

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the

repository record for this item and our Policy Document available from the repository home

page for further information.

To see the final version of this work please visit the publisher’s website. Access to the

published online version may require a subscription.

Link to publisher version: https://doi.org/10.1109/FiCloud.2016.58

Citation: Mohammed B, Kiran M, Awan IU et al (2017) Optimising Fault Tolerance in Real-Time

Cloud Computing IaaS Environment. In: Proceedings of the IEEE 4th International Conference on

Future Internet of Things and Cloud (FiCloud) 22-24 Aug 2016. Vienna, Austria.

Copyright statement: © 2016 IEEE. Reproduced in accordance with the publisher's self-archiving

policy. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/156963467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/FiCloud.2016.58

Optimising Fault Tolerance in Real-time Cloud
Computing IaaS Environment

Bashir Mohammed1,†, Mariam Kiran2 ,Irfan-Ullah Awan3 and Kabiru .M. Maiyama4
School of Electrical Engineering and Computer Science

University of Bradford
Bradford, BD7 1DP, UK

b.mohammed1@bradford.ac.uk1, m.kiran@bradford.ac.uk2, i.u.awan@bradford.ac.uk3, k.m.maiyama@bradford.ac.uk4

Abstract— Fault tolerance is the ability of a system to respond
swiftly to an unexpected failure. Failures in a cloud computing
environment are normal rather than exceptional, but fault
detection and system recovery in a real time cloud system is a
crucial issue. To deal with this problem and to minimize the risk
of failure, an optimal fault tolerance mechanism was introduced
where fault tolerance was achieved using the combination of the
Cloud Master, Compute nodes, Cloud load balancer, Selection
mechanism and Cloud Fault handler. In this paper, we proposed
an optimized fault tolerance approach where a model is designed
to tolerate faults based on the reliability of each compute node
(virtual machine) and can be replaced if the performance is not
optimal. Preliminary test of our algorithm indicates that the rate
of increase in pass rate exceeds the decrease in failure rate and it
also considers forward and backward recovery using diverse
software tools. Our results obtained are demonstrated through
experimental validation thereby laying a foundation for a fully
fault tolerant IaaS Cloud environment, which suggests a good
performance of our model compared to current existing
approaches.

Keywords: Cloud computing; fault tolerance; virtual machine;
pass rate; fail rate;cloud fault handler;

I. INTRODUCTION

Cloud computing has emerging as a popular paradigm and
an attractive model of providing computing ,IT infrastructure,
network and storage resources to end-users in both large and
small enterprises [42]. It relies on sharing of resources to
accomplish coherence and economies of scale, and the broader
concept of shared services and converged infrastructure is at the
foundation of cloud computing. Fault tolerance in cloud is the
property that enables a system to continue functioning properly
in the event of any failure of one or some of its components and
it is of primary concern in the cloud computing
environment[39]. In real time high performance large scale
dynamic and complex systems in cloud, failures could happen
due to varying execution environments, system components
removal and addition, or intensive workload on the servers [38,
42]. Steps need to be taken in order to handle the possible
failures emerging within the cloud infrastructures. Fault
tolerance techniques are designed around concepts of fault
tolerance principles, whereby they dictate that, even in the
presence of faults the system must be able to keep working to a
level of satisfaction [42]. Thus a fault-tolerant model in cloud

infrastructure is needed to enable a system to continue its
intended operation, possibly at a lesser degree, rather than
breaking down completely. Achieving high availability in is
huge challenge because the number of Virtual machines (virtual
nodes) and physical servers involved in the clouds are of
hundreds to thousands in number, increasing their probability
and risk of failure. It is imperative to node that failures cost the
cloud vendors, not only their businesses and clients, but also
their reputations. To prevent these mishaps, steps are taken to
handle the possible failures emerging within cloud
infrastructures.

For instance in 2011, there was a Microsoft Cloud service
outage which lasted for approximately 2.5 hours [30]. In the
same week there was a Google Docs service outage which
lasted for about an hour. This is as a result of memory leak due
to a software update [42]. In Jan. 2014, one of Googles services
(Gmail) was down for about 25 – 50 min, while Facebook
reported an unavailable service for photos and “likes” in Oct.
2013. Additionally, in September 2012 GoDaddy experienced
a long downtime which lasted for 4 hours and approximately 5
million websites were affected [30]. In October 2012, Amazon
web services was reportedly down for about 6 hours [42]. Many
fault tolerance strategies have been designed to reduce the
effect of fault but in this paper we propose an optimized fault
tolerance strategy in real time Cloud Computing Environment
to increase system availability, reduce the service time and
enhanced rapid and efficient recovery from faults. The
Infrastructure as a service (IaaS), platform as a service (PaaS)
and software as a service (SaaS) are the three essential services
offered by cloud computing. Each level of service handles fault
tolerance at different levels of complexity. In this paper, our
approach is applied to the Infrastructure as a service delivery
layer, utilizing the computing hardware resources and the
virtualization hypervisor that can manage virtual machine
instances running on the physical server. Further components
such as the load balancers, fault tolerance engine, firewalls and
networking services can be utilized by cloud datacenters to help
manage and regulate fault tolerance strategies in the cloud
model [29, 41]. The main contribution of this paper is to
develop an optimized infrastructure for IaaS cloud platforms
there by showing a considerable improvement in the current
research domain by optimizing the success rate of virtual
computing node or virtual machines. This paper is organized as
follows: Section 2 presents the related background while

section 3 discuss the proposed system architecture and model
description. Section 4 presents the experimental setup and
model performance comparison and finally Section 5 concludes
and presents the future work.

II. RELATED WORK

Recent research that focuses on Cloud fault tolerance [32, 33,
25-28, 23-34] is more broadly covering aspects for standard real
time systems [22, 25, 27, 36, 38], [16-20]. Very few works have
addressed optimised fault tolerance approaches in real time
cloud computing environment with focus on achieving high
system availability. FT solutions are often specific to certain
cloud delivery models, focusing on either high availability
frameworks, using virtual nodes for fault prediction or using
user defined APIs, to help optimize the cloud performance even
in faulty situations. Researchers such as [12, 15, 26, 27,] focus
on a reactive fault tolerance technique while [35, 14, 20, 13]
analyze the performance of fault-tolerance systems with focus
on high availability. Other research addresses optimization
methodologies in fault situations and propose adaptive fault
tolerance in real time cloud computing systems [36, 25, 11, 10,
9]. Work by Egwutuoha et al. [22] presents a Proactive Fault
Tolerance approach to HPC systems in the cloud while [19, 16,
8] examine fault tolerance framework.
However, following from the various existing approaches, this
paper proposed an improved model based on an optimizing
tolerance approach in real time cloud applications for running
virtual machines. Using techniques based on parameters being
optimized, we apply a selection rate process approach, where a
virtual machine or node is selected for computation based on its
previous pass rate and overall task service time. The model is
designed such that if the VM does not show good performance,
it can be deselected from the list of available VMs. This
technique does not need to have a record and playback strategy
because the guarantee of successful service completion is given
by the initial decisions made at deployments of the service in
the VMs.
Our results have been analyzed against traditional approaches
to validate how well the cloud environment repairs and
manages to fulfill the service completion tasks. It has also been
validated through quantitative and experimental results by
simulations for testing performance for success using four use
case scenarios for fault tolerance in cloud environments. The
model is presented in Figure 1.

III. PROPOSED SYSTEM ARCHITECTURE

A. Model Description
We present a working model of an optimized fail-over approach
in real time cloud computing environment and a mathematical
relationship that represents the fault tolerance model system
using the concept of virtualization and FT checkpoint-replay
scheme. Our model tolerates the faults on the basis of pass rate
(PR) of each virtual node’s physical server.

Where, 𝑠. 𝑡

				𝑃𝑅 < 1,					

𝑃𝑅 = 1,

𝑃𝑅 > 0,

0 < 𝑃𝑅

0 < 𝑃𝑅 < 1

		 (1)

A virtual node is chosen for computation based on the PR of
corresponding physical server and can be removed and replaced
if its selected node of the server does not perform well. The
checkpoint/replay model is developed using the Reward
Renewal process (RRP) [5] theory with the aim of reducing the
checkpoint overhead, checkpoint delay restart time and roll
back time which is not covered in this paper. However, after
each fault occurrence in the system, a backward recovery is
performed and the VM is immediately restarted and recovered
from the last successful checkpoint. Our approach has been
analyzed with relation to four extreme use cases to analyze how
the cloud fault handler would perform. Our model consist of
four main modules namely; the service provide (SP) module,
the cloud master (CM) module, the selection mechanism (SM)
module and the cloud fault handler(CFH) module where the
checkpoint-restart module resides.
Our fault tolerance system architecture which consists of four
zones as shown in Figure 2, namely;

• The Client zone - This is where one or more client can
access any service of the fault tolerance cloud data
center on demand at any given time.

• The Virtualization zone - This zone is where one or
more virtual machines and instances can be started up,
terminated and migrated within the data center, and

Figure 1. Proposed Optimal FT Model

also acting as a link between the Client and the fault
tolerance cloud environment.

• The Fault tolerance zone - The FT zone is where the
Hypervisor and Virtual machine monitor (VMM)
exists supporting a high availability cloud service level
and Service level objectives.

• The Hardware zone - Under this zone, we have one or
more distributed data centers in different locations
with each datacenter consisting of numerous physical
servers which provides hardware infrastructure for
starting up virtual machines instances [7].

As presented in equation 2, we assume that a Fault Tolerance
model (𝐹𝑇/) of a cloud system be represented by a sequence of
five elements (Quintuple), or finite ordered list of elements.
We define Pass Rate (PR) as the fraction or percentage of
successful virtual nodes in the system after executing a complete
computing cycle, and Fail Rate (FR) as the level or rate at which
the virtual node of the system fails. The failure rate of the system
depends on the time, status check and task time limit checker.

Table 1 Parameters of our architectural model
Parameters Meaning
𝐹𝑇/ FT model of a cloud computing system
𝐶 A client set composed of n-users

𝐷𝐶 Data Centre
𝐹𝑇2 Set of defined FT service levels
𝑂𝐵𝐽6 Objective Function for optimizing a FT cloud
𝑃𝑅7 Pass Rate Algorithm
	𝐹𝑇8	 Fault Tolerance Level

𝐶ℎ𝑘 𝑂𝑝𝑡 Checkpoint optimization strategy

𝐹𝑇/ = 𝐶, 𝐷𝐶, 𝐹𝑇2	, 𝑂𝐵𝐽6, 𝑃𝑅7 (2)

 𝑂𝐵𝐽6 = 𝑚𝑎𝑥 𝐹𝑇? ,					

𝑠. 𝑡										𝐹𝑇2	 ∈ 	 0, 1 ,

																	𝐶ℎ𝑘 𝑂𝑝𝑡 									

 (3)

Where 𝑃𝑅7 is an algorithm which selects the optimal Pass
Rate,	𝐶 = 𝑐B, 𝑐C, 𝑐D, … , 𝑐FGC represents a set composed of 𝑛-
clients that may request for services separately, 𝐹𝑇2 represents a
defined set of fault tolerance service levels by the Cloud service
provider,	𝑂𝐵𝐽6 is the cloud fault tolerance optimizing objective
function and 𝐷𝐶 = 𝑑𝑐B, 𝑑𝑐C, 𝑑𝑐D, … , 𝑑𝑐FGC represents a data
center set which is made up of		𝑑𝑐F data centers, where 	𝑑𝑐J =	
𝑝𝑠B, 𝑝𝑠C, 𝑝𝑠D, … , 𝑝𝑠JKLMNO and 𝑝𝑠JP	(0 ≤ 𝑘 < 𝑑𝑐J) is the 𝑘𝑡ℎ

physical server of the 𝑖𝑡ℎ data center 𝑑𝑐J .

B. Component Module Description of the Model
 Figure 1 shows our proposed adaptive model. A set of nodes
are created by requests from the resources of the host machine
or the physical server. This is achieved by the virtual machine
monitor (VMM) or a hypervisor. The host machine is the server
where the VMM runs guest virtual machines. The VMM
presents the guest operating systems with virtual operating
platforms and also manages the execution of these guest
operating systems. It also retains records of all virtual nodes
created from the different host servers. In addition it retains and
manages the record during the process when a cloud load
balancer assigns job to a virtual node of a specific host server
in order to evaluate the pass rate. The various components are:

• Service provider (SP) – is responsible for forwarding
the task submitted by the client to the Cloud Controller
(CC). It returns results obtained from the cloud
controller to the cloud user.

• Cloud Master (CM) –is one of the key module in the
cloud architecture. It has a direct link or connection to
the SP. Virtualization is done here with the help of a
low level program called a hypervisor which provides
system resources access to virtual machines and also
creates a virtual environment. In addition, it also keeps
record of virtual nodes and their corresponding
physical nodes each time a virtual node is created from
the available resources of the physical servers. A set
of virtual nodes can be created from the resources of a
single physical server. The virtual node IDs, server
IDs and Pass Rate are all contained in the Cloud
Information Service (CIS), which helps to identify the
virtual nodes and keeps record of the number of times
tasks are assigned to any virtual nodes of a particular
corresponding host or physical server.

• Cloud Load balancer (CLB) -The CIS is also available
to the CLB and distributes the load based on
information from the record of the physical systems
used for virtualization. The CLB will only assign task
to those virtual nodes whose corresponding physical
servers are having a high pass rate.

• Cloud Fault Handler (CFH) – is a critical module in
our model because when a task fails, it is allowed to
be restarted from the last successful checked pointed
state rather than starting from the beginning. It is an
efficient task level fault tolerance technique for long
running applications because it keeps the system in
operation and not break down completely whenever a
fault is detected[7, 12]. A scenario where a virtual
node develops a fault as a result of some transient
faults that occurred in the remote host server of the

Figure 2 Proposed System Architecture

corresponding virtual node or due to some recoverable
temporary software faults present in the cloud
controller, in these situations the CFH takes full
responsibly and the cloud information service record
table gets updated. However, if there is no virtual node
executing under that host server, then CFH
immediately restarts the remote server and the cloud
load balancer is informed not to assign any task to the
virtual nodes of the corresponding server. It then
applies a fault detection strategy and a
Checkpoint/Replay technique thereby making the
virtual node of that host or physical server available
for future request.

• Selection Module (SM) – The selection module is
made up of the following sub modules; namely Status
Check (SC), Cloud Information Service Record Table
(CIS) and Task Time Limit Checker (TTLC). This
module provides the crucial process and is made of the
SC, TTLC, CIS record table, FT check-pointer and the
final selection mechanism. Here SC checks the status
of the each virtual node, and if the Status is Pass then
the task deadline time is checked by the TTLC. If both
SC and TTLC are pass, then pass rate (PR) of the
corresponding node is increased and forwarded to the
decision mechanism module for final selection
process. But if both SC or TTLC fail, then the
corresponding virtual machine is not forwarded for
final selection and instead the node is forwarded to the
Cloud fault manager for fault detection and recovery.
In a scenario where SC is success but the task is not
completed within the time limit, then the pass rate in
the CIS record table of that particular node is
decreased and that node is not forwarded to the final
decision mechanism sub module. In addition, the final
selection mechanism contains all virtual nodes that
successfully passed the SC and TTLC module and
after this point the node with the highest pass rate
value is selected and checkpoint is made. But if all
nodes failed then the CFH takes over and the
Checkpoint/Replay technique is applied where a
backward recovery is performed with the help of the
last successful checkpoint. It should be noted that if
there exist more than one node with the same PR value
then a node will be selected at random. Following are
the conditions and rules considered in the approach.

Table 2. Rules of the system
S/N Rules SC TTLC Outcome
1. Condition-1 1 1 Continuous Pass
2. Condition-2 1 0 Partial Pass
3. Condition-3 0 1 Partial Fail
4. Condition-4 0 0 Continuous Fail

Here in the table above “0” denotes Fail, and “1” denotes Pass

C. Checkpoint/Replay using Reward Renewal Process (RRP)
The scheme uses a checkpoint model that follows a RRP [5-7],
where after each failure occurrence in the system, backward
recovery is performed and the application is immediately
restarted and recovered from the last successful checkpoint. In

other words the fault is repaired before the last task time deadline
is reached, and whenever all nodes fails, the system state is save
and the application will be restarted from the last successful
checkpoint as shown in Figure 3.

TABLE 3. Parameters of Fault Tolerance Model
𝛀J The cycle between failure and failure(i+1)
𝑱F Time of the 𝑖𝑡ℎ	checkpoint
𝑇WXY Roll Back Time
𝑅Z Restart Point
𝑇W[\ Recovery Point
𝑇] Failure Point
𝑇\^ Time interval of a failure cycle
𝑇_` Checkpoint Overhead
∆J Time interval between consecutive checkpoint

Let (𝑇Xa	 ,	𝑇b[\ , 𝑇WXY)	 of each cycle be a sequence of independent
identically random variable (𝐿C ,	𝐿d , 𝐿D), …,	 which is dependent
on any point in time failure occurs in the system 	Ω	 stands for
the 𝑘fg time between failures in each computing cycle.

 𝛦 [𝑇Xa] < ∞ (4)

In order to improve the checkpoint mechanism performed by our
system, we looked at how to determine checkpoint intervals that
decreases the checkpoint restart time delay. Studies have shown
that in order to balance the 𝑇Xa		and roll back time of our
application, checkpoint should not be carried out too regularly.
So, the time delay can be expressed as

𝐿f	 = 𝑇J									

jk

JlB

 (5)

Where, 𝑥f			 = sup 𝑛:	𝐽F	 ≤ 	𝑡 =
 max 𝑛 ∈ (1,2,3… .)|	𝑥f	 ≤ 	𝑡 ,
And 𝐽F	 refers to the 𝑘fg failure time of intervals [𝐽F	, 𝐽FqC]
which is also called renewal intervals defined as following,

𝐽F	 = 𝑇J																			

r

JlC

 (6)

Equation (5) denotes the renewal reward process where 𝐿f	 is
dependent on	(𝑇Xa	,	𝑇b[\, 𝑇WXY)	.The renewal function is defined
as the expected value of the number of failures observed up to a
given time t:

								𝑓 𝑥 = 	𝛦	[𝑋f] (7)

Hence, the renewal function satisfies,
 lim

f→{
	
1
𝑡
𝑓 𝑥 =

1
𝛦	[ΩC]	

 (8)

Substituting (7) into (8) gives,

	 lim
f→{

	
𝑋f	
𝑡
=

1
𝛦	 ΩC

	 (9)

Proving the elementary renewal theorem it is sufficient to show
that for an elementary renewal theorem for renewal reward
processes the reward function is given as:

 			𝑔 𝑥 = 	𝛦	[𝐿f]			 (10)

The reward function thereby satisfies,

					 lim
f→{

	
1
𝑡
𝑔 𝑥 =

𝛦	 LC
𝛦	 ΩC

(11)

Substituting (10) into (11) gives

	 lim
f→{

	
𝛦	[Lf]
𝑡

=
𝛦	[LC]
𝛦	[ΩC]	

 (12)

From (5), we have

			𝐿f	 = 𝑇J				
jk

JlB

 (13)

Then (12) becomes,

lim
f→{

	
𝛦	[𝑇J

jk
JlB]
𝑡

=
𝛦	[𝐋𝟏]
𝛦	[𝛀𝟏]	

 (14)

Therefore,

𝐿f	 =
𝛦	[𝐋𝟏]
	𝛦	[𝛀𝟏]		

 (15)

Where 𝐿f	 is called the renewal reward process as derived in [5,
6]. Conversely, there is an additional time to save the system
application states which is called the checkpoint overhead. To
improve the checkpoint mechanism, checkpoints should not be
performed too frequently in other to achieve balancing between
the checkpoint overhead, recovery time and application re-
computing time as derived in [2, 3, 4, 7].

D. Use Case Scenario Analysis
We considered 100 computing cycles and present a metric
analysis to evaluate the Pass and Fail scenarios of three virtual
nodes (VM-1, VM-2, VM-3) respectively. Here we assumed that
each VM belongs to a different host server, 𝑷 = 𝟎. 𝟓, 𝐪𝟏
represents the number of times virtual machine of a host server
produce a Pass outcome and 𝐪𝟐 represent the time the Cloud
Controller’s Load balancer designates a task to a virtual node.

 (a) (b)

 (a) Use Case1 (Pass to Fail), Use Case 2 (Fail to Pass)
(b)Use Case 3 (Continuous Pass), Use Case 4 (Continuous Fail)

Figure 4. Use Case Scenarios for Pass and Fail

Figure 3 Checkpoint Strategy Failure Model

Figure 4 shows the Pass and Failure scenario comparison of our
use case scenarios where the increase in PR after the required
100 computing cycles for use case-3 is 0.978, while the decrease
rate (FR) for use case-4 is 0.579. This shows that the increase
in PR is greater than the decrease in FR, clearly displaying a
good performance of algorithm. Further scenarios for use case-
1 and 2 were tested for validating the results. The obtained
results indicates that use case-1 continuously passed while use
case-2 continuously failed as shown in figure 4(a).While use
case-3 passed for the first 100 cycles and then failed for the
remaining 100 cycles figure. Use case-4 failed for the first 100
cycles and then succeeded for remaining 100cycles (Figure 4a).

IV. EXPERIMENTAL SETUP AND PERFORMANCE COMPARISON
The experiments were conducted using CloudSim[1], where
three virtual nodes were created and tested. The SFS algorithm
has 100 computing cycles with every individual node executing
a series of tasks at a time. While these tasks are executed in one
computing cycle, every virtual node runs a diverse algorithm.
The different Pass and Failure scenario obtained from this
experiment displays the diversity in software and timing
constraints. The selection or decision mechanism is responsible
for receiving results obtained from the virtual machines before
it dispatches or returns the result of the successful job to the
client via the service provider.
At the service provider level, the selection or decision
mechanism is integrated with the Cloud controller module. In a
situation where a failure occurs in one of the nodes, the system
will automatically adapt a fail-over strategy and continues
operating using the remaining nodes. The system will maintain
and continue its operation in a steady state until all nodes have
failed. A node is then selected and a checkpoint is made by the
last selection mechanism to keep the status of the system for
future recovery. This is done after a successful completion of
one computing or instruction cycle.
We assumed that the value of 			𝑥C,	𝑥d PR, virtual node ID,
corresponding server ID are available and that the task deadlines
are given as input with initial values 𝑥C =1, 𝑥d = 2	and PR = 0.5
are considered for every node. Figure 4 presents results obtained
from the performance comparison of our proposed strategy with
other existing approaches.

A. Performance Comparison of Results
1. Virtualization and Fault Tolerance Approach (VFT) -

Das et al. [12] proposed a virtualization and fault
tolerance technique to reduce the service time and
increase the system availability. They used a Cloud
Manager module and a Decision Maker in their
scheme to manage virtualization and load balancing
and also handle faults. By performing virtualization
and load balancing, fault tolerance was achieved by
redundancy and fault handlers. Their technique was
mainly designed to provide a reactive fault tolerance
where the fault handler prevents the unrecoverable
faulty nodes from having adverse effect.

2. Adaptive Fault Tolerance Approach(AFT) –Mailk et
al. [36] proposed an adaptive fault tolerance in time
cloud computing where the main essence of their
proposed technique was an adaptive behaviour of the
reliability weights assigned to each processing node
and adding and removing of nodes on the basis of
reliability.

3. Our Proposed Approach - For the purpose of
evaluation, we compared our proposed strategy with
the VFT approach[12] and AFT where we referred to
the result obtained from our proposed strategy as the
measured parameter while that of VFT and AFT are
referred to as the calculated parameters respectively.

Based on the performance comparison analysis conducted from
our simulated results, the standard deviation for VM-1 was
estimated to be 6.5187, while that of VM-2 and VM-3 was
8.4856 and 12.004 respectively. In other words, compared to our
proposed approach, this reveals that the VFT strategy deviated
by 6.5187 in VM-1 as shown in figure 5(a) and by 8.4856 in
VM-2 figure 5(b). A further deviation of the strategy was also
noticed in VM-3 as presented in figure 5(c).This also shows the
degree of discrepancy of the calculated result from the measured
result. For the VFT algorithm, the increased in Pass Rate is less
than our proposed strategy. Details of this model can be found
in [12]. In our study, 100 computing cycles were used in
simulation and assumed pass rate of 0.5 at the beginning.

 (a) Virtual Machine – 1 (b) Virtual Machine – 2 (c) Virtual Machine – 3

Figure 5. Performance Comparison of VFT strategy with our Proposed Strategy

Figure 5 Mean Error Comparison

In comparing the three models, we first obtain the relative error
𝑥b[, then we calculated the actual error 𝑥J	which is the

difference between the calculated and measure result. These are
expressed as (16) and (17) respectively.

 		𝑥b[= 	
𝑞J��Y\�Y�f[8	 − 	𝑞J�[�2�b[8	

𝑞J�[�2�b[8	
	×	100 (16)

 𝑥J = 		 𝑞J��Y\�Y�f[8	 − 	𝑞J�[�2�b[8	 (17)

Figure 5 and Figure 6 shows the mean error comparison and
success rate analysis between the strategies, where we
concluded that our proposed model is an improved approach.
The Average percentage relative error (APE), Average absolute
percentage relative error (AAPE) and Standard deviation (SD)
were also obtained. Equation (18-20) gives the mathematical
definition of these parameters and (Table 5) gives experimental
results.

 (a) (b) (c)

Figure 6. Success Rate Analysis of VM-1, VM-2 and VM-3

ƐC = 		

1
N
		 		𝑥b[

�

JlC

 (18)

Ɛd = 		

1
N
		 |𝑥b[|
�

JlC

 (19)

			ƐD =

		𝑥b[− 	 		𝑒C d�
JlC

𝑁 − 1
 (20)

A Performance evaluation of VFT and AFT strategy with our
proposed model was carried out using 𝑥b[, 𝑥J , 𝑒C, 𝑒d	 and 𝑒D
respectively.

TABLE 4. Parameters
 Parameter Meaning

			ƐC Total average percentage relative error
Ɛd Total average absolute percentage relative

error
			ƐD Total standard deviation
			𝑥b[Relative error
		𝑥J	 Actual error

TABLE 5. Performance Comparison of VFT and AFT with Proposed Strategy
 Performance Comparison Parameters

Virtual
Machine

ID

Compute
Cycle Ɛ𝟏(%) Ɛ𝟐(%) 			Ɛ𝟑(%)

VM-1 100 -11.0812 11.0812 6.5187
VM-2 100 -10.8510 10.8510 8.4856
VM-3 100 -15.6587 15.6587 12.0041

V. CONCLUSION
This paper presents a intergated virtualized failover strategy for
real time computing on the cloud infrastructure. The proposed
IVFS uses the pass rate of the computing virtual nodes with the
fault manager using the checkpoint/replay tecnique by appying
the reward renewal process thoerem. It tries to repair the fault
generated before the deadline as a fault tolerance mechanism.
that the scheme is highly fault tolerant because it had all the
advantages of forward and backward recovery which the
system takes advantage of using diverse software. Our
algorithm integrates the concept of fault tolerance based on high
pass rate of computing nodes and less service task finish time
there increasing the system availability. With the help of the
pass and fail rate analysis obtained from the experimental
results as well as the performance comparison of the existing

approaches,we conclude that the proposed fault tolerance
scheme gives an improved performance. In our future we will
aim at addressing fault tolerance challenge especially in a large-
scale high performance environment by minimizing the
performance loss like checkpoint overhead, checkpoint
recovery time and re-computing time.

REFERENCES
[1] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst:

A CloudSim-Based Visual Modeller for Analysing Cloud Computing
Environments and Applications,” 2010 24th IEEE Int. Conf. Adv. Inf.
Netw. Appl., pp. 446–452, 2010.

 [2] D. Sun, G. Chang, C. Miao, and X. Wang, “Analyzing, modeling and
evaluating dynamic adaptive fault tolerance strategies in cloud
computing environments,” J. Supercomput., vol. 66, no. 1, pp. 193–
228, 2013.

 [3] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and
D. H. Lorenz, “Guaranteeing high availability goals for virtual
machine placement,” Proc. - Int. Conf. Distrib. Comput. Syst., pp.
700–709, 2011.

 [4] R. Nassar, B. Leangsuksun, and S. Scott, “High Performance
Computing Systems with Various Checkpointing Schemes 2 Full
Checkpoint / Restart Model,” vol. IV, no. 4, pp. 386–400, 2009.

 [5] R. Gallager, “Discrete stochastic processes,” no. 0, pp. 92–138, 1996
 [6] G. F. Lawler, “Introduction to Stochastic Processes.” p. 248, 2006.
 [7] Y. Liu, R. Nassar, C. (Box) Leangsuksun, N. Naksinehaboon, M.

Paun, and S. L. Scott, “An optimal checkpoint/restart model for a
large scale high performance computing system,” 2008 IEEE Int.
Symp. Parallel Distrib. Process., pp. 1–9, 2008.

 [8] I. P. Egwutuoha, S. Chen, D. Levy, and B. Selic, “A fault tolerance
framework for high performance computing in cloud,” Proc. - 12th
IEEE/ACM Int. Symp. Clust. Cloud Grid Comput. CCGrid 2012, pp.
709–710, 2012.

 [9] A. Israel and d. raz, “Cost aware fault recovery in clouds,” pp. 9–17,
2013.

 [10] H. Yanagisawa, T. Osogami, and R. Raymond, “Dependable virtual
machine allocation,” 2013 Proc. IEEE INFOCOM, pp. 629–637,
2013.

 [11] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C.
Engelmann, “Combining partial redundancy and checkpointing for
HPC,” Proc. - Int. Conf. Distrib. Comput. Syst., pp. 615–626, 2012.

 [12] P. Das and P. M. Khilar, “VFT: A virtualization and fault tolerance
approach for cloud computing,” 2013 IEEE Conf. Inf. Commun.
Technol. ICT 2013, no. Ict, pp. 473–478, 2013.

 [13] M. Chtepen, F. H. a Claeys, B. Dhoedt, F. De Turck, P. Demeester,
and P. a. Vanrolleghem, “Adaptive Task Checkpointing and
Replication: Towards Efficient Fault-Tolerant Grids,” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 2, pp. 180–190, 2008.

 [14] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu,
“Performance and availability aware regeneration for cloud based
multitier applications,” Proc. Int. Conf. Dependable Syst. Networks,
pp. 497–506, 2010.

 [15] D. Singh, J. Singh, and A. Chhabra, “High availability of clouds:
Failover strategies for cloud computing using integrated
checkpointing algorithms,” Proc. - Int. Conf. Commun. Syst. Netw.
Technol. CSNT 2012, pp. 698–703, 2012.

 [16] H. K. H. Kim, S. K. S. Kang, and H. Y. Yeom, “Node selection for a
fault-tolerant streaming service on a peer-to-peer network,” 2003 Int.
Conf. Multimed. Expo. ICME ’03. Proc. (Cat. No.03TH8698), vol. 2,
no. 1, pp. 6–12, 2003.

 [17] N. Yadav and S. K. Pandey, “Fault Tolerance In Dcdidp Using
HAProxy,” pp. 231–237.

 [18] R. Nogueira, F. Araujo, and R. Barbosa, “CloudBFT: Elastic
Byzantine Fault Tolerance,” 2014

 [19] E. Okorafor, “A fault-tolerant high performance cloud strategy for
scientific computing,” IEEE Int. Symp. Parallel Distrib. Process.
Work. Phd Forum, pp. 1525–1532, 2011.

 [20] X. Kong, J. Huang, C. Lin, and P. D. Ungsunan, “Performance, Fault-
Tolerance and Scalability Analysis of Virtual Infrastructure
Management System,” 2009 IEEE Int. Symp. Parallel Distrib.

Process. with Appl., pp. 282–289, 2009.
 [21] S. Siva Sathya and K. Syam Babu, “Survey of fault tolerant

techniques for grid,” Comput. Sci. Rev., vol. 4, no. 2, pp. 101–120,
2010.

[22] I. P. Egwutuoha, S. Chen, D. Levy, B. Selic, and R. Calvo, “A
proactive fault tolerance approach to High Performance Computing
(HPC) in the cloud,” Proc. - 2nd Int. Conf. Cloud Green Comput. 2nd
Int. Conf. Soc. Comput. Its Appl. CGC/SCA 2012, pp. 268–273, 2012.

[23] M. Amoon, “A job checkpointing system for computational grids,”
Open Comput. Sci., vol. 3, no. 1, pp. 17–26, 2013.

[24] K. J. Naik and N. Satyanarayana, “A novel fault-tolerant task
scheduling algorithm for computational grids,” 2013 15th Int. Conf.
Adv. Comput. Technol., pp. 1–6, 2013.

[25] K. Parveen, G. Raj, and K. R. Anjandeep, “A Novel High Adaptive
Fault Tolerance Model in Real Time Cloud Computing,” pp. 138–
143 , 2014.

[26] A. Tchana, L. Broto, and D. Hagimont, “Approaches to cloud
computing fault tolerance,” IEEE CITS 2012 - 2012 Int. Conf.
Comput. Inf. Telecommun. Syst., 2012.

[27] J. Kaur and S. Kinger, “Efficient Algorithm for Fault Tolerance in
Cloud Computing,” 2014 IJCSIT Int. J. Comput. Sci. Inf. Technol.,
vol. 5, pp. 6278–6281, 2014.

[28] A. Ganesh, M. Sandhya, and S. Shankar, “A study on fault tolerance
methods in Cloud Computing,” 2014 IEEE Int. Adv. Comput. Conf.,
pp. 844–849, 2014.

[29] C.-T. Yang, Y.-T. Liu, J.-C. Liu, C.-L. Chuang, and F.-C. Jiang,
“Implementation of a Cloud IaaS with Dynamic Resource Allocation
Method Using OpenStack,” 2013 Int. Conf. Parallel Distrib. Comput.
Appl. Technol., pp. 71–78, Dec. 2013.

[30] ITProPortal, “ITProPortal.com: 24/7 Tech Commentary & Analysis,”
2012. [Online]. Available: http://www.itproportal.com/. [Accessed:
24-Jun-2015].

[31] A. Greenberg, J. Hamilton, D. a Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2008.

[32] M. Pradesh, “A Survey On Various Fault Tolerant Approaches For
Cloud Environment During Load Balancing,” vol. 4, no. 6, pp. 25–
34, 2014.

[33] D. Sun, G. Chang, C. Miao, and X. Wang, “Analyzing, modeling and
evaluating dynamic adaptive fault tolerance strategies in cloud
computing environments,” Journal of Supercomputing, vol. 66, no.
1. J Suercomputer (), pp. 193–228, 2013.

[34] B. Mohammed and M. Kiran, “Analysis of Cloud Test Beds Using
OpenSource Solutions,” 2015 3rd Int. Conf. Futur. Internet Things
Cloud, pp. 195–203, 2015.

[35] S. Shen, A. Iosup, A. Israel, W. Cirne, D. Raz, and D. Epema, “An
Availability-on-Demand Mechanism for Datacenters,” 2015 15th
IEEE/ACM Int. Symp. Clust. Cloud Grid Comput., pp. 495–504,
2015.

 [36] S. Malik and F. Huet, “Adaptive Fault Tolerance in Real Time Cloud
Computing,” 2011 IEEE World Congr. Serv., pp. 280–287, Jul. 2011.

[37] A. Bala and I. Chana, “Fault Tolerance- Challenges , Techniques and
Implementation in Cloud Computing,” Int. J. Comput. Sci., vol. 9, no.
1, pp. 288–293, 2012.

[38] R. Jhawar, V. Piuri, and I. Universit, “Fault Tolerance Management
in IaaS Clouds,” 2012 IEEE First AESS Eur. Conf. Satell.
Telecommun., pp. 1–6, 2012.

[39] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, and M. N. Alsaleh,
“TeachCloud : A Cloud Computing Educational Toolkit,” no. 2012,
pp. 1–16.

[40] P. Mell and T. Grance, “The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and
Technology,” Natl. Inst. Stand. Technol. Spec. Publ. 800-145 7
pages, 2011.

[41] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Cloud computing
migration and IT resources rationalization,” 2014 Int. Conf.
Multimed. Comput. Syst., pp. 1164–1168, Apr. 2014.

 [42] K. Bilal, O. Khalid, S. Ur, R. Malik, M. Usman, and S. Khan, “Fault
Tolerance in the Cloud,” no. ITProPortal, pp. 1–13, 2012.

