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Abstract— Fault tolerance is the ability of a system to respond 
swiftly to an unexpected failure. Failures in a cloud computing 
environment are normal rather than exceptional, but fault 
detection and system recovery in a real time cloud system is a 
crucial issue. To deal with this problem and to minimize the risk 
of failure, an optimal fault tolerance mechanism was introduced 
where  fault tolerance was achieved using the combination of  the 
Cloud Master, Compute nodes, Cloud load balancer, Selection 
mechanism and Cloud Fault handler. In this paper, we proposed 
an optimized fault tolerance approach where a model is designed 
to tolerate faults based on the reliability of each compute node 
(virtual machine) and can be replaced if the performance is not 
optimal. Preliminary test of our algorithm indicates that the rate 
of increase in pass rate exceeds the decrease in failure rate and it 
also considers forward and backward recovery using diverse 
software tools. Our results obtained are demonstrated through 
experimental validation thereby laying a foundation for a fully 
fault tolerant IaaS Cloud environment, which suggests a good 
performance of our model compared to current existing 
approaches. 

Keywords: Cloud computing; fault tolerance; virtual machine; 
pass rate; fail rate;cloud fault handler; 

I. INTRODUCTION 

Cloud computing has emerging as a popular paradigm and 
an attractive model of providing computing ,IT infrastructure, 
network and storage resources to end-users in both large and 
small enterprises [42]. It relies on sharing of resources to 
accomplish coherence and economies of scale, and the broader 
concept of shared services and converged infrastructure is at the 
foundation of cloud computing. Fault tolerance in cloud is the 
property that enables a system to continue functioning properly 
in the event of any failure of one or some of its components and 
it is of primary concern in the cloud computing 
environment[39]. In real time high performance large scale 
dynamic and complex systems in cloud, failures could happen 
due to varying execution environments, system components 
removal and addition, or intensive workload on the servers [38, 
42]. Steps need to be taken in order to handle the possible 
failures emerging within the cloud infrastructures. Fault 
tolerance techniques are designed around concepts of fault 
tolerance principles, whereby they dictate that, even in the 
presence of faults the system must be able to keep working to a 
level of satisfaction [42]. Thus a fault-tolerant model in cloud 

infrastructure is needed to enable a system to continue its 
intended operation, possibly at a lesser degree, rather than 
breaking down completely. Achieving high availability in is 
huge challenge because the number of Virtual machines (virtual 
nodes) and physical servers involved in the clouds are of 
hundreds to thousands in number, increasing their probability 
and risk of failure. It is imperative to node that failures cost the 
cloud vendors, not only their businesses and clients, but also 
their reputations. To prevent these mishaps, steps are taken to 
handle the possible failures emerging within cloud 
infrastructures. 

For instance in 2011, there was a Microsoft Cloud service 
outage which lasted for approximately 2.5 hours [30]. In the 
same week there was a Google Docs service outage which 
lasted for about an hour. This is as a result of memory leak due 
to a software update [42]. In Jan. 2014, one of Googles services 
(Gmail) was down for about 25 – 50 min, while Facebook 
reported an unavailable service for photos and “likes” in Oct. 
2013. Additionally, in September 2012 GoDaddy experienced 
a long downtime which lasted for 4 hours and approximately 5 
million websites were affected [30]. In October 2012, Amazon 
web services was reportedly down for about 6 hours  [42]. Many 
fault tolerance strategies have been designed to reduce the 
effect of fault but in this paper we propose an optimized fault 
tolerance strategy in real time Cloud Computing Environment 
to increase system availability, reduce the service time and 
enhanced rapid and efficient recovery from faults. The 
Infrastructure as a service (IaaS), platform as a service (PaaS) 
and software as a service (SaaS) are the three essential services 
offered by cloud computing. Each level of service handles fault 
tolerance at different levels of complexity. In this paper, our 
approach is applied to the Infrastructure as a service delivery 
layer, utilizing the computing hardware resources and the 
virtualization hypervisor that can manage virtual machine 
instances running on the physical server. Further components 
such as the load balancers, fault tolerance engine, firewalls and 
networking services can be utilized by cloud datacenters to help 
manage and regulate fault tolerance strategies in the cloud 
model [29, 41]. The main contribution of this paper is to 
develop an optimized infrastructure for IaaS cloud platforms 
there by showing a considerable improvement in the current 
research domain by optimizing the success rate of virtual 
computing node or virtual machines. This paper is organized as 
follows: Section 2 presents the related background while 



section 3 discuss the proposed system architecture and model 
description. Section 4 presents the experimental setup and 
model performance comparison and finally Section 5 concludes 
and presents the future work. 
 

II. RELATED WORK 
 

Recent research that focuses on Cloud fault tolerance [32, 33, 
25-28, 23-34] is more broadly covering aspects for standard real 
time systems [22, 25, 27, 36, 38], [16-20]. Very few works have 
addressed optimised fault tolerance approaches in real time 
cloud computing environment with focus on achieving high 
system availability. FT solutions are often specific to certain 
cloud delivery models, focusing on either high availability 
frameworks, using virtual nodes for fault prediction or using 
user defined APIs, to help optimize the cloud performance even 
in faulty situations. Researchers such as [12, 15, 26, 27,] focus 
on a reactive fault tolerance technique while [35, 14, 20, 13] 
analyze the performance of fault-tolerance systems with focus 
on high availability. Other research addresses optimization 
methodologies in fault situations and propose adaptive fault 
tolerance in real time cloud computing systems [36, 25, 11, 10, 
9]. Work by Egwutuoha et al. [22] presents a Proactive Fault 
Tolerance approach to HPC systems in the cloud while [19, 16, 
8] examine fault tolerance framework.  
However, following from the various existing approaches, this 
paper proposed an improved model based on an optimizing 
tolerance approach in real time cloud applications for running 
virtual machines. Using techniques based on parameters being 
optimized, we apply a selection rate process approach, where a 
virtual machine or node is selected for computation based on its 
previous pass rate and overall task service time. The model is 
designed such that if the VM does not show good performance, 
it can be deselected from the list of available VMs. This 
technique does not need to have a record and playback strategy 
because the guarantee of successful service completion is given 
by the initial decisions made at deployments of the service in 
the VMs.  
Our results have been analyzed against traditional approaches 
to validate how well the cloud environment repairs and 
manages to fulfill the service completion tasks. It has also been 
validated through quantitative and experimental results by 
simulations for testing performance for success using four use 
case scenarios for fault tolerance in cloud environments. The 
model is presented in Figure 1. 
 

III. PROPOSED SYSTEM  ARCHITECTURE 

A.  Model Description 
We present a working model of an optimized fail-over approach 
in real time cloud computing environment and a mathematical 
relationship that represents the fault tolerance model system 
using the concept of virtualization and FT checkpoint-replay 
scheme. Our model tolerates the faults on the basis of pass rate 
(PR) of each virtual node’s physical server. 
 
 
 
 

 

Where,                   𝑠. 𝑡

				𝑃𝑅 < 1,					

𝑃𝑅 = 1,

𝑃𝑅 > 0,

0 < 𝑃𝑅

0 < 𝑃𝑅 < 1

		    (1) 

 
A virtual node is chosen for computation based on the PR of 
corresponding physical server and can be removed and replaced 
if its selected node of the server does not perform well. The 
checkpoint/replay model is developed using the Reward 
Renewal process (RRP) [5]  theory with the aim of reducing the 
checkpoint overhead, checkpoint delay restart time and roll 
back time which is not covered in this paper. However, after 
each fault occurrence in the system, a backward recovery is 
performed and the VM is immediately restarted and recovered 
from the last successful checkpoint. Our approach has been 
analyzed with relation to four extreme use cases to analyze how 
the cloud fault handler would perform. Our model consist of 
four main modules namely; the service provide (SP)  module, 
the cloud master (CM) module, the selection mechanism (SM) 
module and the cloud fault handler(CFH) module where the 
checkpoint-restart module resides. 
Our fault tolerance system architecture which consists of four 
zones as shown in Figure 2, namely; 

• The Client zone - This is where one or more client can 
access any service of the fault tolerance cloud data 
center on demand at any given time. 

• The Virtualization zone - This zone is where one or 
more virtual machines and instances can be started up, 
terminated and migrated within the data center, and 

Figure 1. Proposed Optimal FT Model 
 



also acting as a link between the Client and the fault 
tolerance cloud environment. 

• The Fault tolerance zone - The FT zone is where the 
Hypervisor and Virtual machine monitor (VMM) 
exists supporting a high availability cloud service level 
and Service level objectives.  

• The Hardware zone - Under this zone, we have one or 
more distributed data centers in different locations 
with each datacenter consisting of numerous physical 
servers which provides hardware infrastructure for 
starting up virtual machines instances [7]. 

As presented in equation 2, we assume that a Fault Tolerance 
model (𝐹𝑇/) of a cloud system be represented by a sequence of 
five elements (Quintuple), or finite ordered list of elements. 
We define Pass Rate (PR) as the fraction or percentage of 
successful virtual nodes in the system after executing a complete 
computing cycle, and Fail Rate (FR) as the level or rate at which 
the virtual node of the system fails. The failure rate of the system 
depends on the time, status check and task time limit checker. 

Table 1 Parameters of our architectural model 
Parameters Meaning 
𝐹𝑇/  FT model of a cloud computing system 
𝐶 A client set composed of n-users 

𝐷𝐶    Data Centre 
𝐹𝑇2  Set of defined FT service levels  
𝑂𝐵𝐽6  Objective Function for optimizing a FT cloud 
𝑃𝑅7  Pass Rate Algorithm 
	𝐹𝑇8	 Fault Tolerance Level 

𝐶ℎ𝑘 𝑂𝑝𝑡  Checkpoint optimization strategy 
 

  
 

𝐹𝑇/ = 𝐶, 𝐷𝐶, 𝐹𝑇2	, 𝑂𝐵𝐽6, 𝑃𝑅7                                                                       (2) 
 

 𝑂𝐵𝐽6 = 𝑚𝑎𝑥 𝐹𝑇? ,					

𝑠. 𝑡										𝐹𝑇2	 ∈ 	 0, 1 ,

																	𝐶ℎ𝑘 𝑂𝑝𝑡 									

 (3) 

Where 𝑃𝑅7 is an algorithm which selects the optimal Pass 
Rate,	𝐶 = 𝑐B, 𝑐C, 𝑐D, … , 𝑐FGC  represents a set composed of 𝑛-
clients that may request for services separately, 𝐹𝑇2  represents a 
defined  set of fault tolerance service levels by the Cloud service 
provider,	𝑂𝐵𝐽6  is the cloud fault tolerance optimizing objective 
function and 𝐷𝐶 = 𝑑𝑐B, 𝑑𝑐C, 𝑑𝑐D, … , 𝑑𝑐FGC  represents a data 
center set which is made up of		𝑑𝑐F  data centers, where 	𝑑𝑐J =	 
𝑝𝑠B, 𝑝𝑠C, 𝑝𝑠D, … , 𝑝𝑠JKLMNO  and 𝑝𝑠JP	(0 ≤ 𝑘 < 𝑑𝑐J) is the 𝑘𝑡ℎ 

physical server of the 𝑖𝑡ℎ data center 𝑑𝑐J . 

B. Component Module Description of the Model 
  Figure 1 shows our proposed adaptive model. A set of nodes 
are created by requests from the resources of the host machine 
or the physical server. This is achieved by the virtual machine 
monitor (VMM) or a hypervisor. The host machine is the server 
where the VMM runs guest virtual machines. The VMM 
presents the guest operating systems with virtual operating 
platforms and also manages the execution of these guest 
operating systems. It also retains records of all virtual nodes 
created from the different host servers. In addition it retains and 
manages the record during the process when a cloud load 
balancer assigns job to a virtual node of a specific host server 
in order to evaluate the pass rate. The various components are:  

• Service provider (SP) – is responsible for forwarding 
the task submitted by the client to the Cloud Controller 
(CC). It returns results obtained from the cloud 
controller to the cloud user. 

• Cloud Master (CM) –is one of the key module in the 
cloud architecture. It has a direct link or connection to 
the SP. Virtualization is done here with the help of a 
low level program called a hypervisor which provides 
system resources access to virtual machines and also 
creates a virtual environment. In addition, it also keeps 
record of virtual nodes and their corresponding 
physical nodes each time a virtual node is created from 
the available resources of the physical servers. A set 
of virtual nodes can be created from the resources of a 
single physical server. The virtual node IDs, server 
IDs and Pass Rate are all contained in the Cloud 
Information Service (CIS), which helps to identify the 
virtual nodes and keeps record of the number of times 
tasks are assigned to any virtual nodes of a particular 
corresponding host or physical server. 

• Cloud Load balancer (CLB) -The CIS is also available 
to the CLB and distributes the load based on 
information from the record of the physical systems 
used for virtualization. The CLB will only assign task 
to those virtual nodes whose corresponding physical 
servers are having a high pass rate. 

• Cloud Fault Handler (CFH) – is a critical module in 
our model because when a task fails, it is allowed to 
be restarted from the last successful checked pointed 
state rather than starting from the beginning. It is an 
efficient task level fault tolerance technique for long 
running applications because it keeps the system in 
operation and not break down completely whenever a 
fault is detected[7, 12]. A scenario where a virtual 
node develops a fault as a result of some transient 
faults that occurred in the remote host server of the 

 
Figure 2 Proposed System Architecture 

 



corresponding virtual node or due to some recoverable 
temporary software faults present in the cloud 
controller, in these situations the CFH takes full 
responsibly and the cloud information service record 
table gets updated. However, if there is no virtual node 
executing under that host server, then CFH 
immediately restarts the remote server and the cloud 
load balancer is informed not to assign any task to the 
virtual nodes of the corresponding server. It then 
applies a fault detection strategy and a 
Checkpoint/Replay technique thereby making the 
virtual node of that host or physical server available 
for future request.  

• Selection Module (SM) – The selection module is 
made up of the following sub modules; namely Status 
Check (SC), Cloud Information Service Record Table 
(CIS) and Task Time Limit Checker (TTLC). This 
module provides the crucial process and is made of the 
SC, TTLC, CIS record table, FT check-pointer and the 
final selection mechanism. Here SC checks the status 
of the each virtual node, and if the Status is Pass then 
the task deadline time is checked by the TTLC. If both 
SC and TTLC are pass, then pass rate (PR) of the 
corresponding node is increased and forwarded to the 
decision mechanism module for final selection 
process. But if both SC or TTLC fail, then the 
corresponding virtual machine is not forwarded for 
final selection and instead the node is forwarded to the 
Cloud fault manager for fault detection and recovery. 
In a scenario where SC is success but the task is not 
completed within the time limit, then the pass rate in 
the CIS record table of that particular node is 
decreased and that node is not forwarded to the final 
decision mechanism sub module. In addition, the final 
selection mechanism contains all virtual nodes that 
successfully passed the SC and TTLC module and 
after this point the node with the highest pass rate 
value is selected and checkpoint is made. But if all 
nodes failed then the CFH takes over and the 
Checkpoint/Replay technique is applied where a 
backward recovery is performed with the help of the 
last successful checkpoint. It should be noted that if 
there exist more than one node with the same PR value 
then a node will be selected at random. Following are 
the conditions and rules considered in the approach. 
 

Table 2. Rules of the system 
S/N Rules SC TTLC Outcome 
1. Condition-1 1 1 Continuous  Pass 
2. Condition-2 1 0 Partial Pass 
3. Condition-3 0 1 Partial Fail 
4. Condition-4 0 0 Continuous Fail 

Here in the table above “0” denotes Fail, and “1” denotes Pass 

C. Checkpoint/Replay using Reward Renewal Process (RRP) 
The scheme uses a checkpoint model that follows a RRP [5-7], 
where after each failure occurrence in the system, backward 
recovery is performed and the application is immediately 
restarted and recovered from the last successful checkpoint. In 

other words the fault is repaired before the last task time deadline 
is reached, and whenever all nodes fails, the system state is save 
and the application will be restarted from the last successful 
checkpoint as shown in Figure 3. 
 

TABLE 3.  Parameters of Fault Tolerance Model 
𝛀J  The cycle between failure and failure(i+1) 
𝑱F  Time of the 𝑖𝑡ℎ	checkpoint 
𝑇WXY  Roll Back Time 
𝑅Z  Restart Point 
𝑇W[\  Recovery Point 
𝑇]  Failure Point  
𝑇\^  Time interval of a failure cycle 
𝑇_`  Checkpoint Overhead 
∆J Time interval between consecutive checkpoint 

 
Let (𝑇Xa	 ,	𝑇b[\  , 𝑇WXY)	 of each cycle be a sequence of independent 
identically random variable (𝐿C ,	𝐿d , 𝐿D), …,	 which is dependent 
on any point in time failure occurs in the system 	Ω	 stands for 
the 𝑘fg time between failures in each computing cycle. 
 

  𝛦 [𝑇Xa	] <  ∞  (4) 
 

In order to improve the checkpoint mechanism performed by our 
system, we looked at how to determine checkpoint intervals that 
decreases the checkpoint restart time delay. Studies have shown 
that in order to balance the 𝑇Xa		and roll back time of our 
application, checkpoint should not be carried out too regularly. 
So, the time delay can be expressed as  

                                      
𝐿f	 = 𝑇J									

jk

JlB

  (5) 

Where, 𝑥f			 =   sup 𝑛:	𝐽F	 ≤ 	𝑡   =    
 max 𝑛 ∈ (1,2,3… . )|	𝑥f	 ≤ 	𝑡 , 
And 𝐽F	 refers to the 𝑘fg failure time of intervals [	𝐽F	, 𝐽FqC	] 
which is also called renewal intervals defined as following, 

 
𝐽F	 = 𝑇J																			

r

JlC

 (6) 

Equation (5) denotes the renewal reward process where 𝐿f	 is 
dependent on	(𝑇Xa	,	𝑇b[\, 𝑇WXY)	.The renewal function is defined 
as the expected value of the number of failures observed up to a 
given time t:  

								𝑓 𝑥 = 	𝛦	[𝑋f	]      (7) 
 

Hence, the renewal function satisfies,   
  lim

f→{
	
1
𝑡
𝑓 𝑥 =

1
𝛦	[ΩC]	

     (8) 

                      
Substituting (7) into (8) gives, 

 
	 lim
f→{

	
𝑋f	
𝑡
=

1
𝛦	 ΩC

	  (9) 

Proving the elementary renewal theorem it is sufficient to show 
that for an elementary renewal theorem for renewal reward 
processes the reward function is given as: 

    			𝑔 𝑥 = 	𝛦	[𝐿f	]			 (10) 
 

The reward function thereby satisfies,  
 

					 lim
f→{

	
1
𝑡
𝑔 𝑥 =

𝛦	 LC
𝛦	 ΩC

 

 
(11) 



 
 
 

   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substituting (10) into (11) gives 
 

	 lim
f→{

	
𝛦	[Lf]
𝑡

=
𝛦	[LC]
𝛦	[ΩC]	

 (12) 
 

From (5), we have     
 

			𝐿f	 = 𝑇J				
jk

JlB

 (13) 

Then (12) becomes,  
 

lim
f→{

	
𝛦	[ 𝑇J

jk
JlB ]
𝑡

=
𝛦	[𝐋𝟏]
𝛦	[𝛀𝟏]	

 (14) 

Therefore,                   
 

𝐿f	 =
𝛦	[𝐋𝟏]
	𝛦	[𝛀𝟏]		

 (15) 

Where  𝐿f	 is called the renewal reward process as derived in [5, 
6]. Conversely, there is an additional time to save the system 
application states which is called the checkpoint overhead. To  
improve the checkpoint mechanism, checkpoints should not be 
performed too frequently in other to achieve balancing between 
the checkpoint overhead, recovery time and application re-
computing time as derived in [2, 3, 4, 7]. 

D. Use Case Scenario Analysis 
We considered 100 computing cycles and present a metric 
analysis to evaluate the Pass and Fail scenarios of three virtual 
nodes (VM-1, VM-2, VM-3) respectively. Here we assumed that 
each VM belongs to a different host server, 𝑷 = 𝟎. 𝟓, 𝐪𝟏 
represents the number of times virtual machine of a host server 
produce a Pass outcome and 𝐪𝟐 represent the time the Cloud 
Controller’s Load balancer designates a task to a virtual node. 

  
                               (a)                       (b) 

 (a) Use Case1 (Pass to Fail), Use Case 2 (Fail to Pass)  
(b)Use Case 3 (Continuous Pass), Use Case 4 (Continuous Fail) 

 
Figure 4. Use Case Scenarios for Pass and Fail  

 
Figure 3 Checkpoint Strategy Failure Model 

 



Figure 4 shows the Pass and Failure scenario comparison of our 
use case scenarios where the increase in PR after the required  
100 computing cycles for use case-3 is 0.978, while the decrease 
rate (FR) for use case-4 is 0.579.  This shows that the increase 
in PR is greater than the decrease in FR, clearly displaying a 
good performance of algorithm. Further scenarios for use case-
1 and 2 were tested for validating the results. The obtained 
results indicates that use case-1 continuously passed while use 
case-2 continuously failed as shown in figure 4(a).While use 
case-3 passed for the first 100 cycles and then failed for the 
remaining 100 cycles figure. Use case-4 failed for the first 100 
cycles and then succeeded for remaining 100cycles (Figure 4a).  

IV. EXPERIMENTAL SETUP AND PERFORMANCE COMPARISON 
The experiments were conducted using CloudSim[1], where 
three virtual nodes were created and tested. The SFS algorithm 
has 100 computing cycles with every individual node executing 
a series of tasks at a time. While these tasks are executed in one 
computing cycle, every virtual node runs a diverse algorithm. 
The different Pass and Failure scenario obtained from this 
experiment displays the diversity in software and timing 
constraints. The selection or decision mechanism is responsible 
for receiving results obtained from the virtual machines before 
it dispatches or returns the result of the successful job to the 
client via the service provider. 
At the service provider level, the selection or decision 
mechanism is integrated with the Cloud controller module. In a 
situation where a failure occurs in one of the nodes, the system 
will automatically adapt a fail-over strategy and continues 
operating using the remaining nodes. The system will maintain 
and continue its operation in a steady state until all nodes have 
failed. A node is then selected and a checkpoint is made by the 
last selection mechanism to keep the status of the system for 
future recovery. This is done after a successful completion of 
one computing or instruction cycle. 
We assumed that the value of 			𝑥C,	𝑥d PR, virtual node ID, 
corresponding server ID are available and that the task deadlines 
are given as input with initial values 𝑥C =1, 𝑥d = 2	and PR = 0.5 
are considered for every node. Figure 4 presents results obtained 
from the performance comparison of our proposed strategy with 
other existing approaches. 

A. Performance Comparison of Results 
1. Virtualization and Fault Tolerance Approach (VFT) - 

Das et al. [12] proposed a virtualization and fault 
tolerance technique to reduce the service time and 
increase the system availability. They used a Cloud 
Manager module and a Decision Maker in their 
scheme to manage virtualization and load balancing 
and also handle faults. By performing virtualization 
and load balancing, fault tolerance was achieved by 
redundancy and fault handlers. Their technique was 
mainly designed to provide a reactive fault tolerance 
where the fault handler prevents the unrecoverable 
faulty nodes from having adverse effect. 

2. Adaptive Fault Tolerance Approach(AFT) –Mailk et 
al. [36] proposed an adaptive fault tolerance in time 
cloud computing where the main essence of their 
proposed technique was an adaptive behaviour of the 
reliability weights assigned to each processing node 
and adding and removing of nodes on the basis of 
reliability. 

3. Our Proposed Approach - For the purpose of 
evaluation, we compared our proposed strategy with 
the VFT approach[12] and AFT where we referred to 
the result obtained from our proposed strategy as the 
measured parameter while that of  VFT and AFT are  
referred to as the calculated parameters respectively. 

Based on the performance comparison analysis conducted from 
our simulated results, the standard deviation for VM-1 was 
estimated to be 6.5187, while that of VM-2 and VM-3 was 
8.4856 and 12.004 respectively. In other words, compared to our 
proposed approach, this reveals that the VFT strategy deviated 
by 6.5187 in VM-1 as shown in figure 5(a) and by 8.4856 in 
VM-2 figure 5(b). A further deviation of the strategy was also 
noticed in VM-3 as presented in figure 5(c).This also shows the 
degree of discrepancy of the calculated result from the measured 
result. For the VFT algorithm, the increased in Pass Rate is less 
than our proposed strategy. Details of this model can be found 
in [12]. In our study, 100 computing cycles were used in 
simulation and assumed pass rate of 0.5 at the beginning. 
 

 
             (a) Virtual Machine – 1                            (b) Virtual Machine – 2                       (c) Virtual Machine – 3 

Figure 5. Performance Comparison of VFT strategy with our Proposed Strategy 



 

 
Figure 5 Mean Error Comparison 

In comparing the three models, we first obtain the relative error  
𝑥b[  , then we calculated the actual error 𝑥J	which is the 

difference between the calculated and measure result. These are 
expressed as (16) and (17) respectively. 
 

 		𝑥b[ = 	
𝑞J��Y\�Y�f[8	 − 	𝑞J�[�2�b[8	

𝑞J�[�2�b[8	
	×	100 (16) 

 
 𝑥J = 		 𝑞J��Y\�Y�f[8	 − 	𝑞J�[�2�b[8	 (17) 

Figure 5 and Figure 6 shows the mean error comparison and 
success rate analysis between the strategies, where we 
concluded that our proposed model is an improved approach. 
The Average percentage relative error (APE), Average absolute 
percentage relative error (AAPE) and Standard deviation (SD) 
were also obtained. Equation (18-20) gives the mathematical 
definition of these parameters and (Table 5) gives experimental 
results. 

      
                                         (a)                                                                                     (b)                                                                                  (c)   

Figure 6. Success Rate Analysis of VM-1, VM-2 and VM-3 
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A Performance evaluation of VFT and AFT strategy with our 
proposed model was carried out using  𝑥b[,  𝑥J , 𝑒C,  𝑒d	 and 𝑒D 
respectively. 

TABLE 4. Parameters 
 Parameter Meaning 

			ƐC Total average percentage relative error 
Ɛd Total average absolute percentage relative 

error 
			ƐD    Total standard deviation 
			𝑥b[	    Relative error 
		𝑥J	   Actual  error 

 
 

TABLE 5. Performance Comparison of VFT and AFT with Proposed Strategy  
  Performance Comparison Parameters 

Virtual 
Machine 

ID 

Compute 
Cycle Ɛ𝟏(%) Ɛ𝟐(%) 			Ɛ𝟑(%) 

VM-1 100 -11.0812 11.0812 6.5187 
VM-2 100 -10.8510 10.8510 8.4856 
VM-3 100 -15.6587 15.6587 12.0041 

V. CONCLUSION 
This paper presents a intergated virtualized failover strategy for 
real time computing on the cloud infrastructure. The proposed 
IVFS uses the pass rate of the computing virtual nodes with the 
fault manager using the checkpoint/replay tecnique by appying 
the reward renewal process thoerem. It tries to repair the fault 
generated before the deadline as a fault tolerance mechanism. 
that the scheme is highly fault tolerant because it had all the 
advantages of forward and backward recovery which the 
system takes advantage of using diverse software. Our 
algorithm integrates the concept of fault tolerance based on high 
pass rate of computing nodes and less service task finish time 
there increasing the system availability. With the help of the 
pass and fail rate analysis obtained from the experimental 
results as well as the performance comparison of the existing 



approaches,we conclude that the proposed fault tolerance 
scheme gives an improved performance. In our future we will 
aim at addressing fault tolerance challenge especially in a large-
scale high performance environment by minimizing the 
performance loss like checkpoint overhead, checkpoint 
recovery time and re-computing time.  
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