

have a melting point below 100°C and are composed of cations and anions.4 The unique 
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properties such as low vapor pressure, flame retardancy, good thermal and chemical stability, 

and a wide liquid range make ILs an attractive alternative to conventional volatile organic 

compounds (VOCs). Moreover, ILs exhibit high ionic conductivity and wide electrochemical 

windows and consequently are promising electrolytes for a wide variety of electrochemical 

devices, such as rechargeable batteries, supercapacitors, dye-sensitized solar cells, and 

thermoelectric cells.5 

Metal organic frameworks6–14 (MOFs) are a rather new member of the family of porous 

materials. MOF materials combine metal-based nodes with organic linkers to build hybrid 

porous crystalline networks with high surface area and large pore volume. The pore size, 

geometry, crystal structure,shape, and functionality of the pore space can be tailored by selecting 

and combining suitable metal ions (Cu2+, Ni2+, Al3+, Cr3+etc.) and organic linkers (tri-

carboxylate, di-pyridyl, tri-isophthalate, etc.).These tunable properties make MOFs promising 

materials for gas storage,8 separations,15 catalysis,16 carbon capture and storage (CCS),17 

biomedicine,18 and chemical sensors.19 

Confining ILs in MOFs brings these fascinating classes of material together. However, the 

resulting hybrid materials represent an almost unexplored area. To date, most investigations 

havefocused on ILs in inorganic porous matrices20 such as SiO2,
21 TiO2,

20
 and SnO2

22
 as well as 

organic porous matrices such as carbon nanotubes,23 graphene,24 and porous carbon.25The hybrid 

material is known as an ionogel,20 in which the IL is kept inside the porous skeleton. The IL is 

found to preserve its liquid like dynamics26 in ionogels and therefore it has a high ionic 

conductivity. This aspect has attracted much attention due to possible applications of ionogels in 

electrochemical devices. In other applications, the IL was used as a templating agent to modify 

the pore parameters and geometry of the porous material. In this case, the IL is removed again 
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from the ionogel. Singh et al. 27–30 have synthesized a variety of micro to mesoporous materials 

via impregnation and subsequent removal of ILs from porous materials. In order to extract the 

IL, solvents such as water, acetone, and dichloromethane were used. Acetonitrile and 

acetone/ethanol mixtures were also used for this purpose.31–33 Interestingly, various types of 

porous matrices such as silica and titanium were found to be stable in the presence of these 

solvents and hence these solvents along with a complex (functionalization agent) were used for 

functionalization of porous matrices like silica. 

However, no studies have been performed regarding the impact of the solvents on MOFs 

with IL during post synthetic modification. This is very important as understanding how the IL 

and the solvents influence the chemical and structural properties of the MOF can be the key for 

any potential implementation of targeted chemical modifications. Otherwise, a possibility exists 

of interactions between the MOF and the solvent, which could modify the properties of the host-

guest system. Furthermore, a better understanding of solvents with MOFs would offer a potential 

route for reusing the MOF after the removal of confined materials. Furthermore, a basic 

knowledge of materials containing conventional solvents, ILs, and MOFs would be beneficial for 

tailoring new composite materials, in which the IL is encapsulated in the pores of a MOF with 

the aid of a solvent. 

One of the most extensively studied MOFs is Cu3(BTC)2. It is commonly known as 

BasoliteTM C300, HKUST-1, CuBTC, or MOF-199. CuBTC has a face centered cubic crystalline 

porous framework structure. It consists of three different sizes of pores. The first type of pore has 

a diameter of ~ 9-13.5 Å34,35 with an accessible open copper site. These pores are centered on 

face and corners of the unit cell. The second type of pores has a diameter of ~ 9-11 Å34–36 with 

inaccessible Cu sites and centered at the unit cell center and midpoint of the unit cell edges. 
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These two larger pores are arranged in an alternating manner and connected by 9 Å windows. 

The third and last type of pores have a diameter of ~ 5-7 Å.34–37 

The present paper reports a systematic study of confined molecular solvents in a MOF. The 

solvents of interest are acetone, isopropanol, methanol, and the IL 1-ethyl-3-methylimidazolium 

ethyl sulfate (EMIM-ETS). The three volatile organic solvents were selected because they are 

very common and, despite being rather small, they contain different functional groups and have 

systematically varied chemical structures. The IL was chosen as it has been characterized as a 

neat substance38–40 as well as in combination with CuBTC41 and molecular solvents.42 In the 

second part of the study, the effects of extracting the IL from the MOF using the above organic 

solvents and water are investigated. In order to gain scientific insights and a comprehensive 

picture including molecular, crystallographic and macroscopic effects, infrared spectroscopy, 

powder x-ray diffraction, N2 adsorption, scanning electron microscopy (SEM), and transmission 

electron microscopy (TEM) were employed. 

EXPERIMENTAL  

Chemicals 

BasoliteTM C300 and methanol (purity 99.9%) were purchased from Sigma-Aldrich. Extra dry 

acetone (purity 99.8%) and isopropanol (purity 99.8%) were purchased from AcroSealR. Halide-

free 1-Ethyl-3-methylimidazolium ethyl sulfate was purchased from Alfa Aesar (purity 99%). 

Water content by Karl Fischer titration is less than 1500 ppm. The MOF and the IL are water 

sensitive and hence, care was taken during handling of the materials to minimize contact with the 

atmospheric humidity.  

Confinement of IL and solvents in CuBTC 
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IL impregnated CuBTC samples were prepared by mixing CuBTC with the IL at a molar fraction 

of XMOF = 20 mole%. This relationship provides a ratio of available pore volume of CuBTC and 

volume occupied by IL molecules of approximately two. Subsequently, the sample was heated at 

60 °C for 24 h to obtain a homogeneous distribution of IL within the pores of the CuBTC. 

Solvent confined CuBTC samples were prepared by mixing a small amount of CuBTC with a 

droplet of solvent.  

Washing of bulk and IL confined CuBTC with solvents and water 

The pristine (as received) CuBTC samples were emerged in 10 ml of acetone, isopropanol, 

methanol, and water for 5 h. Then they were filtered and dried at 70 and 150 °C for 24 h at each 

temperature. A similar procedure was used for the removal of the IL from the IL impregnated 

CuBTC samples using the solvents. The IL impregnated CuBTC samples were washed twice 

with water to insure the removal of IL from the pores and the surface of CuBTC. Subsequently, 

the samples were filtered and dried at 70 ºC for 24 h. 

Characterization  

Vibrational spectroscopy. FTIR spectra were recorded in the range 4000 to 400 cm-1 using a 

Bruker Vertex 70 and on a Perkin-Elmer Spectrum 2 instrument with the nominal resolution of 

0.5 and 4 cm-1, respectively on an attenuated total reflection (ATR) module. The Bruker 

instrument was equipped with a diamond ATR unit (1 reflection at 45°). To obtain a suitable 

signal to noise ratio, 16 scans were averaged. All spectra were background corrected. 

Electron microscopy. Scanning electron micrographs of the samples were obtained using a 

Hitachi S-520 scanning electron microscope (SEM) operated at 20kV. Transmission electron 

micrographs of the samples were obtained using a JEOL JEM-2000EX transmission electron 
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microscope (TEM) operated at 200 kV. The images were captured with a Gatan Erlangshen 

ES500W camera. 

Adsorption isotherms. N2 adsorption isotherms of the CuBTC samples were measured on a 

Micromeritics TriStar 3000 V4.02 analyzer at -196 °C. All samples were pretreated by degassing 

at 70 or 150 °C under dry nitrogen gas for 24 h. The specific surface area was determined from a 

Brunauer–Emmett–Teller (BET) plot. The total pore volume was determined using the t-plot 

method. The accuracy and reproducibility of the instrument was ±5 %.  

X-ray diffraction. Structural changes were monitored by X-ray powder diffraction using a 

Panalytical X’Pert Pro diffractometer fitted with a PIXcel1D detector using Cu-Kα radiation 

(1.54 Å) operated at 45 kV and 40 mA and using a silicon zero-background sample holder. The 

measurements were performed with powders in an air-conditioned room (20 ºC, no control of 

humidity) in continuous scanning mode from 5-50° 2θ with a step size 0.013º and ≈2 min 

acquisition time. 

RESULTS AND DISCUSSION 

Confinement of IL 

Fig. 1A shows the FTIR spectra of the pure IL (a), the pure CuBTC (c), and the IL/MOF system 

(b). The spectra reveal evidence for strong molecular interactions between the IL and the MOF, 

which manifest as changes in frequencies of vibrational modes of the IL and the MOF. A 

detailed spectroscopic and computational analysis of EMIM-ETS confined in CuBTC has been 

reported recently.41 Data confirm a perturbation of the symmetry of the MOF structure due to the 

interactions between the IL anion with the Cu ions. Moreover, inside the MOF, two different 

types of IL ion pairs are formed: One ion-pair structure exhibits enhanced interionic interactions 

by strengthening the hydrogen bonding between the cation and anion, whereas the other structure 
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corresponds to weaker interactions between the IL cation and anion. For further details, see 

previous work.41 
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Fig. 1. A: FTIR spectra of (a) pure IL, (b) IL confined CuBTC, and (c) pristine CuBTC. B: 

PXRD patterns of (a) IL confined in CuBTC, and (b) pristine CuBTC. 

Fig. 1B displays the PXRD patterns of the pure MOF and the sample with the IL inside. The 

PXRD of the EMIM-ETS/CuBTC composite shows no significant change in the bulk structure of 

CuBTC other than changes in the intensity of some reflections and the disappearance of the peak 

at 5.8º 2θ. These small changes are related to the degree of hydration.43 Furthermore, the 

appearance of the weak peak at 11.1° 2θ (corresponding to the 311 plane) upon confinement of 

the IL is possibly due to a change in the coordination of accessible or open Cu sites by 

adsorption of bulkier and polar IL molecules in the pores of CuBTC. The presence of the IL in 

the pores reduces the adsorption of water molecules at the open Cu sites and forces the water 

molecules into the smaller pores.34 Therefore, a lower number of water molecules is available for 

the coordination of the Cu atoms and hence the appearance of a peak at 11.1° 2θ. 

 

Confinement of acetone, methanol and isopropanol 

The analysis of the nature of organic solvents confined in the MOF has basically two aims: 

firstly, to gain insight into the molecular interactions between CuBTC and the three common 

organic solvents and, secondly, to investigate the stability of the MOF when exposed to the 

solvents. For the FTIR measurements, a small amount of MOF was placed on the diamond 

crystal of the ATR unit and then a drop of the solvent was added, similar to the recently 

proposed solvent infrared spectroscopy method.44 As the solvents considered are highly volatile, 

it was difficult to state the exact molecular ratio. However, an excess of solvent can be assumed. 

Figure 2 shows the fingerprint region of the FTIR spectra of the pure solvents and the 
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MOF/solvent samples. For completeness, the full spectral range is provided in Fig. S1 of the 

supplementary material.  

Acetone. The FTIR spectrum of the acetone/MOF system shows the characteristic bands of 

acetone at 1713, 1220 and 530 cm-1 (Fig. 2f), which can be assigned to C=O stretching, C-C-C 

stretching, and C=O out-of-plane bending modes of acetone, respectively. All other bands of 

acetone (1751,1440, 1420, 1358, 1092, 901 and 784 cm-1) overlap with the bands of the CuBTC. 

Therefore, any frequency changes related either to CuBTC or to acetone are difficult to 

determine unambiguously. Interestingly, no perturbation of the acetone bands at 1713, 1220, and 

530 cm-1was observed. However, four new features appear at 1700, 1704, 1235, and 543 cm-1 

upon the confinement of acetone in CuBTC. The band at 1700 and 1235 cm-1 can be attributed to 

carboxylic acid (combination band of C=O and C-OH). The band at 543 cm-1 corresponds to an 

in-plane bending mode of coordinated molecular water (indicated by arrows in Fig. 2f). The 

appearance of carboxylic acid bands45 in the CuBTC + acetone system provides a clear 

molecular level insight about the interactions between the carboxylate groups of CuBTC and 

acetone. As a result of these interactions, a certain fraction of the carboxylate groups of CuBTC 

are converted into carboxylic acid. This means that CuBTC promotes hydrolysis in the presence 

of acetone. The water, which is necessary for this reaction, originates from the CuBTC sample 

itself. CuBTC is highly hygroscopic and usually contains small amounts of adsorbed water 

molecules, even after extensive drying. From the observed extent of hydrolysis, it can be 

concluded that acetone is not a suitable solvent for post synthetic modifications of CuBTC, at 

least not if the MOF contains small amounts of adsorbed water. 
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Fig. 2 FTIR spectra of the pure solvents: (a) acetone, (b) isopropanol, (c) methanol,and confined 
systems (d) CuBTC with isopropanol, (e) CuBTC with methanol, (f) CuBTC with acetone,(g) 
pristine CuBTC. 
 

 

Isopropanol. The main infrared bands in the spectrum of isopropanol are observed at 817 cm-1 

(C-C stretch), 951 cm-1 (CH3 rock), 1128 and 1161 cm-1 (CH3 rock & C-C stretch), 1341 cm-1 

(CH wag), 1368 and 1379 cm-1 (CH3 symmetric deformation), 1107, 1306, and 1407 cm-1 (in-

plane deformation of H atom in COH group in alcohol), 1467 cm-1 (CH3 antisymmetric 

deformation), 2882, 2933, and 2971 cm-1 (CH stretch), and 3500-3000 cm-1 (OH stretch). The 

confinement of isopropanol in CuBTC produces no significant changes in the vibrational 

frequencies of either the CuBTC or the isopropanol bands. However, a new band is observed at 

1035 cm-1, as indicated by the arrow in Fig. 2d. This new band is likely related to the C-O 
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vibration as a result of the interaction between isopropanol and the carboxylate groups of 

CuBTC. 

Methanol. The spectra show that all the infrared bands related to CuBTC and methanol are found 

at the same frequencies (Fig. 2e) as in the spectra of the individual components. Hence, the 

confinement of methanol in CuBTC has no impact on the chemical nature of either compound. 

Additionally, no evidence of transformation of the carboxylate groups to their analogous 

protonated acid is observed. This shows that methanol, unlike the acetone, does not promote 

hydrolysis of CuBTC. 

Comparison. A comparison of the results described above shows that the interactions between 

isopropanol with CuBTC are significantly less pronounced than those between acetone and 

CuBTC. In the methanol/CuBTC system no changes to the vibrational spectrum were found. 

Therefore, it can be concluded that methanol has the least impact on the structure of CuBTC. 

Hence, it is well suited as a solvent for post synthetic modifications of CuBTC, e.g. in the 

impregnation or removal of other substances such as an IL. 

 
 

 

Stability of CuBTC in acetone, isopropanol, and methanol 

The stability of CuBTC in the presence of water has been studied many times and it was shown 

that hydrolysis reactions can lead to destruction of the MOF structure43,46,47. Therefore, water is 

generally unsuitable, for example, as an extraction medium to remove confined molecules from 

the porous matrix of the MOF. The suitability of acetone, isopropanol, and methanol for this 

purpose was evaluated by investigating the stability of the MOF in the presence of the individual 

solvents. In the first step, the stability of CuBTC was studied by immersing the MOF in acetone, 
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isopropanol, or methanol for 5 h. For comparison, the same procedure was applied to water. The 

immersed CuBTC samples were then filtered, dried in an oven at 70 and 150 ºC for 24 h at each 

temperature, and then analyzed. The FTIR spectra recorded after the drying procedure are shown 

in Fig. S2 in the supplementary material. Heating at 70 ºC for 24 h is insufficient to completely 

remove the solvents from CuBTC as the spectra show signs of residual solvents (spectra c and e 

of Fig. S2). In contrast, FTIR spectra after drying at 150 °C show virtually no traces of the 

solvents (spectra a, d, and g of Fig. S2). In case of acetone when heated at 70 ºC for 24 h, the 

spectrum shows a weak peak at 1704 cm-1. The intensity of this peak due to residual acetone was 

decreased significantly by heating at 150 ºC (spectrum d of Fig. S2). The stability of the structure 

for the washed samples was further investigated by PXRD and compared with pristine CuBTC 

(Fig. 3). The PXRD patterns of CuBTC washed with solvents are very similar to the pattern of 

pristine CuBTC. This indicates the intactness or structural stability of the MOF after the washing 

procedure.  
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Fig. 3. PXRD of CuBTC washed with solvents and heated at 70 °C for 24 h (a) CuBTC washed 
with methanol (b) CuBTC washed with isopropanol (c) CuBTC washed with acetone (d) pristine 
CuBTC. 
 

These findings are supported by observations using SEM (Fig. 4) which show that the 

morphology of the particles remain virtually identical. The SEM micrographs of the washed 

samples show the crystals as possessing very smooth surfaces. This is a clear indication that 

there is no degradation of the external surface when exposed to isopropanol or methanol. Small 

changes in terms of crumples at the external surface of CuBTC crystals are observed in the case 

of acetone (Fig. 4b). This supports the findings based on FTIR evidence for the promotion of the 

hydrolysis reactions of the MOF in the presence of acetone. 
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Fig. 4.SEM micrographs of CuBTC (a) in pristine state, (b) after washing with acetone, (c) after 
washing with isopropanol, and (d) after washing with methanol 
 

The N2 adsorption isotherms of CuBTC before and after washing show similar microporous 

nature (Fig.5). The BET surface area and the pore volumes (t-plot) of CuBTC washed with 

acetone, isopropanol, and methanol are: 2006 m2/g and 0.61cm3/g, 1984 m2/g and 0.66 cm3/g, 

and 1992 m2/g and 0.62cm3/g, respectively. These values are very close to the corresponding 

data for pristine CuBTC (2050 m2/g and 0.64 cm3/g) pretreated at 150°C. Therefore, from a 

stability point of view, it can conclude that isopropanol and methanol are suitable extraction 

media as they can be completely removed from the MOF without causing changes to the 

molecular structure of CuBTC. Acetone is in principle suitable as well, in that the physisorption 
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characteristics are returned following exposure and solvent removal. However, the potential to 

promote hydrolysis in hydrated MOF needs to be kept in mind. The concept of using these 

solvents for  extraction purposes have been investigated in the context of removal of IL from 

impregnated CuBTC and will be discussed in following section. 

 

 

Fig. 5. Nitrogen isotherms at -196 °C CuBTC exposed to different solvents: (a) isopropanol, (b) 
methanol, (c) acetone, and (d) pristine CuBTC. 
 

Removal of confined IL from CuBTC using organic solvents 

The three organic solvents as well as water were tested for their efficiency in the extraction of 

the IL EMIM-ETS from CuBTC. Water has been employed in similar applications 

frequently28,29,48 and is therefore used as a reference case here. The impact of water on the 
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structural stability of CuBTC was analyzed in a previous study.43 It was found that the Cu-based 

MOF was structurally stable in the presence of small amounts of water during short-term 

exposure. However, exposure of CuBTC to liquid water or ambient moisture for longer periods 

of time resulted in irreversible changes due to hydrolysis reactions. The removal or washing of 

IL from impregnated CuBTC with water will be discussed in more detail in the next section. 

The consequences of removal of the IL from the pores of CuBTC was investigated by FTIR 

spectroscopy with Fig. 6 showing spectra after the washing procedure employing different 

solvents. For the washing, an IL impregnated CuBTC sample (20 mole % CuBTC with IL) was 

emerged in 10 ml of methanol, acetone, or isopropanol for 5 h and then filtered and dried at 70 

°C for 24 h. The CH stretching region from 3200 to 2700 cm-1 (inset in Fig. 6) is selected to 

assess the presence of the IL in the washed CuBTC or in the IL extracted CuBTC. Acetone was 

not capable of completely removing the IL from the CuBTC in the first wash as revealed by the 

characteristic IL peaks at 3151 and 3106 cm-1 in the spectrum of the washed sample (spectrum c 

in inset of Fig.  6. Spectrum b in Fig. 6 indicates that isopropanol is more effective than acetone 

although a very small amount of IL was retained. This remaining amount of IL was removed by 

repeating the washing cycle. Spectrum d in Fig. 6 suggests that methanol is a very effective 

solvent for removing the IL completely from the impregnated CuBTC following the very first 

washing cycle. 
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Fig. 6 FTIR spectra of (a) pure IL and CuBTC after IL extraction with the solvent (b) 
isopropanol, (c) acetone, (d) methanol, and (e) pristine CuBTC. 
 

The data discussed in the preceding sections indicated that the organic solvents (except acetone) 

had no or limited impact on the crystal structure of CuBTC. However, a possibility exists that the 

combination of solvent and IL inside the pores of MOF may lead to structural alterations. In 

binary mixtures of the IL and solvents42,49 the ion-pairs of the IL can dissociate, in particular in 

the presence of large amounts of solvent. The dissociated ion-pairs may have a different impact 

on the structural stability of CuBTC. PXRD measurements were performed on the IL extracted 

CuBTC samples and the pattern after extraction with methanol is shown in Fig. S3. The data do 

not indicate any changes in the bulk structure of CuBTC as all reflections of pristine CuBTC can 

be observed in the sample from which the IL was removed with the help of methanol. However, 

Page 18 of 37

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19 

 

there are some minor changes in the intensity of some reflections which could be related to the 

degree of hydration.50 The sample after IL extraction with methanol was further investigated by 

SEM (Fig. 7) in order to determine if any changes in the morphology and the external surface of 

the CuBTC crystals had taken place. Sharp well-defined edges and smooth outer surfaces of the 

crystals exhibiting octahedral shape are observed and the overall appearance is very similar to 

the surface morphology of pristine CuBTC crystals (Fig. 4a). 

Overall, experiments conducted with the IL impregnated CuBTC after washing with methanol, 

acetone, and isopropanol suggest that methanol is best suited for extracting the IL from the 

MOF. It does not affect the crystalline structure, interacting sites, and surface morphology of 

CuBTC suggesting that it does not promote hydrolysis reactions. The greater efficiency of 

methanol to remove the IL compared to acetone and isopropanol is attributed to its higher 

dielectric constant. 

 
 

Fig. 7 SEM micrograph of CuBTC after removal of IL with methanol from impregnated CuBTC. 
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Stability ofIL impregnated and pristine CuBTC under molecular water 

Structural analysis. Removal of the IL from the impregnated CuBTC was also attempted with 

water. The FTIR spectrum of the IL impregnated CuBTC sample after washing with water is 

shown in Fig. 8. On the one hand, it can be noted that no features characteristic of the IL can be 

found in the spectrum after the washing procedure, indicating that water removes the IL 

effectively. On the other hand, comparison with the spectrum of pristine CuBTC shows 

appearance of many new bands particularly free carboxylic acid, C-C stretching related to BTC 

ring and Cu-O stretching, suggesting the transformation or complete disruption of the CuBTC 

structure. Similar changes in the FTIR spectrum were not found when CuBTC was exposed to 

water for a short time periods.43 

The FTIR spectrum of the resulting material was investigated to gain some molecular level 

insights. The vibrational frequencies of the pure IL,40 the pure CuBTC,41 the IL extracted 

CuBTC, and the washed CuBTC are summarized in Table 1 together with tentative assignments. 

Additional bands appear at similar wavenumbers for the IL extracted sample as for the washed 

sample, which had not been exposed to the IL. This suggests a similar product material after the 

exposure to water irrespective of the CuBTC history. Furthermore, the IL does not play an 

important role in the degradation or transformation of CuBTC in the presence of water. The 

appearance of new features corresponding to free carboxylic acid (1704 cm-1) indicates the 

degradation of the carboxylate group of the MOF linker molecules. Changes in the C-C 

stretching vibration of the BTC ring and of the C-H out-of-plane bending of the ring indicate 

modifications to the surrounding molecular environment. Changes in the Cu-O stretching mode 

are also observed (722, 692 and 631 cm-1). These findings support the hypothesis that disruption 
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of CuBTC in water leads to formation of a new material with a different molecular structure 

compared to pristine CuBTC. 

Fig. 8. FTIR spectra of (a) pure IL, (b) CuBTC washed with water and dried at 70°C for 24 h, (c) 

IL impregnated CuBTC after washing with water and dried at 70°C for 24 h, and (d) pristine 

CuBTC. 

In order to gain information about the structural changes in the sample, PXRD measurements 

were performed.  The data (Fig. 9) clearly show that the crystalline structure of the MOF is 

severely changed when the IL is removed by water. Note that the PXRD patterns of the pristine 

CuBTC washed with water and the IL extracted CuBTC look very similar. This means that the 

disruption of the crystal structure of CuBTC is due to the impact of water and that the IL does 

not play a role. However, there are some differences in the PXRD patterns. These differences can 

be attributed to the amount of water and the number of washing cycles. It is also noteworthy that 
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the washing and drying conditions have a certain impact on the resulting structure of the material 

(Fig. S4). The disappearance of many reflections indicates permanent changes in the phases of 

the washed CuBTC at elevated temperature. Generally, these alterations to the pattern can be 

attributed to a complete degradation of CuBTC. However, the role of water in degrading the 

structure of CuBTC through hydrolysis is complex and depends on various factors such as the 

duration of exposure and the amount of water involved.43 

 

 

Fig. 9. PXRD patterns of washed and CuBTC dried at 70 °C for 24 h. (a) CuBTC washed with 
water, (b) IL impregnated CuBTC washed twice with water, and (c) pristine CuBTC. 

 

To shed light on the nature of the resulting powder, an attempt was made to unravel the 

degradation mechanism and to characterize (and possibly identify) the material. During 
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treatment, that sample was exposed to a large amount of water. Consequently, a clustering of 

water molecules around the Cu atoms may enhance the hydrolysis reaction. This leads to a fast 

hydrolysis reaction during which the metal ligand bonds break and unknown compounds form. 

Possible product compounds include CuO, Cu2O, Cu(OH)2, Cu2SO4, CuSO4.5H2O, 

Cu2(CH3CO2)4.2H2O, benzene-1,3,5-tri carboxylic acid or trimesic acid (BTC) with and without 

water, and copper (II) acetate monohydrate. Therefore, single crystal XRD patterns of all these 

possible compounds are plotted together with the PXRD pattern of the washed CuBTC sample 

(Fig. S6 of the supplementary material). Comparison shows that the IL extracted or water 

washed CuBTC does not exist as a single phase. Moreover, the water treated sample contains 

mixed phases of pristine CuBTC, trimesic acid (BTC) with and without water etc. Therefore, it is 

very difficult to propose or hypothesized the molecular level mechanism for disruption of crystal 

structure of CuBTC in water. Unfortunately, all attempts to further resolve the structural 

modifications from the PXRD pattern of the treated samples were unsuccessful due to the 

significant levels of change that had occurred. This could be due to the presence of unknown 

phases in the powder samples or because of the presence of an entirely different crystal structure. 

A more comprehensive crystallographic analysis is necessary to answer these open questions, but 

this is beyond the scope of the present work. 

Material properties. The porous nature of the CuBTC after IL extraction was further investigated 

by N2 adsorption measurements. After washing with water, the resulting microcrystalline 

material shows non-porous behavior (Fig. S5 in the supplementary material) and a substantially 

reduced surface area (less than 7 m2/g) compared to pristine CuBTC. The BET surface area of 

pristine CuBTC after exposure to water for 5 h exhibits a similar surface area (19 and 11m2/g 

degassed at 70 and 150 °C, respectively). 
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Electron microscopy (SEM and TEM) was performed on the samples to ascertain further 

information about the surface morphology, the shape and the size of the washed CuBTC crystals. 

The external surfaces and morphologies of washed CuBTC and IL extracted CuBTC crystals are 

very similar (Fig.10a, b). The SEM micrographs of the washed CuBTC samples reveal 

agglomerated flaky micro-rods, which are completely different from the well-defined and clean 

external surfaces of pointed hexagonal morphologies of the pristine CuBTC (inset of micrograph 

b of Fig. 10). The TEM images of the washed samples displayed in Fig. 10 c and d show the 

presence of non-uniform micro rods along with very few distorted hexagonal crystals (indicated 

by the arrow in image d of Fig. 10) whose external surface is not clean compared to pristine 

CuBTC (inset of image c of Fig. 10). TEM images recorded at different locations of the sample 

are shown in Fig. S7 of the supplementary material. These TEM images indicate a clear 

transformation of crystal structure into more than one phase (new phases with small amount of 

bulk/amorphous phase). This finding is in line with the conclusions from the PXRD data (Fig. 9). 

The presence of more than one unknown phase and crystal structure confirms the above 

assessment as to why the crystal structure of the water degraded CuBTC could be not 

unambiguously identified. So far, it is only clear that the IL impregnated or pristine CuBTC 

crystal structure collapses and is transformed into an unknown crystalline structure after washing 

with water. 

 The general conclusions obtained in this study in terms of solvent extraction and 

structural responses have wider applicability beyond the Cu3(BTC)2 and 1-ethyl-3-

methylimidazolium ethyl sulfate employed here. However, solvent compatibility for example 

may be highly specific to the MOF/IL pair selected and thus a full analogous series of 

experiments to those conducted here would be required before drawing conclusions. For 

2µm 
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instance, the extent of recovery of [NTf2]-based ionic liquids using water would be limited due 

to the low solubility in this solvent. 

 

 

 

Fig. 10. SEM micrograph of (a) CuBTC washed with water and of (b) IL extracted CuBTC using 

water. TEM images of (c) CuBTC washed with water and (d) IL extracted CuBTC using water. 

Inset in panels (b) and (c) show SEM/TEM micrograph/image of pristine CuBTC respectively. 

 

Table 1. Experimental FTIR frequencies (cm−1) of pure and confined system before and after 

washing with water 

 

Pure system Confined 
system 

Systems washed with 
water 

Assignments* 

EMIM-ETS 
 

CuBTC 
 

EMIM-ETS  
+ CuBTC  

(20 mole%) 

IL 
extracted 

CuBTC (20 
mole %) 

Washed 
CuBTC 
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- - - 3551 3551 OH stretch of 
uncoordinated water 

- - - 3499 3498 OH stretch of 
uncoordinated water 

- - - 3447 3446 Molecular water 

3151 - 3154 - - C
4/5

-H stretch 

3106 - 3111 - - C
2
-H stretch 

- - 2984 - - C
2
-H stretch 

2982 - - - - Symm H13-C6-H14 stretch 
2941, 2901 - 2942, 2905 - - Symm H29-C26-H31 stretch 

- - - 1701 1704 C=O stretch of 
carboxylic acid 

- 1652 - 1652 - Asymmstretch (COO) 
(MOF) 

- - - 1632 1632 Bending mode of  water 

- 1616,1547 - 1614,- 1616,- Bending mode of adsorbed 
molecular water 

- - - 1580 1580 C–C stretch (in–ring) 
1571 - 1572 - - N

3
-C

4
-H

10
 rock 

- - - 1506 1506 C–C stretch (in–ring) 

- - - 1484 1483 C–C stretch (in–ring) 

- 1450 1447 - - Asymm stretch (COO) 
(MOF) 

1431 - - - - H
12

-C
6
-H

13
 rock 

- - - 1432 1432 C–C stretch (in–ring) 

- 1419 - - - Symm stretch (COO) 
(MOF) 

- - - 1395 1393 C–C stretch (in–ring) 

1387 - - - - H
15

-C
7
-H

16
, H

18
-C

8
-H

19
 

rock 
- - - 1382 1382 C–C stretch (in–ring) 

- 1374 1369 - - Symm stretch (COO) 
(MOF) 

- - - 1358 1358 C-O stretch 

1335 - 1335 - - N1-C7-H16 rock 
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- - - 1264 1264 C-O stretch 
1243 - 1243   N1-C2-H9 rock + S20-

O23stretch 
- - - 1230 1234 C-OH stretch of  

carboxylic acid 
1213 - 1213 - - S20-O23 stretch 

- - - 1215 1214 C-O stretch 

- 1187 - 1187 1181 - 

1169 - 1166 - - N1-C2-H9 + 
O21-S20-O22asym stretch 

1108 - 1108 -  H29-C26-H30 twist 

- 1112 - 1113 1113 C-H in plane bending ring 
(MOF) 

1091 - 1089 - - H13-C6-H14 twist 

- - - 1093 1092 - 

1060 - 1060 - - O24-C25 stretch 

1013 - 1013 -  C2-N1-C5 stretch 
- 1013 - 1013 - C-H stretch (MOF) 
- 939 - 930 938 OH bending (MOF) 

913 - 915 - - O21-S20-O22symm stretch 
- - - 828 830 C-H out of plane bending 

of ring (MOF) 
807 - - - - N1-C2-H9 wag 

761,702 759 760,- - - S-O stretching (IL), C-H 
out-of-plane bending of 
ring (MOF) 

- - - 798 799 C-H out of plane bending 
of ring  

- - - 755 753 C-H out of plane bending 
of ring  

- - - 745 746 C-H out of plane bending 
of ring 

- - - 733 733 C-H out of plane bending 
of ring 

734 729 727 - - S20-O24 stretch (IL),C-H 
out of plane bending of 
ring (MOF) 

- - - 722 722 C-H out of plane bending 
of ring + Cu-O stretch 

- - - 687 692 ,, 
648 - 648 - - C-N bonding oscillation  
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-  - - 631 Cu-O stretch 

618 - 620 - - N1-C7 stretch 
- - - 590 593 C-H out of plane bending 

of ring + Cu-O stretch 
577 - 579 - - O21-S20-O22 wag 

- - - - 573 In plane bending  of 
adsorbed molecular water 

565 - 563 - - - 
* The assignments of the IL are based on the optimized structure of the IL reported in the literature.40

 

 

 

 

Conclusions 

The removal of an imidazolium based IL from the pores of CuBTC MOF was investigated using 

FTIR, PXRD, N2-adsorption, and electron microscopy. Acetone, isopropanol, methanol, and 

water were employed as extraction media. Acetone and isopropanol were unable to completely 

remove the confined IL, whereas water shows good capability, but it a substantially negative 

impact on porous and crystal structure of the MOF. Methanol was identified as the most suitable 

solvent to remove the confined IL from CuBTC. It effectively removed the IL without affecting 

the MOF structure. 

In addition, the confinement of acetone, isopropanol, and methanol in CuBTC was studied in 

order to distinguish between the effects of the treatments by solvent alone and its combination 

with the IL. The data revealed weak interactions between the carboxylate groups of CuBTC with 

acetone and isopropanol through hydrogen bonding. However, no such interactions were found 

in case of methanol and CuBTC. CuBTC is stable in all the organic solvents tested, but acetone 

promoted the hydrolysis in the slightly hydrated MOF sample. On the other hand, exposing the 

MOF to water, leads to structural changes. This instability of CuBTC in water is related to the 
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breaking of metal ligand bonds as a result of hydrolysis reactions. The hydrolysis reaction 

depends on parameters such as the amount of water, the duration of exposure, and the drying 

temperature. The IL did not play a role in the degradation mechanism. Interestingly, the material 

obtained as a result of the degradation still retained crystalline structure as revealed by its PXRD 

pattern, but does no longer retain porosity. Analysis showed that it consists of more than one 

phase. The degraded samples show similar morphology. SEM and TEM revealed non-uniform, 

agglomerated, flaky micro-rods.  

This study provided valuable information about the impact of four common solvents and 

an imidazolium-based IL on the intrinsic chemical and structural characteristics of CuBTC MOF. 

The objective was to identify suitable media for post synthetic modification of MOFs. 

Additionally, MOFs show potential to serve as robust porous matrices that can be used several 

times after removal of the confined substance. Results here indicate that extraction with organic 

solvents is a promising route for recycling of CuBTC with no detectable loss of porosity 

orcrystal structure. 

Supplementary information  

FTIR spectra of confined solvents in CuBTC, FTIR spectra of washed CuBTC with solvents, 

PXRD of IL extracted CuBTC with methanol, temperature dependent PXRD of CuBTC after 

washing with water, Nitrogen adsorption isotherms of CuBTC and IL extracted CuBTC, 

comparison of XRD pattern of Cu2(CH3CO2)4.2H2O, Cu2SO4, CuSO4.5H2O,CuO, Cu(OH)2, 

Cu2O, 1,3,5-benzene try carboxylic acid with two water molecules (C6H3(CO2H)3.2H2O), 1,3,5-

benzene try carboxylic acid (C6H3(CO2H)3, with activated CuBTC and IL impregnated CuBTC 

after washing with water. 
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