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Abstract

The objectives of this work are to review, investigate and model the microwave planar
filters of the modern wireless communication system. The recent main stream of
microwave filters are classified and discussed separately. Various microwave filters
with detailed applications are investigated in terms of their geometrical structures and
operational performances. Theoretical

A comprehensive theoretical study of microwave filters is presented. The main types of
microwave filters including the basic low-pass filters such as Butterworth and
Chebyshev filters are fully analysed and described in detail. The transformation from
low-pass prototype filters to high-pass filters, band-pass filters and band-stop filters are
illustrated and introduced. Research work on stepped impedance resonator (SIR) and
asymmetric stepped impedance resonator (ASIR) structure is presented. The
characteristics of Ag/4, Ag/2 and Ag (Ag is the guided wavelength of the fundamental
frequency in the free space) type SIR resonators, and the characteristic of asymmetric
SIR resonator are categorized and investigated.

Based on the content mentioned above, novel multi-standard high performance
asymmetric stepped impedance resonator single-wideband and dual-wideband filters
with wide stopbands are proposed. The methodologies to realize wide passband and
wide stop-band filters are detailed. In addition, multi-standard high performance triple-
wideband, quadruple-wideband and quint-wideband filters are suggested and studied.
The measurement results for all prototype filters agree well with the theoretical
predictions and simulated results from Ansoft HFSS software. The featured broad
bandwidths over single/multiple applicable frequency bands and the high performances
of the proposed filters make them very promising for applications in future multi-
standard wireless communication.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, wireless communication facilities such as wireless transceivers
have been exerting an increasingly vital impact in the field of microwave and
radio frequency communication. One of the most important modules in wireless
communication systems is the microwave filter [1-7]. Microwave filters play a
critical role in passing desired frequency bands and stopping unwanted ones
including noise interference signals in communication systems. Figure 1.1 shows
the positions of the microwave filters in a generic wireless transceiver system.
Therefore, developing high performance multi-standard filters with compact size,
low in-band insertion loss (IL), and high out-of-band rejection skirts is our goal in
the following steps. Compared to the traditional stepped impedance resonator
(SIR) with two step discontinuities, the asymmetric SIR (ASIR) has only one
discontinuity but still keeps the characteristic of controllable spurious modes.
Thus, it has the advantage of compact size, less loss, and strong design feasibility,
particularly in designing of high-order BPFs such as dual band [8][10], triple band
and quad band[16] BPFs because of its inherently higher order resonant modes.
Therefore, the motive of this thesis is to analyse, design and measure the high
performance single- and multi-band ASIR filters for advanced communication

systems.
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Figure 1.1. A generic wireless transceiver

1.2 Thesis Objectives

The currently proposed ASIR filters are mainly abeut the traditional Anti-Parallel-
Coupled ASIR (APC-ASIR) which consists of two ASIR units with their high
and/or low impedance lines anti-coupled with each other and is usually folded at its
open end. In [13], the high impedance lines of two ASIRs are bent and coupled with
each other to form a signal transmission route, and the first spurious frequency is
utilized to form the second operating band [14]. Because the frequency response
characteristic of the anti-parallel-coupled line is determined by the frequency
response characteristic of the ASIR, the APC-ASIR frequency response is easy to
calculate. However, the bandwidth characteristic of the APC-ASIR structure [12,
13], as with the multi-stage coupled ASIR structure [15, 16], has two disadvantages:

one is its narrow band characteristic within the pass-band range; and another one is



limited number of pass-bands. Therefore, this approach cannot fully meet the multi-

service broad band requirement of current wireless communications.

The objective of this thesis is to develop, design and characterize methodologies for
the proposed wide-band ASIR filters with single- and multi-band characteristics.
Hence, it involves the analysis, design, simulation and fabrication of wide-band
ASIR filters with critical parameters including the desired central frequency, wide-

bandwidth, low loss and small size.

Based on the current single-band ASIR with narrow band disadvantages, single-
wide-band ASIR structures with wide stop-bands are analysed and designed, as

shown in chapter 6 and chapter 7, respectively.

Based on the current dual-band ASIR with narrow band disadvantages, dual-wide-
band ASIR structures with wide stop-bands are analysed and designed, and shown

in chapter 5.

Based on the current ASIR with the disadvantage of limited band numbers,
triple/quad/quint-wide-band ASIR structures are analysed and designed, as shown in

chapter 5, chapter 6 and chapter 7, respectively.

Relevant communication standards includes the Global System for Mobile
Communication(GSM): GSM850 (824-894 MHz), GSM900 (890-960 MHz),
GSM1800 (1710-1880 MHz), GSM1900 (1850-1990 MHz), Universal Mobile

Telecommunications System (UMTS) :1920-2170 MHz, Global Positioning System



(GPS) :L1 band: 1.57542 GHz, L2 band: 1.22760 GHz, L3 band: 1.38105 GHz, L4
band: 1.84140 GHz, IEEE 802.11a (frequency band centred at 5.2 GHz/5.8 GHz),
IEEE 802. 11b/g/n (2.4-2.6 GHz), Worldwide Interoperability for Microwave
Access (WiMAX): 3.3-3.7 GHz, Long Term Evolution (LTE): LTE2300: 2305-
2400 MHz, LTE2500: 2500-2690 MHz and so on. These wireless communication
standards are followed when analysing and designing the related single-and multi-

wide-band filters.

1.3 Organization of the Thesis

Chapter 1: This chapter gives a brief introduction to microwave filters including
their application fields and main function in wireless communications.
Communication standards and relative operating frequency bands are proposed to

guide the design of microwave filters.

Chapter 2: This chapter covers an introduction to microwave filters and sets out a
comprehensive review of microwave filters, mainly planar microwave filters. The
recent years’ main stream of microwave filters are classified and discussed
separately, which includes: (1) lumped-element LC filters, (2) planar structure filters,
and (3) non-planar structure filters. Planar structure filters including microstrip
filters, coplanar waveguide filters and so on are described especially in detail . In
addition, this chapter introduces new materials, new structures and new technologies
in the microwave filter field, including new materials such as low-temperature co-

fire ceramic technology (LTCC), low-temperature co-fire ferrite (LTCF), liquid
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crystal polymer (LCP), new structures such as photonic band gap (PBG), ground
plane aperture (GPA), defected ground structure (DGS), substrate integrate
waveguide (SIW), new technologies such as micro electro mechanical systems
(MEMS) or micromachining, high temperature superconducting and so on . All
these new materials, new structures and new technologies have been proposed in
papers to enhance the performance of microwave filters as well as the performance

of microwave systems.

Chapter 3: This chapter presents a comprehensive theoretical study of microwave
filters. It covers the introduction to a diversity of filters including low-pass filters,
high-pass filters, band-pass filters and band-stop filters as well as filter design
parameters including (1) the central frequency, (2) insertion loss, (3) ripple
coefficient, (4) bandwidth, (5) rectangular coefficient, (6) the stop-band rejection.
Three basic classic types of filters including (1) Maximally flat filter (Butterworth
filter), (2) Chebyshev Filter, and (3) Elliptic Filter are explained. Furthermore, filter
frequency transforms are reviewed including: (1) frequency transform between low-
pass filter and low-pass prototype, (2) frequency transform between high-pass filter
and low-pass prototype, (3) frequency transform between band-pass filter and low-
pass prototype, and (4) frequency transform between band-stop filter and low-pass
prototype. All these can give a deeper understanding of the design of microwave

filters.

Chapter 4: This chapter provides a comprehensive study of stepped impedance
resonator (SIR) structures and asymmetric stepped impedance resonator (ASIR)

structures. All three types of Ag/4, Ag/2 and Ay SIR resonator (Ag is the guide wave



length of the resonator’s fundamental frequency in free space) are analysed and fully
explained. The chapter reviews: (1) The basic SIP structure, (2) The characteristics
of SIR including resonating requirements and electrical lengths, (3) Spurious
frequencies, and (4) Equivalent circuits. Moreover, the asymmetric stepped-
impedance resonator, which is a novel SIR structure and has appeared in
publications in recent years, is studied because of its advantages over other
structures including the SIR structure. Traditional anti-parallel coupled ASIR
structures are described, simulated and studied. All these are helpful to the detailed

design of ASIR filters in the next chapter.

Chapter 5: Based on the content mentioned above, a novel parallel-coupled ASIR
structure is proposed and its characteristics are fully analysed and discussed,
showing differences from the characteristics of current anti-parallel coupled ASIR
structures. Based on this novel structure, two novel multi-standard dual-wideband
asymmetric stepped impedance resonator type filters are proposed, in which the
mathematical analyses and descriptions of the characteristic of filter circuit structure
are derived, and the configuration, performance and transmission zero point are
analysed. Novel parallel-coupled asymmetric SIRs with interdigital cross-coupled
line structure are integrated together to realize optimized in-band performance and
realize wide stop-bands by introducing extra transmission zeros. Besides, the novel
parallel-coupled asymmetric SIRs with parallel uncoupled microstrip lines structure
are integrated together to realize optimized in-band performance and realize wide
stopbands by introducing extra transmission zeros. Both types of the proposed dual-
wideband filter have large stop-band bandwidth with sufficient suppression level.

To the author’s knowledge, the proposed structures realize for the first time dual



wideband and wide stop-band resulting from the restriction of high order harmonic

frequencies.

Chapter 6: This chapter proposes an ASIR coupled structure with a meander
coupled section. The novel structure’s mathematical analysis and filter
characteristics are derived, and the transmission zero point generation condition is
analysed. The even and odd phase velocity compensation technique is also
considered in this novel structure. By using this knowledge, a single-wideband filter
with wide-stopband resulting from the generation of multiple transmission zeros is
proposed. The single-wideband filter has advantages including low insertion loss,
low return loss, simple structure and wide stop-band to suppress undesired signal
interception. Moreover, by tuning the locations of transmission zeros, the quint-
wideband filter can be realized by this novel structure. The quint-wideband filter has
advantages including low insertion loss, low return loss, simple structure and large
fractional bandwidth, indeed the largest fractional bandwidth in currently proposed

quint-band filters.

Chapter 7: This chapter proposes an ASIR spiral and open loop coupled structure
to realize a single-wideband filter and a quint-wideband filter. A spiral and open-
loop structure is used to realize a mixed electric coupling and magnetic coupling
effect and at the same time facilitate the quint-band performance. Based on the
structure, the single-wideband filter is also realized. The Ansoft HFSS software
simulated results and measurement results agree well with the theoretical predictions.

The broad bandwidths over dual applicable frequency bands and the miniaturized



size of the proposed filter make it very promising for applications in multi-standard

wireless communication.

Chapter 8: This chapter summarizes the thesis findings and looks ahead to future work.
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Chapter 2

Microwave Filters Overview

2.1 Introduction

Most RF and microwave filters are made up of one or more coupled resonators, and the
resonator is the basic unit to realize the filter. According to the different technologies
used in filter realization, filters can be divided into lumped-element LC filters [1]-[5],
planar structure filters such as microstrip transmission line filters [6]-[23],coplanar
waveguide filters [24]-[28] and so on, non-planar structure filters such as waveguide
filters [29]-[32], resonant cavity filters [33] and so on. The books by Cohn [34],
Matthaei, Young and Jones [35], R. J. Cameron, C. M. Kudsia, and R. R. Mansour [36]
provide good references to the concept, design and realization of RF and microwave

filters.

Figure 2.1. Planar structures. Figure2.2. Non-planar structures. (Cavity, non-
(microstrip, CPW, etc.) planar, waveguide etc.)
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2.2 Lumped-Element LC Filters

The simplest resonator structure that can be used in RF and microwave filters is an LC
tank circuit consisting of parallel or series inductors and capacitors. These have the
advantage of being very compact, but the low quality factor of the resonators leads to

relatively poor performance.

Lumped-element LC filters [1]-[5] have both an upper and lower frequency range. As
the frequency gets very low, into the low kHz to Hz range the size of the inductors used
in the tank circuit becomes prohibitively large. Very low frequency filters are often
designed with crystals to overcome this problem. As the frequency gets higher, into the
600 MHz and higher range, the inductors in the tank circuit become too small to be
practical. An inductor of 1 nanoHenry (nH) at 600 MHz isn't even one full turn of wire.
In recent years, miniature lumped element filters have come into use. The structures in
[2], [4] and [5] have the advantages of compact size, light weight, easy for fabrication
and fixing. Miniature lumped element filters are suitable for the use of narrow and

wide-band filters ranges from 10-2000 MHz.

2.3 Planar Structure Filters

2.3.1 Microstrip Filters
The general structure of a microstrip is illustrated in Figure 2.3. A conducting strip
(microstrip line) with a width W and a thickness t is on the top of a dielectric substrate

that has a relative dielectric constant &; and a thickness h. The bottom of the substrate is

12
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Figure 2.3. General microstrip structure Figure 2.4. The basic structure of SIW

a ground (conducting) plane. Microstrip transmission lines can be used to make good
resonators and filters to offer a better compromise in terms of size and performance than
lumped element filters. Microstrip filters can be classified into stepped impedance
resonators (SIRs) [6]-[12], hairpin filters [13]-[17], interdigital filters [18]-[23], parallel
coupled filters and so on. In 1980, Makimoto et al. for the first time derived
approximate design formulas for band-pass filters (BPFs) using parallel-coupled striped
stepped-impedance resonators (SIRs) in ref. [6]. The formulas take into account the
arbitrary coupling length and quarter wavelength coupling. The author showed that this
type of filter had advantages of controlling spurious response and insertion loss by
changing the structure of the resonator. Then two experimental filters are designed by

using the formulas and measured.

In 1997, Sagawa et al. proposed in paper [7] to standardize Ag/4 type, Ao/2 type, Ag type
transmission-line stepped impedance resonators (SIRs) and systematically summarize
their fundamental characteristics, such as resonance conditions, resonator length,
spurious (higher order) responses, and equivalent circuits. Practical applications which

employ features of three types of SIRs are investigated with demonstrations of specific
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structures. Original design formulas with respect to Ag type dual-mode resonators are

analytically derived.

In [8], the ultra-wide-band (UWB) BPF comprised a cascade of low and high-pass
structures. The concept of multimode resonators (MMR) used for UWB BPF was
initially proposed in [9], where the first three resonant modes of the MMR were utilized
to design the filter. In [10], pseudo interdigital stepped impedance resonators (PI-SIRs)

were proposed to develop a UWB BPF.

In 2010, Qing-Xin Chu et al. presented an ultra-wide-band (UWB) band-pass filter
(BPF) using a stepped-impedance stub-loaded resonator (SISLR) [11]. Characterized by
theoretical analysis, the proposed SISLR is found to have the advantage of providing
more degrees of freedom to adjust the resonant frequencies. Besides, two transmission
zeros can be created at both lower and upper sides of the pass-band. Benefiting from
these features, a UWB BPF is then investigated by incorporating this SISLR and two

aperture-backed interdigital coupled-lines. Figure 2.5 shows the SISLR structure in [11].

In 2013, Liang Chen proposed a compact UWB filter with dual notched bands using
cascaded shorted stub loaded stepped impedance resonators (SIRs) [12]. The basic
UWB filter consists of multi-mode resonator (MMR) loaded with T-shaped stub and

interdigital feed lines, having flat ultra-wideband response and sharp rejection skirt.

Two cascaded shorted-stub loaded SIRs are symmetrically coupled to MMR,

introducing dual notched bands with deep and sharp shirt and providing freedom to
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adjust the notch frequency. A UWB filter with 5.8Ghz/8.0Ghz notched bands is

designed and fabricated.

Hairpin filters have been previously shown in many works. They have special properties,

advantageous for the design of compact, narrow-band, and band-pass microstrip filters.

Resonator 1

_i_/ : -Resonator 4

Resonator 2 -~

Ground plane

We Wy S

Figure 2.5. The SISLR structure in [11] Figure 2.6. Multi-layer folded inter-digital
resonators in [19]

In 2003, George L. Matthaei introduced a new “zig-zag” form of hairpin-comb filter
[13], which is shown to have additional important advantages for designing compact
narrow-band filters. Examples with computed responses and the measured results from
high-temperature superconductor trial designs are presented. The considerable
flexibility available in the design of band-pass filters of this sort is shown to be helpful
in the design of tuneable band-pass filters having nearly constant bandwidth and pass-
band shape as they are tuned. Measured results for tuning over nearly an octave range

are presented.

In 2007, Vargas, J. M et al. proposed a superconductor circuit based on series Micro-

Electro-Mechanical (MEM) switches to switch between two band-pass hairpin filters

with 200 MHz bandwidth and nominal center frequencies of 2.1 GHz and 2.6 GHz [14].

15



This is accomplished using 4 switches actuated in pairs, one pair at a time. When one
pair is actuated the first band-pass filter is coupled to the input and output ports. When
the other pair is actuated the second band-pass filter is coupled to the input and output
ports, thus corresponding output responses are obtained. The device is made of
YBa>Cu307 thin film deposited on a 20 mm by 20 mm LaAlOs substrate by pulsed laser
deposition. BaTiO; deposited by RF magnetron sputtering is utilized as the insulation

layer at the switching points of contact.

In 1995, J. S.Hong et al. proposed a new type of miniaturized microstrip band-pass
filters with pseudo-interdigital structure without via hole grounded resonators [18] . A
very compact filter of this type, having a size smaller than a quarter-wavelength by
quarter-wavelength at a mid-band frequency of 1.1 GHz was designed and fabricated.
This filter gains its compactness from the fact that it has a size similar to that of the
conventional inter-digital band-pass filter. It gains its simplicity from the fact that no
short-circuit connections are required so the structure is fully compatible with planar

fabrication techniques.

In 2005, Yani Mu et al. proposed a novel compact cross-coupled inter-digital band-pass
filter (BPF) [19]. (See in Figure. 2.6.) By using multilayer folded quarter-wavelength
resonators, the size of the filter is reduced greatly, meanwhile a cross-coupling is
introduced to produce transmission zeros and thereby improve the stop-band
characteristics of the filter. As an example, a four-pole BPF centred at 2. 25 GHz with a
fractional bandwidth of 31% is designed, fabricated, and measured. In the same year, G.
Q. Wang et al. proposed a compact interdigital stripline band-pass filter embedded in

low temperature co-fired ceramic for 5GHz wireless LAN applications, including
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design, simulation, fabrication, and measurements [20]. The filter measures 8mm, by
7mm, by 1.1 mm and exhibits an insertion loss of 3.6 dB, a return loss of 20 dB, and a
212MHz pass-band with the midband frequency at 5.28 GHz. The filter is highly
reproducible with good tolerance. A low noise amplifier (LNA) built on the top of the
LTCC substrate with an embedded filter has the same bandwidth and midband
frequency as those of the filter.

In 2012, S. W. Wong et al. proposed an interdigital microstrip coupled-line band-pass
filter for millimetre-wave application [21]. A quadruple-mode microstrip-line resonator
is designed to constitute the pass-band. The interdigital coupled-line sections are
designed as the input/output network of the resonator. The measured results show that
the filter achieves a pass-band insertion loss of 1.07dB at 40GHz, the lower- and upper-

stop-band rejections are larger than 18 dB and 3 dB fractional bandwidth is 20%.

2.3.2 Coplanar Waveguide Filters

A coplanar waveguide (CPW) structure is used for the filter design since it can be well
integrated into existing RFICs on Si substrates without the need to incorporate via-holes.
For the design of microwave components, the CPW structure is less sensitive to the

substrate thickness and substrate dielectric constant than microstrip structures.

In the case of coplanar waveguide based stub designs, crosstalk and parasitic radiation
can be minimized by using series stubs which are patterned in the centre conductor, as
opposed to a shunt stub configuration. At low frequencies or on low permittivity
substrates, however, they tend to occupy considerable amounts of space since they are
often designed to be a quarter-wavelength long. As a solution to this problem, the

concept of folded series stubs is introduced in [24]. At the resonant frequency, these
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inner slots are a quarter wavelength long and thus the short- circuit at point A is
transferred to an open-circuit at point B, resulting in a band-stop response (see in Figure
2.7(a)). Using the new approach, the inner slots are simply folded back upon themselves
two times (see in Figure 2.7(b)). This effectively reduces the stub length from A4/4 to
Ae/12, while achieving the same open-circuit effect at the input port. What’s more, the
bandwidth has reduced the use of lumped elementcapacitors integrated with distributed

element, series stubs.

L\\\\\ \\\ \ \\\\

/

i//////%%m {//

\\\\\

L
(a) (b)
Figure 2.7. (a) Folded series stubs, (b) Folded short-end stubs.

In 2002, K.T.Chan proposed a filter which has only 3.4 dB loss at peak transmission of
40GHz with a broad 9GHz bandwidth [26]. This was achieved using an optimized
proton implantation process that converts the standard low-resistivity Si to a semi-
insulating state to improve the filter performance. The filter shows a great potential for
compact, low loss, and low-cost passive circuits in the future applications at high
frequencies. This is the first demonstration of high performance filter at millimetre-
wave regime on Si with process compatible to current VLSI technology. In 2003, K. T.
Chan proposed a set of filters over the range from 22-91 GHz [27]. The bandpass filter
consists of coupled lines to form a series resonator, of which a photographic image is
shown in Figure 2.8 (a), while the band-stop filter was designed in a double-folded

short-end stub structure, whose photographic image is shown in Figure 2.8(b), where
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the dark area in the photograph is the metal pattern. At resonant frequencies, the inner
slots transfer the equivalent open circuit to a short circuit, thus, a band-stop response
was obtained [24], [25]. The band-stop filter has a double-folded short-end stub form,

which reduces the filter size by folding stubs and slots in the filter structure.

295 nm

(a) (b)
Figure 2.8 (a). Image of the fabricated band-pass filters designed for the W-band of 94GHz.

(b) Image of the fabricated band-stop filters for 52 GHz.

In the Figure 2.8, the values of the equivalent capacitance and inductance depend on the
gap spacing between the coplanar couple lines and the width of the central line. The two
parallel coupled-lines microstrip coplanar waveguide filter is one of the most common
microwave filters in many practical wireless systems [28]. This kind of filters have a
high order to produce a sharp transition band (TB). Therefore, one predicts the filter
would be larger and have more insertion loss (IL) . In paper [29], the author used the
bended stub with novel folded technology to improve the three parallel coupled-lines
structure of BPF for N =I. This creates a sharp transition band (TB) and reduces the
dimension of the circuit by 66.67% at 2.45 GHz. Its centre frequency can be shifted

easily by adjusting the interfaces simultaneously.
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2.4 Non-Planar Structure Filters

Non-planar structure filters include waveguide filters and dielectric resonator filters.
The rectangular waveguide filter, which is shown in Figure 2.2, is widely used in
microwave and millimetre-wave such as in communications, electronic warfare (EW),
automatic test equipment (ATE), microwave subsystems and radar systems [30]. They
are required for high-power applications and preferred for precision performance. At
low signal levels, they are primarily used at frequencies from 8 to more than 100 GHz.
This waveguide filter also provides a high Q factor, high selectivity and low insertion
loss [31]. Meanwhile, the waveguide filter has a relatively bulky size, higher cost and is
not easy to integrate between planar and non-planar circuits. In 2012, X. H. Zhao
proposed a silicon micro-machined band-pass rectangular waveguide filter which is
firstly fabricated by the deep reactivation etching (DRIE) processes for sub-millimetre
wave applications. The filter circuit structure is formed using an ICP reactive ion etcher
to etch through the full thickness of the silicon wafer, and is then bonded together with
two metallized glass covers to form the waveguide cavity. The measured results show
bandwidth of 21.2 GHz and 14.5 GHz centred at 140 GHz with 3-pole and 5-pole filters
while the loaded quality factors are Q=139 and 163, respectively. In 2010, Q. F. Zhang
proposed a four-pole waveguide band-pass filter with about 6% fractional bandwidth
[32]. The filter is based on non-resonating ‘T’ junctions and the measured results agree
well with the calculated results and show good in-band equal ripple performance and

sharp rejection performance.

In 2009, paper [33] introduced a dual-band filter using dielectric resonator (DR)

technology, based on the half-cut cylinder resonator shown in Figure 2.9. Two
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Figure 2.9. Structure of the dual-band 2-cavity (2x2-poles) filter in [33]

orthogonal modes of the resonator are used to carry the two operating pass-bands of the
filter. It is shown that full control over the two pass-bands is achieved, through the
independent control of the centre frequencies, inter-cavity couplings, and input/output
couplings of each band. Filter design is simple and is carried out separately for each
band, owing to the orthogonal modes. Various improvement techniques are also

discussed.

2.5 New Materials, New Structures and New Technologies in Modern

Microwave Filters

In recent years, there have been several new concepts applied to distributed microwave
circuits in order to meet the requirement of high performance, compact size, low
cost ,and so on. For example, some new materials such as low-temperature co-fire
ceramic technology (LTCC) [37]-[42], low-temperature co-fire ferrite (LTCF) [43]-[44],
liquid crystal polymer (LCP) [45]-[48], new technologies such as micro electro-
mechanical systems (MEMS) or micromachining [49]-[55], high temperature

superconducting and some new structures such as photonic band gap (PBG) [56]-[59],
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ground plane aperture (GPA) [60]-[62], defected ground structure (DGS) [63]-[76],
substrate integrated waveguide (SIW) [77]-[79], and others are proposed in papers to

enhance the performance of microwave filters as well as whole microwave systems.

Liquid crystal polymer (LCP) is a new and promising thermoplastic material which can
be used as both substrate and package material. Two types of liquid crystal polymer
films, bonding film and core film, are available with different melting temperatures.
Besides, the cost of LCP is comparable to that of conventional printed circuit board
material and is much cheaper than that of low temperature co-fired ceramic (LTCC). In
general, LCP is a good choice for developing devices with low cost, low loss, light

weight, multilayer integration and packaging compatibility.

Photonic band gap (PBG) structure is a periodic structure which has been known as
providing rejection of a certain frequency band. However, it is difficult to use a PBG
structure for the design of the microwave or millimetre-wave components due to the

difficulties of modelling.

A novel ground plane aperture structure (GPA) technique simply incorporates the
microstrip line with a centred slot at the ground plane.The use of GPA has attractive
applications in 3 dB edge coupler for tight coupling and band-pass filters for spurious
band suppression and enhanced coupling. DGS based on GPA focuses not only on its
application but also on its own characteristics and its ground plane metal of a microstrip
(or stripline, or coplanar waveguide) circuit is intentionally modified to enhance

performance [69]. For example, there are slot structures, slot variations, meander lines,
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drum bell structures and so on [70]. Besides, additional applications of DGS can also be
seen in delay lines, antennas [71] [72], and dividers [73]. The basic element of DGS is a
resonant gap or slot in the ground metal, placed directly under a transmission line and
aligned for efficient coupling to the line. DGS can change characteristics of the
transmission line such as the line capacitance and line inductance. Besides, it can
increase the characteristic impedance of the microstrip, achieve reduction in size and
improve the performance of the microstrip components. Figure 2.10 shows various DGS
structures. In 2003, a single resonator with the “notch” size DGS is proposed[64],
which is shown in Figure 2.11 (a). This one-pole “notch” in frequency response can be
used to provide additional rejection at the edges of a filter pass-band, or at an out-of-
band frequency such as a harmonic, mixer image, or any frequency where the filter
structure has poor rejection due to re-entry or moding effects. Moreover, DGS allows
the designer to place a notch (zero in the transfer function) almost anywhere. When
placed just outside a band-pass filter’s pass-band, the steepness of the roll-off and the

close-in stop-band are both improved.

= —
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Figure 2. 10. Various DGSs: (a) Spiral head, (b) Arrowhead-slot, (c) “H” shape slots,(d) A
square open-loop with a slot in middle section, (e) Open-loop dumbbell and (f) Inter-digital
DGS.
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Figure 2.11 (a) Structure of a specific DGS type and its frequency response, obtained by
electromagnetic simulation in paper [64]. (b) Layout, simulation and measurements of a
coupled-line band-pass filter at 3.0 GHz. The filter includes two 3.92 GHz DGS elements,
located adjacent to the input and output in paper [64].

The filter’s centre frequency is 3.0 GHz, while the DGS resonators are designed for a
notch at 3.92 GHz. The plot of Figure 2.11 (b) shows a fast roll-off on the high
frequency side of the pass-band, which is much greater than that of the basic coupled

line filter [64].

In 2010, Y.C.Guo published a paper containing an improved equivalent circuit
parameters extraction method for the dumbbell-shaped defected ground structure [74].
The new extraction parameters equations are obtained in closed-form expressions,

which contain S11 and S21. Compared with conventional methods, the proposed
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method can give more accurate frequency response curves, and can be widely used in

the design and analysis of DGS.

In 2013, Abdalla Abdulhadi published a paper named Combined Shaped Microstrip
Line and DGS Techniques for Compact Low-pass Filter Design [75]. Inset feed and
stub matching techniques are used to enhance the filter characteristics. The proposed
filter is composed of double U-shaped DGS units at the ground plane and a shaped

microstrip line on the top.

In the same year, Abdalla Abdulhadi published another paper “Combined Shaped
Microstrip Line and DGS” [76] and its structure shown in Figure 2.12. The DGS is
composed of two equilateral U-shaped DGS and one inverted U-shaped DGS unit,
which provide higher attenuation for the high frequency harmonics. The shaped
microstrip line consists of two sections of microstrip line of different widths and three
parallel double stub sections of different widths, which provide impedance matching
control for the input and output ports in order to obtain higher attenuation in the stop-

band.

Fig 2.12. Description of the (a) DGS unit and (b) the transmission line dimensions in [76].
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Because of the similarity between substrate integrated waveguide (SIW) structures and

classical rectangular waveguides, most planar (H-plane) waveguide components are
implemented in SIW technology. This solution usually permits a substantial reduction
in size and in weight of components compared to classical waveguides. Moreover,
losses of SIW components are lower than the corresponding microstrip devices and
there are no radiation and packaging problems. SIW components are a good

compromise between air-filled rectangular waveguides and microstrip lines.

In recent years, SIW technology was vastly explored to overcome the problems. Ke Wu
introduced the substrate integrated circuit in 2003, which is the new concept for high-
frequency electronics and optoelectronics [80]. In addition to SIW, Substrate Integrated
Slab Waveguide (SISW) and Substrate Integrated Non Radiating Dielectric (SINRD)
guide circuits are also included in this concept. The SIW structure is based on planar
dielectric substrates with top and bottom layers perforated with arrays of metalized via
holes. SIW provides low-cost waveguide filters by using standard printed circuit board
(PCB) processes [80]-[82]. In terms of size, SIW is more compact and easy to integrate
with other microwave and millimetre-wave circuits in the same substrate compared to
conventional waveguides. Figure 2.2 shows the structure of an SIW, which consists of
the top and bottom metal planes of a substrate and two parallel arrays of via holes, also

known as via fence, in the substrate.

There are several designs of SIW band-pass filter for X-band applications is being
introduced by researchers in the past years based on a different method. In 2005, Y. L.
Zhang developed the compact band-pass filter with SIW triangular cavities [83]. The

design filter was based on the coupling matrix synthesis method with a centre frequency
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of 2.4 GHz. In 2010, Shahvirdi used the contour integral method to design a four pole
Chebyshev X-band dual inductive post SIW filter based upon the discretization of the
boundary of some structure [84]. It needs less memory than the full wave method. To
decrease the computation time, circular vias were replaced by square ones. The centres

of these square vias are the same as for the circulars.

In 2011, X.Zou suggests the transforming a band-pass filter to the equivalent
conventional rectangular wave guide band-pass filter [85]. The designed waveguide
filter has a sharp skirt characteristic. The symmetrical window SIW filter is designed
with a 3 dB bandwidth of 5% from 9.77-10.27 GHz. The insertion loss is about 1.4 dB

and return loss is more than 20dB.
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Chapter 3

The Basic Theory of Filters

3.1 Introduction

The rapid development of wireless communication systems has greatly promoted the
development of filters. In order to achieve modern communication system development,
filter design and realization methods have undergone tremendous changes, and new

technologies have been proposed.

In this chapter, a brief introduction to filter design theory including the classification of
the four basic types of filter according to their attenuation characteristics, design
parameters of filters, three classical types of filter, four common filter frequency

conversion mechanisms, and other related knowledge, is presented.

According to the attenuation characteristics of different filters, filters can be divided
into four basic types: low pass filters (LPF), high pass filters (HPF), band-pass filters
(BPF) and band-stop filters (BSF). The relationship between the attenuation coefficient
and the normalized angular frequency is shown in Figure 3.1. Here we take parameter

Q= w/w. as the normalized frequency of angular frequency w.. For the low-pass and
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high-pass filter, w. is the cut-off frequency of the filter, for the band-pass and band-

stop filter w. is the centre frequency of the filter.

a,dB a,dB
Y A
a—poo a—co
0 1 O 0 1 Q
Low Pass Filter High Pass Filter
a,dB a,dB
rF Y r
a->eo a-yeo a—pe
o 01 Q2 Q 0 01 a2 Q
Band Pass Filter Band Stop Filter

Figure 3.1. The relationship between the attenuation coefficient and the

normalized angular frequency in four types of filters.

When we are comprehensively analysing filters, the design parameters below need to be
considered [1]:

(a). The centre frequency: the working frequency of the filter.

(b). Insertion loss: in ideal situations, the filter has no power loss in its pass-band. But in
the practical engineering application, we cannot eliminate the filter power loss, due to
conductor loss, dielectric loss and radiation loss. Insertion loss L4 quantitatively
describes the difference between the response amplitude and the 0 dB benchmark[1]:

L+=10log(Pin/Pr) = -10log(1- | T | 2) (3.1)

where Pr is the filter load output power, Pi, is the input power from the signal source.

TN is the reflection coefficient observed from the signal source to the filter.
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(c) Ripple coefficient: reflecting the flatness in bandwidth.

(d) Bandwidth: for the band-pass filter, bandwidth is defined as the difference in
frequency between 3 dB attenuation of upper-side frequency fusas and 3 dB attenuation
of lower-side frequency fi3dB:

BW34B =fusds-fL3dB (3.2)

(e) Rectangular coefficient: Rectangular coefficient is defined as the ratio of 60 dB
bandwidth to 3 dB bandwidth. It describes the steepness degree of the filter frequency

response curve nearby the cut-off frequency.

SF=BW0d8/BW3dB = (fusoaB-fL60dB)/(fU3dB-/13dB) (3.3)

(f) The stop-band rejection: in an ideal situation, a filter has infinite attenuation within
the stop-band but in real situations the filter can only offer finite attenuation which is
associated with the filter element number. Thus, in actual situations, engineers usually

adopt 60 dB as the stop-band rejection design value.

a,dBa
BW60dB -
3
- Out-band
attemuation
IS, N 1 —\‘/‘Wv In-band
3dB ripple
Insertion
Loss
>

‘&ﬁdﬂ ";}fC ﬁlidﬁ'*": c fL'jziB ’;}fC fL’dﬂdB ":'fC .f

Figure 3.2. The filter design parameters
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The above mentioned parameters can be illustrated by the typical band-pass attenuation
curve, which is shown in Figure 3.2.
In addition, the quality factor Q can describe the filter frequency selectivity, usually

defined as the ratio of average energy storage to average energy consumption in one

period.
averageenergy storage averageenergy storage|
= =
averageenergy storage in one period power loss |a):a)(.
= Wstored (3 4)
loss w=0,

where P, is the energy consumption in unit time.

3.2 Three Types of Basic Filter

3.2.1 Maximally flat filter (Butterworth filter)

Since there is no ripple in the attenuation curve of this kind of filter, it is called
maximally flat. For the low-pass filter, the insertion loss can be determined by the

formula [1]:
L4 (Q) =10 log (1- | Tin | ) =10 log {1+a%Q 2N} (3.5)

where Q is the normalized frequency, N is the number of stages of the filter. The
frequency response curve can be shown in Figure 3.3. When Q=0, L, (Q) =0, when Q
increases, L4 () increases monotonically. When Q<1, L, (Q) increases slowly, L4 (Q)

increases fast when Q >1. a is determined by maximum attenuation L4 (Q=1), and:

a=+10%"" -1 (3.6)
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where N is determined by out-of-band minimum attenuation La (Q=Qs), that is La(Q)

=10 log {1+a?QN}, and:

10510 _1
N >[log(————)/2logQ ] (3.7)
a
Ly /10 _q
In (3.7), [ ] means integer values from log( —)/2log Q).
a
L dB
A
| |
Lgsf .'I
s e s s e 7
| /i
/ g
L, P I
““““ =T |
_f q 0 a

Figure 3.3. Frequency response the maximally flat low-pass prototype filter

Generally, normalized low-pass filters can be illustrated by Figure 3.4, where Rg=1, and

all the values of g; (i=0, 1, 2. . . N+1) can be found in reference [2].

RG =&
\ YN

A A

~ L . <
( fﬂ\; __ & 3 §g N+1

=] 8

Figure 3.4. The equivalent circuits of two type multi-stage low-pass

filters with normalized components.
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3.2.2 Chebyshev Filter

In a Chebyshev filter, the insertion loss characteristic function is described by

Chebyshev polynomials can be written as follows[2]:
L4 (Q) =log {LF} =10 log {1+a’T?y (Q)} (3.8)

The frequency response curve can be shown in Figure 3.5, Ty (Q) is the first class of

Chebyshev polynomial, that is:

Ty (Q) = cos{N[cos" ()]} (Q<1)
(3.9)

Ty (Q) = cosh {N[cosh ()]} (@=1)

\

Q

Figure 3.5. Frequency response of the Chebyshev low-pass prototype filter

In the frequency range -1<Q<I, the minimum attenuation caused by the filter is 0 dB
and the maximum one is Ls=10 log (1+a?), which is also the peak value of all the

ripples in the band of the filter. Assume the peak value of the ripple is PLRa, and

a=v10%""_1  When Q>1, Ty (Q) is hyperbolic cosine function, hence the
attenuation would increase monotonically with the increase of Q. Assume at the stop-

band frequency €, stop-band attenuation is Lus, there is:
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L4 (Q) =10 log [1+a’Tn? (Qs)] (3.10)
The number of reactance components n is:

ch 10" —1)/a?

N=[ —~
ch™Q,

] (3.11)

Compared to the maximally flat filter, this filter has steeper pass-band stop-band step
response. For the relatively high normalized frequency Q>>1, TMm€2) can be
approximated by (2€2) N/2. This means that Chebyshev filter attenuation characteristic is
22N/4 times better than that of the Butterworth filter. When the value of a and n are
detailed, similar to Butterworth filter network analysis we can get the ladder circuit and

nominalized values[2]:
g =2ay
g =2a,,4, /(bk—lgk—l) (k = 233"'”) (3.12)

o (nis odd number )
i1 = thz(ﬁ/4) (n iseven number)

L
=In| cth—4~
p ( 17.37]

gr = Sh(ﬂ/2n)

- 3.13
akzsin(y( 1ﬂj(k=1,2,---n) G-13)
2n
b, =y’ +sin2(£7z)
n

Where gi(i=1 to N) is the inductance of series inductors or capacitance of shunt
capacitors. P, ax bk are relarive parameters to calculate the parameter g;.

3.2.3 Elliptic Filter

The middle parts of the pass-band and stop-band are flat in the frequency response of
the Butterworth filter. In Chebyshev filters, the frequency response shows equal ripples

in the pass-band while are maximally flat in the stop-band. Another kind of filter is the
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elliptic filter. It is realized by elliptic functions and shows equal ripple in both pass-band
and stop-band. Its response curve is shown in Figure 3.6, which shows that the
attenuation poles are not located at infinite points, this means that we can get very high

cut-off rate.

B

Q

Figure 3.6. Frequency response the elliptic low-pass prototype filter

In Figure 3.6, L4 is the maximized attenuation in the pass-band, L is the minimum

attenuation in stop-band and € is the border frequency of the stop-band.

The N stage elliptic function low-pass filter attenuation characteristic is[2]:

L4 (Q) =10lg [1+a2Fan (Q)] (3.14)

when N is an odd number, and :

Fn (Q) =sn [NK;sn'(Q, k)/K, kl] (3.15)
when N is an even number:
Fy(Q)=sn [K;+N K;sn''(Q, k)/K, kI] (3.16)
where
K =K (ki) (3.17)
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K=K (k) (3.18)

Here K; and K are complete elliptic integral functions whose modulus is k; and &,
respectively. sn'(u,k) means the inversely elliptic function which is defined as: if
y=sn(u,k), then u=sn!(y,k). Real parameters a, k; and k are all between 0 and 1, and
they are decided by technical specifications. The relationship between parameter a, k;

and k is shown below:

K, _nk,
K K (3.19)
where
{K{ = K(kly)
K =K(K) (3.20)
where
k=A1-k
K==k (3.21)

where K ’and K’ are the complementary moduli of K; and K.

3.3 Frequency Transform from the Low-pass Prototype

Frequency conversion is bi-directional. A practical filter may be a low-pass, high-pass,
band-pass or band-stop filter. By the means of frequency conversion, it can be
transformed into a low-pass prototype. By the comprehensive designs, we can get
normalized component values of low-pass filter, and then by the second time frequency
conversion, we can get normalized component values of the practical filter. Because

only the horizontal ordinate which describes the frequency value is transformed while
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vertical ordinate which describes the attenuation value is not transformed, this transform

is a frequency transform under the condition of equal attenuation.

3.3.1 Frequency transform between low-pass filter and low-pass prototype

Assume the frequency variable of practical and prototype low-pass filter is @ and @

respectively, with attenuation characteristics as illustrated in Figure 3.7. Frequency

transforming requires the points at frequencies =0, @, w;, o should correspond to the

points at the frequencies @ =0, 1, ws, o and the attenuation remain equal. The

frequency transform equation is:
0 =0/, (3.22)

L/dBA L/dBA

\i

@

Figure 3.7. Practical/prototype low-pass filter frequency response curve

Using equal attenuation conditions and inversely normalized internal resistance Ry of

signal source, the real values of the components are[1]:

a)c
g Ol (3.23)
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Figure 3.8 shows an inductive input low-pass prototype filter and its corresponding
practical low-pass filter. The above mentioned analyses can also be applied to the

analyses of capacitive input circuits.

Figure 3.8. An inductive input low-pass prototype filter and its corresponding practical low-pass

filter

3.3.2 Frequency transform between the high-pass filter and the low-pass prototype

Assume the frequency variable of practical high-pass filter and prototype low-pass filter

is @ and o respectively, their attenuation characteristics are illustrated in Figure

3.9.Frequency transform requires the points at the frequency w =0, w. @;, o should

corresponds to the points at the frequency @’ =-00,-1, -;, 0 and the attenuations are

equal. The frequency transform equation is:
a)':—a)c/a) (3.24)

Use equal attenuation conditions and inversely normalized internal resistance R; of

signal source, the real values of the components are:
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C =
a)cgkRg
(3.25)
R
L=—2%
l a)cgi
L/dB L/dB
: i
E A4 | T |
i"\\ ‘H e e e i e S f’J
I \"\\ E‘I\\\ /f
M L /
Lpl'* -.____k . T:_._. _ﬂ__7/ .
Ay @, (/)] —a)_: -1 0 -1 a); @

Figure 3.9. Practical/prototype high-pass filter frequency response curve

Figure 3.10 shows an inductive input high-pass prototype filter and its corresponding
practical high-pass filter, the above mentioned analyses can also be applied into the

analyses of capacitive input circuits.

Y Y Y " e | = —

! & &3 L C' J Clvr |

& =1 $&=1"1 ¢ 3¢

l\ &2 T g4: gn+]§ /L L:r: L.;: gn+]:<
O | oL |
\_i_/ : e - | |

Figure 3.10. An inductive input low-pass prototype filter and its corresponding practical high-
pass filter

3.3.3 Frequency transform between band-pass filter and low-pass prototype

Assume the frequency variable of practical band-pass filter and prototype low-pass filter

is @ and @ respectively, their attenuation characteristics are illustrated in Figure 3.11.

The frequency transform equation is:
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. @, o0 o, 1 o o,
O =—|—"""—"|=Z%=| ——— (3.26)
w,—o,\0, o) Wi o
In (3. 26), W is the relative bandwidth and is equal to (wc2- @c1)/2, o, is the central

frequency and is equal to@,@, .

For the series-connected branch:

, w
[ =25 ,c="" (3.27)
Wa, 8%
L/dB L/dB
A
Ls'l___l ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L;I .l.
Lyt 000 4 s
LP‘ I”’j 7777777777777 ! Hi """L_/Q_;:
L H — - L e o I B
w, @ @, 0O, @, @ m;| =1 ¥ = a);?_ '

Figure 3.11. Practical/prototype band-pass filter frequency response curve

For the parallel-connected branch:

I = W’q’: &;

L g, Wa, (3.28)

The normalized circuit of the band-pass filter is shown in Figure 3.12.

?:@,__(fsuww_ ______________________ -
o T :

Lg =G, Lf ¢, Gt
O \

Figure 3.12. The normalized circuit of the band-pass filter
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3.3.4 Frequency transform between band-stop filter and low-pass prototype

Assume the frequency variable of practical band-stop filter and prototype low-pass filter

is " and w respectively. The frequency transform equation is:

o] [a)o a)J
O =—|————
Wlow o, (3.29)

The @’ and @ attenuation characteristics are illustrated in Figure 3.13.

Figure 3.13. Practical/prototype high stop filter frequency response curve

In (3.29), W is the relative bandwidth and is equal to (Ws-ws1ywo, o is the central
frequency and is equal to 4@,@, , for the series-connected branch:

Wg, 1

L =-2%,C= (3.30)
‘ Wy Wg.a,
For the parallel-connected branch:
=1, ¢l
Wgam, @ (3.31)

The normalized circuit of the band-stop filter is shown in Figure 3.14.
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Figure 3.14. The normalized circuit of the band-stop filter
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CHAPTER 4

A Comprehensive Study

Of The Stepped Impedance
Resonator (SIR) and the Asymmetric
Stepped Impedance Resonator (ASIR)

4.1 The Basic Structure of the Stepped Impedance Resonator

In the field of microwave and radio frequency engineering, different resonators are
utilized for different applications. Generally speaking, the stripeline or coaxial cable
resonator is used as the resonator for quasi transverse electromagnetic wave or

transverse electromagnetic wave.

o, 26, 8.
> :i: :

Y

o
-

@
26,

Fy

®) C= Iamf)2 1 Zo)

26

o II—H—I
“sn II—H—|

©

Figure 4.1. (a) UIR (b) Capacitor loaded UIR (c¢) SIR
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Figure 4.1 (a) shows a half wave uniform impedance resonator (UIR), its substrate has

the characteristic of low loss, high dielectric constant and high temperature stability.

The uniform impedance resonator (UIR) has the advantage of relatively easily
calculated electrical properties and is widely used. But it has just one degree of freedom
to adjust when designing. Besides, spurious frequencies appear at the frequencies which
are multiples of the fundamental resonance frequency. To solve the above mentioned
problems, engineers use lumped element capacitor to replace the transmission lines
whose electrical lengths are 0 at both ends of the UIR and a capacitor loaded UIR is
generated. By this means, spurious frequencies of the resonator are moved to further
places and the dimension of the resonator is reduced. Therefore, capacitor loaded UIR

has the advantage of smaller size and spurious frequency restriction.

In Figure 4.1 (b), the characteristic impedance of UIR is Zi, electrical length is 26, half-

wavelength resonator resonating frequency is, the loading capacitor is expressed as[1]:

C=Yltan6’2/a)0 4.1
where Y 1=1/Z1, 6,-n/4-6.

As for the capacitor loaded UIR, circuit loss would increase considerably with the
change of resonance frequency. Thus the frequency is needed to be adjusted in order to
reduce loss. This disadvantage makes the capacitor loaded UIR hardly be used in
frequencies higher than 1 GHz. To solve these problems, open circuit transmission line

is used to replace the loading capacitor, which is shown in Figure 4.1(c).

Based on the above mentioned discussion, M. Makimoto and S. Yamashita proposed the
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step impedance resonator (SIR) ,as shown in Figure 4.12.The step impedance resonator
is composed of two or even more transmission lines with different characteristics and
has the mode of quasi transverse electromagnetic wave or transverse electromagnetic
wave. Until now, a tremendous amount of work related with step impedance resonators

has been performed. The basic structure of SIR is shown in Figure 4.2.

The SIR shown in Figure 4.2 (a) contains open circuit end, short circuit end and the step

impedance surface between them.

(a) —
02 2t 02
Z2 Za Za
()]
261

202 Z2

(©

Figure 4.2. The basic structure of SIR: (a) A, /4 type SIR resonator.
(b) A4 /2 type SIR resonator (¢) A¢ type SIR resonator.

It is composed of two sections of transmission lines of different characteristic
impedance Zi, Z; and electrical length 61, 6,. We define two basic parameters for

simplicity:
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K=22/7, 42)
a= 602/(01+0>) (4.3)

where K is defined as the impedance ratio, a is defined as the electrical length ratio.

4.2 The characteristics of SIR

4.2.1 The resonance requirements of SIR

When the transmission line characteristic impedance is Zo with electrical length is-0b, its
load characteristic impedance is Zr. According to the distributed parameter impedance
theory of loss less uniform transmission line, the input impedance at the input end of the

uniform transmission line is:

7 +iZt
7 =z,21 )% an 6, (4.4)
Z,+ jZ, tan@,

The SIR unit is shown in Figure 4.3, suppose the input impedance of the step impedance
surface between open circuit end and short circuit end is Z:, according to the above

mentioned equation, there is:

Z, +j/ t
Z =z, ZL7J% anb _ jZ tan@ (4.5)
Z, +jYZ, tan 6,
02 01
72 Z1
|

Figure 4.3. The A;/4 SIR Unit
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If we ignore the inconsistence on the step impedance surface and the capacitor effect on
the open circuit surface, the Z; can be seen as the load of loss-less uniform transmission

line whose characteristic impedance Z; and equivalent electrical length 6., therefore:

Z -2, Z, +]'Z2 tan 6, 4.6)
Z,+jZ tand,

That is:

_ ., Z tang +Z, tand),

n=J% Z,—Z, tan@ tan6, 7
The SIR will resonate when Yo=1/Z¢=0, that is:

Z>-Z1tan0tan0,=0 (4.8)

Z>/Z1=tan0tanf,=K (4.9)

From the above mentioned equations, the resonance condition of SIR is determined by
the ratio of impedance of two sections of transmission lines and their equivalent
electrical lengths. This means that the SIR has more freedom compared to traditional

UIR.
4.2.2 Electrical lengths of SIR

Assume two section line equivalent electrical lengths are 61 and 6,, total equivalent
electrical length is Ora= 01+6::

6,, =6, +6, =6 +arctar{K/tan6) ) (4.10)

The corresponding UIR electrical length is 7/2 , so the normalized electrical length of

SIR is:
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L =6,/(r/2)=20,/2 (4.11)

The relationship between normalized SIR electrical length L, and electrical length 6,
with the variable value impedance ratio K is shown in Figure 4.4. From Figure 4.4, we
know that when impedance ratio K>1, normalized SIR electrical length L, can achieve
maximum value, when K<1, normalized SIR electrical length L, can achieve minimum

value, when K=1, SIR is equal to UIR.

L.
2
~
»
K=10.7
B
2
”
1 ¥
”
72 0.5
702
L2701
g
0L~ - -
0 30 P 60 90

Figure 4.4. Relationship between normalized SIR electrical length L, and

electrical length 61 with the variable value impedance ratio K

Suppose A¢/2 and A type SIR resonator total equivalent electrical length is &rs and 6rc,

there are:

6GrB=261A (4.12)

Ore=407A (4.13)
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The 6rs and O1c corresponding UIR electrical lengths is T and 27, so the normalized

electrical length of SIR is:

Lup=61p/m=2601A/T (4. 14)
Lnc=01c/mn=260ra/m (4.15)

From the above mentioned expressions, three types of SIR resonance conditions can be
shown by one expression, substitute 6:=0ra-01 into Equ. (4.9), the following can be

expressed:

Ko tan@ (tand,,, —tand )
1+tand,, tan6, (4.16)

When 0<K<1, 0<0ta<n/2,

tan@,, =$[tanl91 +t KH j
an 1
JK tan 6, JK
= +
1-K| VK tang,

JK

>2—— 4.17
X (4.17)

tang, JK

When = ,equation (4. 16) gets equality sign.

JK  tané,

Thus, K =tan’ 6, (4.18)

Thus, 6, = arctan JK (4.19)

Now Ota can get the minimum value:
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(GTA )min = arctan

When 0<K<1, ©t /2<0ta< T,

1
tan 0, = W[tan 0, +

K
tan 6,

VK

JK tan 6, N
1-k VK

JK

1-K

<2

tang, JK
JK  tan 6,

When

Thus, K =tan’ 6,
Thus, 6, =arctam/K

Now 6, can get the maximum value:

tan(@y, ), = 2/K

(HTA )max =arctan

tan 6,

|

,equation (4.21) gets equality sign.

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)

Equation (4.20) and (4.25) are obtained under the condition of #1=6, they show the

maximum/minimum value of SIR. Figure 4.5 shows the relationship between

normalized SIR electrical length Ly and impedance ratio K when electrical length 60,=

6>=60. Lno 1s expressed as:

L,=20,/r=46,/n= 4arctal(«/f)/7r
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From Figure 4.5, we can use a relatively small value impedance ratio K to reduce the
length of SIR resonator. The maximum length of SIR is restricted as twice of length of

UIR.

LnO

b2

c'?l =8, =86,

Impedance ratio K
Figure 4.5. The relationship between normalized SIR electrical length Ly and

impedance ratio K when electrical length 8,= 6> =6

4.3 Spurious frequency of SIR

Spurious frequencies appear at the frequencies which are multiples of the fundamental
frequency in UIR. Spurious frequency locations can be tuned by adjusting the
impedance ratio in SIR. Suppose the fundamental frequency of SIR is fo, the first
spurious frequency of Ag/4, Ae/2 and Ag type SIR is fsa, fsB, fsc, and corresponding

electrical length 6sa, Osg and Osc, respectively. From (4.19), we can get:
tand,, = tan(r—6, ) =—/K (4.27)
That is:

O, = 7 —arctan/K (4.28)
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From the equation below, we can get A¢/2 and Agtype SIR resonance condition:

(K tané), +tané, K —tan@, tan6,)=0 (4.29)
Because 61= 6, =60o, there is:

(K+l)tan6{J(K—tan2 90)= 0

(4.30)
By solving the above equation, we get:
6, = arctany K (4.31)
Oy =0, =7m/2 (4.32)
From (4.9) and (4.24), we get the spurious frequency:
Joa O 720 = 7/ arctam/K —1 (4.33)
fo 6 6
S _Yc Y _ 1 1parctaniK (4.34)
f(‘] 90 90

Figure 4.6 shows the relationship between impedance ratio K and normalized spurious
frequency fs/fo. This shows that it is better to use a relatively small K value for A¢/4 type
SIR in order to move the spurious frequency far away from the fundamental frequency.
Besides, the dimension of the resonator can be smaller. As for Ag/2 and A4 type SIRs, it is
also better to use a relatively small K value to keep the spurious frequency far away

from the fundamental frequency.

Therefore, in the design of dual-band filters, the spurious frequency is usually used to

realize dual band characteristic.
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Figure 4.6. The relationship between impedance ratio K and normalized spurious frequency

Sl

4.4 Equivalent circuit of SIR

In practical microwave circuits, distributed parameter elements are used to realize all
kinds of components while the lumped parameter elements are also used largely because
of its convenience in analyses. Practical filter designs are all based on the lumped
parameter elements. In the resonance condition, distributed parameter element resonator

can all be described by approximated equivalent LCR resonators.

Define the susceptibility slope parameter bs as[1]:

_ o, dB,(0)

b -
2 do 0

(4.35)
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where Bs(m) is the susceptibility of the resonator, mo is the angular resonance frequency.
Assume the magnetic susceptibility of the A /4 type resonator is Bsa and the

corresponding susceptibility slope parameter is bs.. From (4.4) and (4.35), we get:

-K
B, - Im[l/Zl.]z Y tang, tand,

4.36
? tand), +K tand, (4.36)

_ o, dBy, (®)

M do
:&dBSA(a))‘
2 deo 7
6,,Y. K I
=22 — —+ L (4.37)
2 | (1-K7)sin’ 6, + K* 1,

0=,

Where 0o1 is the value of 0; when resonating, 1; and I, are the dimensions of the

resonator.
When 001= 002=00, which is Ii=l, from (4. 21):

tan’ §, =K (4.38)

sitt §, =K/(1+K)

(4.39)
Therefore,

b — 901}]2 K +Z_1

R (l—Kz)sin2 0, +K> 1,
=0,Y, (4.40)

=Y, arctan\/E

by =2Y,6, =2Y, arctan\/E (4.41)
by, =4Y,0, =4Y, arctam/K (4.42)
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When the circuit is under the condition of resonance, the slope parameter of resonator

can be expressed by the lumped element Lo, Co, Go, that is:

Lo=1/wobs (4.43)
Co=bs/mo (4.44)
Go=bs/Qo (4.45)

where Qo is the quality factor of the resonator.

Figure 4.7 is the equivalent circuit of a resonating SIR, where the unloaded Q value of
resonator is determined by material and the dimensions of the resonator. Actually, any

resonator can be described in the form of Figure 4.7.

This resonator equivalent is useful for circuit calculations including the magnetic wall
(or an open circuit) resonant frequency and electric wall (or a short circuit) for the
condition of magnetic coupling or the condition of electric coupling, which can lead to
the calculation of the magnetic coupling or the electric coupling coefficient. In Figure
4.7, Ro=1/Go. Former work related to this can be seen in [2].

0

Lo é Co—— Ro

Figure 4.7. The equivalent circuit of resonating SIR
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4.5 The asymmetric stepped impedance resonator (ASIR)

4.5.1. Characteristics of the Asymmetric SIR Unit

The asymmetric SIR shown in Figure 4.8 consists of sections with low and high
characteristic impedance Z1 and Z». The physical lengths L and Lo, physical widths W1
and W, and electrical lengths 0; and 0, are shown for the two sections with Z; and Zo,
respectively.

L, W : physical length or width

@ . electrical length
Z : characteristic impedance

Wy, Z,

=

Y;

Lla 91

I er Zl

Figure 4.8. Structure of an asymmetric SIR.

The characteristic impedance ratio K and the length ratio « are defined as follows:

V4
K=—> 4.46
(7
o=—2 (4.47)
0 +0,
where a is located in the range of (0, 1).
The input admittance Yi, of the proposed asymmetric SIR unit is derived as:
v _J K tan 6, + tan 6,
" ZZ I—Ktal’l 61 tal’l 62 (4.48)
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fstlfo and fix/fo

1I] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4.9. f (the first spurious frequency) and fs (the second spurious frequency) normalized

by fo (the fundamental frequency) for the asymmetric SIR in Figure 4.8.

It is known that the resonance of the proposed asymmetric SIR occurs when Yi, = 0.

Based on (4. 48), this resonance happens when

Ktan 0 +tan 0,
1-K tan 6, tan 0,

(4.49)

By using the solution to (4.49), Figure 4.9 plots the first and second spurious frequency
fs1 and fs, respectively, normalized by the fundamental frequency against o under
different values of K. It is noted that when a is more than 0.5, normalized frequency
fsi/fo is greater than 2 and fo/fo is greater than 3, respectively. Also smaller K can result
in greater normalized frequency when « is fixed. When « is greater than 0.5, normalized
frequency fs/fo is less than 2 and fo/fo is less than 3. Smaller K can result in lower
normalized frequency for a fixed . When K=1, f1/fo is equal to 2 and f:»/fo is equal to 3,

respectively. This means that, in this limit, a uniform impedance resonator is realized
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and high order resonant frequency is an integer multiple of the fundamental frequency fo.
Therefore, the higher order spurious resonant modes, which depend on the choice of the
characteristic impedance ratio K and the electric length ratio a, can be found by

combining (4. 47) and (4. 49).

Compared to the traditional stepped impedance resonator (SIR) with two step
discontinuities, the asymmetric SIR has only one discontinuity but still keeps the
characteristic of controllable spurious modes. Thus, it owns the advantage of compact
size, less loss, and strong design feasibility, particularly in designing efhigh-order BPFs
such as dual band [3], triple band and quad band [4] BPFs because of its inherently

higher order resonant modes.

4.5.2. The Anti-Parallel Asymmetric SIR Unit

Currently, the presented coupled line asymmetric SIR structures can be classified into
two types: one type is anti-parallel coupled asymmetric SIR structure. The anti-parallel
coupled asymmetric SIR structure, composing of two asymmetric SIR units with their
high and/or low impedance lines anti-coupled with each other, is usually folded at its
open end. The high impedance lines of two asymmetric SIRs can be bent and coupled
with each other to form a signal transmission route[3]. The first spurious frequency is
utilized to form the second operating band by analysing the ASIR unit [5]. Because the
frequency response characteristic of anti-parallel coupled line in ASIR structure is
directly related with and decided by the frequency response characteristic of the ASIR
unit, APC-ASIR frequency response is relative easy to get by analysing the ASIR unit.

Figure 4.10 shows the anti-parallel structure formed by two ASIRs. In this structure,
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two ASIRs high impedance lines are coupled with each other to realize capacitive
coupling, and the resonant points can be found by using the normalized frequency plot
which is similar to Figure 4.9. Figure 4.10 shows the anti-parallel structure formed by

two ASIRs with the partly coupling structure in [4].

The anti-parallel structure formed by two ASIRs with tap feeding and its frequency
response is shown in Figure 4.11 and Figure 4.12, respectively. It is seen from Figure
4.12 that harmonic frequencies f, fs2, fs3 and fu are generated with the fundamental
frequency fo by using HFSS . These harmonic frequencies are not integer multiples of
the fundamental frequency fo and can be studied by using the normalized frequency plot

shown in Figure 4.9.

Therefore, the harmonic frequencies can be placed to the desired frequencies and
generate the multiband frequency response performance, which is different from the
frequency characteristic of traditional A¢/4, Ag/2 and A, stepped impedance resonator

structure and has more freedom to design the needed frequency.

50-Q d, 50-Q)
, I | _—
= 8 port 2

port 1
T
© B

Figure 4.10. The anti-parallel structure formed by two ASIRs with the capacitor

coupling shown in [3].
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Figure 4.11. The anti-parallel structure formed by two ASIRs with tap feeding.
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Figure 4.12. The frequency response of the anti-parallel two ASIR

structure with tap feeding.
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Figure 4.13. The anti-parallel structure formed by two ASIRs, for the partly coupling structure
shown in [6]. (a) The configuration. (b) The frequency response with variable Irr. (c) The
optimized frequency response.
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CHAPTER 5

Novel Multi-standard
Dual-Wideband and Quad-Wideband

Asymmetric Step Impedance Resonator

(ASIR) Filters with Wide Stop-band

Restriction

5.1 Overview of Dual-Band Filters and Design Background

With the requirements in the current increasingly stringent frequency spectrum
resources and the development of advanced multi-standard wireless communication
systems, dual-band filters have gradually become a good candidate to meet these
demands. Therefore, it is highly desirable to develop high performance dual band BPFs
with compact size, low in-band insertion loss (IL), and high out-of-band rejection skirts.
For this purpose, a lot of research work has been performed and design has been
proposed to satisfy such stringent requirements [1-31]. Among them the most
straightforward method to implement a dual-band filter is to combine two BPFs with

individual pass-bands using additional impedance-matching networks [1].
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Generally speaking, dual band BPFs can be classified into (1) the stepped-impedance
resonator (SIR) filter [2-8], (2) loaded stub filter [9-14], (3) defected grounded
structures (DGS) filter [15-18],(4) dual-mode filter [19-29], (5) dual resonator filter, (6)

imbedded structure filter,etc.

As mentioned in chapter 4, the stepped-impedance resonator (SIR) can generate a
tuneable first spurious frequency which can be used as the second pass-band in dual-
band band-pass filters and this structure has been found in various dual-band filter
designs. In 2008, paper [2] proposed a novel defected stepped impedance resonator
(DSIR) structure the resonant frequency of the DSIR is found to be much lower than
that of the conventional microstrip stepped impedance resonator (SIR). Besides, the
circuit size can be reduced effectively by using this unit structure. By combining two
designed filters together, a dual-band filter with a common input/output feed line is
achieved. In the same year, paper [3] also proposed a novel stepped impedance

resonator (SIR) structure to realize a dual band filter.

In 2011, paper [5] proposed an analytical method to design a dual-band filter using the
short circuit terminated half-wavelength stepped impedance resonator (SIR). In the
proposed method, the structural parameters of the SIR are obtained analytically
according to the two pass-band centre frequencies and bandwidths of the filter. As a
result, the achievable specifications of the dual-band filter can be rapidly determined.
The coupling between adjacent SIRs is realized by a short-circuited stub, which is
characterized as an inverter network. The dual-frequency transformer incorporated with
the tapped-line input/output structure is used for the external coupling. Applying the

analytical equations in the design process, a dual-band filter can be easily and quickly
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realized. In 2013, paper [6] proposes a class of dual-band band-pass filters with stepped-
impedance resonators (SIRs) and presents a rigorous synthesis method for these
compact filters. Firstly, SIRs are designed to generate their first two resonant modes in
the two specified pass-bands, and they are sequentially cascaded by alternative and
inverters. In design, SIRs need to be chosen not only to satisfy the prescribed dual-band
central frequencies, but also to compensate for the deficient values of inverters at these
two frequencies. Following that, a generalized synthesis method is extensively
described for design and exploration of novel dual-band filters on the microstrip-line
topology. The two types of second-order dual-band Chebyshev band-pass filters with
dual pass-bands are at 5.8 and 1.8 GHz (large frequency ratio), as well as 5.8 and 2.4

GHz (small frequency ratio), respectively.

Apart from the stepped-impedance resonator (SIR) structure, the dual-band filter can
also be realized by using the resonators consisting of the open- or short-circuited stubs,
which are placed in series or in parallel to create transmission zeros in the middle pass-
band of a wideband BPF [9]-[14]. In 2007 and 2008, papers [9] and [10] employed
simple stub loaded dual-mode resonators for the dual-band filter design and enjoy some
advantages in in band performance. However, they have disadvantages of being difficult

to synthesize the corresponding dual-band coupling degrees.

In 2013, paper [11] presented a novel dual-band band-pass filter with controllable
frequencies and bandwidths as well as a high out-of-band rejection level. The proposed
filter utilizes a novel stub-loaded quad-mode resonator. Every two modes, which can be
flexibly controlled, are utilized to form a pass-band with controllable frequency and

bandwidth. Source-load coupling and hook-shape feed lines are also introduced in the

77



paper. In the same year, paper [12] introduced the stub-to-stub coupling structure to
split two identical odd-modes. Meanwhile, these two coupling stubs are folded inward,
and a new transmission zero is produced, which separates four modes into two parts
corresponding to two pass-bands: the first one is formed by even-modes, and the second
one is composed by odd-modes. The centre frequency and bandwidth of each pass-band
can be controlled by the corresponding physical dimensions. The paper [13] presented a
new class of dual-, tri- and quad-band BPF by using proposed open stub-loaded shorted
stepped-impedance resonator (OSLSSIR). The OSLSSIR consists of a two-end-shorted
three-section stepped-impedance resonator (SIR) with two identical open stubs loaded at
its impedance junctions. Two 50 Q tapped lines are directly connected to two shorted
sections of the SIR to serve as I/O ports. As the electrical lengths of two identical open
stubs increase, many more transmission poles (TPs) and transmission zeros (TZs) can
be shifted or excited within the interested frequency range of interest. The TZs
introduced by open stubs divide the TPs into multiple groups, which can be applied to
design a multiple-band band-pass filter (BPF). In order to increase many more design
freedoms for tuning filter performance, a high-impedance open stub and the
narrow/broad side coupling are introduced as perturbations in all filters design, which

can tune the even- and odd-mode TPs separately.

In 2014, Paper [14] proposed a band-pass filter in which the frequency space between
two pass-bands and bandwidths of two pass-bands can be controlled by the shorted
stubs. Wide out-of-band rejection can be achieved by selecting the desired impedance
and length ratios and suitable feeding point to suppress some spurious resonant

frequencies. A prototype filter centred at 1.395 and 1.825 GHz is designed with the first
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spurious response occurring at 7.84 GHz or 5.7 fo1 (fo1 is the centre frequency of the first

pass-band).

As mentioned in chapter 2, various kinds of defected grounded structures in the new
technology have been presented and found their applications in the design of low-pass,
band-pass, and band-stop filters [15]-[17]. In 2005, paper [18] proposed an alternative
approach in which the DGS themselves are considered as the building blocks of the
device and the dual of the split-ring microstrip resonators. In 2008, letter [2] proposed a
novel dual-band filter based on defected stepped impedance resonator (DSIR). The
resonant property of DSIR is studied and compared with traditional microstrip SIR. The
former is found to have a much lower resonant frequency than the latter one, which
means there is a great reduction of circuit size. Making use of DSIR as the basic
resonant unit, two kinds of DSIR filter operating at 1.85 and 2.35 GHz, respectively, are

well designed.

Apart from previous mentioned structures, the dual-mode dual-band BPF structure is
also an attractive candidate for dual-band applications due to its relatively compact size,
simple physical layout, and design procedure. In general, these reported dual-mode
dual-band BPF design methods can be mainly classified into two typical categories. The
first one uses two dual-mode resonators, i.e., a square loop resonator [19], [20], a stub-
loaded resonator (SLR) [9], or an E-shaped resonator [22], [23], operating at two
different frequencies to build up a dual-band BPF. The configuration of the filter can be
based on either multilayer [19] or single layer [20-23]. For the SLR presented in [9] and
two different types of E-shaped resonators presented in [22] and [23], no perturbations

are needed because they inherently have dual-mode characteristics. Nevertheless, the
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proper perturbation is indispensable for the square loop resonator [19], [20] to excite the
other mode. The other category utilizes a single resonator to realize the dual-band
performance. Compared with the first category, the size and the layout complexity of
this topology can be further reduced. Most of the reported dual mode dual-band BPFs
using a single resonator are realized by a ring resonator [24]-[26] or patch resonator
[27]-[29]. It has to be noted that these resonators exhibiting a dual-mode dual-band
characteristic cannot be separated from the perturbations, such as C-sections in [24],
capacitive coupling and loaded open stubs in [25], [26], embedded pair of slots in [27],

cross slot and two sets of loaded stub in [28], and arc- and radial-oriented slots in [29].

With the development of wireless communication systems, multi-standard internal
filters have become a necessity for the state-of-the-art multifunction “smart phones” and
wireless transceivers for the mobile devices. Such filters are generally required to be
capable of covering the frequency bands of Global System for Mobile Communication
(GSM: 1800/1900 MHz, etc.), Universal Mobile Telecommunications System (UMTS:
1710-1880/1850-1990/1920-2170 MHz etc.) and Global Positioning System (GPS)
(frequency bands centred at 1.57 GHz). Furthermore, the ever increasing
implementation of Wireless Local Area Network (WLAN) such as Wi-Fi devices
further increases the IEEE 802.11a bandwidth requirement in order to cover the bands

centred at 5.8 GHz.

In the above mentioned dual-band filters, most of them with a miniaturized size fail to
cover the required frequency bands, especially at the lower frequency band due to the

narrower dual bandwidth [2], [6], [11], [12], [24]-[29] or require a considerable filter
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size or thickness, which usually makes them difficult to integrate within mobile devices

or portable wireless modules [6], [7], [14], [24].

In this chapter, we present new applications of microstrip hairpin resonators which lead

to a new class of cross-coupled microstrip bandpass filters. The cross-coupled filters are
so attractive because they exhibit ripples in both passband and stopband, which
according to the early work on filter synthesis [30] can improve both frequency
selectivity and bandpass loss. For instance, they are able to place transmission zeros
near cut-off frequencies of a passband so that higher selectivity with less resonators can
be obtained. This property is of much interest in narrow-band filters where the passband
insertion loss is strongly related to the number of resonators. The cross-coupled filters,
depending on the phasing of cross-coupled signals, may also flatten the group delay.
Owing to the difficulty in arranging and controlling the cross couplings in planar
transmission-line resonators, only a few types of cross-coupled planar filters have been
developed [31]-[34]. The new cross-coupled microstrip hairpin-resonator filters offer
alternative designs. They are not only simple and compact in configurations, but also
have great flexibility to shape filters into different sizes. The latter is mainly due to the

great freedom in choosing asymmetric impedance stepped resonator-resonator shapes.

The proposed novel multi-standard filter has a size of only 4.6 mmx41.65 mm and a
thickness of 0.635 mm. This filter is capable of generating two wide operating bands
that effectively cover the GSM/UMTS/GPS/IEEE 802.11a operations in mobile devices,
which include GSM1800 (1710-1880 MHz), GSM1900 (1850-1990 MHz), UMTS
(1920-2170 MHz), GPS (frequency band centered at 5.75 GHz) and IEEE 802.11a

(frequency band centered at 5.8 GHz) bands. The proposed multi-standard filter’s wide
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bandwidths at the low and high frequency are attributed to the mutual coupling of the
modified SIR resonators. Meanwhile, in-band and out-of-band performances of the
proposed filter are enhanced by its novel folded structure and even and odd phase
velocity compensation technique using shifted coupled lines. Because there is no via
hole or defect ground structure included in the filter structure, the structure is relatively
simple and easily realized. The theory study of the multi-standard filter and
configuration performance with simulation results are described in 5.2, and the

conclusion of this chapter is given in 5.3.

5.2 Filter Coupling and Configuration

5.2.1 The types of coupling

211

(b)

Figure 5.1. The coupling types of the resonators (a) Electric coupling. (b) Magnetic coupling. (¢)
Mixed coupling.
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The coupling can be considered as the transfer of electrical and magnetic energy from
one circuit segment to another. Figure 5.2 shows the general coupling types of the
resonators. It is obvious that any coupling in those coupling structures is that of the
proximity coupling, which is, basically, through fringe fields. The nature and the extent
of the fringe fields determine the nature and the strength of the coupling. It can be
shown that at resonance, each of the folded stepped impedance resonators (this also
applies to the open-loop resonators) has the maximum electric field density at the side
with an open-gap, and the maximum magnetic field density at the opposite side.
Because the fringe field exhibits an exponentially decaying character outside the region,
the electric fringe field is stronger near the side having the maximum electric field
distribution, while the magnetic fringe field is stronger near the side having the
maximum magnetic field distribution. It follows that the electric coupling can be
obtained if the open sides of two coupled resonators are approximately placed as Figure
5.1 (a) shows, while the magnetic coupling can be obtained if the sides with the
maximum magnetic field of two coupled resonators are approximately placed as Figure
5.1(b) shows. Mixed electric and magnetic coupling would occur when two coupled

resonators are approximately placed as Figure 5.1(c) shows.

5.2.2 The Novel Skew-Symmetrical Asymmetric SIR Couple Pair

The configuration of the presented multiband filter is illustrated in Figure 5.1. The
modified stepped impedance resonators (SIRs) of the proposed filter are improved from
a traditional quarter wavelength SIR, which is shown in Figure 5.2. Because traditional
a quarter wavelength SIR can generate a tuneable first spurious frequency, the proposed

filter utilizes a pair of SIRs to form dual wide-bands which are composed of a
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fundamental resonance frequency band and the first spurious frequency band. Because
the traditional quarter wavelength SIR has the disadvantage of generating high order
spurious frequency response, which would deteriorate filter out of band performance.
To overcome this disadvantage, we propose a novel structure using folded meander
couple lines instead of traditional quarter wavelength SIR coupled lines to suppress high
order spurious frequency and improve out of band performance. In this work, the
modified stepped impedance strips are fed by two 50  microstrip feed lines. The width

(W1) and length of the 50 Q feed line are 0.6 mm and 1.2 mm, respectively.

L1 'l

Figure 5.2. Structure of a skew-symmetrical asymmetric SIR couple pair

By tuning the value of impedance ratio, the first spurious frequency can be tuned. In this
chapter, the fundamental resonant frequency and the first spurious frequency of the
dual-wide-band filter is set at 1.9 GHz and 5.8 GHz, respectively. By careful
calculations, the width and length of the high characteristic impedance part is set as 1.7
mm and 11.2 mm, respectively. The width and length of the low characteristic

impedance part is set as 0.4 mm and 16.5 mm, respectively.

5.2.3 The Coupling Characteristic of Skew-Symmetrical Asymmetric SIR Couple

Pair

In order to realize the desired values for the coupling coefficients, there are differing
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coupling configurations. In each of these configurations, the coupling coefficients may
be extracted using the pole-splitting method in conjunction with full-wave simulations.
The coupling coefficients k can be obtained from!3!:
2 2
f H — f L

k:W (5.1)
H L

where fi and fi are the higher and lower frequencies of the splitting pole, respectively.

5.2.4. The Characteristic of electric length ratio a and of impedance ratio K in

Skew Symmetrical Asymmetric SIR Couple Pair

The coupling matrix referring to [35] will not be discussed in this paper because of its
non-wideband limitation [35] [36].The coupling between two ASIRs can be represented
by a J-inverter susceptance Ji, >, where subscript 1 and 2 denotes the first and second

passband. A larger value of 7 means a stronger coupling strength between two ASIRs.
The normalized E can be determined by [35]

E:Jl,zzo (5-2)

where Zy represents the referred port impedance. The external quality factor Qexi, 2 and

the normalized J-inverter susceptance J, , can be related by:

T
Or=— (5.3)

1,2
For a single resonator load, the external quality factor Qex1,2 can be extracted as:

Jer2
A

T
+-)1,2
( 2)

Qexl,Z = (54)
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where fa2, , A represents the central frequency and the frequency bandwidth of

+5y1,2

2

phase curve changing ( 7, with respect to fc1.2, respectively.

For a dual resonator coupling load, the external quality factor Qexi1,2 can be extracted by

fcl 2
Q=" (5.5)
1,2 AI,Z

where fc12,A, , represents the central frequency, -3-dB bandwidths, respectively.

From (5.3) and (5.5), K can be calculated by substituting the extracted Qexi, 2 into

equations in the coupling structure. Based on the quantitative analysis mentioned above,
Figure 5.3 is derived and shows the extracted qualitative frequency response analysis of
the skew-symmetrical asymmetric SIR coupled pair compared to the asymmetric SIR
unit. It can be seen that when asymmetric SIR’s electric length ratio o ranges from 0.4
to 0.5, the frequency response at frequency fo, fs3 and fs4 enhances significantly in SS-
ASIR coupled structure, while it does not change much or degrades at f5; and f;3. When
0=0.6, the frequency response at fo, fs1 and fs3 enhances greatly, but it does not vary
much or degrade at f» and fu. The transformation table is useful to analysis and
transform frequency bands where the performance-enhanced frequency response
appears into desired pass-bands by considering the asymmetric SIR unit characteristic.
It is also useful to analyse and transform frequency bands where the performance-
degraded frequency response appears into stop-bands or excite it to become a pass-band

by modifying SS-ASIR coupled structure.

(1)The influence of electric length ratio o in SS-ASIRs
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An inherent property of the skew-symmetrical asymmetric SIR (SS-ASIR) coupled pair
is that the resonant frequency location and bandwidth performance are mainly
influenced by the electric length ratio @ when length L1 is fixed at a certain value, and is
little influenced by the impedance ratio K. This invariance characteristic is totally
different from its counterparts of asymmetric SIR unit, where the normalized frequency
(this also applied to the resonant frequency) is closely related with K value. This
characteristic of a=0.42 is shown in Figure 5.3. In Figure 5.3, resonant frequency
locations and their bandwidths are nearly fixed when a is set at 0.42, and these two
parameters are little influenced by K. A similar phenomenon can be observed when a is
fixed at other values. This means a is the main factor to influence the horizontal
frequency response performance such as resonant frequency locations and bandwidths

in SS-ASIR coupled structure.

(2) The influence of impedance ratio K in SS-ASIRs

From another aspect, the return loss and insertion loss performance of enhanced fo and
fs2 (seen in Table 5.1 and Figure 5.3) becomes better when K varies from 0.3 to 0.6.
Meanwhile, the return loss and insertion loss performance of degraded £;1 and fs3 (see
Table 5.1 and Figure 5.3) become better and forms two spurious peaking. Similar
phenomenon can be observed when K has other values. Therefore, the impedance ratio
K is a main factor to influence the vertical frequency response performance such as
return coefficients of fo and fsi versus o when K is fixed , as seen in Figure 5.3. Figure
5.4 shows the coupling coefficients of f, and fs versus o when K is fixed. By realizing
the dual band characteristic of SS-ASIR coupled pair, a=0.42 and K=0.48 are extracted

to design the proposed dual band filters. The strong coupled frequency bands at fo and
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fs2 are used to form the first and second pass-band. The weak coupled frequency band at
fs3 as well as frequency band at f4 are undesired in the proposed dual-band filters.
However, they can be used to form the third and fourth pass-band in the proposed quad-

band filter.
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Table 5.1
THE EXTRACTED QUALITATIVE FREQUENCY RESPONSE ANALYSIS OF THE SKEW-
SYMMETRICAL ASYMMETRIC SIR COUPLED PAIR COMPARED TO THE ASYMMETRIC SIR
UNIT. “IMPROVED’> MEANS SIGNIFICANT ENHANCEMENT OF PERFORMANCE AT
RELATIVE FREQUENCY,
“NC/DE’> MEANS NO SIGNIFICANT CHANGE OR DEGRADATION OF PERFORMANCE AT

RELATIVE FREQUENCY POINT, WHEN a RANGES FROM 0.3 TO 0.7.

7 The The First The Second The Third The Fourth

Fundamental spurious spurious Spurious Spurious
* Frequency fo | Frequency fs1 | Frequency f:> | Frequency fs3 | Frequency fu

0.3 NC/DE Improved NC/DE Improved NC/DE

0.4 Improved NC/DE Improved NC/DE Improved

0.42 Improved NC/DE Improved NC/DE Improved

0.5 Improved NC/DE Improved NC/DE Improved
0.55 Improved NC/DE NC/DE Improved NC/DE
0.6 Improved Improved NC/DE Improved NC/DE

0.65 Improved Improved NC/DE NC/DE Improved
0.7 Improved Improved NC/DE NC/DE NC/DE

5.3. THE MODIFIED SKEW-SYMMETRICAL

ASYMMETRIC SIR FILTER

5.3.1 SS-ASIR Filter with Open Stub and Folded Coupled Lines

In the skew-symmetrical asymmetric SIR filter, open stubs can be added to the low

impedance lines, and the high impedance coupled lines can be folded, to achieve
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optimized performance. This geometry and its equivalent circuit are shown in Figure 5.5
and Figure 5.6, respectively. When two open stubs are moved from point A to C, the
suppression performance of f;; and fu becomes continuously better while the return loss
performance of f;; becomes worse from A to B and better from B to C. Meanwhile, the
insertion loss and return loss performance of fundamental frequency f, remains almost
the same in this process. Therefore, two open stubs are placed at point C. Figure 5.7
shows the open stub effect on the frequency response of SS-ASIR filter. The high
impedance lines are also folded to form the section of length H1 between the high and
low impedance lines. Compared to conventional coupled lines that are not folded, the
suppression of unwanted transmission at frequency fu is greatly improved when the
interval H1 varies from 0.5 mm to 0.9 mm. The change in the frequency response for

this variation of H1 is plotted in Figure 5.8.

Figure 5.5 The geometry of an SS-ASIR filter with open stubs and folded coupled lines.

Z3, 63 .
2. 6, Port2
L 71,01
Portl 7, 6 -
{ 2160
23, 63

Figure 5.6. The equivalent circuit of an SS-ASIR filter with open stubs and folded coupled
lines.
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Figure 5.7. The open stub effect on the frequency response of an SS-ASIR filter.
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Figure 5.8. The frequency response of a modified SS-ASIR filter versus frequency

when H1 varies from 0.5 mm to 0.9mm.

5.3.2. The Modified SS-ASIR Filter with Interdigital Cross-Coupled Line (ICCL)

To further optimize the in-band and out of band performance of the proposed dual-band

filter, auxiliary interdigital cross-coupled lines whose width and length are Ws and Ls
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are utilized to realize the multi-path coupling effect between two modified ASIRs

(MASIRs), as seen in Figure 5.9 (a). Compared to the single coupling route of A-C, at

least two extra coupling routes including A-D and B-C are created by the inclusion of

the auxiliary coupled lines. This interdigital multi-path coupling scheme of the modified

SS-ASIR filter is shown in Figure 5.9(b). Moreover, because of the small distance

between the main and auxiliary coupled lines, mutual coupling of A-B and C-D exists at

the same time. This kind of mutual coupling is illustrated as dashed grey lines in Figure

5.9 (b).

(a)

MASIR1

MASIR2

Source CS<

oy
i

@

©®

Ny

)]_) Load

(b)

Figure 5.9. Schematic diagram of the modified SS-ASIR coupled pair with interdigital cross
coupled lines. (a)Structure. (b) Coupling routing scheme. A, B denotes the main coupling line
and auxiliary cross coupling in MASIR1, respectively.
C, D denotes the main coupling line and auxiliary cross coupling in MASIR2, respectively.

By including auxiliary coupled lines, the filter’s out-of-band spurious frequency

suppression performance and passband selectivity is considerably improved. The

92



designed dual-band band-pass filter (BPF) adopting an interdigital cross-coupled
configuration produces a transmission zero (TZ) to approach fi3 and fu. The
transmission zero occurs because of the cancellation of the transmitted signals passing
through different routes. As seen in Figure 5.10, when the length of auxiliary coupled
line Ls ranges from 1.4-1.8 mm, the optimized suppression performance of f;3 and fu is
achieved. Also a wide stop-band ranging from 6.3-12 GHz at the upper side of the
second pass-band is realized simultaneously. Besides, the second pass-band upper side’s
selectivity is improved with the two pass-bands’ return losses and insertion losses
performance not being influenced. Figure 5.11 plots Qexi, Qex2, fo2/fo and Qexa/Qexi

versus varying Ss, which is the gap between the auxiliary-coupled and main-coupled line

in the interdigital cross-coupled SS-ASIR filter.
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Figure 5.10. The effect of L5 on the interdigital cross-coupled SS-ASIR.

Meanwhile, Qecx> decreases at first and increases a little later, which means that the

bandwidth of f;> can be controlled and expanded by tuning Ss. Therefore, S5 is a factor
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Figure 5.11. Qex1, Ocx2, fs2/fo and Qex2/Qex1 versus Ss.

that can tune Qex2 and Z in SS-ASIRs with interdigital cross coupled line structure.

The proposed filters were fabricated on RO3010 substrate with a relative permittivity of
10.2, and measured using an HP8550 vector network analyser. Firstly, the calibration of
the network analyser is processed. Calibration is done by attaching the various Short,
Open, Load, & Thru standards to your cables and then pressing buttons on the Calibrate
menu. When you push Done, the analyzer calculates the correction coefficients it will
apply to all subsequent measurements. The simulated S-parameters which are obtained
from HFSS simulation and measured S-parameters of the designed dual-wideband SS-
ASIRs with ICCLs are plotted in Figure 5.12. Good agreement is observed between the
simulated and measured results and the slight discrepancies are attributed to the loss,
fabrication errors, and so on. It can be seen that dual wide-bands are realized with good
in-band return loss performance. The first pass-band ranges from 1.47-2.28 GHz with

central frequency of 1.875 GHz, bandwidth of 810 MHz and fractional band width
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(FBW) of 43.2%. It would be applicable to bands for Global Positioning System (GPS:
frequency band centred at 1.57 GHz), Global System for Mobile Communication (GSM:
1800/1900 MHz) and Universal Mobile Telecommunication System (UMTS: 1710-
1880/1850-1990/1920-2170 MHz etc.). The second pass-band ranges from 5.23-5.81
GHz with central frequency of 5.52GHz, bandwidth of 580 MHz and fractional band
width (FBW) of 10.5%. It can be used in IEEE802.11a WLAN applications including
5G Wi-Fi. Moreover, good isolation is achieved between the two pass-bands to

eliminate the signal interference between dual-bands.

The stop-band ranges from 2.56-4.86 GHz with -10 dB suppression level. Due to the
adoption of interdigital cross-coupled line structure, an extra transmission zero
approaching to fi3 and fu is created. A wide upper stop-band ranging from 6.05-12.1
GHz with -10 dB suppression level is generated, which can be seen in Figure 5.12. The

photograph of the fabricated dual-wideband SS-ASIRs with ICCLs is Figure 5.13.
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Figure 5.12. (a) Simulated and measured results of in SS-ASIRs with ICCLs.

(b) Narrowband view of the first passband. (c) Narrowband view of the second passband.

Figure 5.13. The photograph of the fabricated design.

5.3.3. The Modified SS-ASIR Filter with Parallel Uncoupled Microstrip Lines

(PUMLs)

An uncoupled section located within conventional coupled lines is a useful method to
achieve extra transmission zeros closing to existing zeros, created by the conventional

coupled lines. Therefore, a wider stopband bandwidth with better suppression level can
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be achieved. At the same time, this way can also add the freedom to optimize the in

band performance of the original structure.

Figure 5.14. Schematic diagram of the proposed modified SS-ASIR filter with

parallel uncouple microstrip lines.

Figure 5.14 shows the topological structure of the proposed modified SS-ASIR filter
with parallel uncoupled microstrip lines. These parallel uncoupled microstrip lines are
formed by bending the original coupled lines outwards. The parallel uncoupled
microstrip line’s reference location to the original coupled line open end is L;. The
parallel uncoupled microstrip line height and inner gap is Lm and Wm, respectively.
Compared to the former modified SS-ASIR filter with interdigital cross-coupled line
structure, the wider second pass-band is achieved by adopting the novel parallel
uncoupled microstrip lines. In the former structure, Qex1,21s equal to 2.28 and 9.37 when
S5=0.25 mm (as shown in Figure 11), while Qex, 2 is equal to 2.71 and 3.48 when
Ln=2.3 mm in this novel filter with PUMLs. This means J, is improved greatly and a
stronger coupling strength between two modified ASIRs is realized. Figure 5.13 plots
the reference location parameter L;’s impact on the frequency response of the filter with
parallel uncoupled microstrip lines. It is noted that when L, changes from 5.6 mm to 7

mm, the second pass-band return loss performance is enhanced considerably and its
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bandwidth becomes wider resulting in forming a wide second pass-band of more than

1.5 GHz. Meanwhile, the frequency response of the first pass-band does not vary much.
Hence, L; is a vital factor to influence Z and Qex2. Moreover, the parallel uncoupled

microstrip line structure achieves one extra transmission zero nearby fs and fw, leading
to the extended wide stopband bandwidth with the better suppression level, as seen in

Figure 5.15.

Figures 5.16 and 5.17 show Ln’s impact on the frequency response of the SS-ASIR
filter with PUMLs. In Figure 5.16, when Ln ranges from 0.5 mm to 5 mm, the
fundamental frequency fo decreases continuously while Qex1 increases slightly at first
and increases dramatically when Lm is greater than 2.5 mm. This represents parallel

uncoupled microstrip line height Lm can increase Qex1 and decrease j within a certain

range. Figure 5.17 plots the fs2, Qex2, fs2/fo and Qex2/Qex1 versus Lm. When Lm ranges
from 0.5 mm to 1.5 mm, the decline speed of Qcx2 is much faster than the decline speed
of f;2, which means the bandwidth centred at f; is growing rapidly. When Lm ranges
from 1.5 mm to 2.5 mm, the decline speed of Qex2 is almost the same as the decline
speed of f;>, which means wide-band width centred at f;; is formed and changes not
much. When Lm ranges from 2.5 mm to 5 mm, Qex increases as fs> decreases, which
means which means the band centred at f> becomes narrower. In the whole process, fs2
moves from 5.6 GHz to 3.8 GHz with the second pass-band being expanded to more

than 1.5 GHz. Hence, Lm is also a factor to influence Qex2 and strengthen /, .

The reason for this can be explained by the analysis of the parallel uncoupled microstrip

line unit, whose topological structure and frequency response are plotted in Figure 5.18.
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Figure 5.15. Lr’s impact on the frequency response of the SS-ASIR filter with PUMLs.
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Figure 5.16. foand Qex1 versus Lm.

As seen in the Figure, the PUML unit forms a wide pass-band of more than 1 GHz when
Lm changes from 1 mm to 3 mm. Lm. This result proves the advantage of the PUML

structure to optimize the in-band performance of the filter. As for out-of-band
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performance, the PUML unit generates three transmission zeros (TZs) at both sides of
the pass-band, as plotted in Figure 5.18. These three TZs can improve the isolation

performance between two pass-bands and the suppression level of undesired fs3 and fs.

The simulated and measured S-parameters of the designed dual-wideband SS-ASIRs
with PUMLs are plotted in Figure 5.19. Good agreement can be observed between the
simulated and measured results and the slight discrepancies are attributed to the loss,

fabricated errors and so on.

It can be seen that dual wide-bands are realized with good in-band return loss
performance. The first pass-band ranges from 1.37-1.89 GHz with a central frequency
of 1.63 GHz, bandwidth of 520 MHz and fractional band width (FBW) of 31.9%. It can
be applied to the Global Positioning System (GPS: frequency band centred at 1.57 GHz),

Global System for Mobile Communication (GSM: 1800 MHz) and Universal Mobile
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Figure 5.17. fo2, Qex2, fs2/ fo and Qexo/ Qex1 Versus Lm.
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Figure 5.18. The analysis of the PUML unit.
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Figure 5.19. Simulated and measured results of SS-ASIRs with PUMLs.
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Figure 5.20. The photograph of the fabricated SS-ASIRs with PUMLs.

Telecommunication System (UMTS: 1710-1880 MHz etc.). The second pass-band
ranges from 3.66-5.46 GHz with central frequency of 4.46 GHz, bandwidth of 1.8 GHz
and fractional band width (FBW) of 33.0%. It can be used in IEEE802.11a WLAN
applications including 5G Wi-Fi. Moreover, good isolation is achieved between two
pass-bands to eliminate the signal interference between dual-bands. The stop-band
ranges from 2.12-3.5 GHz with -10 dB suppression level. Due to the adoption of
parallel uncoupled microstrip lines, extra transmission zero approaching to fs3 and fs is
realized. A wide upper stop-band ranging from 5.83-9.35 GHz with -10 dB suppression
level is generated, which can be seen in Figure 5.18. The photograph of the fabricated

dual-wideband SS-ASIRs with PUMLSs is shown in Figure 5.20.

The parameters of modified SS-ASIR with parallel uncoupled microstrip lines are
shown in Table 5.2. The modified SS-ASIR filter with ICCLs and PUMLs performance
comparison to previously proposed works are shown in Table 5.3. It can be seen that the

proposed structures have the advantages of big fractional bandwidths,the fractional
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Table5. 2

PARAMETERS OF THE PROPOSED

FOUR TYPES OF MODIFIED SS-ASIR FILTERS.

ALL DIMENSIONS ARE IN MILLIMETRES.

Filter The
The Modified | The Modified
Modified
Type The Modified SS-ASIR SS-ASIR
SS-ASIR
SS-ASIR Filter Filter with Filter with
Filter with
ICCLs PUMLs
parameter DRS
L, 11 11 11 11
L, 15.6 15.6 15.6 15.6
Wi 1.6 1.6 1.6 1.6
W& 0.4 0.4 0.4 0.4
Ls 1. 81
Ss 0.25
W5 0.42
L. 7.05
| 2.32
Wn 0.07
Rd 0.6
Wy 4.65
Hq 1.2
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Table 5.3

#PERFORMANCE COMPARISON OF THE MODIFIED
SS-ASIR FILTER WITH (A) ICCLS AND (B) PUMLS.

Wide
stop-
CF 3dB IL P Extra
Size band structur
( GHz) FBW | at CF(dB) '
Restrict ¢
ion
0.46 1y
[28] 2.4/5.26 13.7/6.3 0.6/1.4 X NO NONE
0.42 Xy
0.43 Iy
[29] 2.43/3.73 4.5/6.1 2.5/1.3 X NO NONE
0.69 A
0.25 Ag
[37] 2.4/3.5 6.88/8.57 <0.3 X NO HTS
0.4 %
o1 0.33 X
' VIA
Filter 1.65/5.25 35.1/7.2 0.41/1.1 X NO
HOLE
B 0.03 A,
This 0.05 %
work | 1.875/5.52 | 43.2/10.5 0.39/0.87 X YES NONE
(A) 0.56 A
This 0.09 2
work 1.63/4.46 31.9/33.0 0.70/0.12 X YES NONE
(B) 0.56 %
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pass band insertion losses are less than 1dB, there is a wide stop band and no extra

structures.

The design procedures are listed:

The simulations use HFSS software and optimization is set to achieve an insertion loss

of less than 2dB with a return loss better than -10dB.

1) Decide the total length of the ASIR structure according to the fundamental frequency;

2) For the ICCL structure, decide the dimension of the high impedance line according to

the second pass band;

3) For the PUML structure, decide the parameter Lr according to the return loss, and

decide the parameter Lm according to the the second pass band.

5.3.4 The Modified SS-ASIR Filter with Defected Rectangular Structure (DRS)

The topological structure of the proposed modified skew-symmetrical asymmetric SIR
Filter with defected structure is shown in Figure 5.21 (a). In contrast to the original
skew-symmetrical asymmetric SIR filter, the proposed modified SS-ASIR Filter has a

defected rectangular structure (DRS) in each low impedance line.

The defected rectangular structure’s width and length is W4 and Hg, respectively. Its

relative distance to the end of feed line is Rd.
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Figure 5.21. Schematic diagram of the modified SS-ASIR filter with DRS: (a) structure
(b) The frequency response comparison of SS-ASIR filter with and without DRS.

By utilizing the defected rectangular structure, the performance-degraded frequency
response at 53 can be transformed into performance-enhanced frequency response and
new wide pass-band can be excited centred at f53. The frequency response comparison
between the cases when modified SS-ASIR filter with and without DRS is plotted in

Figure 5.21 (b).
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By this means, the quad-band filter can be formed by adopting the defected rectangular

structure in the SS-ASIR filter.

Figure 5.22 plots Wq’s effect on the SS-ASIR filter with DRS. In (a), when Wy varies
from 2.5 to 6 mm, fo/fo decreases while Qcx1 remains almost the same. And Qex2 and
QOex2/Qexi fluctuates in this process. This means fs> does not follow the rules of invariance
of resonant frequency location in the SS-ASIR coupled structure any more. In (b), Qex3
varies from 12.1 to 26.8 and Qex4 varies from 18.1 to 16 when Wy ranges from 2.5 to 6

mm. Qex3/Qex1 Increases continuously in this process.

From EM simulations, it is noted that all fo, fi3 and f4 does not obey the rules of
invariance of resonant frequency location in SS-ASIR coupled structure with DRS. And
the frequency shifting exists among all four pass-bands compared to the occasion when
there is no DRS. This is because the basic structure of SS-ASIR coupled pair is

modified by the defected rectangular structure.

The simulated S-parameters and measured S-parameters of the designed quad-wideband
SS-ASIR filter with DMS are plotted in Figure 5.23. Good agreement can be observed
between the simulated and measured results and the discrepancies are attributed to the
loss, fabricated errors and so on. It can be seen that dual wide-bands are realized with
good in-band return loss performance. The first pass-band ranges from 1.64GHz-2.62
GHz with a central frequency of 2.13GHz, bandwidth of 980MHz and fractional
bandwidth (FBW) of 46.0%. It can be used in the application of Global System for
Mobile Communication (GSM: 1800 MHz/1900 MHz), Universal Mobile

Telecommunication System (UMTS: 1710-1880MHz/1850-1990MHz/1920-2170 MHz
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Figure 5.22. Wd’s effect on SS-ASIR filter with DRS. (a) Qexi, Qex2, 152/f0 and Qexa/Qexi
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etc.), ISM (Industry Science Medicine: 2.4GHz. The second pass-band ranges from
4.95GHz-5.55GHz with a central frequency of 5.25GHz, bandwidth of 600MHz and

fractional band width (FBW) of 11.4%. It can be used in IEEE802.11a WLAN

applications.

The third pass-band ranges from 7.51GHz-7.86 GHz with a central frequency of
7.685GHz, bandwidth of 350MHz FBW of 4.6%. It can be used in
electronic countermeasure applications. The fourth pass-band ranges from 9.06GHz-
9.56 GHz with a central frequency of 9.31 GHz, bandwidth of S00MHz and FBW of

5.4%.1It can be used in X-band applications.

Moreover, good isolation is achieved between four pass-bands to eliminate the signal
interference among quad-bands. The -10 dB suppression level stop-bands which ranges
from 3.05GHz-4.78 GHz between the first and second pass-band,5.77GHz-7.20GHz
between the second and third pass-band, 8.04GHz-8.889GHz between the third and

fourth pass-band are realized.

What is more, two transmission zeroes located at 4.26GHz and 8.46GHz are formed to

further enhance frequency selectivity, which are illustrated in Figure 5.23.

The parameters of modified SS-ASIR with DMS are shown in Table 5.2. The size of the
modified SS-ASIRs with DMS is 0.094:x0.56A,, where A is the guided wavelength.
The photograph of the fabricated quad-wideband SS-ASIR filter with DMS is plotted in

Figure 5.24.
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Figure 5.23. Simulated and measured of the modified SS-ASIRs with DMS.

Figure 5.24. The photograph of the fabricated modified SS-ASIRs with DMS.

5.4 Conclusion

Multi-standard dual-wideband and quad-wideband filters based on the detailed analysis

of the simple asymmetric SIR unit and of the skew-symmetrical asymmetric SIR
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coupled pair have been presented. By utilizing a novel modified skew-symmetrical
asymmetric SIR coupled pair with ICCLs and PUMLs, the proposed dual-band filters
for the first time realize dual-wideband with wide stop-band restriction among the
recently proposed dual-wideband filters. Their bandwidths are controllable by tuning
relative parameters. By introducing DMS, the frequency band nearby the third spurious
frequency is excited and formed, resulting in a quad-wideband filter. The proposed
dual-wideband and quad-wideband modified SS-ASIR filters cover the communication
applications including GPS, GSM, UMTS, ISM and IEEE 802.11 a/b/g/n/ac. The
filters’ measured results agree well with simulated results and theory predictions. The
good in band and out of band performance, compact size and simple structure make the
proposed filters very promising for applications in future multi-standard wireless

communication.

5.5 References

[1] H. Miyake, S. Kitazawa, T. Ishizaki, et al. A miniaturized monolithic dual band
filter using ceramic lamination technique for dual mode portable telephones.

International Microwave Symposium. Digest. Vol. 2, pp: 789-792. June. 1997.

[2] Bian Wu, Chang-Hong Liang, Pei-Yuan Qin, et al. Compact Dual-Band Filter Using
Defected Stepped Impedance Resonator. IEEE Microwave and Wireless

Components Letters. Vol. 18. no. 10, pp: 674-676. 2008.

[3] Xin Gao, Lap Kun Yeung, Ke-Li Wu. A Dual-Band Balun Using Partially Coupled
Stepped-Impedance Coupled-Line Resonators. IEEE Transactions on Microwave

Theory and Techniques. Vol. 56, no. 6. pp: 1455-1460. 2008.

111


http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bian%20Wu.QT.&searchWithin=p_Author_Ids:37401208600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chang-Hong%20Liang.QT.&searchWithin=p_Author_Ids:37275526300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pei-Yuan%20Qin.QT.&searchWithin=p_Author_Ids:37409751300&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4639544&queryText%3DCompact+Dual-Band+Filter+Using+Defected+Stepped+Impedance+Resonator
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7260
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7260
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xin%20Gao.QT.&searchWithin=p_Author_Ids:37632235600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lap%20Kun%20Yeung.QT.&searchWithin=p_Author_Ids:37391354100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ke-Li%20Wu.QT.&searchWithin=p_Author_Ids:37278661200&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4511503&refinements%3D4291944246%26queryText%3Dstepped+impedance+resonator++dual+band
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4511503&refinements%3D4291944246%26queryText%3Dstepped+impedance+resonator++dual+band
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=22
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=22
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4539055

[4] Qing-Xin Chu, Fu-Chang Chen. A Compact Dual-Band band-pass Filter Using
Meandering Stepped Impedance Resonators. IEEE Microwave and Wireless

Components Letters. Vol. 18, no. 5. pp: 320-322. 2008.

[5] Yuan, H. -J. , Fan, Y. Compact microstrip dual-band filter with stepped-impedance

resonators. Electronics Letters. Vol. 47. no. 24. pp: 1328. 2011.

[6] Wei-Shin Chang, Chi-Yang Chang. Analytical Design of Microstrip Short-Circuit
Terminated Stepped-Impedance Resonator Dual-Band Filters. IEEE Transactions on

Microwave Theory and Techniques. Vol. 59, no. 7. pp: 1730-1739. 2011.

[7] Songbai Zhang, Lei Zhu . Synthesis Design of Dual-Band Bandpass Filters with

A/4 Stepped-Impedance Resonators. IEEE Transactions on Microwave Theory and

Techniques. Vol. 61, no. 5 (1). pp: 1812-1819. 2013.

[8] Ching-Wen Tang, Po-Hsien Wu. Design of a Planar Dual-Band band-pass Filter.
IEEE Microwave and Wireless Components Letters. Vol. 21, no. 7. pp: 362 - 364,

2011.

[9] X. Y. Zhang, J. X. Chen, Q. Xue, et al. Dual-band band-pass filters using stub-
loaded resonators. IEEE Microwave Wireless Component Letter. Vol. 17, no. 8, pp:

583-585, Aug. 2007.

[10] P. Mondal and M. K. Mandal. Design of dual-band band-pass filters using stub-
loaded open-loop resonators. IEEE Transactions on Microwave Theory and

Techniques. Vol. 56, no. 1, pp: 150-155, Jan. 2008.

[11] Li Gao, Xiu Yin Zhang. High-Selectivity Dual-Band band-pass Filter Using a

Quad-Mode Resonator with Source-Load Coupling. IEEE Microwave and Wireless

112


http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Qing-Xin%20Chu.QT.&searchWithin=p_Author_Ids:37285768100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fu-Chang%20Chen.QT.&searchWithin=p_Author_Ids:37309679600&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4497803&refinements%3D4291944246%26queryText%3Dstepped+impedance+resonator++dual+band
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4497803&refinements%3D4291944246%26queryText%3Dstepped+impedance+resonator++dual+band
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7260
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7260
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4515977
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yuan,%20H.-J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fan,%20Y..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6088047&refinements%3D4291944246%26queryText%3Dstepped+impedance+resonator++dual+band
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6088047&refinements%3D4291944246%26queryText%3Dstepped+impedance+resonator++dual+band
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei-Shin%20Chang.QT.&searchWithin=p_Author_Ids:37592478100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chi-Yang%20Chang.QT.&searchWithin=p_Author_Ids:37290545800&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5756215&queryText%3DAnalytical+Design+of+Microstrip+Short-Circuit+Terminated+Stepped-Impedance+Resonator+Dual-Band+Filters
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5756215&queryText%3DAnalytical+Design+of+Microstrip+Short-Circuit+Terminated+Stepped-Impedance+Resonator+Dual-Band+Filters
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=22
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=22
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5948427
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Songbai%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lei%20Zhu.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6497670&queryText%3DSynthesis+Design+of+Dual-Band+Bandpass+Filters+with+Stepped-Impedance+Resonators
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6497670&queryText%3DSynthesis+Design+of+Dual-Band+Bandpass+Filters+with+Stepped-Impedance+Resonators
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=22
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=22
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5948427
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ching-Wen%20Tang.QT.&searchWithin=p_Author_Ids:37293633100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Po-Hsien%20Wu.QT.&searchWithin=p_Author_Ids:38020634200&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5871309&queryText%3DDesign+of+a+Planar+Dual-Band+Bandpass+Filter
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5871309&queryText%3DDesign+of+a+Planar+Dual-Band+Bandpass+Filter
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7260
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Li%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiu%20Yin%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6574295&queryText%3DHigh-Selectivity+Dual-Band+Bandpass+Filter+Using+a+Quad-Mode+Resonator+With+Source-Load
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6574295&queryText%3DHigh-Selectivity+Dual-Band+Bandpass+Filter+Using+a+Quad-Mode+Resonator+With+Source-Load
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7260

Components Letters, Vol. 23, no. 9, pp: 474- 476, 2013.

[12] Shou-Jia Sun, Tao Su, Kun Deng, Bian Wu, Chang-Hong Liang. Compact
Microstrip Dual-Band Bandpass Filter Using a Novel Stub-Loaded Quad-Mode
Resonator. IEEE Microwave and Wireless Components Letters, Vol. 23 no. 9, pp:

465-467, 2013.

[13] Jin Xu, Wen Wu, Chen Miao . Compact Microstrip Dual-/Tri-/Quad-Band band-
pass Filter Using Open Stubs Loaded Shorted Stepped-Impedance Resonator. IEEE

Transactions on Microwave Theory and Techniques. Vol. 61, no. 9, pp: 3187- 3199,

2013.

[14] Jin Shi, Long-long Lin, Jian-Xin Chen, et al. Dual-Band band-pass Filter with
Wide Stop-band Using One Stepped-Impedance Ring Resonator with Shorted Stubs.
IEEE Microwave and Wireless Components Letters. Vol. 24, no. 7, pp: 442- 444,

2014.

[15] D. Ahn, J. S. Park, C. S. Kim, et al. A design of the low-pass filter using the novel
microstrip defected ground structure. IEEE Transaction Microwave Theory

Technique. Vol. 49, no. 1, pp: 86-93, Jan. 2001.

[16] A. Abdel-Rahman, A. K. Verma, A. Boutejdar, et al. Control of band-stop esponse

of hi-low microstrip low-pass filter using slot in ground plane. IEEE Transactions

on Microwave Theory and Techniques. Vol. 52, no. 3, pp: 1008-1013, Mar. 2004.

[17]J.S. Yun, G. Y. Kim, J. S. Park, et al. A design of the novel coupled line band-pass
filter using defected ground structure. IEEE Microwave Theory Technique

Symposium, 2000.

113


http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shou-Jia%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tao%20Su.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kun%20Deng.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bian%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chang-Hong%20Liang.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6571260&queryText%3DCompact+Microstrip+Dual-Band+Bandpass+FilterUsing+a+Novel+Stub-Loaded+Quad-Mode+Resonator
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6571260&queryText%3DCompact+Microstrip+Dual-Band+Bandpass+FilterUsing+a+Novel+Stub-Loaded+Quad-Mode+Resonator
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6571260&queryText%3DCompact+Microstrip+Dual-Band+Bandpass+FilterUsing+a+Novel+Stub-Loaded+Quad-Mode+Resonator
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7260
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jin%20Xu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wen%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chen%20Miao.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6575187&queryText%3Dof+dual-%2C+tri-+and+quad-band+BPF
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6575187&queryText%3Dof+dual-%2C+tri-+and+quad-band+BPF
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=22
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jin%20Shi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Longlong%20Lin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jian-Xin%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6810196&queryText%3DDual-Band+Bandpass+Filter+With+Wide+StopbandUsing+One+Stepped-Impedance+Ring+Resonator+With+Shorted+Stubs%2C
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6810196&queryText%3DDual-Band+Bandpass+Filter+With+Wide+StopbandUsing+One+Stepped-Impedance+Ring+Resonator+With+Shorted+Stubs%2C
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7260

[18] A. A-Rahman, A. R. Ali, S. Amari, et al. Compact band-pass filters using defected
ground structure (DGS) coupled resonators IEEE MTT-S International Digest .

Proceeding. pp: 1479-1482, 2005.

[19]J. -X. Chen, T. Y. Yum, J. -L. Li, et al. Dual-mode dual-band band-pass filter using
stacked-loop structure. IEEE Microwave Wireless Component Letter. Vol. 16, no. 9,

pp: 502-504, Jun. 2006.

[20] S. Fu, B. Wu, J. Chen, et al Novel second order dual-mode dual-band filters using

capacitance loaded square loop resonator. IEEE Transaction on Microwave Theory

Techniques. Vol. 60, no. 3, pp: 477-483, Mar. 2012.

[21] J. Xu, Wen Wu,C. Miao. Compact and Sharp Skirts Microstrip Dual-Mode Dual-

Band Bandpass Filter Using a Single Quadruple-Mode Resonator (QMR). IEEE
Transaction on Microwave Theory Techniques. Vol. 61, no. 3, pp. 1104-1113,

March. 2013.

[22] J. Wang, L. Ge, K. Wang, and W. Wu. Compact microstrip dual-mode dual-band
band-pass filter with wide stop-band. Electronic Letter. Vol. 47, no. 4, pp: 263-265,

Jan. 2011.

[23] Y. -T. Kuo and C. Y. Chang. Analytical design of two-mode dual band filters using

E-shaped resonators. IEEE Transaction on Microwave Theory and Techniques.

Vol.60, no. 2, pp: 250-260, Feb. 2012.

[24] Y. C. Chiou, C. Y. Wu, and J. T. Kuo. New miniaturized dual-mode dual-band ring
resonator band-pass filter with microwave C-sections. IEEE Microwave Wireless

Component Letter. Vol. 20, no. 2, pp: 67-69, Feb. 2009.

114



[25] S. Luo, L. Zhu, and S. Sun. A dual-band ring resonator band-pass filter based on
two pairs of degenerate modes. IEEE Transaction on Microwave Theory and

Techniques. Vol. 58, no. 12, pp: 3427-3432, Dec. 2010.

[26] S. Sun. A dual-band band-pass filter using a single dual-mode ring resonator. IEEE

Microwave Wireless Component Letter. Vol. 21, no. 6, pp: 298-300, June. 2011.

[27] Y. Sung. Dual-mode dual-band filter with band notch structures. IEEE Microwave

Wireless Component Letter. Vol. 20, no. 2, pp: 73-75, Feb. 2010.

[28] Y. C. Li, H. Wong, and Q. Xue. Dual-mode dual-band filter based on a stub-loaded
patch resonator. IEEE Microwave Wireless Component Letter. Vol. 21, no. 10, pp:

525-527, Oct. 2011.

[29] R. Zhang, L. Zhu, and S. Luo. Dual-mode dual-band band-pass filter using a single
slotted circular patch resonator. IEEE Microwave Wireless Component Letter. Vol.

22, no. 5, pp: 233-235, May 2012.

[30] S. Darlington. Synthesis of reactance four poles which produce prescribed insertion
loss characteristics. Journal of Mathematical Physics .Vol. 18, pp: 257-353.Sept.

1939.

[31] K. Jokela. Narrow-band stripline or microstrip filters with transmission zeros at

real and imaginary frequencies. IEEE Transaction on Microwave Theory and

Techniques. Vol. MTT-28, pp: 542-554, June 1980.

[32] S. J. Yao, R. R. Bonetti, and A. E. Williams. Generalized dual-plane multicoupled
line filters. IEEE Transaction on Microwave Theory and Techniques. Vol. 41, no. 2,

pp: 2182-2189, Dec. 1993.

115


http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjvgKHhlarQAhVjJcAKHa4oD04QFgglMAA&url=http%3A%2F%2Fscitation.aip.org%2Fcontent%2Faip%2Fjournal%2Fjmp&usg=AFQjCNGImSsH7f04jt0Uhwzdpy30qw8yFQ&sig2=_SaeT3dyKD04TaYqUH1f4g&bvm=bv.138493631,d.ZGg

[33] J. S. Hong and M. J. Lancaster. Couplings of microstrip square open loop
resonators for cross-coupled planar microwave filters. IEEE Transaction on

Microwave Theory and Techniques. Vol. 44, no. 1, pp: 2099-2109, Nov. 1996.

[34] J. S. Hong and M. J. Lancaster. Cross-Coupled Microstrip Hairpin-Resonator
Filters. IEEE Transaction on Microwave Theory and Techniques. Vol. 46, no. 1, pp:

118-122, Jan 1998.

[35] A. L. C. Serrano, F. S. Correra, T. -P. Vuong, et al. Synthesis methodology applied

to a tunable patch filter with independent frequency and bandwidth control. IEEE
Transaction on Microwave Theory and Techniques. Vol. 60, no. 3, pp: 484-493,

Mar. 2012.

[36]J. S. Hong and M. J. Lancaster. Microstrip Filter for RF/Microwave Applications.

New York: Wiley, 2001.

[37] H. W. Liu, Pin Wen, X. M. Wang, Y. Wang, et al. Dual-Band High-Temperature
Superconducting Hairpin-Resonator Bandpass Filter Based on Two Pairs of

Nondegenerate Modes. IEEE Transaction on Applied Superconductivity. Vol. 25, no.

3, pp. 1-4, June 2015.

116



CHAPTER 6

Novel Multi-standard
Single-/Tri-/Quint-Wideband
Asymmetric Step Impedance Resonator

Filters with tuneable transmission zeros

6.1 Overview of Single-band Filters and Design Background

Parallel-coupled microstrip lines have been found to be one of the most commonly used
in many practical RF/microwave circuits such as resonators, baluns, amplifiers, couplers,
and filters, due to their design simplicity, planar structure, and relatively wide-
bandwidth [1]. In order to design parallel coupled-line filters with a relatively wide
passband, enhancement to the coupling of the first and last coupled stages is required
which increases the fabrication tolerance. Alternatively, three parallel-coupled line
structures can be utilized to achieve wide-bandwidth with low fabrication tolerance due
to their enhancement of coupling over the conventional two coupled lines. Various
wideband or ultra-wideband bandpass filters (BPFs) using three parallel-coupled
microstrip lines have been developed [2]-[37]. In [2], [3], BPFs are developed based on
spectral domain technique to achieve wide pass-bands with up to 60% fractional

bandwidth (FBW). In [4], a new wideband microstrip BPF with very narrow rejection
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band is introduced using two sections of three coupled lines separated by one
transmission line element. In [5], new configurations have been introduced to develop
wideband BPFs. These types of filters achieve up to 80% FBW with poor out-of-band
rejection level. Recently, three coupled lines have been increasingly implemented to

develop multiple-mode resonator (MMR) filters with very wide pass-band [6]-[13].

Compared to the traditional stepped impedance resonator (SIR) with two step
discontinuities, the asymmetric SIR (ASIR) has only one discontinuity but retains
controllability of spurious modes. Thus, it combines the advantages of compact size,
lower loss, and strong design feasibility, particularly in high-order BPFs such as dual
band [31], triple band and quad band [22], because of its inherent higher order resonant

modes.

Published coupled line ASIR structures can be classified into two types: anti-
parallel-coupled or parallel-coupled ASIRs. The Anti-Parallel-Coupled ASIR (APC-
ASIR), consisting of two ASIR units with their high and/or low impedance lines
anti-coupled with each other, is usually folded at its open end. In [31], the high
impedance lines of two ASIRs are bent and coupled with each other to form a signal
transmission route, and the first spurious frequency is utilized to form the second
operating band [32]. Because the frequency response characteristic of the anti-
parallel-coupled line is determined by the frequency response characteristic of the
ASIR, the APC-ASIR frequency response is easy to calculate. However, the
bandwidth characteristic of the APC-ASIR structure [18, 31], as with the multi-stage

coupled ASIR structure [33, 34], is usually limited within the narrow band
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characteristic range and is not suitable to realize wide-band performance. Therefore,
this approach cannot fully meet the multi-service requirement of current wireless

communication.

The second type, the parallel-coupled ASIR structure, has ASIRs with their high
impedance lines parallel coupled with each other: this is also called the skew-
symmetrical ASIR (SS-ASIR) coupled pair. Using this kind of structure,
characteristics of frequency response performance such as bandwidth, return loss
and insertion loss can be greatly improved at some frequency points, without
changing or degrading the performance generally. This facilitates designs with wide
bandwidth and large fractional bandwidth, which is different from the narrow band
characteristic exhibited in traditional ASIR structures [18, 31-32]. However, until
now, the proposed ASIR structures could only realize narrow band characteristics
[18, 31-34] or dual/quad-wideband characteristics, with the disadvantages of
uncontrollable or limited transmission zeros seriously restricting their application

range.

In this work, we propose novel multi-standard single/tri/quint-wideband rearranged
ASIR filters to solve the problems mentioned above. The proposed filters are
capable of generating wide operating bands which effectively cover the
GPS/GSM/UMTS/IEEE 802.11a application in wireless communication systems,
including GPS (1227 MHz, 1.57 GHZ), GSM1800/1900 (1710-1880 MHz, 1850-
1990 MHz), and UMTS (1920-2170 MHz). These filters share the same original
structure, with their performance optimized by tuning relative transmission zeros.

Therefore, the design enjoys advantages of versatility and simplicity, with reduced
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design complexity and cost. To the best of the authors’ knowledge, the proposed
ASIR filters realize for the first time a single wideband filter with wide stop-band
and a quint-wideband filter at the same time, by using the same structure as in
recently proposed single/multi-band filters [1-34]. Moreover, a quint-wideband filter
can be realized with large fractional bandwidths for all operating bands in

comparison with [25-27].

The proposed filters use the capacitive coupling of only two miniaturized ASIRs to
realize single/tri/quint-wideband operation without adding any extra structure such
as via holes or defected ground structure, which is also novel for single/multi-

wideband filters [14-36].

6.2 The In-Band Performance Enhancement Method and

Transmission Zeros Tuning Method

6.2.1. The In-Band Performance Enhancement Method

To enhance the filter in-band performance, the SS-ASIR structure is used. In the
design, the frequency response transformation relationship between the parallel-
coupled ASIR and the ASIR unit needs to be considered so as to enhance the
performance in the desired frequency band. The transformation relationship table is
shown in Table 6.1. The electrical length ratio o = 6>/ (62+61), where 6; and 6, are
the electrical lengths of section Lo and L; in the ASIR, respectively. The
characteristic impedance ratio K = Zo/Z1, where Z; and Z» is the characteristic

impedance of section L and L: in the ASIR, respectively. ‘Improved’’
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meanssignificantly enhanced performance at relative frequency, ‘“NC/DE’’ means

no significant change or degradation of performance at relative frequency point.

Table 6.1

THE TRANSFORMATION RELATIONSHIP OF IN-BAND PERFORMANCE OF SS-ASIR

COUPLED PAIR AND ASIR UNIT, WHEN oo RANGES FROM 0.4 TO 0.7.

Fundament- First Second Third Fourth

; al spurious spurious Spurious Spurious

Frequency | Frequency Frequency Frequency Frequency
a
Jo S fo fea fea

0.4 Improved NC/DE Improved NC/DE Improved
0.42 Improved NC/DE Improved NC/DE Improved
0.5 Improved NC/DE Improved NC/DE Improved

0.55 Improved NC/DE NC/DE Improved NC/DE

0.57 Improved NC/DE Improved Improved NC/DE

0.6 Improved Improved NC/DE Improved NC/DE
0.65 Improved Improved NC/DE NC/DE Improved

0.7 Improved Improved NC/DE NC/DE NC/DE

6.2.2. The Transmission Zeros Generating and Tuning Method in the SS-ASIR

Structure

Figure 6.1 (a) shows the topological structure of the SS-ASIR couple pair rearranged by

the meander coupled section (SSMCL-ASIR), which is shown as the grey part with
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width W3 and length L4, respectively. The meander coupled section is added at the open
end of the high impedance coupled line in the SS-ASIR coupled pair. Figure 6.1 (b)
shows the coupling routing scheme of Figure 6.1 (a).

Compared to traditional single coupling route of B-E, at least two extra coupling routes
including A-D and C-F are created by the adoption of meander coupled lines. This
multi-path coupling routing scheme of the modified SSMCL-ASIR filter is shown in
Figure 6.1 (b). Due to the multi-path coupling routing, more transmission zeros (TZs)
are created, which are utilized to suppress high order spurious frequencies or to help

facilitate multi-band performance.

(a)

ASIR1

(8)

Load

(b)

Figure 6.1. A SS-ASIR coupled pair with meander coupled section. (a) The

122



schematic diagram. (b) Coupling routing scheme: A-D, B-E and C-F denotes
three coupling routes between ASIR1 and ASIR2, respectively.

Z()even Z()odd
!901 £l 84

ZOeven ZOodd
Bo1+64

Figure 6.2. Even or odd mode equivalent circuit of SSMCL-ASIR.

Because the harmonic frequency performance would degrade when using the SS-ASIR
structure, f; cannot be conveniently deduced by simply analyzing Y;, = 0 in the ASIR
unit. However, f.; can still be obtained by setting Zi,e = Zino, Where Zine and Zi,, are the
input impedances for the even- or odd-mode equivalent circuits, respectively. The
necessary and sufficient condition for Zi. and Zi, is S21 = 0 and the equivalent Y-
parameter matrix of the even or odd mode equivalent circuit of the proposed structure

can be expressed as

Z)even Z)oddcote()l+6) ] Oeven Z)"ddcscem—l-@)

|:yu ylz:|:l J
Y | B Z)e 2ZOoddCSC601+0) Z]even Z)Oddcotem—l-e)
(6.1)

Gocvei i

where B=—Z)eve%(,daﬁ0%(661+9)‘|— 6o1 and 64 are the electrical lengths of the

original coupled line and of the meander coupled section, respectively. Zoeven and Zooad
are the even and odd mode characteristic impedances for each coupled section,
respectively. Since all elements of the normalized Y-parameters in (6.1) are purely

imaginary, Sz of this coupled line can be expressed as
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S = 2jIm,}
217 ;
I=Imfy, }* +Imfy,}* +2/Im ) (6.2)

Substituting from (6.1) into (6.2), gives equation (6.3). According to equation (6.3),
there are three cases leading to S21 = 0. The first case is Zoeven = Zoods. The meander
coupled section of length L4 can be seen as a shifted coupled line structure which can

suppress the spurious peak by compensating even- mode and odd-mode phase velocities.

1
I A/ N
S B J( Oeven ()odd) sin6m+¢94)
21
4- (ZOeven+ ZOodd)2 ’ w + (ZOeven_ZOOdd)2 o .t 4.] (Z()even+ Z()odd) ' w
sirf(6, +6),) sit (g, +6,) sin@), +6,)
— 4j(ZOeven_ZOOdd) : Sin@ol + 94)
u+jv
4i(Z,.. — 2, ) sin@,, +6 .
R
(6.3)
where

u= 4Sin2(901 +0,) = Zoowen T Zooaa ) C052(901 +0,)+ (Zoeren — ZOadd)z

even

v=4(Z +Z,44)€0s(6,, +6,)sin(6,, +0,)

Oeven

The shifted coupled line structure which can suppress the spurious peak by
compensating even-mode and odd-mode phase velocities. When the coupled line
insertion loss is zero, the coupled length for the shifted coupled line/meander coupled

line can be obtained from the following:

@n: Sirﬁevwlﬂ
Zooas Sl (6.4)
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When Z()even = Z()odd, SinﬂevenLél = SlnﬁoddL4. AISO

ﬂeve4‘4:ﬂodt[’4+]qﬂ- (Iﬁ 20, L 21 33) (65)

In this design, 0<BevenLa<m and 0<Bodals<m, thus k1 = 0 and Beven = Bodd. Because vp.even =
Weven! Peven aNA Vpodd = Woddl Podd, then Vp, even = Vp, odd WheN Weven = Wodd. Vpeven, Weven and
Peven are even-mode phase velocity, angular frequency and phase constant, respectively.
Vpodd, Wodd and Poas mean odd-mode phase velocity, angular frequency and phase
constant, respectively. When the even-mode and odd-mode phase velocities are equal,
transmission zeros are generated and the spurious peak can be suppressed. Figure 6.3
compares frequency responses with and without a shifted coupled line/meander coupled
section (SCL/MCS). As shown in the Figure 6.3, without a SCL/MCS, the unsuppressed
spurious frequencies f;> and fi3 exist and seriously limit the stop-band bandwidth. With a
SCL/MCS, fi» and fs3 are effectively suppressed and a wide stop-band is generated.
Moreover, because the whole coupled line length is extended by the SCL/MCS structure,
both the fundamental and spurious frequencies are shifted to lower frequencies.

The second case is sin (6o1+64) = 0, namely

4=kt (=123) (6.6)

The corresponding coupled line physical length can be calculated as

Li+L4=Ay/2 (6.7)

where L; and L4 are the physical lengths corresponding to 61 and 0, respectively.

The third case is u =0andv=0. Whenu =0, there is:

ZOeven ZOodd
(Zszven + ZOodd )2 + 4 (6'8)

0, +0, =2sin'1\/
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Equation (6.8) shows the relationship between the whole coupled line electrical length

Magnitude (dB)

$21 when WITH SCLI.\ICS*

511 when WITH SCL/MCS

$11 when WITHOUT SCLAICS

521 when WITHOUT SCLAICS

’450 1 2 3 4 5 6 7 8 9 10

Frequency(GHz)
* SCL/MCS means Shifted Coupled Line/Meander Coupled Section

Figure 6.3. Frequency response comparison with and without SCL/MCS.

and odd-mode and even-mode impedance of the whole coupled lines.

Whenv =0, sin [2(001+64)] = 0, and

901+94=k7” (k=1,2,3...). (6.9)

In general, the shortest whole coupled line electrical length to realize Sz1 = 0 can be got
in the third case when £ is equal to 1 and 601+04= /2. The corresponding coupled line

physical length can then be calculated as

Li+Ls = Ay/4 (6.10)

6.3 The Single-Wideband ASIR Filter Design
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According to the frequency response transformation relationship discussed in Section A,
the electrical length ratio a is 0.57 when L, is 11.4 mm, thus setting the fundamental
frequency to around 1.51 GHz. The in-band performance of the first band, such as the
insertion loss and return loss performance, is improved when the impedance ratio K is
0.48. The dimensions of the resonator are chosen as follows: L; = 14 mm, L, = 11.4 mm,
Li+L3=15.2 mm, W1 = 0.4 mm and W> = 1.6 mm. Through the design procedure for the
coupled resonator circuits, the gaps of the whole coupled lines in Fig. 6.1(a) are
determined as S1 = 1.2 mm, $2 = 0.2 mm and S5 = 0.4 mm. The use of different gaps
adds more design freedom for the filter. For simplicity of design, the meander coupled

structure width /3 is made 0.4 mm, which is the same as the width of coupled lines.

Because the fundamental frequency is 1.51 GHz, the relative A can be calculated as
77.4 mm. Therefore, the value of (L1+L4) is about 19.4 mm. L;is 14 mm, so L4 is set at
around 5.4 mm. Although sections L3 and H; would become coupled parts after adding
the meander coupled section, the effects are small. The influence of these sections to the
overall performance can therefore be disregarded, their coupling being much weaker

than that involving sections L1 and section La.

To further analyse the influence of the meander coupled section on the resonance
frequency f» and transmission zero frequencies f.,, the normalized fin (m = 1, 2, 3, 4)
and normalized £, (n = 1, 2, 3, 4) versus y for different values of K, are illustrated in
Figure 4, where y is the electrical length ratio between the meander coupled section 64
and whole coupled line (01+ 04) and y = 04/ (61+ 64). It can be seen in Fig. 6.4 that for a

fixed K value, the normalized f., (n = 1, 2, 3, 4) decline continuously and the normalized
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Figure 6.4. f;; and f.;normalized to fo versus y for different values of K in SSMCL-ASIR structure.

fsm (m =1, 2, 3, 4) follow an approximate sinusoidal curve when y ranges from 0.17 to
0.58. Larger K values result in larger normalized f; and larger normalized f;; for a fixed y
value. Because the normalized f;; follow an approximate sinusoidal curve and £, follow a
decreasing curve, they can intersect at a certain y value. As illustrated, at point A, when
K = 0.30, f.1 approaches f;1, f-» approaches f;» and f:3 approaches f3, respectively. That
means the first spurious frequency, the second spurious frequency and the third spurious
frequency are suppressed successfully when K = 0.30. The corresponding L4 can be

calculated as 5.7 mm, which is close to the theoretical value.

The coupling matrix discussed in reference [36] will not be discussed in this paper

because of its non-wideband limitation [36-37]. The coupling between two ASIRs can

be represented by a J-inverter susceptance J1, 2, where subscript 1 and 2 denotes the first
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and second passband. A larger value of K means a stronger coupling strength between

two ASIRs.

The external quality factor Qexi, 2 and the normalized J-inverter susceptance K can be

related by [35]

Opin=—=
215 6.11)

The external quality factor Qex1, 2 can be further extracted by
Qexl,Z =— (612)

where fo12, A, represent the central frequency and -3 dB bandwidths, respectively.

From (6.11) and (6.12), Z can be calculated by substituting the extracted Qex1,2 into

equation (6.11). Figure 6.5 plots fo and Qcx1 versus L4 for different gap Sz values in an
SSMCL-ASIR single band type filter. In Figure 6.5, when L4 ranges from 2.7 mm to 8.7
mm, the fundamental frequency fo decreases continuously while Qex1 increases in
general for a fixed S; value. fo increases when S3 ranges from 0.1 mm to 0.4 mm and
does not change much when S; ranges from 0.4 mm to 0.7 mm, and Qex1 decreases
continuously when S; ranges from 0.1 mm to 0.7 mm in general. Moreover, it is noted
that there are two notches when S; = 0.1 mm and 0.7 mm, which means the bandwidth
is maximum when L4 = 5.7 mm within the range of L4 from 3.7 mm to 8.7 mm. By
comprehensively considering the bandwidth, resonant frequency location and out-of-
band spurious frequency suppression performance, S3 is set at 0.4 mm, which is shown

as point C in Figure 6.5.
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The proposed filters, fabricated on an RO3210 substrate with a relative dielectric of
10.2 and dielectric loss tangent 0.0027, have been measured using an HP8510 vector
network analyser. The simulated S-parameters, measured S-parameters and zoom in-
band performance of the designed single-wideband SSMCL-ASIRs are plotted in Figure

6.6.

Good agreement can be observed between the simulated and measured results and the
slight discrepancies are attributed to loss and fabrication errors. It can be seen that the
single-wideband filter is realized with very low insertion isolation of only 0.36 dB at
central frequency and return loss of better than 25.5 dB. The pass-band ranges from
1.18-1.84 GHz with central frequency 1.51 GHz, bandwidth 660 MHz and fractional
band width (FBW) 43.7%. It can be applied in the Global Positioning System (GPS:
frequency band centred at 1.57 GHz), Global System for Mobile Communication (GSM:
1800 MHz) and Universal Mobile Telecommunication System (UMTS: 1710-1880

MHz, etc.).

3-5 T T T T T T T T T T T ’£33-5

—=— fy when $3=0.1mm P
—&— f, when $3=0.4mm o
f, when $3=0.7mm A
3 e Qex1 when $3=0.1mm .
~€ Qex1 when $3=0.4mm /g

Qex1 when $3=0.7mm £ s )]

Qex1

1 L L L 1 1

1 &
2.7 3.7 4.7 5.7 6.7 Tl 8.7
L4 (mm)

Figure 6.5. foand Qex1 versus L4 with different values of S3
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Figure 6.6. Simulated, measured results and zoom in-band performance of single-wideband type
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Figure 6.7. (a) f;and fi locations of the traditional structure.
(b) The single-wideband type SSMCL-ASIR filter
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Table 6.2

PERFORMANCE COMPARISON WITH PROPOSED SINGLE-BAND BPF

SINGLE-
/MULTI-
CF -3dB IL STOP-BAND NUMBER
SIZE BAND
(GHz) | FBW (dB) SUPPRESSION TZs VERSATI
L-ITY
0.36 A,
[5] 2.4 8.4% 2.06 up to 5.5 fo 2 NO
x0.13 Ag
0.664 Ay
[9] 1.45 57.9% 1 1.45 f0-3.35 fo 4 NO
x0.133 Ag
0.294 A,
[10] 5 40% 0.7 1.26 f0-3.52 fo 2 NO
% 0.162 Ag
0.2 A,
[11] 2.4 - 33 3.6/ 2 NO
x 0.15 A
This 0.063 2
1.51 43.7% 0.36 1.39 f0-4.85 fo 3 YES
work
x 0.50 Ag

Since the tuneable transmission zeros f;1 = 3.38 GHz, f2= 5.31 GHz, f3=6.71 GHz

are close to the spurious frequencies, a wide stop-band ranging from 2.1-7.32 GHz is

realized, as shown in Figure 6.6. The parameter are listed:L1+L3=15.2mm, L1=14mm,

L2=11.4mm WI=0.4mm and W2=1.6mm. L4=5.7mm, S1=1.2mm, S2=0.2mm and

S3=0.4mm.

Normalized resonant frequencies f;; and transmission zero frequencies fx locations with
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the traditional structure are plotted in Figure 6.7(a) for comparison. Figure 6.7(b) is a
photograph of the single-wideband type SSMCL-ASIR.and its performance comparison
with proposed single-band BPFs is shown in Table 6.2. From Table 6.2, it is seen that
the proposed structure realizes bigger fractional bandwidth, which is more than 40%.
The insertion loss is less than 0.5dB and is better than most published works. The stop

band ranges from 1.39 f; to 4.85 fo and is wider than the published works.

6.4 The Quint-Wideband ASIR Filter Design

As stated in Section 6.2 and Section 6.3, transmission zeros can be created and utilized
to give a multi-band frequency response. At point B in Figure 6.4, f.» approaches fi
while f.2, f;3 and f4 are distinct from fo, fi3 and fu, respectively. That means the first
spurious frequency f is suppressed while f2, fi3 and f4 can be used to form the second,
third and fourth operating bands respectively. The variation of Si1 and Sz; for different
values of L4 is shown in Figure 6.8. As shown in the figure, because of the multi-path
coupling routing and transmission zeros tuning method, six transmission zeros (TZ1-TZs)
are generated, positioned between different pass-bands to widen the pass-bandwidths

and improve the frequency selectivity.

Moreover, the fifth operating band of more than 3.5 GHz, the -3 dB bandwidth is
generated, which is described as fis in the figure. Figure 6.9 plots the effect of L4 on a
quint-wideband type SSMCL-ASIR. In (a), when L4 varies from 10.1 to 16.1 mm, fo
decreases while Qex1, normalized fs2 and Qex2/Qex1 fluctuate. In (b), normalized fs3, fu4

and fss increase slightly, and Qex3/Qex1 fluctuates slightly. In contrast, Qex4/Qex1 and
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Qex5/Qex1 decrease dramatically from 13 to 5.28 and from 7.1 to 1.2, respectively.

IS21] (dB)

100
0

40 L4=12.1mm,04=46.9° = — — L4=13.1mm.04=50.7° ]
y L4=14.1mm,04=54.6°

|s11]

1 2 3 4 5 6 7 8 9 10 11 12
Frequency(GHz)

Figure. 6. 8. Variation of S11 and S21 versus different values of L4
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Figure 6.10. (a) Simulated and measured results;(b) photograph of a modified
quint-wideband type SSMCL-ASIR.

Moreover, the notch of each Qexi/Qex1 (i = 2, 3, 4, 5) curve happens near Ls = 13.1 mm,
which means that relatively second, third, fourth and fifth bandwidths of the proposed

quint-band filter can obtained with Ls=13.1 mm.

The design procedures for single- and quint-wideband type SSMCL-ASIR BPFs can be

summarized as follows:

1) Choose the suitable electrical length ratio a, thus setting the fundamental
frequency fo, and choose the characteristic impedance ratio K in the ASIR to

realize improved insertion loss and return loss performance.
2) Analyse the transmission zero generating requirement of the meander coupled
section added to the SS-ASIR structure and calculate the approximate

transmission zero equations S21 = 0.

3) According to the calculated results, tune the length of the meander coupled section

to meet S21 = 0 and make f-n approach the resonant frequency fim to form a wide
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stop-band for the single-wideband type ASIR filter. The gap parameter S; and S3

are also utilized and tuned to realize optimized results.

4) Tune the length of the meander coupled section to move f,, away from fim, to
enable a multi-band response with good isolation between operating bands for the

multi-wideband type ASIR filter.

5) Because the non-wideband limitation of coupling matrix, coupling coefficient
are not the vital object to consider when designing, while external quality factor

Qex can be discussed for performance optimization, as mentioned above.

Simulated and measured results and photograph of the quint-wideband type SSMCL-
ASIR filter are shown in Figure 6.10. Good agreement can be observed between the
simulated and measured results, with discrepancies attributable to losses and fabrication
errors. It can be seen that quint wide-bands are realized with good in-band return loss
performance. The first pass band ranges from 1.0 to 1.38 GHz with a central frequency
(CF) of 1.19 GHz, and bandwidth (BW) of 380 MHz. The second pass band ranges
from 3.96 to 4.62 GHz with CF of 4.29 GHz, BW of 660 MHz. The third pass band
ranges from 5.0 to 5.86 GHz with CF of 5.43 GHz and BW of 860 MHz. The fourth
pass band ranges from 6.82 to 7.12 GHz with CF of 6.97 GHz and BW of 300MHz. The
fifth pass band ranges from 7.96 to 11.84 GHz with CF of 9.9GHz, and a large BW of
3.88GHz. In addition, there are five transmission zeros at 1.96GHz, 2.98GHz, 4.89 GHz,
6.68GHz and 7.58 GHz, which further enhance the frequency selectivity, as illustrated in
Figure 6.10. The parameter are listed:L1+L3=15.2mm, L1=14mm, L[L2=11.4mm,

WI1=0.4mm and W2=1.6mm. L1=13.1mm, S1=1.2mm, S2=0.2mm and S3=0.4mm.The
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quint-wideband type SSMCL-ASIR performance comparison with alternative quint-
band BPFs is shown in Table 6.3. It can be seen that the proposed structure has the
advantages including bigger fractional bandwidth, among them four fractional
bandwidths are higher than 10%. The insertion loss is lower than published ones. All
the single and quint band insertion losses are less than 2dB. Furthermore, the proposed

two structures are simple and are easily made.

Table 6.3

#PERFORMANCE COMPARISON WITH PROPOSED QUINT-BAND BPF

SINGLE/
CF 3dB IL MULTI- | EXTRA
SIZE BAND STRUC-
(GHz) FBW (%) (dB) VERSA- | TURE
TILITY
0.6/0.9/12/ | 58/52/58 | 2.82.92.9 | 0.045 % VIA
[12] NO
1.5/1.8 8.2/8.0 2.6/2.3 %0.52 A HOLE
0.63/133/2.03/ | 28.8/9.427 | 047LIHLE | (043, VIA
[13] NO
2.74/3.45 5.3/5.5 139126 | “0-178% HOLE
152535/ | 45/453.6/ | 151809 | 024A MULTL
[14] NO
45/5.8 45/2.7 12/2.5 %0.17 A LAYER

This | 1.19/4.29/5.43/ | 31.9/15.4/15.8/ | 1.0/0.47/0.50/ 0.05 A
YES NONE
Work 6.97/9.9 4.3/39.2 1.7/ 0.6 x0.40 2
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6.5. Tri-Wideband band-pass SS-ASIR Filter Design Using

Asymmetric Parallel Uncoupled Lines

An uncoupled section located within conventional coupled lines is a useful means to
achieve extra transmission zeros closing to existing zeros, created by the conventional

coupled lines. At the same time, this way can also add the freedom to optimize the in-

(a)

LieorZlo Z2eorZ20 Z3eorZ30
Portl G Ve Zs

Z2eor 220 Za L3eorL30
& 03

(b)
Figure 6.11. A SS-ASIR ASIR coupled pair with asymmetric parallel uncoupled meander

sections. The schematic diagram. (b) Even-mode or odd-mode equivalent circuit.

band performance of the original structure. The ASIR unit can be further moved
horizontally to the left/right so as to form the extra coupling between the high

characteristic impedance coupled line and the low characteristic impedance line. In this
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chapter, the ASIR coupling structure in vertical direction is further modified and an
asymmetric parallel uncoupling microstrip line structure (APUML) is proposed. As
shown in Figure 6.11 (a), the two ASIR unit impedance line has an extra coupling with
the distance between two vertical symmetry axes of two parallel uncoupling microstrip
line, and this distance is controlled and influenced by the APUML relative distance
parameter Lq4, Lar to open end and parameter St. The APUML’s height and inner gap is
Lm and Wm, respectively. The relative even- or odd-mode equivalent circuit of the
proposed structure is shown in Figure 6.11 (b). Zi. or Zio, Z2e Ot Z2, and Z3. or Z3, are
left, middle and right coupled section’s even or odd-mode impedance, respectively. Z,

Z3 or Z4 and Zs are uncoupled sections in two coupled ASIRs, respectively.

Compared to traditional skew-coupled ASIR filters, a wider second pass-band is
achieved and the additional third operating band is generated by adopting the novel

asymmetric parallel uncoupled microstrip lines. This means 7, is improved greatly and

a stronger coupling strength between two ASIRs is realized. Figure 6.12 illustrates the
influence of Wy, and Ly on the response of the APUML-ASIR tri-band filter with
different values of St. In (a), when Wm varies from 0.05 mm to 0.25 mm, fo decreases
slightly and fo/fo increases slightly but neither are greatly influenced by varying St.
Meanwhile, fo/fo does not change much but does less when St increases. In (b), when
W varies from 0.05 mm to 0.25 mm f1/fo decreases slightly while f», 3/fo hardly
changes, but when St becomes greater for a fixed W, f1,2, 3/fo becomes less. This means
transmission zeros can be controlled by W and St. In (¢), when Lm varies from 1.7 mm
to 2.9 mm, fs1, 2, 3/fo decreases slightly. When St varies from 1 mm to 4 mm, fo and f2/fo

donot vary but f;1/fo decreases.
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Figure 6.12. The influence of Wy, and L, on the response of the APUML-ASIR Tri-band
filter for variation of St: (a) fy and normalized f;; (W varies):
(b) Normalized f;:
(c) fo and normalized fs;, (Lm varies):
(d) Qex1 and normalized Qexi.
When one parameter varies, the others remain unchanged.

In (d), when Lm varies from 1.7 mm to 2.9 mm, Qex increases and Qex2, 3/Qex1 decreases,
so that the fundamental bandwidth becomes narrower. When St becomes greater, Qexi
does not change and Qex2, 3/Qex1 decreases. Compared to fo, fs2, f-1 and f23, the variation of
St has greater influence on the second pass-band central frequency fi1, the second

transmission zero f2> and the third pass-bandwidth.

Figure 6.13 shows the effect of the reference location parameter L4 on the frequency
response of the proposed tri-band filter. It is noted that when L4 changes from 5 mm to
7.64 mm when Lqi is fixed at 8.1 mm, the second pass-band return loss performance is
enhanced greatly and its bandwidth becomes wider, providing a wide second pass-band

of more than 3.5 GHz.
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At the same time, a third pass-band is formed and its return loss as well as its insertion
loss performance is improved considerably by varying Ld. Similar phenomenon can be
observed when varying Ldl with fixed Ld. Therefore, Ld and Ldl are two important
factors to tune and influence the coupling strength between two modified ASIRs and

external quality factors.

The analysis of the asymmetric parallel uncoupled microstrip line unit (APUML)
further helps to explain the formation of the second and third pass-band. The APUML
topological structure and frequency response are plotted in Figure 6.14. As seen in the
figure, the APUML unit forms two wide pass-bands between 4-6 GHz and 6-8 GHz

when Ld1 changes from 9.1 mm to 7.1 mm. This result proves the advantage of the
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5 i
czu . TZ3
40 'EIE O ]
TZ2! § —— Ld=5mm
J (:) Ld=6mm
50 ! —— Ld=7mm "
C:; ..... Ld=7.64mm
_60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 T 8 9 10

Frequency(GHz)

Figure 6.13. The impact of Lq impact on the frequency response of the SS-ASIR filter with
APUMLs.
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Figure 6.14. The analysis of the APUML structure

APUML structure to optimize the in-band filter performance. As for out of band
performance, the APUML unit generates four transmission zeros at both sides of the
pass-bands, as plotted in Figure 6.14. These four transmission zeros can improve the
isolation performance between the three pass-bands, and the out of band suppression

performance.

The simulated S-parameters, measured S-parameters and fabricated photograph of the
tri-wideband ASIR filter are shown in Fig.6.15. Good agreement is observed between
the simulated and measured results and the slight discrepancies are attributed to the loss
and fabrication errors. It can be seen that triple wide-bands are realized with good in-
band return loss performance. The first pass-band ranges from 1.46-1.98 GHz with the

(CF) of 1.72 GHz, bandwidth (BW) 520 MHz and fractional band width (FBW) 30.2%.
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It can be applied in the Global Positioning System (GPS: frequency band centred at
1.57 GHz), Global System for Mobile Communication (GSM: 1800 MHz) and

Universal Mobile Telecommunication System (UMTS: 1710-1880 MHz, etc.). The
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Figure 6.15. Simulated and measured results of SS-ASIRs with
APUMLs; (a) Narrowband view of the first passband, (b) Narrowband view
of the second passband, (c) Narrowband view of the third passband.
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second pass-band ranges from 3.90-5.54 GHz with CF 4.72 GHz, BW 1.64 GHz and
FBW 34.7%. It can be applied in IEEE802.11a WLAN applications including 5G Wi-Fi.
The third pass-band, which ranges from 7.32-7.86 GHz with CF 7.59 GHz, BW 0.54
GHz and FBW 7.1%, can be applied in earth-satellite satellite communication.
Moreover, good isolation is achieved between the three pass-bands, to eliminate signal
interference. Three transmission zeros located at 3.02, 6.26 and 9.01 GHz are generated
to enhance frequency selectivity, which can be seen in Figure 6.15. The triple-wideband

type APUML-ASIR filter performance comparison with alternative tri-band BPFs is

Table 6.4
PERFORMANCE COMPARISON WITH PROPOSED TRI-BAND ASIR BPF

CF 3dB IL ISO1 2, EXTRA
1SO SIZE STRUC
( GHz) FBW (%) (dB) 2.3 TURE

0.206A, VIA
[13] 1.875/3.54/5.91 19.9/14/4.6 0.6/0.75/1.65 | >27/>20
x0.086A, | HOLE

>40.4 / 0.108¢ VIA
[15] 1.8/3.5/5.8 7/5/3.5 0.88/1.33/1.77
>12.78 x0.5212, | HOLE

0.045, VIA

[16] 2/3.45/5.8 8.7/13.4/7.2 | 1.40.7/1.7 NA
x0.52), | HOLE

0.21A, VIA

[17] | 24/35/545 | 11.6/6.7/17.8 | 1.1/1.2/1 | <40/<40
x0.11%, | HOLE

This 0.092
1.72/4.72/7.59 | 30.2/34.7/7.1 | 0.58/0.43/1.3 | 43.5/39.2 NONE
work x0.51%
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shown in Table 6.4. It can be seen that the proposed structure has the advantages
including bigger fractional bandwidth, among them first two fractional bandwidths are
higher than 30% and are bigger than the published works.The insertion losses are lower
than published ones. All the tri-band insertion losses are less than 2dB. Furthermore, the

proposed two structures are simple and are easily made.

6.6 Conclusion

Novel multi-standard single/tri/quint-wideband ASIR filters are proposed in this chapter.
By utilizing a novel modified SS-ASIR coupled pair with meander coupled sections,
and placing transmission zeros close to resonant frequencies, a single-wideband filter
with good fractional bandwidth, insertion loss and return loss performance is realized.
By varying the lengths of meander coupled sections, stronger coupling between two
resonators is realized and more transmission zeros are generated, which are tuned to
help in forming a quint operating wideband. With the help of APUML, a tri-wideband
ASIR filter is realized with high fractional bandwidth. These filters effectively cover
several applications including GPS, GSM, UMTS, ISM and IEEE 802.11 a/b/g/n/ac,
with controllable bandwidths. Furthermore, the proposed structures successfully realize
ASIR filter applications in single/dual/triple/quadruple/quint-wideband fields, but with
the advantage of higher versatility. Measured results agree well with simulated results
and theoretical predictions. The good in-band and out-of-band behaviour, compact size
and simple structure make the proposed filters very promising for applications in future

multi-standard wireless communication.
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CHAPTER 7

Novel Multi-standard
Mixed-Coupled Single-Wideband
And Quint-Wideband Asymmetric

Stepped Impedance Resonator Filters

7.1 Introduction

One of the prevalent methods for creating finite transmission zeros is the basic cross-
coupling mechanism [1]. These cross couplings are equal in magnitude and out-of-
phase with the mainline one at the transmission zero frequencies. Cross-coupling paths
can be introduced either by resonant nodes [2]-[4], or non-resonant nodes [5], [6]. This
mechanism is only valid with the assumption of narrowband nondispersive mainline and
cross couplings, and it is able to generate maximum finite N transmission zeros without
considering I/O ports (N is the filter order). Another popular mechanism to create finite
transmission zeros is based on mixed inter-resonator couplings, where capacitive- or
inductive-dominant mixed coupling is dispersive. In the filter core-passband synthesis,
it provides required capacitive- or inductive-dominant couplings. Meanwhile, these

capacitive and inductive components annihilate each other at certain frequencies,
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resulting in finite transmission zeros. Mixed coupling between open-loop resonators
was discussed in [7], and its inductive and capacitive components are enlaced with each
other. An earlier work [8] employed stepped-impedance resonators (SIRs) to separately
control inductive and capacitive components in mixed inter-resonator couplings.
Separated inductive coupling using iris and capacitive coupling using strips were also
introduced between two cavity resonators [9] and the substrate integrated waveguide
(SIW) resonators [10]-[12] for implementation of compact inline quasi-elliptic bandpass
filters. For the other planar implementations, quasi-elliptic bandpass filters based on
resonators and separated and mixed couplings were illustrated in [13]-[18]. Explicit
formulation presented in [7] and [11] explained the existence of one lower side
transmission zero for the capacitive-dominant coupling, and one upper side transmission

zero for the inductive-dominant coupling.

Figure 7.1 shows the proposed second-pole mixed coupled asymmetric stepped-
impedance (ASIR) filter. In the traditional ASIR structure, each resonator has a high
and low- characteristic impedance section. In the proposed mixed electric coupling and
magnetic coupling (MEMC) modified ASIR structure, high-characteristic impedance
sections are coupled partly with each other to form the spiral and open-loop structure
leading to mixed electric coupling and magnetic coupling effect. The electric coupling
is generated between the gaps of the coupled high impedance sections, since the
resonator has the maximum electric fringe field density at the open ends [19]. The

magnetic coupling is achieved by the parallel coupled section.

According to [20], S21 can be calculated as:
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S = 2jImiy,} (7.1)

B _l—Im{yH}z +Im{y,,}* +2Im {y, }

The phase of S»1 and the group delay (tq) are:

Lul

50-Q
Portl

Lep

Figure 7.1 A skew-symmetrical asymmetric SIR couple pair with meander coupled section.

) 2Imy, }
/S21=72-tan’ 1
o [Hm{yn}z +Im{yn}2j (72)

T ———Zszl—itan_lu— ! ﬂ 7.3
d dw dw 1+u® dw (7.3)
where
21
miy, (7.4)

u= 2 2
1-Im{y,,}" +Im{y,,}

The Y-matrix [Y] of the coupled lines is expressed by the following:
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1/Z 1/Z 1z, 12
— 7 Oeven + Oodd cot ecp _] Oeven Oodd csc ecp
[Y]{yn ylz}: 1/Zy,~1/Z, 1/Z , 1/Z 72
— +
Yo Vm L L oeven : Oodd._ Cecp _ jlZoeren Oodd cotQCp
However, it seems that it needs be corrected as the Y-matrix [Y’]:
+Z Lo =2
_ ] Oeven Oodd c OtHcp ] Oeven 0Oodd cs (ﬂcp
I (Y Y| 1 2
R A A 7. +7 (7.6)
21 22 ] Oeven2 Oodd cs Cecp _ ] Oeven2 Oodd C Otgcp

Based on the equation above, S;i is equal to zero when coupled line length Lo, = A/4

corresponds to 0,,=90° (0p is the electrical length of L¢). Since u =0 in this case,

_£S21 _ du _ db,, du

Ty =———— =— — 7.7
e dw dw dw do, 77
and the group delay of the coupled line 7, can be expressed as
0.,
T, = A(l—cot2 6, +Bcot6?cp) (7.8)
0]
where
A — ZOe + ZOo
Z ? z
1 (Zoe+24,) cot’ g, +—*——"%csc’ G,
(7.9)

(ZOE +ZOo )2

2
B= cotd,, (1 +cot’ 4, )—@cot@w csc’ g,

The equivalent circuit of the coupled structure in the proposed filter is shown in Figure
7.2.
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Figure 7.2. The equivalent circuit of the coupled structure in the proposed filter.

The coupling routing scheme of the proposed filter is shown in Figure 7.3. It is seen
from Figure 7.3 that at least four coupling routings are created by the use of the spiral
and open loop (SOL) structure, which lead to the cross-coupling and multiple

transmission zeros. This can facilitate the forming of the wide stopband.

Lul
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Port2

(b)

Figure 7.3. The coupling routing scheme of the proposed filter. (a) The structure.

(b) The coupling routing scheme.
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7.2. Single-Wideband Filter Design

(a) The effect of parameter Lm;: Figure 7.4 shows the effect of parameter Ly in a
single-wideband type mixed coupling ASIR filter. It is seen from Figure 7.3 that when
L1 increases, fo would become smaller, that means the fundamental frequency can be
changed by the-means of changing the coupling length parameter Lmi of the ASIR
coupled structure. At the same time, the stopband suppression level would be changed
with the increase of L. When Li1=1.8 mm, the stop-band ranges from 3.45-11.35 GHz
with best -13.9 dB suppression level. The in-band best insertion loss (IL) is -0.85 dB.

When L1 = 2.2 mm, the stop-band ranges from 3.26-10.7 GHz, which is 4.2y (fo is the

fundamental frequency of the filter). The return loss (IL) is larger than -12.0 dB.
Although the stopband suppression level becomes less, the bandwidth, the insertion loss
performance and return loss performance are improved, while when L1 increase from

1.8 mm to 2.2 mm, the widened bandwidth ranges from 2.25-2.82 GHz with central

T T T T T T T T T T T T
0 ?f———“[‘; . =
7 &)\ NPT
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. [
10 rrr H | =
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Figure 7.4. The effect of parameter Ly in single-wideband type mixed
coupling ASIR filter with SOL structure.
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frequency of 2.535 GHz. The in-band best insertion loss (IL) is -0.77 dB.

(b) The effect of parameter g: to increase the coupling gap g between the high
characteristic impedance lines from 0.25 mm to 0.31 mm, both the fundamental
frequency and the harmonic frequency change little. However, the insertion loss of the
pass-band would be changed from -0.75 dB to -0.76 dB and from -0.76 dB to -1.67 dB
when g increases from 0.25 mm to 0.31 mm, and the return loss of the pass-band would
be changed from from -11.8 dB to -12.0 dB and from -12.0 dB to -6.8 dB. This means

that the coupling strength is weakened by the increasing of g.
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Figure 7.5. The effect of parameter g in single-wideband type mixed coupling
ASIR filter with SOL structure.

At the same time, the stop-band suppression level is enhanced by the increasing of g,
which changes from -10 dB to -16.7 dB with general broadened stopband bandwidth.

Besides, the stop-band width would be changed by the change of g. The optimized
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value of parameter g can be found as 0.28 mm from Figure 7.5, which shows the effect

of parameter g in single-wideband type mixed coupling ASIR filter.

(c) The effect of parameter L.: when the uncoupled high characteristic impedance lines
L. increase from 0.5 mm to 0.15 mm, the fundamental frequency and the harmonic
frequency decrease. Meanwhile, the pass-band insertion loss and return loss
performance become better, and the stop suppression level firstly becomes better then
becomes worse later. This means the uncoupled part of the mixed coupling ASIR filter
with spiral and open-loop coupled structure can also influence the resonance locations,
insertion loss and return loss performance. Figure 7.6 shows the effect of parameter L.
in the single-wideband type mixed coupling ASIR filter. The optimized value of

parameter L. can be found as 1 mm from Figure 7.6.
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Figure 7.6. The effect of parameter L. in single-wideband type mixed coupling

ASIR filter with SOL structure.
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(d) The effect of parameter L: when L increases from 3 mm to 3.8 mm, the fundamental
frequency and the harmonic frequency do not change much. At the same time, the return

loss changes from better than 11.9 dB to better than 8.4 dB . When L=3.8 mm, the stop
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Figure 7.7. The effect of parameter L in single-wideband type mixed coupling
ASIR filter with SOL structure.
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Figure 7. 8. Single-wideband type spiral and open-loop coupled ASIR band-pass

filter’s surface current distribution at fo.
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band ranges from 3.26-10.6 GHz. When L is equal to 3 mm, the stop-band ranges from
3.08-11.9 GHz with a suppression level of -9.3 dB. When L increases to 3.4 mm, the
stop-band ranges from 3.26-11.7 GHz with a suppression level of -15.0 dB. Figure 7.7
shows the effect of parameter L in single-wideband type mixed coupling ASIR filter.

The optimized value of parameter L can be obtained as 3.4 mm from Figure 7.7.

Figure 7.8 illustrates the single-wideband type spiral and open-loop coupled ASIR
band-pass filter’s surface current distribution at fo, showing that when the electric
coupling is weak due to the relative long distance between two open ends of the high
characteristic lines, the magnetic coupling plays a main role to the fundamental mode.
The dimensions of the spiral and open-loop ASIR filter in Figure 7.1 are Ly =2.0 mm,

L¢i = 1.0mm, L=3.4 mm, g=0.28mm, W =0.4mm and W; = 1.6 mm.

7.3. The Quint-Wideband Filter Design

Many multi-band filters have been presented in literature such as in [21]-[27]. Among
them, tri-band bandpass filters and quad-band filters are good candidates [21]-[24].
However, both proposed types of filter have the disadvantage of narrow-band
characteristics which cannot cover the required frequency bands, insertion loss
performances which are not satisfactory or occupying relatively large sizes. To further
improve the filter performances and solve the problems mentioned above, the quint-
band filter was firstly proposed in 2012 by [27], which proposed tri-mode stub-load
stepped-impedance resonators to realize quint-band performance. A multiple stubs
loaded ring resonator (MSLRR) is proposed in [26] to design directly coupled multi-

band bandpass filters (BPFs) with mixed electric and magnetic coupling (MEMC), and
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[25] utilizes three pairs of simple microstrip stepped-impedance resonators on the top
and middle metal layer, and two pairs of slot uniform-impedance resonators on the
bottom metal layer. By this means, a quint-band performance can be realized by these
individual structures. However, all of the proposed quint bandpass filters have relatively
complicated structures such as multiple via holes [26][27] or multi-layer structures.
These disadvantages make the design and fabrication complicated, leading to high loss

and cost.

In this section, a compact quint-wideband bandpass filter with low insertion loss, good
return loss and wide passband is designed. The proposed filter has no extra structure
such as via holes or multi-layer. The filter is designed, fabricated and measured. A good
agreement between simulated and measured results is obtained. The proposed quint-
wideband mixed-coupling ASIR filter with the description of electric coupling and
magnetic coupling effect is illustrated in Figure 7.9. The centre and both ends of an
ASIR coupled section are the fundamental mode’s peak points of the magnetic field and
electric field, respectively. To enhance the electric coupling of the filter, two adjacent
spiral ASIRs’ ends can be closely located, which can be adjusted by gi. We can enhance
the magnetic coupling of the fundamental mode by closely locating two adjacent spiral
ASIRs’ parallel coupling parts, which can be adjusted by g». The field peak points of the
proposed filter using spiral and open-loop structure is shown in Figure 7.10. The
coupling points of spurious modes can be adjusted by changing coupling length L¢,. The
spurious modes can also be adjusted by changing uncoupled section lengths Ly and L,
which add the freedom for designing the quint-band filter. The effect of spiral and open-
loop coupled high characteristic impedance line structures (SOLHLs) in ASIRs can be

reflected by the surface current distribution at fundamental frequency and its spurious
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frequencies, which is illustrated in Figure 7.11. In Figure 7.11, magnetic coupling plays
a main role to the fundamental frequency because the electrical coupling is weakened
by the long distance between two open ends, whereas the four spurious mode fs1, fs3, fs4
and fss current densities are high in different places of the SOLHLs, which means the
SOLHLs facilitates the forming of high-order modes in the proposed quint-band filter.
The simulated results’ comparison between the quint-wideband type modified ASIR

BPF with and without the SOLHL structure is shown in Figure 7.12.
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Figure 7.9. The proposed quint-wideband mixed-coupling ASIR filter

with the description of electric coupling and magnetic coupling effect.
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Figure 7.10. Field peak points of the filter using spiral and open-loop couple structure.

164



To investigate the character of the proposed structure, the filter is designed on a Rogers
RO3210 substrate with dielectric parameter of 10.2, tand of 0.0027 and thickness of
0.635 mm, then is simulated by HFSS. The dimensions of the spiral and open-loop
ASIR filter in Figure 7.9 are Lu1= 5.9 mm, Ly, = 6.6 mm, L. =9.3 mm, L, =17.8 mm, g;
= 0.22mm, g = 0.2mm and W;=1.6 mm. The total size of the proposed cross-coupled
spiral SIR filter is 0.17 Agx0.41 &g, where A is the microstrip guided wavelength at fo. Its

measured result agrees well with the simulation.

Simulated and measured results of the quint-wideband ASIR filter with SOLHLs are
plotted in Figure 7.12 and Figure 7.13, respectively. Good agreement is observed
between the simulated and measured results and the discrepancies are attributed to the
loss, fabricated errors and so on. The first pass-band ranges from 1.03-1.52 GHz with
central frequency (CF) of 1.275 GHz, and bandwidth (BW) of 490 MHz It is suitable
for GPS (L1 band: 1.57542 GHz, L2 band: 1.22760 GHz, L3 band: 1.38105 GHz, L4
band: 1.84140 GHz). The second pass-band ranges from 3.03-3.42 GHz with CF of
3.225 GHz, BW of 390 MHz, and can be used in 3G Wi-Fi application. The third pass-
band ranges from 5.52-6.23 GHz with CF of 5.875 GHz, BW of 710 MHz, so can be
used in IEEE802.11a applications. The fourth pass-band ranges from 7.00-8.03 GHz
with CF of 7.515 GHz, BW of 1.03 GHz, while the fifth pass-band ranges from 9.53-
9.95 GHz with CF of 9.74 GHz, and has a large BW of 420 MHz, They can be used in
satellite communication. Two transmission zeros located at 2.49 GHz and 4.98 GHz are

formed to further enhance the frequency selectivity, also illustrated in Figure 7.12.

The photograph of the fabricated quint-wideband ASIR filter with SOLHLs is Figure

7.14.
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Figure 7.11. The quint-wideband type spiral and open-loop coupled ASIR band-pass filter’s
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Figure 7.12. The simulated results comparison between the quint-wideband type

modified ASIR BPF with and without the spiral and open loop structure.
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Figure 7.13. Simulated and measured results of the proposed quint-wideband ASIR filter.

Figure 7.14. Photograph of the fabricated quint-wideband ASIR filter.
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Table 7.1

PERFORMANCE COMPARISON WITH CURRENTLY QUINT-BAND BPFs

EXTRA
CF(GHz)/ Insertion Loss
SIZE STRUC-
0 (dB)
3 dB FBW (%) TURE
0.6/5.8%, 0.9/52%, 1.2/5.8%, 282929, | 0.0450,
VIA HOLE
[27] 1.5/8.2%, 1.8/8.0% 2623 %0.52 X
0.63/28.8%, 1.33/9.4%, 2.03/2.7%, | 047,1.14,1.8, | 0.043 i
[26] 2.74/5.3%, 3.45/5.5% 139,126 | x0.178 %, | VIA HOLE
1.5/4.5%, 2.5/4.5%, 3.5/3.6%, 151809, | 024% | poitL
[25] 4.5/4.5%, 5.8/2.7% 1225 0172, | LAYER
THIS 1.275/38.4%, 3.225/12.1%, 0.41,1.27,0.83, | 0117«
NONE
WORK | 5-875/12.1%, 7.515/13.7%, 9.74/4.3% LTALSS | a4

It can be seen that the proposed structure has advantages including bigger fractional
bandwidth, amongst which four fractional bandwidths are higher than 10% and are
better than the published works. The insertion losses are lower than published ones. All
the tri-band insertion losses are less than 1.6dB. Furthermore, the proposed two

structures are simple and are easily made.
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7.4. Conclusion

In general, new mixed-coupled quint-wideband ASIR bandpass filters which consist
of spiral and open-loop coupled structure to enhance fundamental mode coupling
and another four spurious modes coupling with optimum insertion loss performance
have been proposed. The proposed filter has the advantages of applicable quint-

wideband, simple structure and compact size, which are all attractive and versatile

for the microwave/RF applications in future multi-function wireless communication.
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CHAPTER 8

Summarized Conclusions And

Recommendations for Future Work

8.1 Summarized Conclusions

Chapter 1: explained the motivation for this work as being the development of high
performance, multi-standard filters with compact size, low in-band insertion loss (IL),
and high out-of-band rejection skirts. Current developments in microwave filter design
were outlined, with asymmetric stepped impedance resonator architectures providing
the context for those further improvements and innovations proposed in this work..
Moreover, present day wireless communication standards and relative operating
frequency bands are identified for better understanding of the microwave. radio

frequency context

Chapter 2: provides an introduction and a comprehensive literature review of the state
of the art in microwave filters. The recent main stream of microwave filters are
classified and discussed separately in detail. This chapter also shows performance and

structure analyses combining new materials, new structures and new technologies in the

174



microwave filter field, helpful to the enhancement of the performance of microwave

filters as well as microwave systems.

Chapter 3: presents a comprehensive theoretical study of microwave filters. It includes
the introduction of four basic filter types: low-pass, high-pass, band-pass and band-stop
filters. Filter design parameters are presented. Three classic filter types are explained.
Furthermore, the way to transform filter frequency is also presented and described in

detail.

Chapter 4: provides a comprehensive study of the stepped impedance resonator (SIR)
structure. All three types of quarter wavelength, half wavelength and full wavelength
SIR resonator are analysed and fully explained. All of these are helpful to the detailed
design of SIR filters in the next chapter. Moreover, the asymmetric stepped impedance
resonator, which is a novel SIR structure and has appeared in recent publications in the
last ten years, is studied because of its advantages over other structures including the

SIR structure. Sensitivity of the performance to variation in dimensions is explored.

Chapter 5: Based on ideas discussed in the earlier chapters, a novel parallel coupled
ASIR structure is proposed and its characteristics are fully analysed and discussed. The
proposed novel interdigital cross-coupled lines structure successfully realizes fractional
bandwidths of 43.2% and 10.5%, respectively. Due to the use of an interdigital cross-
coupled structure, multiple routes and an extra transmission zero are generated. This
leads to the realization of the wide stop band. The measurement result shows that the
filter has a wide stop band ranging from 2.46-4.86 GHz with -10dB suppression level

and a stop band ranging from 6.05-12.1 GHz with -10 dB suppression level. This can
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suppress the signal interference from the 3.5 GHz Worldwide Interoperability for
Microwave Access signal, satellite communication signals and so on.

The proposed novel parallel uncoupled ASIR structure successfully realizes the first
pass-band ranges from 1.37-1.89 GHz with a central frequency of 1.63 GHz, bandwidth
of 520 MHz and fractional band width (FBW) of 31.9%. The second pass-band ranges
from 3.66-5.46 GHz with central frequency of 4.46 GHz, a bandwidth of 1.8 GHz and
fractional band width (FBW) of 33.0%. Moreover, the stop-band ranges from 2.12-
3.5 GHz with -10 dB suppression level. A wide upper stop-band ranging from 5.83-

9.35 GHz with -10 dB suppression is realized.

Chapter 6: This chapter proposes an ASIR coupled structure rearranged by the
meander coupled section. The novel structure’s characteristics, mathematical analyses
as well as the generation condition for the transmission zero point are analysed. The
measurement result shows that a single-wideband filter is realized with very low
insertion isolation of only 0.36 dB at the central frequency and return loss of better than
25.5 dB. The pass-band ranges from 1.18-1.84 GHz with central frequency 1.51 GHz,
bandwidth 660 MHz and fractional band width (FBW) 43.7%. Due to the use of
transmission zero realization method, a wide stop-band ranging from 2.1-7.32 GHz is
realized, which can suppress signal interference such as IEEE802.11b, Worldwide
Interoperability for Microwave Access signal, IEEE802.11a and so on. The proposed
second filter realizes the first pass band ranging from 1.0 to 1.38 GHz with a central
frequency (CF) of 1.19 GHz, and bandwidth (BW) of 380 MHz. The second pass band
ranges from 3.96 to 4.62 GHz with CF of 4.29 GHz, BW of 660 MHz. The third pass
band ranges from 5.0 to 5.86 GHz with CF of 5.43 GHz and BW of 860 MHz. The

fourth pass band ranges from 6.82 to 7.12 GHz with CF of 6.97 GHz and BW of
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300MHz. The fifth pass band ranges from 7.96 to 11.84 GHz with CF of 9.9GHz, and a

large BW of 3.88GHz. It has many detailed application.

Chapter 7: This chapter proposes an ASIR spiral and open loop coupled structure to
realize the single-wideband filter and the quint-wideband filter. The proposed first
structure realizes a wide bandwidth ranging from 2.25-2.82GHz with central frequency
of 2.535GHz. The in-band best insertion loss (IL) is -0.77dB. Furthermore, a wide stop
band ranges from 3.26 to 10.7 GHz with -15dB suppression level is realized. It can
suppress the signal inference such as Worldwide Interoperability for Microwave Access
signal, IEEE802.11a and so on. The use of a spiral and open-loop structure, which can
realize the mixed electric coupling and magnetic coupling effect at the same time,
facilitates the quint-band performance. The structure for quint band is realized. The first
pass-band ranges from 1.03-1.52 GHz with central frequency (CF) of 1.275 GHz, and
bandwidth (BW) of 490 MHz. The second pass-band ranges from 3.03-3.42 GHz with
CF of 3.225GHz, BW of 390MHz. The third pass-band ranges from 5.52-6.23 GHz
with CF of 5.875 GHz and BW of 710MHz. The fourth pass-band ranges from 7.00-
8.03 GHz with CF of 7.515 GHz and BW of 1.03 GHz, while the fifth pass-band ranges
from 9.53-9.95 GHz with CF of 9.74 GHz and a large BW of 420 MHz. The proposed

structures are promising for applications in multi-standard wireless communication.

Chapter 8: This chapter summarises the above mentioned outcomes and proposes the

future plan.

8.2 Recommendations for Future Work
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Throughout the research it was observed that there are areas for future work that can be
carried out:

¢ Analyse the theory and performance of a novel multi-standard modified polygon

resonator filter which covers GSM/UMTS/IEEE 802.11 bands. To validate the

ideas, the multi-standard filter need to be simulated by Ansoft HFSS software,

fabricated and measured.

e Analyse the theory and performance of a proposed novel multi-standard
modified parallel resonator filter. To validate the ideas, the multi-standard filter

need to be simulated, fabricated and measured.

e Analyse the theory and performance of a proposed novel multi-standard
modified mixed electronic and magnetic coupling (MEMC) filter. To validate
the ideas, the multi-standard filter need to be simulated by Ansoft HFSS

software, fabricated and measured.

e Analyse the theory and performance of a proposed novel multi-standard
modified polygon resonator coupled with ring resonator. To validate the ideas,
the multi-standard filter need to be simulated by ADS software, fabricated and

measured.

e Analyse the theory and performance of a proposed novel filter whose resonant
frequency can be tuneable and reconfigurable. To validate the ideas, the multi-
standard filter need to be simulated by Ansoft HFSS software, fabricated and

measured.
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In recent years, with the requirements in the current increasingly stringent frequency
spectrum resources and the development of advanced multi-standard wireless
communication systems, multi-standard internal filters have become a necessity for the
state-of-the-art multifunction “smart phones” and wireless transceivers for the mobile
devices

In this paper, we propose a novel multi-standard filter with the size of only 4.
6mmx41. 65mm for wireless communication systems. The proposed filter has a
fundamental bandwidth of 605. 9 MHz with fractional bandwidth(FBW) of 31. 4%
centred at the 1. 9 GHz band, and first spurious bandwidth of 501 MHz with FBW of 8.
6% centred at the 5. 8 GHz band. This filter is able to generate two wide operating
bands that effectively cover the GSM/UMTS/GPS /IEEE 802. 11a operations in mobile
devices, which include GSM1800 (1710-1880 MHz), GSM1900 (1850-1990 MHz),
UMTS (1920-2170 MHz), GPS(centred at 5. 75 GHz) and IEEE 802. 11a (centred at 5.
8 GHz) bands, which usually are only covered partly by recently published works[1-4].
The configuration of the presented multiband filter is illustrated inFigure 1, which uses
folded couple lines instead of traditional a quarter wavelength SIR couple lines to
optimize high order spurious performance. The even- and odd-mode phase velocities
compensation technique with shifted coupled lines [5] are used for the first time in the
quarter wavelength type resonator to enhance spurious frequency and out of band
performance. What's more, the return loss of fundamental resonance frequency and
first spurious frequency become less with the help of the loaded stub. The Ansoft
HFSS software simulated result agrees well with the theory predictions, which is shown
in Figure 2. The featured broad bandwidths over dual applicable frequency bands and
the miniaturized size of the proposed filter make it promising for applications in multi-
standard wireless communication.
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Abstract. A novel multi-standard dual-wide-band filter with a compact size of only 8. 8 mm by 16.
8mm is designed and developed for transceiver devices. The proposed filter has a fundamental
bandwidth of 1. 6 GHz with fractional bandwidth(FBW) of 29. 7% centreed at the 5. 4 GHz band,
and second bandwidth of 300. 0 MHz with FBW of 3. 6% centreed at the 8. 15 GHz band. The basic
dual-wide-bandwidth is attributed to the interaction of the novel modified polygon pair and upper stub
loaded stepped impedance resonator. Moreover, the added down stub loaded stepped impedance
resonator (SLSIR) further enhances the pass-band performance by widening the bandwidth and
optimizing reflection coefficient performance considerably. To validate the proposed ideas, the multi-
standard filter is designed and simulated by Ansoft HFSS software. The simulated results agree well
with the theory predictions. The featured broad bandwidths over two frequency bands and the
miniaturized size of the proposed filter make it very promising for applications in future multi-
standard wireless communication.

Keywords: Dual-wide-band filter, multi-standard, stub loaded modified step impedance resonator,
wireless communication.

1 Introduction

In recent years, wireless communication facilities such as wireless transceivers has been exerting an
increasingly vital impact in the field of microwave and radio frequency communication. One of the most
important modules in wireless communication system is the filter. Filters play a critical role in passing
desired frequency bands and stopping the unwanted ones including noise signals. Therefore, performance
of the filter greatly influences performance of the whole wireless communication system [1-9].

With the requirements in the current increasingly stringent frequency spectrum resources and the
development of advanced multi-standard wireless communication systems, multi-standard filters have
become a necessity for the state-of-the-art multifunction wireless transceivers for the mobile devices.
Such filters are generally required to be capable of covering the frequency bands of IEEE 802. 11a, IEEE
802. 11h, IEEE 802. 11j and IEEE 802. 11n,all of which operate at 5 GHz bands, IEEE 802. 11ac,which
was approved by IEEE in January 2014 and provides very high throughput(VHT) wireless local area
networks (WLANSs) in the 5 GHz band and IEEE 802. 11p, which is intended for use in vehicular
communication systems as well as specifies WLAN in the licensed Intelligent Transportation
Systems(ITS) band of 5. 9 GHz(5. 850-5. 925 GHz). Furthermore, ever increasing implementation of the
communication between earth and space satellite further increases the Global Positioning System
(GPS)(frequency bands centreed at 5. 75 GHz)requirement and X-band requirement such as
International Telecommunication Union (ITU) designed earth-space satellite communication band(7. 9-8.
4 GHz), transmission frequency bands of earth observation satellite systems including Terra(frequency
bands centreed at 8. 2125 GHz),Aqua(frequency bands centreed at 8. 16 GHz) and so on. Recently,
many dual band filters have been designed to satisfy such stringent requirements [1-5]. However, most of
them with a miniaturized size fail to cover the required frequency bands, especially at the lower frequency
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band due to the narrower dual bandwidth [1-3] or require a considerable filter size or thickness, which
usually makes them difficult to integrate within mobile devices or portable wireless modules [1][4][5].

In this paper, we propose a novel multi-standard filter whose size is only 8. 8mmx16. 8mm. This filter is
capable of generating two wide operating bands that effectively cover IEEE802. 11a/802. 11h/802.
11j/802. 11n/802. 11ac(frequency bands cover 5 GHz),IEEE 802. 11p(frequency bands centreed at 5. 9
GHz), Global Positioning System (GPS) (frequency bands centreed at 5. 75 GHz), International
Telecommunication Union (ITU) designed earth-space satellite communication band (7. 9-8. 4 GHz) and
most transmission frequency bands of earth observation satellite systems.

The proposed multi-standard filter’s transmission zeros, which are used to realize the isolation of two
pass-bands as well as the isolation between pass-bands and out of band, are attributed to the mutual
coupling of the modified polygon microstripe line. The in band performance of the proposed filter is
mainly realized by upper shaped stub loaded stepped impedance resonator. This performances is further
enhanced by adopting down shaped stub loaded stepped impedance resonator (SLSIR). Because there is
no via hole or defect ground structure included in the filter structure, the structure is relatively simple and
easily realized. The theory study of the multi-standard filter and configuration performance with
simulation results are described in Section. 2, and the conclusion of this paper is given in Section. 3.

2 Filter Theory and Configuration
2.1 The introduction of the novel modified polygon pair

The configuration of the presented multi-band filter is illustrated in Fig. 1, in which the modified polygon
pair forms a symmetric structure. Two modified polygon pair exert the effect of resonators which
generate the basic curve of the filter second pass-band and sufficient transmission zeros that are used to
realize the isolation of two pass-bands as well as isolation between pass-bands and out of band. Further,
two modified polygon resonators act as the function of feed lines for both upper and down shaped stub
loaded stepped impedance resonators. Among them, the upper resonator mainly realizes dual-wide-band,
and the down resonator further enhances in band performances including widening bandwidth. In this
work, the modified polygon resonator pair strips are fed by two 50Q microstrip feed lines. The width (SW)
and length (SL) of the 50Q feed line is 0. 6mm and 1. 2mm, respectively.

Figl. The architecture of the proposed dual-wide-band filter

2. 2The shaped stub loaded stepped impedance resonator

The shaped stub loaded stepped impedance resonators (SLSIR) of the proposed filter in shown in Fig. 2
(a). It is seemed that upper and down SLSIR couple with two polygon resonators in a folded line form
and stepped-impedance stub is embedded in invagination part between two polygon resonators. This
means saves much size of resonators and results in a more compact filter size without sacrificing filter
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performance. In order to simplify the analyses and calculation, SLSIR equivalent structure is derived,
which is shown in Fig. 2 (b). The equivalent structure includes a traditional SIR with the characteristic
admittance Y;, Y2, and electrical length®;, 26, which is connected to a stepped-impedance stub in the
middle. The stepped-impedance stub includes high impedance line with characteristic admittance 2Y3 and
electrical length 63, and low impedance line with characteristic admittance 2Y, and electrical length 6.
Since SLSLR is symmetrical in structure, odd- and even-mode analysis is utilized.

2 W4

Wi

Y., \?\‘,'3
Y, 26,

®) (d

Fig2. The modified SLSIR of the proposed filter and its equivalent structure

For odd-mode excitation, the equivalent circuit is shown in Fig. 2(c). According to the transmission line
theory, the input admittance for odd-mode is expressed as:

Y? =—jY, cotb, (1)

inl —

Yy +jY tan6,

Yinadd:Y; - .
’ Y, + jY? tan, ()

inl

When Yin0da=0,equation(2) can be deduced as:KitanO;tan6,=0. Where Ki=Y;/Y>. Assume the electrical
length ratio of the odd-mode resonance is: a2=6,/(6+6:). Then substitute this to (2), there is
KitanO;-cot [O; (1-az)/az] =0 3)

The odd-mode solution of (3) is depend on Ki and a2. The ratio of the first two odd-mode resonance
frequency can be determined by the length ratio @ and admittance ratio Ki, which are shown in
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Fig. 3. Ratios of the first two odd-mode resonant frequency Fig. 4. Ratios of the first three even-mode resonant
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For even-mode excitation, the equivalent circuit is shown in Fig. 2 (d). The even-mode input admittance is
expressed as:
YiiT even = }]1 Yl:l)l +.j% tanel
©0 =Y+ Y tan 4
In which ¥ =, (7 + %, tan0,)/(v, + /¥ tan6,) . Y7 =¥, (j¥, tan6, + j¥, tan6,)/(¥, + j(j¥, tan6,) tan,) -
When Yineven=0,equation(4) can be deduced as: K, tand), = [tan(6, + 6, )+ K, tan 6, [/(K, tan 6, tan(@, +8,)—1) ,in
which K4=Y4/Y3. The relationship among three even-modes, different electrical length ratio a4 and admittance
ratio K4 is shown in Fig. 4. When Y;=Y>=Y;3 is supposed for simplicity, we can get Y,

in,o

w =—JY, cotd, and
6:=90° when Yinoae=0. The fundamental odd-mode resonance frequency is:

fy=c/lL, e, 5)

The input admittance for even-mode resonance frequency is express as:
- Y4tan04+Y3tan(¢92+03)
in,even 3
Y, —Y, tan6, tan(6), + 93) (6)

When Yineven=0, K, tan @), +tan(6, +6,)= 0 and further X, tane,6, +tan(1-a, )0, =0. (7

In this case, the stub loaded stepped impedance resonator generates one odd-mode frequency and two even-
mode frequency. A thing that needs to be mentioned is because of irregular shape of the feed line (including
polygon pair) to SLSIRs and the influence of coupling between two polygon resonators, even-mode frequency
of SLSIRs can be tuned by combining theory values and empirical values to make it locate into desired
frequency bands.
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Fig. 5. The magnitude response S11 and S21when there is only Fig. 6. The magnitude response S11 and S21 when
polygon pair polygon pair and when polygon pair coupled coupled with upper SLSIR and when polygon
with upper SLSIR pair coupled with upper and down SLSIR

2. 3The superimposition of Polygon Pair Waveform and Stub Loaded Stub Impedance Resonator

Waveform and The Isolation between Bands

Because the modified polygon pair provides the basic curve of the filter second pass-band and four
transmission zeros including the third transmission zero of 6. 68 GHz, which is shown in dash lines in
Fig. 5. Using this feature, we design the upper stub loaded stepped impedance resonator’s odd-mode
frequency which is also SLSIR’s fundamental frequency to be located at 5. 3 GHz. According to
equation (5), we get the length 2L, is equal to Ag2 (a half of wavelength of SLSIR) and the value of
L> is 4. 4mm when fyis 5. 3 GHz. Then external and internal radius of the polygon is set as R1=4. 1
and R2=2. 8mm, respectively. The two even-modes frequencies are tuned by changing the dimension
of stepped impedance stub W3, L3, W4 and L4 in order to make it locate in 5-6 GHz band and X-band.
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In this work, we set W3=0. 2mm, L3=0. 3mm, W4=0. 4mm and L4=0. Imm. The electrical length of Lo,
Lsand L4 is 90. 0°, 6. 1°and 2. 0, respectively. From solid lines shown in Fig. 5, we know that after

adopting the upper SLSIR, dual wide-bands including 5. 0-5. 7 GHz centreed at 5. 34 GHz with fractional
bandwidth (FBW) of 13. 0% and 8. 0-8. 3 GHz centreed at 8. 14 GHz with FBW of 3. 7% are realized with the
help of polygon pair.

The magnitude response S11 and S21 of two occasions is shown in Fig. 6. The first occasion is when
only the modified polygon pair with upper stub loaded stepped impedance resonator play roles, which
is shown as dash lines. The second occasion is when modified polygon pair, upper and down stub
loaded stepped impedance resonator play roles, which is shown as solid lines. It is seem that by
adopting down stub loaded stepped impedance resonator, first pass-band performance including
bandwidth performance and reflection loss performance is improved considerably. The first pass-band
bandwidth of the proposed filter is broadened to 4. 6-6. 2 GHz centreed at 5. 4 GHz with fractional
bandwidth (FBW) of 29. 7% and second pass-band bandwidth is 8. 0-8. 3 GHz centreed at 8. 15 GHz
with FBW of 3. 6% with the interactionof down SLSIR, upper SLSIR and modified polygon pair.
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Fig. 7. The final results of the proposed dual-wide-band filter

The final results of the proposed dual-band filter is shown in Fig. 6. The substrate adopted in this
work is Rogers RO3010 whose dielectric constant is 10. 2 and thickness is 0. 635mm. In the model,
six transmission zeroes 0 GHz, 1. 80 GHz, 3. 60 GHz, 6. 40 GHz,6. 88 GHz and 7. 72 GHz are
generated. These transmission zeroes provides well isolation between desired dual bands, suppression
of out of band interruption and enhancement of the frequency selectivity. The gap width between two
resonator pair is 2S=0. 2mm and another gap width 2S1=0. 2mm.

3. Conclusion

A novel multi-standard dual-wide-band filter with a compact size is designed and developed for
wireless communication system such as mobile devices. This proposed filter covers a fundamental
bandwidth of 1. 6 GHz with fractional bandwidth (FBW) of 29. 7% centreed at the 5. 4 GHz band
and second bandwidth of 300. 0 MHz with FBW of 3. 6% centreed at the 8. 15 GHz, while occupy a
miniature area of only 8. 8mm by 16. 8mm. By utilising novel modified polygon pair and upper stub
loaded stepped impedance resonator, dual bands and sufficient transmission zeroes are generated. The
added down stub loaded stepped impedance resonator further enhances the first pass-band
performance by widening the bandwidth and optimizing reflection loss performance considerably.
What’s more,the folded and embedded structure of two SLSIRs saves much size of the proposed filter
compared to previous SLSIRs without sacrificing filter performance. The multi-standard filter is
designed, described and fully simulated. The Ansoft HFSS software simulated results agree well with
the theory predictions. The featured broad bandwidths over dual applicable frequency bands and the
miniaturized size of the proposed filter make it very promising for applications in future multi-
standard wireless communication.
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Mixed-Coupling Multi-Function Quint-
Wideband Asymmetric Stepped Impedance
Resonator Filter

Ywoang Tu, Fasd A Abd-Albameed. George A Ozuntalz,
Trust hfzpeka

A eaw moxed-compled guint-nidehand ASIE bandpaes filter is
proposed- spiral and epan-loop coupled smuctures realize fondamantal
mode ceupling and anhascs azcthar fowr spurious modas with optimum
insertiom logs The fundawszesal froquancy and four spurious fequencis
e Jocated 2t 1375 GHz with fracticnal bandnddth (FBW) of 33.4%,
3.213 GHsz with FEW of 33.4%, 5.877 GHz witk FEW of 12.1%, 7.313
GHe with FEW of 13.7%, 9.74 GHz with FEW of 4.3%. Tha filter is
suitabla for mmitiple applications inchiding GPE Wi-Fi and [EEE
E02.11a, axd pastially for [EEE 30216 The quint-wideband flter bas a
performance supsior o its  comeetly proposed  quint-widebasd
coumtarparts.

Mtreduction; The microsmip bandpas: filker (BFF) is ooe of the
fordamental componests in microwave Commumication systems.
Bamdpas: filters with good characteristics, such az low insertion lozs,
multi-function, wide passbend and compact zize, are required I
compmication systems [1-7]. With the current mereasingly strigent
demands on feguency resowces, mult-bend filters with multiple
famction: covering various comumunicabon stardard: and applications
are highly in demand, and accordingly many pnelti-hand filters designs
hawe been prezemted [3-5]. Amongst them, tri-band bandpass flters and
quad-band filters are srong cendidates. However, these two fypes of
filter have narow-band characteristics which cannat cover the mfficient
frequency bands, unsatisfactory insertion los: performance, or are
relatively large in size. To mmprove filter performance: and address the
problem: mentioned above, the quint-band filber was first proposed m
2012 [3], with tri-mode stub-load stepped-impedamce resomators to
realize quint-band performance. A muftiple-stub loaded ring resonator
(MELFR) i proposed in [4] wsing directly coupled moalti-baed
bandpass filters (BFF:) with mixed electric and magnetic coupling
(AWEMC). In [2] it is proposed to utilize three pairs of simple micosrip
stepped-mpedance resonators on the top and middle metal layer, and
o pairs of sbot uniform-impedance resonators on the bottom metal
layer. Quint-bard performance can indeed be realized by these
individual stroctares, but all of these filters have relatively complicated
structures swch 23 mubtiple via boles [3, 4], mubt-layer soucture [3] and
sp oo These disadvantases complicate the design and fabrication,
leading to high losz and cost.

In this Letter, a compact quint-wideband bendpas: filter with low
insertion loss, wide passhand and compact size is propo:ed, which
dizpense: with complex strochae: The filter is desigmed, fabncated and
mezzured Goed asreement between sunulated and measured results 2
abtaimed.

Propased circuit model and amysis: Fig. 1{2) and Fig 1{B) :bow the
confizuration of the asymmetric stepped impedance resopator (ASIE)
upit and the proposed second-pele mized coopled ASIE. filter,
respactively. In the ASIR. stucture, sach resomator has a hizh and low-
characteristic mipedance section. Itz rezonances poouwr when F.=0m
equation (1}

!_ J Etan@ +tand, {1
" Z 1-EKtmé tm8,

In the proposed mized coupled ASIR structure, twe Low characteristic
impedance ection: are folded to reduce the patch sizs, and kigh-
characteristic mopedance sections are partially coupled with sach other
to form the spiral and opes-loop strwcture lzading to mized slectric and
magnetic coupling. The electmc coupling is penerated betwesn the zaps
of the coupled high mypedamcs sections, smce the 3IF has the magimum
electic fringe field density at the open ends [8]. The maspetic coupling
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is achieved by the parallel coupled section. According to [2], 5. czn be
calrulared @

2jlmiy, }

S i)
27 1-Imfy, 1 +Imfy 3+ 2Im iy, }

The transmizsion zero: ocowr when 5;,=0. The Y-parameters 3, (1
AL I are related elements with coupling lensth L., Therefors, by
adjusting Ly, the transmission zeros czn be relocated This facilitate:
forming the palti-pazs band, in conjunction with the mized electric and
magnetic coupling effect.

The centre and both ends of an ASIE. coopled section are where the
magpetic and eleciric fields m the fandamental moda peak respectively.
To enhamce the slectric coupling of the filter, the ends of two adjacent
spiral A3IF: can be closaly located, which can be adjusted by g, We
c2n enhance the magmetic cogpling of the fmdamental mode by closely
poaitioning the paralle]l coupling partz of two adjacent spiral ASIRs,
which can be achieved using 2; [7]. The field peak field points of the
proposed filter are showm in Fig. 2. The coupling poimts of sparsmes
maode: can be adjosted by changimg coupling lensth L, The spuorson:
mades can alse be adjusted by changmg uwnceopled :ection lengths Loy
and L., which gives added freedom in desigring the poolti-band flter.
The effect of the spiral and open-foop coupled hizh chamactersstic
impedance line structure (SOLHLE) in AXIR= is reflected in the surface
ourrest distribution at the fmdamental Fequency md the other spario:
frequencies, as illostrated in Fig. 3. Magnetic coupling iz important m
determining the fundamental frequency beczuse the ele=cincal coupling
iz weakened by the long distance between two open ends, whereas the
four spurion: madss, £, fi. fo and f., have cwmest densities are
distributed m differemt places of the B0LHLE, which mean: the
ZOLHLE facilitates the forming of high-order modes in the proposad
quirt-hemd flter.
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Fig. I.Confipurations: () Soucture of an asymumetnic BIR. (b)) The

propesed  qumt-wideband mixed-coupline ASIE filter wath the
description of electric and magretic coupling efects.
magrsetic Hasire
i O coupling Cowpling
gl

Powtl

Fig. 2 Peak flsld poits of the fTiter wing rpiral and open-looy cowupie
SErucTure.
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Absitraci= This paper propotes a new peripective fo the Sgmid
level momitoring and comtrod fechnigne by deploying energy
effcient pacsive UHF RFID fage s Kiguid Tevel semvors. The
system ooty of the pamp, storage fank, Jevel semsory (pessive
tagsl, BRFID day reader, pump controd cironil, alarm circudt, ol
o imclicator crcwil The fays ave sealed (oir omd weler sght),
prograrmed with oatgue level fnbels usimy the Alien Reader
software(B60-868MHE) and deploved fo voriony levels of w
storage funk for level moniforing amd confrol. The mirrored Pe
shaped fay & desigoed modelled omd deployed for e o8 the
Tiguriel Teved semsors. The BFID reqder i disgrised fo foom a pant
of the fank cover fiterartly few inchey oway from the tage A
virmation of the tny readings received & wsed fo dnfer fevel
inmformaticn wiich i commmumicated vin the reader middieware o
i covmpieter dmtwhaze for manioring.

Keywords: Power efficient, Possive UHF BFID fag, lpwid level
imndication mmd control, RFTD Realer

L INTRODUCTION

Liquid level indication and controd is enormously useful
particularly i places where spillage or wastage of a
particular sort of liquid poses a lot of danger to human life
and to the ecosystem. An effective mechanism is needed to
monitor and effectively control the level of liquid pumped
through and into any surface or underground storage tank. In
any liquid monitoring technigue, the mtended threshold
levels are set to be monitored and contralled, In this werk,
five levels are marked for indication m the tank, these are
{UL-ultra Lowy), {L-Low) (M-Mid), {H-High}, and {L/H-
Ultra high). The lower and upper level limits are set as the
threshold levels which triggers a pump conirol circuit and
the alarm cwrcwit, Level sensing information from the tags
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are fed directly to the level mdicator circuit, the threshold
level information triggers the pump control circuit to engage
the liguid pump 0 commence pumping or to terminate
pumping. A safety mechanism is built imto the circuit to
cscalabe pump cirewitry malfunction, this sends panic
information o thie alarm circwt if the pump fails to function
when needed.

When these threshold levels are exceeded, a set of
feedback systems escalates this wisasl activity which then
triggers a range of other event driven control systems to
automatically curtail the sifetion by takmg prompe and
appropriate action. The demands of sophisticated automated
processing  systems, the need for ever-tighter process
conitol, and &n  increasimgly  sTingent  regulatory
environment drive process engineers to seck more precise
and reliable level measurement sysiems, Energy efficiency
and improved accuracy in liquid level measurement has led
to & tremendous reduction in chemical-process variability,
resulting in higher product quality, reduced cost, and less
waste, Mewer level measurement technologies have helped
in meefing requirements for accuraey relimbility and
clectronic reparting.

Previous approaches both manual and automated methods
applied to liquid level measurement have always had
limitations [ 1-10]. Sight glass used fior manual measurement
suffer from matereal failure and poses a serious fire and
explosion hazard to personnel, the scals are prone o leak,
and the sludge build up obscures visibility level and are
therefore being rapidly replaced by more advanced
technology. Crher level detection devices include those
based on specific gravity, the physical property most



The Effects of Mutual Coupling within Antenna Arrays
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Absiraci— In this paper, a conical helical ring anienna amay =
peoposed for detecting direction of armival (DOA). This array
is applied two angles of arrival (ADQA) methods. These ane
minimum  variance distortionless response (MVDR) and
MUSIC. The effict of mutual coupling is meluded on the
estimation accuracy of angle of arival. Six and eight elements
ring antenna array with different spacing are studied. Results
are presenied that include the estimation ermor before and after
compensation of mutual coupling.

Keywordi— Amerna array; direction finding (DF); angle
o arrival; mutual conpling: vacking sysiems.

[.  INTRODHICTHON

Direction of arrival is wsed to improve the communication
quality of service given to mobile telephone wsers from the
operator. Information gbout the direction of amival of the
incoming signals of the mobile users can be wsed 1o accurstely
prediet their trapectories, which can be used to estimate the
handoff instances [1]. Then resources for handoff requests can
be reserved in advance. This will eliminate handoff failere and
the associated quality of service (Qo8) degradation. Smart
antenna system is a promise technology of wireless mohile
communication systems that suppors the capacity of wireless
communications applications. These systems are adopting the
accuraie direction of arnval technigue and good beamforming
approach through the use of antenna array [2].

Tracking systems will be desirable, when an ADA
estimation method 15 integrated with compact omnidirectional
antenna arrays. In Wife direction finding  svstems, the
characteristic structure of the received signal mamix 5 wed 10
obtain the information of direction. There are many techniques
can be used to find the direction of armival such a5 minimum
varignee  distortionless  response (MVDR), mudtiple signal
classification (MUSIC), maximum entrogy, estimation of
signal ciers  wia  rotational | invariance  (ESPRIT)
techniques, Mormally, the muiual coupling aliers the identical
vectors of the anienna array, disturbing the covariance matrix.
As the result, the performance and estimation accuracy of
ADA method will degrade considerably [3, 4] In many
applications the size of patch and antenna array is crucial and
it should be minimized as small as possible. As the distance
between elements of an antenna array is decreased, the mustual
coupling betwoen  these elements will affect on the
performance of localzation techniques negatively, The effect
of mutual coupling is often analyzed by computing the mutusl

impedances between the anienna sensors; the valees of these
impedances are complex and depend on position and type of
antenna array mainly [5]. It should be noticed that the
behavior of mutual coupling of an antenna array in the
receiving end i significanily  different from that m
transmitting end [&, 7| In order to ensure an accurate
estimation (o direction of sources, one has to take into account
mutwal coupling effects. Then, a sutable decoupling approach
to compensate this effect can be applied. In [8], the authors
tested and investigated the performance of the ADA method
by wsing uniform circular array (UCA) consists of 4
monepoles placed on a square metal plate. The error improved
approximately by ffty percent afier compensation mutual
coupling of ADA technique. In thi paper, the impact of
numtizal coupling on direction finding systems have been
examined and investigated in the recerving mode. Two ADA
algorithms have been used with six and eight helical UICAs
with different separation distances. The error based on ACA
has been caleulaied before and after compensation to
demonsirate the operation concepl. Resulis summarnized the
oucomes of ADAS are presented.

Bl thors Cosfliciant in dEs
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Fig. 1. Inpun reflectenn coefficient,

1. ANTENMA ARRAY MODELLING
Conical normal mode helical antenna element & selected o
have a reduced antenna height, Omni-derectional radiation
pattern, and possible accepéable bandwadth to operate on
WLAN example. The helix antenna is modeled to operate at
resonant frequency 243 GHz for data acquisition. The height,
wire radius, and spacing between tumns of helix antenna are
17.5 mm, 0.5 mm and &4 mm respectively. The radius of the
helix at the bottom and the top are 2mm and 2.8mm
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