
 

The University of Bradford Institutional 
Repository 

http://bradscholars.brad.ac.uk 

This work is made available online in accordance with publisher policies. Please refer to the 

repository record for this item and our Policy Document available from the repository home 

page for further information. 

To see the final version of this work please visit the publisher’s website. Access to the 

published online version may require a subscription. 

Copyright statement: © 2017 Wiley. This is the peer reviewed version of the following article: 

Mohammed B, Kiran M, Maiyama KM et al (2017) Failover strategy for fault tolerance in cloud 

computing environment. Software: Practice and Experience. 47(9): 1243-1274, which has been 

published in final form at https://doi.org/10.1002/spe.2491. This article may be used for non-

commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. 

 

https://doi.org/10.1002/spe.2491


 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

 
 
 
 

Fail Over Strategy for Fault Tolerance in Cloud Computing Environment  
 

Bashir Mohammed *,†, Mariam Kiran, Kabiru M. Maiyama,  
Mumtaz M. Kamala and Irfan-Ullah Awan  

 
School of Electrical Engineering and Computer Science, University of Bradford, Bradford.  UK 

 
 
 

SUMMARY 
  

 
Cloud fault tolerance is an important issue in cloud computing platforms and applications. In the event of an unexpected 
system failure or malfunction, a robust fault-tolerant design may allow the cloud to continue functioning correctly 
possibly at a reduced level instead of failing completely. To ensure high availability of critical cloud services, the 
application execution and hardware performance, various fault tolerant techniques exist for building self-autonomous 
cloud systems. In comparison to current approaches, this paper proposes a more robust and reliable architecture using 
optimal checkpointing strategy to ensure high system availability and reduced system task service finish time.  Using 
pass rates and virtualised mechanisms, the proposed Smart Failover Strategy (SFS) scheme uses components such as 
Cloud fault manager, Cloud controller, Cloud load balancer and a selection mechanism, providing fault tolerance via 
redundancy, optimized selection and checkpointing. In our approach, the Cloud fault manager repairs faults generated 
before the task time deadline is reached, blocking unrecoverable faulty nodes as well as their virtual nodes. This scheme 
is also able to remove temporary software faults from recoverable faulty nodes, thereby making them available for future 
request. We argue that the proposed SFS algorithm makes the system highly fault tolerant by considering forward and 
backward recovery using diverse software tools. Compared to existing approaches, preliminary experiment of the SFS 
algorithm indicate an increase in pass rates and a consequent decrease in failure rates, showing an overall good 
performance in task allocations. We present these results using experimental validation tools with comparison to other 
techniques, laying a foundation for a fully fault tolerant IaaS Cloud environment 
 

KEY WORDS: cloud computing; fault tolerance; checkpointing; virtualisation; load balancing; virtual machine 
 

1. INTRODUCTION 

Cloud computing is a popular paradigm and an attractive model for providing computing, IT 
infrastructure, network and storage to end-users in both large and small business enterprises [1]. The surge 
in cloud popularity is mainly driven by its promise of on-demand flexibility and scalability, without 
committing any upfront investment in implementation, with reduction in operating costs of infrastructure and 
data centers [2]. Cloud ecosystems can be public, private, hybrid or even community depending on the 
networking model used in delivering services [19], [22], [3]. Cloud computing relies on sharing resources to 
accomplish scale, sharing services and infrastructure, as its delivery models. To maintain reliability and 
availability, fault tolerance (FT) in cloud becomes an important property, allowing the system to continue 
functioning properly in events of failure. Embedding a fault-tolerant design in cloud architecture allows the 
system to continue its intended operation, even at a reduced level, preventing it from breaking down 
completely when unexpected failure events occur [5, 6].  

 

 
 
 
 
*Correspondence to: Bashir Mohammed, School of Electrical Engineering & Computer Science, University of Bradford, UK 
†E-mail: b.mohammed1@bradford.ac.uk 

 
 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

In real-time high performance large-scale systems with complex and dynamic cloud services, the  system 
sometimes fail due to varying execution environments, removal and addition of system components or 
intensive workload on the servers [1][6]. Failures cost cloud vendors not only their businesses and clients, 
but also their reputation. To prevent these, steps need to be taken to handle possible failures emerging 
within cloud infrastructures. These fault tolerance techniques are designed around the concepts of fault 
finding principles, such as predicting and evaluating possible future failures, allowing the system to 
continue its functions at satisfactory levels [1]. Having a reliable fault-tolerant cloud infrastructure 
prevents the system from breaking down completely. 

A number of fault tolerant strategies have been realized in research over the years based on fault 
tree analysis, checkpointing and prediction models. However, only a fraction of these have been applied 
to cloud computing systems bearing in mind that the risk of failure is increasing as the complexity of 
tasks increases in a typical cloud environment. This paper argues a new integrated virtualised optimal 
checkpointing fault tolerance approach for cloud data centers, using intelligent selection mechanisms based 
on pass rates of computing virtual nodes with a fault manager. This SFS fault tolerance approach results 
in an optimized infrastructure for IaaS cloud platforms, showing a considerable improvement in current 
research of cloud fault tolerance.  

Along with analysing current cloud fault tolerance approaches, the main contributions of this paper 
include; 

§ Providing high availability depending on cloud user requests to successful virtual machines 
using the SFS algorithm. 

§ Develop an integrated virtualised failover strategy for cloud datacenters, overall reducing the 
system service time.  

§ Prove the viability of the SFS approach through quantitative analysis and compare performance 
with existing methods. We validate the method using simulation to give details of successful 
performance in failure situations. 

The paper has been organized as follows: Section 2 presents the problem definition and techniques 
currently being used to explore the problem of failure recovery in cloud environments. This is elaborated 
in Section 3 presenting the related background in fault tolerance for standard real time cloud computing 
systems. Section 4 presents our fault tolerance architecture, use case scenarios, computation algorithm 
and working model of the proposed approach using mathematical analysis and its implementation details 
with cloud infrastructures. These implementation details are expanded in Section 5 by presenting an 
experimental setup as well as performance comparison of results with existing approaches. Discussion 
of results is given in Section 6 and finally Section 7 presents conclusions and future work of the 
approach. 

 

2. PROBLEM DEFINITION 

Cloud computing relies on sharing resources to accomplish scale of services and infrastructure. As 
cloud complexity grows, failures of virtual nodes providing the services increases and becomes difficult 
to predict. Particularly with system components being constantly upgraded, intensive workload on cloud 
servers and sometimes deploying faulty software. Achieving high availability of virtual machines 
always is a huge challenge because of the sheer number of virtual and physical machines involved, 
increasing the probability and risk of failure.  

It is imperative to prevent failures emerging within the cloud infrastructures to prevent business 
and financial losses. In 2011, Microsoft Cloud service outage lasted for 2.5 hours [30], with Google 
Docs service outage lasting for an hour. These were because of memory leaks due to a software update 
[42], costing both business millions of dollars. Similar reports were witnessed by Gmail services down 
for about 50 minutes, Amazon Web services for 6 hours, while Facebook’s photos and “likes” services 
were down costing customer satisfaction. Multiple business hosting their websites, such as with 
GoDaddy, suffered 4 hours downtime affecting 5 million websites [30].  

Growing number of datacenter resources increases the global complexity of ICT services, where 
cloud users use them to handle business-critical and high computing processes [7]. As a result, it is of 
vital importance to ensure high reliability and availability to prevent resource failure. One of the most 
common challenges in cloud is failure to deliver its function, either by software or hardware failures 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

[8], [9]. The service tasks executing over the cloud virtual machines have large time spans of a few days 
or months, running long tasks or jobs. Failure on these long or medium running jobs bring threats to 
fulfilment of Service Level Agreement (SLA) contracts and delays in job completion times to perform 
computational processes [1], [10]. An example of such a failure occurred when a 20% revenue loss was 
reported by Google, as an experiment caused an additional delay of 500ms in response time [11]. In 
another example, millions of customers were left without Internet access for three days when there was 
a core switch failure in BlackBerry’s network. Another example is when one of UK’s top cellular 
company failed for three days, affecting 7 million subscribed customers [11], [12].  

There are three levels of essential services offered by cloud computing: Infrastructure as a service 
(IaaS), platform as a service (PaaS) and software as a service (SaaS). Each level of service handles fault 
tolerance at different levels of complexity.  

§ Infrastructure as a service (IaaS), is the most basic and important cloud service model under 
which virtual machines, load balancers, fault tolerance, firewalls and networking services are 
provided. The client or cloud user, is provided with capability to provision processing, storage, 
networks and other fundamental computing resources, to deploy and run arbitrary software 
such as operating system and applications. Common examples of these services include 
Rackspace, GoGrid, EC2 and Amazon cloud [13]. 

§ Under the PaaS model, a computing platform including APIs, operating system and 
development environments are provided as well as programming language execution 
environment and web servers. The client maintains the applications, while the cloud provider 
maintains the service run times, databases, server software, integrated server oriented 
architectures and storage networks. Various types of PaaS vendors offerings can include 
complete application hosting, development, testing and extensive integrated services that 
include scalability and maintenance. Some key players include Microsoft Windows Azure and 
Google Apps engine. The main benefit of these services include focus on high value software 
rather than infrastructure, leverage economies of scale and provide scalable go-to-market 
capability [2].  

§ SaaS provides clients the capability to use provider application executing on a cloud 
infrastructure. An entire application is available remotely and accessible from multiple client 
devices through thin client interfaces such as web browsers. Cloud user do not manage or 
control the underlying cloud infrastructure [2] but providers install and operate the application 
software. Example providers for this service include Salesforce, Facebook and Google Apps 
[2], [14], [15].  

The main objective of a computational cloud platform is to execute user applications or jobs, where 
users submit their jobs to the service provider (SP) along with their Quality of Service (QoS) 
requirements. These requirements may include job deadlines, required resources for job and the needed 
platform. The SP submits a task to the cloud controller and the scheduler allocates each job with suitable 
resources.  

Depending on the type of fault and FT policies, several fault tolerance technique can be used [16], 
20, 21] such as Reactive Fault Tolerance policy, which reduces failure effects when they occur on 
application execution and Proactive Fault Tolerance policy, which avoids fault recovery by predicting 
and proactively replacing the suspected faulty components. In case of a fault free scenario, results of 
successful jobs are returned to users after job completion. If there are failures during the job execution, 
then the cloud fault manager is informed and the job is rescheduled on another virtual machine resource 
to re-execute the job from the last successful checkpoint. This results in more time consumed for the 
job than expected, risking the QoS not being satisfied.  

Many fault tolerance strategies have been designed to reduce fault effects, but in this paper we 
propose an optimized fault tolerance strategy in real time Cloud Computing Environment to increase 
system availability, reduce the service time and enhanced rapid and efficient recovery from faults. Our 
Smart Failover Strategy (SFS) approach is applied to the Infrastructure as a service (IaaS) delivery layer, 
utilizing computing hardware resources and the virtualisation hypervisor to manage virtual machine 
instances running on physical servers.  

To address the problem of job completion time, the pass rate optimized selection technique is 
integrated with a job checkpointing mechanism in the SFS approach. Here we restore the partially 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

completed job from the last checkpoint saved checkpoint rather than re-starting the job. This greatly 
decreases the system re-computing time. However, we recognize a few drawbacks of checkpointing 
mechanism, such as performing identical processes regardless of stable resources, higher checkpoint 
overhead to store entire system running states and inappropriate checkpointing that cause delay in job 
execution. Commonly used checkpointing mechanisms are discussed in [17], however in real-time 
computational cloud  environments, there are cases where resources satisfy QoS requirements (partial 
pass scenario) but are not selected because the load balancers assign tasks to virtual machines based on 
highest pass rate in job execution. To address these problems, our optimized selection technique selects 
only virtual machines with successful status check and successful task time limit checker. Further 
components such as load balancers, fault tolerance engine, firewalls and networking services are utilized 
by cloud datacenters to help manage and regulate fault tolerance strategies in the cloud model [2], [18]. 

 
3. RELATED WORK 

There are many approaches proposed to deal with fault tolerance in cloud and recent studies have analyzed 
fault tolerance in cloud & grid computing [9, 10],[19]–[24], [25]–[29],   [30]–[37] and more broadly in the area 
of fault tolerance for standard real time systems [4],[6], [26, 27],  [31], [33], [38], [39]–[44], [44] but very few 
works have addressed issues of optimized fault tolerance strategies in cloud environment in relation to high 
system availability. Various researchers have provided FT solutions specific to certain cloud delivery models 
by focusing on either high availability frameworks, using virtual nodes for fault prediction or using user defined 
APIs to help optimize cloud performance in faulty situations.  

Focusing on certain framework and delivery models, Tchana et al. [32] analyzed the implementation 
of fault tolerance by focusing on autonomic repair. They proved that in most current fault tolerance approaches, 
faults are exclusively handled by the provider or the customer which leads to partial or inefficient solutions, 
while a collaborative solutions are much more promising. They demonstrated this with experiments on 
collaborative fault tolerance solutions by implementing an autonomic prototype cloud infrastructure. Maloney 
and Goscinski [24] reviewed issues relating to providing fault tolerance for long-running applications. They 
investigated several fault tolerance approaches where they found that rollback-recovery provides a favorable 
approach for user applications in cluster systems. They further explained that two facilities can provide fault 
tolerance using rollback-recovery: checkpointing and recovery. They concluded that the problems associated 
with providing recovery include providing transparent and autonomic recovery, by selecting appropriate 
recovery computers and maintaining consistent observable behavior when applications fail. Using the technique 
of record and playback, Kim et al. [43] proposed a two node selection scheme, namely playback node first and 
playback node first with prefetching, that can be used for a service migration-based fault-tolerant streaming 
service. Their proposed scheme demonstrated that the failure probability of a node currently being served is 
lower than that of a node not being served. 

Addressing software bugs, Chen et al. [21] presented a lightweight software fault-tolerance system in 
cloud, called SHelp, which can effectively recover programs from many types of software bugs in the cloud 
environment. They proposed a ‘weighted’ rescue point technique that effectively survives software failures 
through bypassing the faulty path. Their idea was that, in order to share error-handling information for multiple 
application instances running on different virtual machine, a three-level storage hierarchy with several 
comprehensive cache updating algorithms for rescue points management is adopted. Their experimental results 
showed that SHelp can recover server applications from these bugs in just a few seconds with modest 
performance overhead. 

However focusing on checkpointing, Qiang et al. [45] presented a multi-level fault-tolerant system for 
distributed applications in cloud named Distributed-application oriented Multi-level Checkpoint/Restart for 
Cloud (CDMCR). The system backs up complete application states periodically as a snapshot-based distributed 
checkpointing protocol, including file system state. The authors proposed a multi-level recovery strategy, that 
includes process-level recovery, virtual machine recreation, host rescheduling, enabling comprehensive and 
efficient fault tolerance for different components in cloud. Alshareef and Grigoras [25] introduced a checkpoint 
technique to capture session progress. The authors claimed the technique is an additional service to their cloud 
management of the MANET. Their experimental results showed that the model is feasible, robust, and saved 
time and energy if session breaks occur frequently. Additionally, Agbaria and Friedman [46] proposed a virtual-
machine-based heterogeneous checkpointing mechanism, where they explored how to construct a mechanism 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

at virtual machine level rather than dumping the entire state of the application process. The mechanism dumps 
the state of application as maintained by a virtual machine and during restart, the saved state is loaded as a new 
copy of the virtual machine, to continue running from here. The authors reported on main issues encountered 
in building such a mechanism and design choices made, They concluded by presenting a performance 
evaluation and ideas for extending the work to a native code O Caml and Java. 

In other approaches, Kaur et al. [31] examined the implementation of fault tolerance in a complex 
cloud computing environment with a focus on first come first serve (FCFS) and shortest-job-first (SJF) along 
with misses per instruction on large (MPIL) method with fault tolerance property. Their proposed algorithm 
works for reactive fault tolerance among the servers and reallocating the faulty servers task to the new server 
which has minimum load at the instant of the fault cloud infrastructure that we prototyped. It also includes 
algorithm comparison between misses per instruction (MPI) and MPIL. 

Further works by Singh et al [47] presented an approach for providing high availability to the requests 
of cloud clients by proposing failover strategies for cloud computing using integrated check pointing algorithms 
and implemented the strategies by developing a cloud simulation environment which can provide high 
availability to clients in case of failure/recovery of service nodes. They conducted a comparison of developed 
simulator with existing methods and concluded that the purposed failover strategy will work on application 
layer and provide highly availability for PaaS architectures. Kong et al. [39] analyzed the performance, fault-
tolerance and scalability of virtual infrastructure management systems with three typical structures, including 
centralized, hierarchical and peer-to-peer structures, giving a mathematical definition of the evaluation 
metrics using quantitative analysis for enhancing performance, fault-tolerance and scalability. 

Addressing high availability, Jung et al. [48] provided an enhanced solution to this classical problem 
of ensuring high availability by maintaining performance, by regenerating software components to restore the 
redundancy of a system whenever failures occur. The authors achieved an improved availability by smartly 
controlling component placement and resource allocation using information about application control flow and 
performance predictions from queuing models, ensuring that the resulting performance degradation is 
minimized. The authors concluded that their proposed approach provided a better availability and significantly 
lower degradation of system response times compared to traditional approaches. An alternate approach by Shen 
et al. [7] proposed a mechanism called Availability-on-Demand (AoD) which consisted of an API that allowed 
datacenter users to specify availability requirements and uses an availability aware scheduler that can 
dynamically manage computing resources based on user-specified requirements. Their mechanism operates at 
a level of individual service instance, thus enabling fine-grained control of availability. While the authors 
argued that AoD mechanism can achieve high availability with low cost, the approach is extremely high in 
resource intensive. Another similar approach of dynamically adapting based on parameters, Chtepen et al. [49] 
introduced several information units on grid status, to provide high job throughput in the presence of failure 
while reducing the system overhead. They presented a novel fault-tolerant algorithm combining check pointing 
and replication and evaluated it in a grid simulation environment called Dynamic Scheduling in Distributed 
Environments (DSiDE). From their obtained experimental results, it was concluded that the adaptive approach 
can considerably improve system performance, while the solutions depend on system characteristics, such as 
load, job submission patterns and failure frequency. Das et al. [50] proposed a virtualization and fault tolerance 
technique to reduce the service time and increase the system availability. The authors used a Cloud Manager 
module and a Decision Maker in their scheme to manage virtualization and load balancing and also handle 
faults. By performing virtualization and load balancing, fault tolerance was achieved by redundancy and fault 
handlers. Their technique was mainly designed to provide a reactive fault tolerance where the fault handler 
prevents the unrecoverable faulty nodes from having adverse effect. 

Addressing optimization methodologies in fault situations, Elliott et al. [51] proposed a model and 
analyzed the benefit of C/R in coordination with redundancy at different degrees to minimize the total wall 
clock time and resources utilization of HPC applications. They carried out an experiment with an 
implementation of redundancy within the MPI layer on a cluster and the results confirmed the benefit of dual 
and triple redundancy showing a close fit to the model. Yanagisawa et al. [52] proposed a mixed integer 
programming approach that considered the fluctuations of resource demands for optimal and dependable 
allocation of VMs by allocating VMs successfully in a cloud-computing environment. Israel et al. [53] modelled 
an offline optimization problem and presented a bi-criteria approximation algorithm by presenting a much 
simpler and practical heuristic based on a greedy algorithm. They evaluated the performance of this heuristic 
over real datacenter parameters and showed that it performs well in terms of scale, hierarchical faults and 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

variant costs. Their results indicated that their scheme can reduce the overall recovery costs by 10-15%, 
compared to currently used approaches, by showing the cost aware VM placement may further help in reducing 
expected recovery costs, as it reduces the backup machine activation costs. Parveen et al. [33] proposed a model 
called high adaptive fault tolerance in real time cloud computing, based on computing the reliabilities of the 
virtual machines based on cloudlets, using million instructions per second (mips), RAM and bandwidth. In this 
approach, if there are two virtual machines, both having the same reliabilities values, then the winning machine 
is chosen based on the priority assigned to them. Using parameters for optimizing behavior, Malik et al. [6] 
proposed a fault tolerance model for real time cloud computing, where the system would tolerate the faults and 
then makes the decision on the basis of reliability of the processing nodes or virtual machines. They presented 
a metric model for the reliability assessment where they assessed the number of times a decrease in reliability 
occurred compared to the number of times an increase happened. This proposed technique was based on the 
execution of design diverse variants on multiple virtual machines, and by assigning reliability to the results 
produced variants. The main essence of their proposed technique is the adaptive behavior of the reliability 
weights assigned to each processing node by adding and removing nodes on the basis of reliability. 

Further work by Egwutuoha et al. [38] presented a Proactive Fault Tolerance approach to HPC systems 
in the cloud to reduce the wall clock execution time in the presence of faults. Their algorithm did not rely on a 
spare node for failure prediction and their experimental results, obtained from a real cloud execution 
environment, showed that the wall clock execution time of the computation-intensive applications can be 
reduced by as much as 30% with the frequency of check pointing reduced to 50% compared to current FT 
approaches. Further work by the authors [54] presented a fault tolerance framework using a process level 
redundancy (PLR) technique to reduce the wall clock time of the execution of computational intensive 
applications. Other researchers such as Okorafor [40] also used HPC on the cloud by using Message Passing 
Interface (MPI) and using check pointing for VMs. Using simulations show that the proposed approach 
compares favorably with the native cluster MPI implementations. 
 Following from various traditional approaches, this paper proposed a new model based on a smart 
fault tolerance approach in real time cloud applications for running virtual machines. Using the techniques 
based on parameters being optimized, we apply a selection rate process approach, where a virtual machine or 
node is selected for computation on the basis of its previous pass rate and overall task service time. If the VM 
does not show good performance, it can be deselected from the list of available VMs. This technique does not 
need to have a record and playback strategy because the guarantee of successful service completion is given by 
the initial decisions made at deployments of the service in VMs. This technique of using integrated virtualised 
fail-over strategy has been validated through quantitative and experimental results by simulations for testing 
performance for success in four scenarios – partial, full pass and partial, full fail situations for fault tolerance 
in cloud environments. These results have been analyzed against the traditional approaches to see how well the 
cloud environment repairs and manages to fulfill the service completion tasks. The next section discusses the 
details of the approach. 
 

4. SMART FAULT TOLERANCE IN CLOUD – THE VISION 

The overall vision of fault tolerance in cloud computing is to provide high availability to fulfill the client 
requests on service performance and completion time as defined by the SLA. A fault tolerance service is an 
essential part of the service level objective, therefore a fault tolerance function in a cloud environment is 
extremely crucial. This section presents a working model of the strategy and a mathematical relationship that 
represents the fault tolerance model for our cloud computing system using the FT checkpoint scheme. The FT 
checkpoint uses a Reward Renewal process (RRP) which denotes that after each failure occurrence in the 
system, a backward recovery is performed and the VM is immediately restarted and recovered from the last 
successful checkpoint. Based on the fault tolerance system architecture consisting of four zones, the approach 
has been analysed with relation to some extreme use cases to analyse how the cloud controller would perform 
as presented in the next section. 

 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

 
Figure 1. Fault tolerance architecture 

 
We define a mathematical representation of the fault tolerance model for a cloud computing system, 

presenting a working model of integrated virtualised fault tolerance approach. The fault tolerance system 
architecture shown in Figure 1, consist of four zones namely; 

§ The Client zone: One or more client can access service of cloud on-demand at any given time. 
§ The Virtualisation zone: One or more virtual machines instances can be started up, terminated and 

migrated within the data center. Also acting as link between client and fault tolerance cloud 
environment. 

§ The Fault tolerance zone: Here the hypervisor and virtual machine monitor (VMM) exist to support 
high availability cloud service level and service level objectives.  

§ The Hardware zone: One or more distributed data centers in different locations with each datacenter 
consist of numerous physical servers, providing hardware infrastructure for starting up virtual 
machines instances [7]. 
 

Table 1. Parameters of our architectural model	
Parameters Meaning 

𝐹𝑇#  FT model of a cloud computing system 
𝐶 A client set composed of n-users 

𝐷𝐶 Data Centre 
𝐹𝑇&  Set of defined FT service levels 
𝑂𝐵𝐽*  Objective Function for optimizing a FT cloud 

𝑃𝑅-  Pass Rate Algorithm 
	𝐹𝑇/	 Fault Tolerance Level 

𝐶ℎ𝑘 𝑂𝑝𝑡  Checkpoint optimization strategy 
 

Using the variables defined in Table 1, let the Fault Tolerance model (𝐹𝑇#) of a cloud computing system be 
represented by a finite ordered list of elements or a sequence of five elements,  
 
 

     𝐹𝑇# = 𝐶, 𝐷𝐶, 𝐹𝑇&	, 𝑂𝐵𝐽*, 𝑃𝑅-                (1) 
 
 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

																																																																						

𝑂𝐵𝐽* = 𝑚𝑎𝑥 𝐹𝑇/ ,					

𝑠. 𝑡										𝐹𝑇/	 ∈ 	 0, 1 ,

																	𝐶ℎ𝑘 𝑂𝑝𝑡 									

                              (2) 

 
Where 𝑃𝑅- is an algorithm which selects the optimal pass rate,	𝐶 = 𝑐?, 𝑐@, 𝑐A, … , 𝑐CD@  represents a set of 𝑛-
clients that may request services separately, 𝐹𝑇/ represents a set of fault tolerance service levels available by the 
cloud service provider,	𝑂𝐵𝐽* is the cloud fault tolerance optimizing objective function as given in (1), and 𝐷𝐶 =
𝑑𝑐?, 𝑑𝑐@, 𝑑𝑐A, … , 𝑑𝑐CD@  represents a data center set which is made up of		𝑑𝑐C data centers, where 	𝑑𝑐G =	 
𝑝𝑠?, 𝑝𝑠@, 𝑝𝑠A, … , 𝑝𝑠GHIJKL  and 𝑝𝑠GM	(0 ≤ 𝑘 < 𝑑𝑐G) is the 𝑘𝑡ℎ physical server of the 𝑖𝑡ℎ data center 𝑑𝑐G. 

 
 

4.1.  Working of the Model 
 
The technique aims at providing a high availability system in presence of faults, achieved by using the selection 
rate process technique, where a virtual machine or node is selected for computation on the basis of its previous 
pass rate. This node can be detached from the selection list if it does not operate well. According to the model, a 
set of nodes are created by requests from the resources of the host machine or the physical server. This is achieved 
by the virtual machine monitor (or possibly the hypervisor) that is either software, hardware or firmware that 
creates and runs virtual machines. The host machine is the server where the VMM or hypervisor runs guest virtual 
machines. The VMM presents the guest operating systems with virtual operating platforms and also manages the 
execution of these guest operating systems. 
 
 

 
 

(a) Block Representation 

 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

	
(b) Topology 

Figure 2.  Proposed System Model 

 The VMM retains records of all virtual nodes created from the different host servers. In addition it retains and 
manages records during the process when a load balancer mechanism assigns a job to a virtual node of a specific 
host server in order to evaluate the pass rate. The model is made up of the following modules as shown (Figure 2)  

 
• Service provider (SP) – Is responsible for forwarding the task submitted by clients to the Cloud 

Controller (CC). It also returns results obtained from the cloud controller to the cloud user. 
• Cloud Fault Manager (CFM) – One of the most critical modules in the model as it keeps the system 

in operation and prevents break down. In a scenario where a virtual node develops a fault, as a result 
of some transient faults that occurred in remote host server of corresponding virtual node or due to 
some recoverable temporary software faults present in cloud controller, here the CFM takes 
responsibility and updates the cloud information service record table. In other words during this time 
if there is no executing virtual node on the host server, the Cloud Fault manager (CFM) module will 
remotely and automatically restart the server. At this particular point in time, the cloud load balancer 
(CLB) module is informed not to assign any further tasks to the virtual nodes of the concerned server. 
During this process there might be a slight delay in the system restarting and jobs waiting to be 
processed. However the algorithm tries to recover quickly by minimizing the system service time and 
not losing any job during the process. It might also apply some fault detection strategy and successful 
recovery technique thereby making the virtual node of that host or physical server available for future 
request.  

• Cloud Controller (CC) – This is directly linked to the SP and is part of the cloud architecture. 
Virtualisation is done using the hypervisor, which provides system resources access to virtual 
machines and creates a virtual environment. In addition, it keeps record of virtual nodes and their 
corresponding physical nodes each time a virtual node is created. The virtual node IDs, server IDs 
and pass rate (PR) are contained in the Cloud Information Service (CIS), which helps to identify the 
virtual nodes and keeps record of tasks assigned to virtual nodes of a particular host or physical server. 

• Cloud Load balancer (CLB) – The CIS is also available to the CLB and distributes the loads based 
on the information it gets from the record of physical systems used for virtualisation. The CLB will 
assign task to virtual nodes whose corresponding physical servers have a high pass rate. 

• Status Checker (SC) –This is the first sub module under the selection mechanism module. It checks 
the status of each virtual node either it is pass or fail. 

• Cloud Information Service Record Table (CIS) – This is a performance record table that contains 
server IDs, virtual nodes IDs and pass rate values to identify corresponding virtual nodes.  

• Task Time Limit Checker (TTLC) –The task time deadline of each task assigned is checked by the 

Cloud	User

Physical	Server

Cloud	Load	Balancer(CLB)

Cloud	Fault	Manager
(CFM)

FT	Checkpoint/RestartHypervisor

Host	Operating	
System

Status	Check(SC)

Task	Time	Limit	
Checker(TTLC)

Cloud	Information	
Service(CIS)

Final	Decision	
Mechanism

												VM-1

														VM-2

															VM-3

VM-n

Pass	Nodes

Failed	Nodes



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

TTLC in the selection mechanism module. It also checks to see if assigned task is completed within 
an agreed time limit. 

• Selection Module (SM) – This module provides the crucial process and is made of the SC, TTLC, 
CIS record table, FT check-pointer and the final selection mechanism. Here, SC checks the status of 
each virtual node, and if the status is pass, then the task deadline time is checked by the TTLC. If 
both SC and TTLC are pass, then pass rate of corresponding node is increased and forwarded to the 
decision mechanism module for final selection process. But if both SC or TTLC fail, then 
corresponding virtual machine is not forwarded for final selection and instead the node is forwarded 
to the cloud fault manager for fault detection and recovery. In a scenario where SC is success but the 
task is not completed within the time limit, the pass rate in the CIS record table of that particular node 
is decreased and that node is not forwarded to the final decision mechanism sub module. Table 2 
present these rules in detail. 
 

      In addition, the final selection mechanism contains all virtual nodes that successfully passed the SC and TTLC 
module. After this point, the node with the highest pass rate value is selected and checkpoint is made. But if all 
nodes failed, a backward recovery is carried out with help of the last successful checkpoint. Also if there exist 
more than one node with same PR values, then a node will be selected at random.  
 

Table 2. Rules of the System 
 

RULES CONDITION DECISION 

1 If (SC status == pass) && (TTLC status ==pass) Increase PR and forward to selection 
module for decision & selection. 

2 If (SC status == pass) && (TTLC status ==fail) Update database in CIS module, decrease 
PR, and corresponding VM not sent to 
selection module. 

3 If (SC status == fail) && (TTLC status == pass) Decrease PR and node sent to CFM for 
identification, detection & recovery. 

4 If (SC status == fail) && (TTLC status ==fail) Decrease PR and node also sent to CFM for 
detection & recovery. 

	
4.2. Use Case Scenarios 

 
In the above scheme, all virtual nodes run different algorithm resulting in different scenarios of pass and fail 
rates, representing diversification in software and timing constraints. Following are some scenarios that could 
occur. 
 

• Full Pass Scenario- The entire algorithm on each virtual node produces a successful outcome. Here 
the SC and TTLC is also pass because the task is completed within the stipulated time limit. The 
pass rate of the corresponding node is then increased and it goes to the selection mechanism for the 
final decision-making. The selection module contains all the virtual nodes that have successfully 
completed and passed the SC and TTLC module. The final selection module selects the node with 
the highest pass rate value and performs a checkpoint before sending back to the service provider. 
However, in this case no failure is recorded in any of the virtual machines. 

 
• Partial Pass Scenario- All virtual machines produce successful results where some of the results are 

generated within the time limit and some after the time. If the status check of a node is pass but the 
task is not completed within the agreed time limit, then the system is said to be in a partially pass 
state, and the node is not considered for a further decision by the final selection mechanism. The 
success rate for that particular node is also decreased and an error signal is not generated for a failed 
virtual machine. However, in this scenario, the system will continue to operate with forward 
recovery and the selection mechanism will select the output from the nodes that have produced a 
good pass rate within the time limit. 

 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

• Full Failure Scenario – if the status check is fail, then automatically the task limit check is also fail 
and all the faulty nodes are sent to the Cloud Fault manager for fault detection and recovery. In this 
scenario, all nodes fail completely and with the aid of the last successful checkpoint a backward 
recovery is performed. 

 
• Partial Failure Scenario – If either the SC or task limit time checker is fail then the corresponding 

virtual machine is not considered or forwarded to the final selection module. However, some virtual 
machines produce some pass results only when the SC is pass and the results are produced within 
the time limit, thereby sending the virtual machine to the selection module and increasing the 
Success rate of that node in the Cloud information service record table. Here error signals will be 
generated for failed virtual machines and the corresponding node will not be sent to the final 
selection module. The system will continue to operate with forward recovery and the last decision 
mechanism will only select the output from the nodes that have produced a pass result. 

 
The definitions of pass rate and failure rate are as follows: 
Pass Rate: is defined as the fraction or percentage of successful virtual nodes in the system after executing a 
complete computing cycle. 
Failure Rate: is defined as the level or rate at which the virtual node of the system fails. The failure rate of 
the system depends on time, status check and task time limit checker. Details of this is presented 
mathematically in the next section. 

 
	
 

4.3. Fault Tolerance using Checkpointing Mechanism   
	
Checkpointing strategies has drawn significant attention over the last couple of years in the context of fault 
tolerance research in cloud computing [55].They have been explored for a large scale cloud environment. 
Checkpointing mechanism is the process of saving a system state periodically to a stable storage during 
failure-free execution. Being the most common mechanism for fault tolerance in a cloud environment, we 
integrate it with the pass rate optimized selection technique and have focused on it in this paper. Overall it 
can be classified into two main types namely, full checkpointing mechanism which saves the entire system 
running state periodically to a storage platform, and the incremental checkpointing mechanism whose first 
checkpoint contains the running state of the complete system, while the subsequent checkpoint only saves 
pages that have been modified since the previous checkpoint[9].  
In order to realize a high level of fault tolerance in cloud and to achieve an optimal level of cloud 

	

                                                      Figure 3. Use Case Scenarios for Pass and Fail 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

serviceability and cloud service level agreement, we present a mathematical proof for fault tolerance strategy 
based on our model. Table 3 presents key parameters of the model. 

Table 3.  Parameters of the Fault Tolerance Model 

𝛀G  The cycle between failure i and failure(i+1) 
𝑱C  Time of the 𝑛𝑡ℎ	checkpoint 
𝑇UVW  Roll Back failure Time between	𝑇X  and last successful 𝑱C  Checkpoint 
𝑅Y  Restart Point 
𝑇UZ[  Recovery Point/Time or FT overhead 
𝑇X  Failure occurrence Point/Time  
𝑇[\  Total Time interval of a complete failure cycle 
𝑇]^  Checkpoint Overhead 
∆J Time interval between consecutive checkpoint 
CDF	 Continuous Density Function 
𝐹(𝑡)	 Failure Distribution Function  

𝑓(𝑡)	 Failure Density Function (FDF) 
𝑇]^XX 	 Longest Failure Free Checkpoint Overhead 
𝜌 𝑡 	 Checkpoint density function 

	
According to Figure 4 the time interval between consecutive checkpoints ∆J	is a critical factor to tradeoff 
checkpointing overhead 𝑇]^  and fault tolerance overhead, which relates to the checkpointing overhead 
during the longest failure-free time interval of the consecutive checkpoints, Rollback time	𝑇UVW  and the time 
interval between the failure point and the last successful checkpoint after system recovery	𝑇UZ[ . So the failure 
density function is given as 𝑓(𝑡) while the checkpoint density function is given as 𝜌 𝑡 . 
The scheme uses a checkpoint model that follows a RRP, where after each failure occurring in the system, 
backward recovery is performed and the application is immediately restarted and recovered from the last 
successful checkpoint. In summary, the fault generated is repaired before the last task time deadline is 
reached, and after each node failure occurrence in the system, the application will be restarted from the last 
successful checkpoint. The following assumptions were made. 
 

	
Figure 4. Full Checkpointing Strategy Failure Cycle  

 
Assumption 1: Let (𝑻𝒐𝒗	 ,	𝑻𝒓𝒆𝒄 , 𝑻𝑹𝒐𝒍)	 of each cycle be a sequence of independent identically random 
variable (𝑳𝟏 ,	𝑳𝟐 , 𝑳𝟑)…… . .,	 which is dependent on any point in time failure occurs in the system 𝛀 stands 
for the 𝑘op  time between failures in each computing cycle. 
 

                                                             𝛦 [𝑇Vr	]  <  ∞                                                                      (3) 
  
To improve the checkpoint mechanism in our system, we looked at how to determine checkpoint intervals 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

that decreases the time delay because checkpoint should not be carried out too regularly to balance the  𝑻𝒐𝒗	 
and Roll back time of our application. 
Therefore the time delay can be expressed as 

                                                          			𝐿o	 = 𝑇G
uv
Gw?                                                                        (4) 

 
Where 𝑥o			 = sup 𝑛:	𝐽C	 ≤ 	𝑡   = max 𝑛 ∈ (1,2,3… . )|	𝑥o	 ≤ 	𝑡   
And 𝐽C	 Refers to the 𝑘op  failure time of intervals [	𝐽C	, 𝐽C|@	] which is also called the renewal intervals, 
which is defined as        

                                                                   𝐽C	 = 𝑇G}
Gw@ ,                                                                       (5) 

 
Equation (4) is called the renewal reward process where 	𝐿o	 depends on	(𝑻𝒐𝒗	,	𝑻𝒓𝒆𝒄, 𝑻𝑹𝒐𝒍)	     
The renewal function is defined as the expected value of the number of failures observed up to a given 
time	t:   

                                                                   𝑓 𝑥 = 	𝛦	[𝑋o	]				     (6) 
 

 
So, the renewal function satisfies                     lim

o→�
	 @
o
𝑓 𝑥 = @

�	[𝛀𝟏]	
                                                             (7) 

                                                
Substituting (6) into (7) gives                           lim

o→�
	 �v	
o
= @

�	[𝛀𝟏]	
                                                                    (8) 

  
Proving the elementary renewal theorem it is sufficient to show that for an elementary renewal theorem for 
renewal reward processes the reward function is given as:  
             

            𝑔 𝑥 = 	𝛦	[𝐿o	]				                                                              (9) 
 

The reward function thereby satisfies             lim
o→∞

	 @
o
𝑔 𝑥 = �	[𝐋𝟏]

�	[𝛀𝟏]	
                                                            (10)        

 
Substituting (9) into (10) gives                        lim

o→�
	 �	[𝐋𝒕]

o
= �	[𝐋𝟏]

�	[𝛀𝟏]	
                                                               (11)   

 
From equation (4), since                                	𝐿o	 = 𝑇G

uv
Gw?                                                                         (12)  

 

Then equation (11) becomes,                          lim
o→�

	
�	[ �J

�v
J�� ]

o
= �	[𝐋𝟏]

�	[𝛀𝟏]	
                                                        (13)          

  
 Therefore,                                                           		𝐿o	 =

�	[𝐋𝟏]
�	[𝛀𝟏]	

                                                                     (14) 
  

Where 	𝐿o	 is called the renewal reward process as derived in [56], [57]. Conversely there is an additional 
time to save the system application states, which is called the checkpoint overhead. In other to improve the 
checkpoint mechanism, checkpoints should not be performed too frequently in other to achieve balancing 
between the checkpoint overhead, recovery time and application re-computing time as derived in [58], 
[59][55][60]. 
 
Assumption 2: In the proposed model, we assume that failures occur rarely and randomly to the system, 
rather than being an integral part of the system. The check pointing mechanism is able to recognize and 
isolate faults when they occur to ensure the overall system performance is not affected. 
 
Assumption 3: We assume that failure will be detected as soon as possible after the occurrence, and the time 
between failures follows a similar probability density function in cloud systems. At the same time during 
system recovery period failure will not happen. 
 
Assumption 4: The system is failure-free during system recovery period. 
 
Assumption 5: The time between failures follows the same probability density function in a cloud 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

environment 
Assumption 6: That ∆J is constant which implies that 𝑇UVW <	 ∆J always.  
Assumption 7:  𝑇]^	is constant in a cloud environment. 
 
Assumption 8: The failed system can always be recovered from the last successful checkpoint which implies 
that 𝑇�Z[ < 	∆𝐽	always   
 
From the figure above, 𝑇VrXX  is defined as the checkpointing overhead during the longest failure-free time 
interval of consecutive checkpoint and it is associated to the𝑇Vr . 
So, 

		𝑇VrXX = 𝛀𝟏 − 𝑇UVW                   (15) 
  
We define a Continuous Density Function (CDF) of a continuous checkpoint as a function that describes the 
probability for a checkpointing interval ∆𝐽 to occur at a particular time	𝑡.  
 

CDF	=	𝜌 𝑡 = @
∆�
		 	 	 	 						  (16)	

Where 		𝑁��.��  is the number of checkpoints to fall within a particular interval [𝑗u, 𝑗\], which is given by the 
integral of CDF over time interval [𝑗u, 𝑗\]. 
 
Therefore, integrating (16) becomes 

 𝜌 𝑡 	𝑑𝜏 = 	 @
∆�
	𝑑𝜏 = 	 		𝑁��.�� 	

��
��

��
��

               (17) 
 
Since		𝑁��.��  is the number of checkpoints to fall within an interval [𝑗u, 𝑗\], 
Then  		𝑁��KL.��  is the number of checkpoints to fall within an interval [𝑗CD@, 𝑗C], 

 
From (17) we have             𝜌 𝑡 	𝑑𝜏 = 	 @

∆�
	𝑑𝜏 = 	 				 @

��D��KL
	𝑑𝜏 = 	 		𝑁��KL.�� = 1	��

��KL
	��

��KL
��
��KL

             (18) 
 

So from the figure above, we calculate the total checkpoint overhead during the longest failure free time 
interval as follows: 

     		𝑇VrXX 	= 		𝑇Vr ∗ 		𝑁��.��             (19) 
 

           		𝑇VrXX 	= 		𝑇Vr ∗ 𝜌 𝑡 	𝑑𝜏��
��

                        (20) 
Since 		𝑇UVW  is connected to 		𝑇X  and in reality 	𝑇X  is unknown until failure occurs, therefore we use failure 
expectation distribution value 𝐸(𝑇UVW) as the fault overhead. 
 
If  𝑓(𝑡) represents the Failure density function (FDF) of a continuous failure whose function describes the 
relative probability for the failure to occur at a particular time	𝑡, then we define the FDF as follows: 
 

                                                       𝑓 𝑡 = 		 𝐹¢ 𝑡 = £X(o)
£o

                              (21) 
 
Such that  𝑓 𝑡 	≥ 0	𝑎𝑛𝑑 𝐹 𝑡  represents the failure distribution function which is connected to the failure 
density function.  We now have  

                                              𝑓 𝜏|�
D� 𝑑𝜏 = 1                                           (22) 

 If  𝐹(𝑡) of a continuous failure is defined as a function that describes random variable t with a given 
failure density function𝑓 𝑡 , where𝑓 𝑡 	≤ 𝑡,   
 
Then                                        𝐹 𝑡 = 𝑃 −∞ ≤ 𝑡 = 𝑓 𝜏o

D� 𝑑𝜏,                                            (23) 
 

Simplifying equation (23) gives  
  𝑃 −∞ ≤ 𝑡 = 1 − 𝐹 𝑡 = 𝑓 𝜏D�

o 𝑑𝜏,                                       (24) 
So,  



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

                                  𝑃 		𝑡u < 𝑡 ≤ 	 𝑡\ = 𝐹 	𝑡\ − 𝐹 	𝑡u                                              (25) 
       
Equation (25) now gives 
 

                          = 𝑓 𝜏o�
o�

𝑑𝜏,   Where lim
o→�

𝐹 𝑡 = 0 and		 lim
o→|�

𝐹 𝑡 = 1.                      (26) 
 

Recall that since 		𝑇UVW  is connected to 		𝑇X  and in reality 	𝑇X  is unknown until failure occurs, therefore we 
use failure expectation distribution value 𝐸(𝑇UVW) as the fault overhead. We then calculate the failure 
expectation value as follows: 

   𝐸 𝑡 = 	𝜏. 𝑓 𝜏|�
D� 𝑑𝜏,                                                        (27) 

   
Where 𝐸 𝑡  is defined as the failure distribution value of a continuous failure that describes the weighted 
average of all values of all possible failures that accepts probability density function.  
Since(𝐹𝑇]^) is associated to	𝑇X , and 	𝑇X  fall within time interval [𝐽C, 𝐽C,|@], therefore we can simply calculate 
𝑇X  and 𝐽C   as well as the Roll Back failure Time between	𝑇X  and last successful 𝑱C  Checkpoint which is given 
as: 
 

                                                           	𝑇UVW = 𝑇XG − 𝐽C                                                                   (28) 
  
From our checkpoint model, the checkpointing time interval in a cycle fall within an interval [𝐽@, 𝐽C,|@], 
breaking it down further gives [𝐽@,𝐽¥,𝐽A, …. 𝐽C,|@] and [𝐽C, 𝐽C,|@] where 𝑇X, fall between time interval [𝐽C, 𝐽C,|@]. 
So Let ( 𝐽C 	< 	𝑇X ≤ 𝐽C|@) = 𝑋  
 
Therefore, from (27) the failure expectation distribution value gives   
 

                                                       𝐸 𝑇UVW 𝑋 = @
¥∗	¦(o)

                                                          (29) 
Substituting 𝑋  into (29) gives 

 
                                              𝐸 𝑇UVW 𝐽C 	< 	𝑇X ≤ 𝐽C|@)	 =

@
¥∗	¦(o)

                                        (30) 
 

Since 𝑇X, fall within time interval [𝐽C, 𝐽C,|@] which implies that 𝐽C < 𝑇X, ≤ 𝐽C,|@ and 𝑡 fall within [𝐽C	, 𝑇X	], 
the failure expectation value by substituting (28) gives us: 
 

𝐸 𝑇UVW 𝐽C 	< 	𝑇X ≤ 𝐽C|@ = 	𝐸 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@                      (31) 
 

From (27) Integrating gives 

                          𝐸 𝑇UVW 𝐽C 	< 	𝑇X ≤ 𝐽C|@ =	   𝑃(𝜏 > 𝑇XG − 𝐽C|𝐽C < 	𝑇XG ≤ 𝐽C|@)
��¨LD��
? 𝑑𝜏        (32) 

    
Simplifying (32) gives 

 		𝐸 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@  = ©(ª«�¬JD��,��­	�¬J®��¨L)
©(��­	�¬J®��¨L)

��¨LD��					
? 𝑑𝜏                (33) 

 
𝐸 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@  = X 	��|	ª DX 	��

X 	��|	@ DX 	��

��¨LD��					
? 𝑑𝜏                           (34) 

 
 

𝐸 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@  = 
*(u)¯�¨°

¯�
£u

*(u)¯�¨L
¯�

£u

��¨LD��					
? 𝑑𝜏                               (35) 

Failure rate is the frequency with which an engineered system or component fails, expressed in failures per 
unit of time. It can be defined with the aid of the reliability function, also called the survival function	𝑅(𝑡), 
the probability of no failure before time	𝑡. 

𝜆 𝑡 = *(o)
U(o)

                                                               (36)                                                 
Where 𝑓 𝑡  is the failure density function FDF of a continuous failure which is related to the failure rate 𝜆  



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

and not to time, because the system failure rate 𝜆 doesn’t change in the time interval [𝐽C, 𝐽C,|@], and		 
 

                                                                      𝑅 𝑡 = 1 − 𝑓 𝑡 																																																																									(37) 
 
Note that the 𝜆 𝑡  function is a conditional probability of the failure density function. The condition is that 
the failure has not occurred at time		𝑡.  
Hence equation (35) becomes  

𝐸 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@  = 
*(o)¯�¨°

¯�
£u

*(o)¯�¨L
¯�

£u

��¨LD��					
? 𝑑𝜏                         (38)         

 
Simplifying further gives          

𝐸 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@  = ��|	ªD�� ∗*(o)
��¨LD�� ∗*(o)

��¨LD��					
? 𝑑𝜏                      (39) 

  
𝐸 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@  = ª

��¨LD��

��¨LD��		
? 𝑑𝜏                               (40) 

 
Factoring out and integrating 𝑤𝑟𝑡 to 𝜏 gives 

 
𝐸 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@  = ª

��¨LD��

��¨LD��		
? 𝑑𝜏                                (41) 

 
  E 𝑇XG − 𝐽C 𝐽C 	< 	𝑇X ≤ 𝐽C|@  = @

��¨LD��
𝜏��¨LD��		

? 𝑑𝜏                              (42) 
 

= 	 @
��¨LD��

∗ 	 ��¨LD��
µ

¥
	 =	(��¨LD��)

¥
                                                           (43) 

 
Therefore,                  E 𝑇UVW 𝐽C 	< 	𝑇XG ≤ 𝐽C|@ = (��¨LD��)

¥
     (44) 

 
Substituting   ∆𝐽 = (𝐽C|@ − 𝐽C)	into (44) gives 
 

 		E 𝑇UVW 𝐽C 	< 	𝑇XG ≤ 𝐽C|@ 	= (��¨LD��)
¥

= ∆�
¥

                                       (45) 
 
Substituting (16) in (45) gives           

                                                     E 𝑇UVW 𝐽C 	< 	𝑇XG ≤ 𝐽C|@ 	= @
¥	∗	¦(o)

                                                 (46) 
 
From Figure 4 above, the total overhead time interval of the complete failure cycle can be calculated as 
follows: 
 

𝑇[\ = 𝑇]^XX + 𝑇UVW + 𝑇�Z[                                                             (47) 
   
Where                                     𝑇�Z[ = 𝑇UVW + 	𝑇]^                                  (48) 
 
Substituting (30) into (48) gives 

    𝑇�Z[ =
@|	¥∗¦ o 	∗	�¸¹

¥∗	¦(o)
	= @
¥∗	¦(o)

+ 𝑇]^                                                     (49) 
 
Substituting (20), (46) and (49) into (47) gives 
 

𝑇[\ = 		𝑇Vr ∗ 𝜌 𝑡 	𝑑𝜏��
��

+ @
¥	∗	¦(o)

+ @
¥∗	¦(o)

+ 𝑇]^                                          (50) 
 
Simplifying (50) and factoring out 𝑇]^  gives  
 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

		𝑇[\ = 		𝑇Vr ∗ 1 + 	 𝜌 𝜏 	𝑑𝜏
��

��
+

1
𝜌 𝑡

																																																											(51)	

						                                        
The failure expectation distribution value 𝐸(𝑇[\)	can be calculated since the time interval in our failure 
circle is [𝐽?, 𝐽C,|@], and  𝑓(𝑡)	𝑎𝑛𝑑	𝐹(𝑡) are the failure density function and failure distribution function 
respectively. So,   

				𝐸(𝑇[\) = 𝑇[\ ∗ 𝑓 𝑡 	𝑑𝑡
|�

?
																																																																						(52) 

 
Integrating 𝑤𝑟𝑡	𝑡 and substituting (51) into (52) gives, 

											𝐸(𝑇[\) = 𝑇[\ ∗ 1 + 𝜌 𝜏 	𝑑𝜏
�

��
+

1
𝜌 𝑡 	

∗ 𝑓 𝑡 	𝑑𝑡
|�

?
																																				(53)	

	
Where 𝐸(𝑇[\) is the failure expectation distribution value. 
 
Minimizing the value of 𝐸(𝑇[\)  from equation (51), 𝜌 𝑡   can be obtained thereby optimizing ∆𝐽 which is 
the checkpoint interval.  
 
So 𝜌 𝑡  is obtained as  

=
1
		𝑇Vr

∗
𝑓 𝑡

(1 − 𝐹 𝑡 )

@
¥
																																																																							(54)	

And  ∆𝐽 is obtained as  

				= 		𝑇Vr ∗
(1 − 𝐹 𝑡 )

𝑓 𝑡

@
¥
																																																																						(55)	 

 
Therefore minimizing 		(min	𝐸(𝑇[\))is equivalent to  

= 𝑇[\ ∗ 1 + 𝜌 𝜏 	𝑑𝜏
�

��
+

1
𝜌 𝑡 	

∗ 𝑓 𝑡 	𝑑𝑡 																																									(56)		

	



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

	
Figure 5. A Sequence diagram for the interaction between proposed system components. 

 
The sequence of interactions between components of the cloud using our proposed strategy as shown in 
Figure 5 is as follows: 
 

1. At the start, users submit task with user quality of service requirements to the service provider and 
dispatches tasks to the Cloud Controller. 

2. Cloud Controller sends request to the Cloud information Service to get a list of available resources 
for each task.	

3. CIS responds to this query by sending a list of registered resources that are suitable for executing 
the job and their information (CIS Table).	

4. After receiving the available list of resources, the cloud controller performs the following: 
(a) Performs virtualisation with the help of a hypervisor. 
(b) Virtual machines (nodes) are created from the available resources of the physical server. 
(c) A CIS table containing the server IDs, virtual nodes and pass rates is made available to the load 
balancer. This table is maintained to identify the virtual nodes and to keep record of the number of 
times jobs are assigned and to also obtain the pass rate from those successful virtual nodes. 

5. The load balancer distributes the task based on the information gotten from the CIS table, by 
assigning task to those virtual nodes whose corresponding physical servers are having a good PR.	

6. If the job is successfully completed then, 
(a) Both the SC and TTLC are success 
(b) The PR of corresponding node is increased and forwarded to final decision mechanism module. 
(c) The decision mechanism delivers the result of successful job to the SP, which is then dispatched 
or returned to the client. 

7. If it fails to complete the job then 
(a) Both SC and TTLC are fail  
(b) Either SC or TTLC is fail and the corresponding virtual machine is not sent to the decision 
mechanism. 
(c) The corresponding virtual machine is sent to fault manager for fault detection and recovery. If 
all nodes fail, then the backward recovery is performed with the help of the last checkpoint. 

 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

Algorithm 1: Cloud Controller Computation Algorithm 
 

Step 1: Start 
Step 2: Output “Most Viable Node for operation with highest PR" 
Step 3: Input “ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒 = 1" 
Step 4: Input 𝑃𝑅 = 0.5, 𝑥@ = 1, 𝑥¥ = 2. 
Step 5: If (𝑛𝑜𝑑𝑒𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑃𝑎𝑠𝑠), /SC and TTLC module for that node is Pass/ 
                  {𝑥@=𝑥@+1, 𝑥¥=𝑥¥+1, PR=𝑥@/𝑥¥ 
  Update CIS record table} else, 
Step 6:	If (nodeStatus=Fail), /SC or TTLC module for that node or both is Fail/ 
 {𝑥¥=𝑥¥+1,	PR=𝑥@/𝑥¥Update	CIS	record	table}	
Step 7: If (𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒 >= ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒) 
 {𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒 = ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒} 
Step 8: If	(𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒 <= 0)			                           
 {Inform CLB not to assign task to the node, remove the node and CC will be informed to add a new node} 
 Step 9: Stop 

 

Algorithm 2: Cloud Load Balancer Algorithm 
 

Step 1: Start 
Step 2: Input initial PR=0.5, 𝑥@=1, 𝑥¥=2. (0 < 𝑃𝑅 ≤ 1) 
Step 3: Input “ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒 = 1", 𝑃𝑅 = uL

uµ
 

𝑥@ = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑚𝑒𝑠	𝑡ℎ𝑒	𝑣𝑖𝑟𝑡𝑢𝑎𝑙	𝑛𝑜𝑑𝑒	𝑜𝑓	𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙	𝑠𝑒𝑟𝑣𝑒𝑟	𝑔𝑖𝑣𝑒𝑠	𝑎	𝑠𝑢𝑐𝑐𝑒𝑠𝑓𝑢𝑙𝑙	𝑟𝑒𝑠𝑢𝑙𝑡 
𝑥¥ = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑚𝑒𝑠	𝑡ℎ𝑒	𝐶𝐿𝐵	𝑜𝑓	𝑡ℎ𝑒	𝐶𝐶	𝑎𝑠𝑠𝑖𝑔𝑛𝑠	𝑎	𝑡𝑎𝑠𝑘	𝑡𝑜	𝑎	𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟	𝑠𝑒𝑟𝑣𝑒𝑟𝑠	𝑣𝑖𝑟𝑡𝑢𝑎𝑙	𝑛𝑜𝑑𝑒 

Step 4: If  (𝑖𝑓	𝑆𝐶	𝑆𝑡𝑎𝑡𝑢𝑠 == 𝑃𝑎𝑠𝑠)&&(𝑇𝑇𝐿𝐶	𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑃𝑎𝑠𝑠) 
  Select the node 
 If (𝑖𝑓	𝑆𝐶	𝑆𝑡𝑎𝑡𝑢𝑠 == 𝑃𝑎𝑠𝑠)&&(𝑇𝑇𝐿𝐶	𝑠𝑡𝑎𝑡𝑢𝑠 == 𝐹𝑎𝑖𝑙) 
 Select the node with the highest PR 

 If  (𝑖𝑓	𝑆𝐶	𝑆𝑡𝑎𝑡𝑢𝑠 == 𝐹𝑎𝑖𝑙)&&(𝑇𝑇𝐿𝐶	𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑃𝑎𝑠𝑠) 
 Don’t select the node if enough nodes are available 

 If  (𝑖𝑓	𝑆𝐶	𝑆𝑡𝑎𝑡𝑢𝑠 == 𝐹𝑎𝑖𝑙)&&(𝑇𝑇𝐿𝐶	𝑠𝑡𝑎𝑡𝑢𝑠 == 𝐹𝑎𝑖𝑙) 
 inform the CC and forward to CFM to perform recovery with the last successful checkpoint 

 Step 5: Stop 

 

      Algorithm 3: Final Selection Technique Algorithm 
 

Step 1: Start 
Step 2: Output “Select best Node with highest PR and minimum finish time" 
Step 3: Input from TTLC: node PassRate, 𝑥@= is the number of nodes with successful SC and TTLC results. 
Step 4: Input 𝑃𝑅 = 0.5,	 
Step 5: Input ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒 
Step 6: if (𝑥@==0), then {Status = fail, Conduct a backward recovery with the help of the last successful checkpoint} else, 
{Status=Pass, bestPassRate=PassRate of the node with maximum PassRate and send outcome to the Service provide and 
perform checkpoint}   
Step 7: Stop 

 
4.3. Pass Rate (PR) and Fail Rate (FR) Assessment Analysis 

 
We considered 200 computing cycles and present a metric analysis to evaluate the pass and fail scenarios of 
six virtual nodes respectively. As part of our initial conditions, we assumed the following: 
 
(𝑖) 𝑃𝑎𝑠𝑠	𝑅𝑎𝑡𝑒	 = 0.5, where 𝑥@ represents the number of times a virtual machine of host produces a pass 
outcome and 𝑥¥ represents time the cloud controller’s load balancer designates a task to a virtual node. 
(𝑖𝑖). Each VM belongs to a different host or physical server.  
 
A comparison analysis performed for 200 computing cycles between the pass and failure scenarios is 
presented. We observe that scenario-1 continuously increased and passed successfully, while scenario-2 
continuously decreased as shown in Figure 6. Scenario-3 passed and succeeded for the first 100 cycles and 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

then decreased for the remaining cycles, while Scenario-4 failed for the first 100 cycles and then succeeded 
for the remaining 100 cycles. The increase in pass rate after 200 computing cycle is 0.978 for scenario-1, 
whereas decrease in pass rate for scenario-2 is 0.579, with increase in pass rate for scenario-3 and scenario-
4 being 0.38. This shows that the increase in pass rate is greater than the decrease and the convergence 
towards decrement in reliability is much higher, displaying a good performance of algorithm. Further 
scenarios in a more complex environment containing higher number of virtual machines and were tested for 
validation of result. This is discussed is Section 5. 
 

	
Figure 6.  Pass/Pass⤇Fail & Fail/Fail⤇Pass Shifting plots 

1. EXPERIMENTAL SETUP AND RESULTS  

The experiments were conducted using CloudSim [61],[62]–[64] where 100 virtual nodes were created for 
performance comparison and scalability validation. We started by running the integrated virtualised optimal 
checkpointing algorithm using 10 computing cycles and created 6 virtual nodes with every individual node 
executing series of tasks at a time. While these tasks are executed in one computing cycle, every virtual node 
runs a diverse algorithm. We then compared our results with existing approaches by creating 3 virtual nodes 
with 10 computing cycle as depicted in section 5.1. To analyse the algorithm's performance in a larger and 
complex environment, we created 100 virtual nodes. Details of the simulation results are presented in the 
next section.As earlier stated, the different pass and failure scenarios obtained from this experiment are a 
result of diversity in software and timing constraints. The selection or decision mechanism is responsible for 
receiving results obtained from the virtual machines before returning the result of the successful job to the 
client via the service provider. At the service provider level, the selection or decision mechanism is integrated 
with the cloud controller module. In a situation where a failure occurs in one of the nodes, the system will 
automatically adapt a fail-over strategy and continue operating using the remaining nodes. The system will 
maintain and continue its operation in a steady state until all nodes have failed. A node is then selected and 
a checkpoint of the last successful saved point is made to keep the status of the system for future recovery. 
This is done after a successful completion of one computing or instruction cycle. The approach assumes that 
the value of			𝑥@,	𝑥¥ PR, virtual node ID and corresponding server ID are available. The task deadlines are 
taken as input with initial values 𝑥@ =1, 𝑥¥ = 2	and PR=0.5 considered for every node. Figure 7 shows some 
experimental results obtained from six virtual machines where pass and failure rate analysis. 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

 

                                                    Figure 7. Experimental result from Six Virtual machines

		 		 	
																																				(a)	 	 	 	 	(b)	 	 	 	 		(c)	

		 		 	
																																						(d)	 	 	 																			(e)	 	 	 	 		(f)	
	



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

5.1 Performance Comparison of Results 
 

Figure 8 presents’ results obtained from the performance comparison of our proposed strategy with other 
existing approaches where we observed that our proposed strategy has a better performance compared to the 
existing approaches, as increase in pass rate both for virtual node-1, 2 and 3 are higher than decrease in 
failure rate.  
 

1. Virtualization and Fault Tolerance Approach (VFT) – Das et al. [50] proposed a virtualization and fault 
tolerance technique to reduce the service time and increase the system availability. In their proposed 
approach a Cloud Manager module and a Decision Maker we used to manage virtualization and load 
balancing which try to handle faults. By performing virtualization and load balancing, fault tolerance 
was achieved by redundancy and fault handlers. Their technique was mainly designed to provide a 
reactive fault tolerance where the fault handler prevents the unrecoverable faulty nodes from having 
adverse effect. 

2. Adaptive Fault Tolerance Approach (AFT) –Malik et al. [6] proposed an adaptive fault tolerance in time 
cloud computing where the main essence of their proposed technique was an adaptive behavior of the 
reliability weights assigned to each processing node and adding and removing of nodes on the basis of 
reliability. 

3. Our Proposed Approach – For the purpose of evaluation, we compared our proposed strategy with the 
VFT [50] and AFT strategy [6] where we use results obtained from our proposed strategy as the measured 
parameter while that of VFT and AFT are referred to as calculated parameters respectively. 

 
Comparing the three models, we first obtain the relative error			𝑥�Z , then we calculated the actual error 𝑥G	as 
the difference between the calculated and measured result. These are expressed as (57) and (58) respectively.
   

 

												𝑥�Z =
𝑞GÚÛW[ÜWÛoZ£	 − 	𝑞GÝZÛ&Ü�Z£	

𝑞GÝZÛ&Ü�Z£	
	×		100																																													(57)			 

 
	
	 𝑥G = 		 𝑞GÚÛW[ÜWÛoZ£	 − 	𝑞GÝZÛ&Ü�Z£	 	

	
							(58)	

 

            (a) Virtual Node– 1                      (b) Virtual Node – 2                  (c) Virtual Node – 3 

                     Figure 8. Performance Comparison of VFT, AFT and our Proposed Strategy 

	



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

 
A performance evaluation of VFT and AFT strategy with our proposed model was carried out using the 
parameters in Table 4. 

 

Table 4. Parameters 

Parameter Meaning 
			𝑥�Z Relative error  
𝑥G Actual error 

			e@  Average percentage relative error (APE) 
				e¥	   Average absolute percentage relative error (AAPE) 
			eA	   Standard deviation (SD) 
			eà	   Average Actual  error (AAA) 
			eá	   Average absolute actual error (AAAE) 
			eâ	   Standard deviation about average actual error (SDAE) 

 
Equation (59-64) gives the mathematical definition of these parameters and Table 5 presents the 
experimental results. 
 	

e@ = 		
1
N
		 		𝑥�Z

ä

Gw@

																																																																					(59)			 

	

e¥ = 		
1
N
		 |𝑥�Z|
ä

Gw@

																																																																				(60)				

	
	

			eA =
		𝑥�Z − 	 		𝑒@ ¥ä

Gw@
𝑁 − 1

																																																															(61)				

 

eà = 		
1
N
		 		𝑥G

ä

Gw@

																																																																					(62)			 

 

										eá =
1
N
		 𝑥G 	
ä

Gw@

																																																																						(63)			 

 

	eâ =
		𝑥G − 	 		𝑒à ¥ä

Gw@
𝑁 − 1

																																																																				(64)			 

 
 
Figure 9(a) shows the mean error comparison, pass and failure rate analysis between our proposed approach 
and existing approaches as well as the error bar plot for some of the virtual nodes. Under virtual machine-1, 
the pass rate mean value of our proposed strategy was 0.85, while that of VFT and AFT are 0.75 and 0.46 
respectively. It was observed that VFT performed better than AFT which could be attributed to a better 
algorithm used by VFT. This also shows this limitation of the AFT algorithm. In virtual machine-2, the 
difference between the   mean value obtained for both VFT and AFT is less significant because VFT is 
slightly higher than the later. But our proposed strategy under this virtual machines displayed an improved 
performance. While in virtual machine-3 AFT is slightly higher than VFT even though the result obtained is 
less significant, but most importantly our proposed strategy shows a better result. Overall this indicates that 
our proposed strategy has a better output and improved performance compared to the existing approaches.  



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

					 							
																																																							(a)	 	 	 	 	 	 	(b) 

Figure 9. Mean Error Value Comparison and Error bars plot 
 

 
Figure 10. Success rate analysis of virtual machines 

 
Based on the performance comparison analysis in Table 5, the standard deviation for Virtual Node-1 under 
the VFT and AFT strategies was estimated to be 25.835 and 60.19807 respectively, while that of VM-2 was 
estimated to be 20.438 and 45.078. A further deviation of strategies was also noticed in VM-3. This shows 
the degree of deviation of the calculated result from the measured result. For the VFT algorithm, our results 
have shown that the calculated pass rate is lesser compared to the measured pass rate of our proposed 
strategy. While for the AFT algorithm, the calculated pass rate is far much lesser than both the VFT algorithm 
and our proposed strategy. Details of this model can be found in [50] and [6] .  

    
 Table 5. Virtual Node-1 Performance Comparison of VFT, AFT with our Proposed Strategy 

 
Virtual Node -1 Comparison Metrics 

Data Sources              Ɛ𝟏 (%)                 Ɛ𝟐(%)                   Ɛ𝟑(%)                       Ɛ𝟒(%)                   Ɛ𝟓(%)              Ɛ𝟔(%) 
 

VFT                     -11.0812              11.08117                 25.83521                 -0.10103            0.101032         0.308417 
                  AFT                     -43.4512              43.45116                  60.19807                  -0.39175                 0.391750         0.297314 

 

	
																																	(a)																																																																						(b)																																																																					(c)			
	



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

 
Table 6. Virtual Node-2 Performance Comparison of VFT, AFT with our Proposed Strategy 

 
Virtual Node -2 Comparison Metrics 

Data Sources          Ɛ𝟏 (%)                 Ɛ𝟐(%)                   Ɛ𝟑(%)                       Ɛ𝟒(%)                   Ɛ𝟓(%)              Ɛ𝟔(%) 
 

VFT                     -10.8510              10.85229                 20.43801                 -0.08423             0.08423           0.27140 
                  AFT                     -30.2022              30.20222                  45.07832                  -0.23141                  0.23141           0.19480 

 
 

Table 7. Virtual Node-3 Performance Comparison of VFT, AFT with our Proposed Strategy 
 

Virtual Node -3 Comparison Metrics 
Data Sources              Ɛ𝟏 (%)                 Ɛ𝟐(%)                   Ɛ𝟑(%)                       Ɛ𝟒(%)                   Ɛ𝟓(%)              Ɛ𝟔(%) 

 
VFT                     -15.6587              16.5941                 16.83521                 -0.09576            0.09918         0.107865 

                  AFT                     -10.6525              19.8363                25.19807                  -0.08409                 0.11959         0.021855 
 

  

                                         (a)                              (b)                                                        

 
(c) 

Figure 11. Mean Rank of Pass & Failure Rate with standard deviation (error bars) 
 

   A Mean rank of success and failure rate of the VFT, AFT and our proposed strategy was conducted and 
the results are presented in Figure 11. We observed that both in Figure 11(a), 11(b) and 11(c) there is no 
overlap between our proposed strategy and VFT, which shows the significance of errors that exist between 
our proposed model and the current existing approach.  

		 	



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

 

       
                                       (a)       (b) 

    
                            (c)       (d) 

   
      (e)        (f) 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

    
      (g)        (h) 

     
          (i)        (j) 

                     Figure 12. Simulation Plots for 100 Virtual Nodes (VM-1 to 100) with error bars 
 

 
Figure 13.  Average selected best Virtual machine from 1-100VMs 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

2. DISCUSSIONS 

We conducted experiments using 3 virtual machines for performance comparison with other existing 
approaches (as shown in Figure 8), then we performed another experiment  using six virtual machines after 
which we then performed the experiment using 100 virtual machines, which are both on a larger scale 
compared to the initial set up. In the first cycle, virtual machine-1, 2, 3, 4, 5 and 6 have the same pass rate 
but the result of Virtual Machine-1 (Node-1) has been selected because it has a lower task finish service time 
of 1700. In the same cycle Virtual Machine-5 did not pass the status check and the time task limit check also 
automatically failed. The Virtual Machine-2 output was selected by the decision mechanism in the second 
cycle because it has the highest pass rate of 0.87, while from cycle 3 to 4 the output of Virtual Machine-
1was selected, as it has the highest pass rate among the competing virtual machines. (Details of some 
experimental details are presented in Table 7). 
From cycle 5 to 7, the output of Virtual Machine-5 (Node-5) was selected because it has the highest pass 
rate among all other nodes. In cycle 5, Virtual Machine-4 and Virtual machine-6 does not pass the status 
check and the time task limit check also failed, with the same occurring in cycle 6 under Virtual Machine-6 
and cycle 10 under Virtual Machine-4. Lastly the output of Virtual Machine-1was selected from cycle 8 to 
10 because it has the highest pass rate. 
In a similar scenario cycle 5 and 6, where SC and TTLC failed or only SC failed, an error signal is generated 
and sent to the fault manager of the Cloud controller module and to the TTLC. Here it is received before the 
time limit, but because no result was produced TTLC status is also fail. The fault manager then tries to repair 
the fault generated by performing checkpoint. As stated earlier, the result of our simulations are presented 
in Figure 7 where we saw that increase in PR is more than decrease, hence we can achieve a good 
performance of our algorithm. 
Having assumed at the beginning that pass rate is 0.5, Figure 7(a) shows the pass rate analysis in Virtual 
machine-1, where a steady increase was observed from 0.5 to 0.778 and a further increase to 0.922 in cycle 
4. A slight decrease was noticed from 0.922 to 0.874 and then a continuous increase from 0.874 to 0.994 
which shows we can achieve a good performance overall on virtual machine-1 because increase in PR is 
more than decrease. 
In Figure 7(b), a steady increase from 0.5 to 0.87 was noticed, and from cycle 2 to 9, there was  a decrease 
and increase in PR, and a final increase from 0.721 to 0.888 which also shows we increase in PR is greater 
than decrease hence we good performance can be achieved from this VM. Similar scenarios occur from 
Virtual Machine-3 to Virtual Machine-6 where there was a combination of both decrease and increase in PR, 
but overall we can see that increase in PR is greater than decrease in PR in all the VMs, which indicates a 
favorable performance of our integrated approach, because decrease in failure rate less than increase in PR. 
Additionally, we performed an experiment using 100 virtual machines and 10 computing cycle, where we 
studied the success and failure rate pattern across the 100 nodes, as well as a performance comparison across 
the nodes. We plotted the error bars for VM-1 to 100 against the pass rate to enable us observe the overlap 
and access the level of significance among the VMs.  
From figure 12(a) VM-9, 6, 4, 2 have an excellent high pass rate followed by VM-1, 3, 5, 8 which have high 
pass rate as well are good compared to the less pass rate. This implies that only VM-10 has a low pass rate, 
which indicates a good performance for the first 10 nodes. 
In a similar scenario presented in Figure 12(b), it was observed that VM12 to 20 had high success rate, which 
implies that the VMs across that range have a lesser tendency to fail, i.e. the pass rates are higher than the 
failure rates. Similar success and failure patterns were observed from Figure 12(c) to 12(j) which shows the 
reliability of across the nodes. 
 Based on the results obtained the following observations were made: 
 

1- Overall from VM1-100, the nodes have high pass rates compared to the failure rates, which implies 
that the failure tendency across the entire 100 virtual node infrastructure is lesser. (Details of the 
results are presented in Figure 12) 

2- The errors bars plotted across the 100 nodes shows an overlap across each other, which indicate that 
the difference in error bars is not significant across the entire infrastructure. 
 

Figure 13 shows the overall average selected best virtual machine with a high pass rate and less failure rate. 
This was selected by computing the output obtained from the group of 10x10 virtual machines after each 
computing cycle across 100 nodes.  



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

 

3. CONCLUSION 
 
This paper presented an optimized fault tolerance approach for real time computing on the cloud 
infrastructure. The proposed strategy uses the pass rate of computing virtual nodes with a fault manager 
using the checkpoint/replay technique, applying the reward renewal process theorem. It repairs faults 
generated before the deadline as a fault tolerance mechanism. Our results have shown that the scheme is 
highly fault tolerant because it brings all advantages of forward and backward recovery, which the system 
takes advantage of diverse software tools. Our algorithm integrates concepts of fault tolerance based on high 
pass rate of computing nodes and less service Task finish time, increasing the system availability.  
    Six virtual machines were used in parallel with integrated virtualised checkpointing fault tolerance based 
on high pass rate of computing nodes and less task finish time. Additional experiments used 100 virtual 
machines in parallel and analysing the pass and failure rates across them. Analysing the pass and fail rate 
with performance of existing approaches, we found that our proposed fault tolerance scheme gives an 
improved performance. This is represented in figures 7-10 shown. Compared to adaptive and virtualised 
fault tolerance methods, our nodes showed a higher pass rate and lesser failure rate. The average mean plots 
with standard deviation are able to verify these results statically. The errors bars show an overlap across each 
other, indicating that the difference in error bars is not significant across the entire infrastructure. 
     In future, we will extend the SFS algorithm to a more complex and large-scale high performance 
environment, as well as in a real-life scenario by Simulating them over an OpenStack IaaS. Designing a 
highly dependable and failure free system requires a good understanding of failure characteristics. Here we 
will study and analyse real time cloud failure data, including the root cause of failures and statistics by 
applying machine learning techniques such as clustering and anomaly finding. These will aid re-examining 
other current algorithms and techniques for fault tolerant cloud system, creating realistic benchmarks and 
test beds for fault tolerance testing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

 
 

Ta
bl

e 
8.

 S
im

ul
at

io
n 

re
su

lts
 fo

r t
he

 P
as

s r
at

e 
A

ss
es

sm
en

t 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

4. REFERENCES  

 
[1] K. Bilal, O. Khalid, S. U. . Malik, M. U. S. Khan, S. . Khan, and A. . Zomaya, “Fault Tolerance in the Cloud,” “Fault Tolerance in 

the Cloud” Encyclopedia on Cloud Computing. John Wiley & Sons, Hoboken, NJ, USA, 2015, pp. 291–300, 2015. 

[2] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Cloud computing migration and IT resources rationalization,” 2014 Int. Conf. Multimed. 

Comput. Syst., pp. 1164–1168, Apr. 2014. 

[3] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, and M. N. Alsaleh, “TeachCloud : A Cloud Computing Educational Toolkit,” no. 

2012, pp. 1–16. 

[4] R. Jhawar, V. Piuri, and I. Universit, “Fault Tolerance Management in IaaS Clouds,” 2012 IEEE First AESS Eur. Conf. Satell. 

Telecommun., pp. 1–6, 2012. 

[5] A. Bala and I. Chana, “Fault Tolerance- Challenges , Techniques and Implementation in Cloud Computing,” Int. J. Comput. Sci., 

vol. 9, no. 1, pp. 288–293, 2012. 

[6] S. Malik and F. Huet, “Adaptive Fault Tolerance in Real Time Cloud Computing,” 2011 IEEE World Congr. Serv., pp. 280–287, 

Jul. 2011. 

[7] S. Shen, A. Iosup, A. Israel, W. Cirne, D. Raz, and D. Epema, “An Availability-on-Demand Mechanism for Datacenters,” 2015 15th 

IEEE/ACM Int. Symp. Clust. Cloud Grid Comput., pp. 495–504, 2015. 

[8] B. Mohammed and M. Kiran, “Analysis of Cloud Test Beds Using OpenSource Solutions,” 2015 3rd Int. Conf. Futur. Internet 

Things Cloud, pp. 195–203, 2015. 

[9] D. Sun, G. Chang, C. Miao, and X. Wang, “Analyzing, modeling and evaluating dynamic adaptive fault tolerance strategies in cloud 

computing environments,” Journal of Supercomputing, vol. 66, no. 1. J Suercomputer (), pp. 193–228, 2013. 

[10] M. Pradesh, “A Survey On Various Fault Tolerant Approaches For Cloud Environment During Load Balancing,” vol. 4, no. 6, pp. 

25–34, 2014. 

[11] A. Greenberg, J. Hamilton, D. a Maltz, and P. Patel, “The cost of a cloud: research problems in data center networks,” SIGCOMM 

Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2008. 

[12] ITProPortal, “ITProPortal.com: 24/7 Tech Commentary & Analysis,” 2012. [Online]. Available: http://www.itproportal.com/. 

[Accessed: 24-Jun-2015]. 

[13] Z. Pantic and M. Babar, “Guidelines for Building a Private Cloud Infrastructure,” 2012. 

[14] A. Sen and S. Madria, “Off-Line Risk Assessment of Cloud Service Provider,” 2014 IEEE World Congr. Serv., pp. 58–65, Jun. 

2014. 

[15] S. Yadav, “Comparative Study on Open Source Software for Cloud Computing Platform : Eucalyptus , Openstack and Opennebula,” 

vol. 3, no. 10, pp. 51–54, 2013. 

[16] A. D. Meshram, “Fault Tolerance Model for Reliable Cloud Computing General Terms :,” no. July, 2013. 

[17] H. S. Paul, A. Gupta, and R. Badrinath, “Performance comparison of checkpoint and recovery protocols,” Concurr. Comput. Pract. 

Exp., vol. 15, no. 15, pp. 1363–1386, 2003. 

[18] C.-T. Yang, Y.-T. Liu, J.-C. Liu, C.-L. Chuang, and F.-C. Jiang, “Implementation of a Cloud IaaS with Dynamic Resource Allocation 

Method Using OpenStack,” 2013 Int. Conf. Parallel Distrib. Comput. Appl. Technol., pp. 71–78, Dec. 2013. 

[19] K. Singh, S. Smallen, S. Tilak, and L. Saul, “Failure analysis and prediction for the CIPRES science gateway Kritika,” Concurr. 

Comput. Pract. Exp., vol. 22, no. 6, pp. 685–701, 2016. 

[20] M. Fu, L. Zhu, D. Sun, A. Liu, L. Bass, and Q. Lu, “Runtime recovery actions selection for sporadic operations on public cloud,” 

Softw. - Pract. Exp., vol. 39, no. 7, pp. 701–736, 2016. 

[21] G. Chen, H. Jin, DeqingZou, B. B. Zhou, and W. Qiang, “A lightweight software fault-tolerance system in the cloud enviroment,” 

Concurr. Comput. Pract. Exp., vol. 22, no. 6, pp. 685–701, 2015. 

[22] X. Pei, X. M. YijieWang, and F. Xu, “Repairing multiple failures adaptively with erasure codes in distributed storage systems 

Xiaoqiang,” Concurr. Comput. Pract. Exp., vol. 22, no. 6, pp. 685–701, 2015. 

[23] C. Bertolli and M. Vanneschi, “Fault tolerance for data parallel programs C.,” Concurr. Comput. Pract. Exp., vol. 22, no. 6, pp. 

685–701, 2011. 

[24] A. Maloney and A. Goscinski, “A survey and review of the current state of rollback-recovery for cluster systems,” Concurr. Comput. 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

Pract. Exp., vol. 22, no. 6, pp. 685–701, 2009. 

[25] H. N. Alshareef and D. Grigoras, “Robust cloud management of MANET checkpoint sessions,” Concurr. Comput. Pract. Exp., vol. 

22, no. 6, pp. 685–701, 2016. 

[26] D. W. Bin Hong, Fuyang Peng, Bo Deng, Yazhou Hu, “DAC-Hmm: detecting anomaly in cloud systems with hidden Markov 

models,” Concurr. Comput. Pract. Exp., vol. 22, no. 6, pp. 685–701, 2015. 

[27] P. Chen, Y. Xia, S. Pang, and J. Li, “A probabilistic model for performance analysis of cloud infrastructures,” Concurr. Comput. 

Pract. Exp., vol. 22, no. 6, pp. 685–701, 2015. 

[28] M. A. Salehi, B. Javadi, and R. Buyya, “Resource provisioning based on preempting virtual machines in distributed systems 

Mohsen,” Concurr. Comput. Pract. Exp., vol. 22, no. 6, pp. 685–701, 2013. 

[29] M. Nazari Cheraghlou, A. Khadem-Zadeh, and M. Haghparast, “A Survey of Fault Tolerance Architecture in Cloud Computing,” 

J. Netw. Comput. Appl., vol. 61, pp. 81–92, 2015. 

[30] A. Ganesh, M. Sandhya, and S. Shankar, “A study on fault tolerance methods in Cloud Computing,” 2014 IEEE Int. Adv. Comput. 

Conf., pp. 844–849, 2014. 

[31] J. Kaur and S. Kinger, “Efficient Algorithm for Fault Tolerance in Cloud Computing,” 2014 IJCSIT Int. J. Comput. Sci. Inf. Technol., 

vol. 5, pp. 6278–6281, 2014. 

[32] A. Tchana, L. Broto, and D. Hagimont, “Approaches to cloud computing fault tolerance,” IEEE CITS 2012 - 2012 Int. Conf. Comput. 

Inf. Telecommun. Syst., 2012. 

[33] K. Parveen, G. Raj, and K. R. Anjandeep, “A Novel High Adaptive Fault Tolerance Model in Real Time Cloud Computing,” pp. 

138–143, 2014. 

[34] K. J. Naik and N. Satyanarayana, “A novel fault-tolerant task scheduling algorithm for computational grids,” 2013 15th Int. Conf. 

Adv. Comput. Technol., pp. 1–6, 2013. 

[35] M. Amoon, “A job checkpointing system for computational grids,” Open Comput. Sci., vol. 3, no. 1, pp. 17–26, 2013. 

[36] S. Siva Sathya and K. Syam Babu, “Survey of fault tolerant techniques for grid,” Comput. Sci. Rev., vol. 4, no. 2, pp. 101–120, 2010. 

[37] “Issue Information,” Concurr. Comput. Pract. Exp., vol. 27, no. 14, pp. i–ii, Sep. 2015. 

[38] I. P. Egwutuoha, S. Chen, D. Levy, B. Selic, and R. Calvo, “A proactive fault tolerance approach to High Performance Computing 

(HPC) in the cloud,” Proc. - 2nd Int. Conf. Cloud Green Comput. 2nd Int. Conf. Soc. Comput. Its Appl. CGC/SCA 2012, pp. 268–

273, 2012. 

[39] X. Kong, J. Huang, C. Lin, and P. D. Ungsunan, “Performance, Fault-Tolerance and Scalability Analysis of Virtual Infrastructure 

Management System,” 2009 IEEE Int. Symp. Parallel Distrib. Process. with Appl., pp. 282–289, 2009. 

[40] E. Okorafor, “A fault-tolerant high performance cloud strategy for scientific computing,” IEEE Int. Symp. Parallel Distrib. Process. 

Work. Phd Forum, pp. 1525–1532, 2011. 

[41] R. Nogueira, F. Araujo, and R. Barbosa, “CloudBFT: Elastic Byzantine Fault Tolerance,” 2014 IEEE 20th Pacific Rim International 

Symposium on Dependable Computing. 

[42] N. Yadav and S. K. Pandey, “FAULT TOLERANCE IN DCDIDP USING HAProxy,” pp. 231–237. 

[43] H. K. H. Kim, S. K. S. Kang, and H. Y. Yeom, “Node selection for a fault-tolerant streaming service on a peer-to-peer network,” 

2003 Int. Conf. Multimed. Expo. ICME ’03. Proc. (Cat. No.03TH8698), vol. 2, no. 1, pp. 6–12, 2003. 

[44] D. Sheng and C. Franck, “GloudSim: Google trace based cloud simulator with virtual machines,” Softw. - Pract. Exp., vol. 39, no. 

7, pp. 701–736, 2015. 

[45] W. Qiang, C. Jiang, L. Ran, D. Zou, and H. J. Services, “CDMCR: multi-level fault-tolerant system for distributed applications in 

cloud,” Int. J. Appl. Eng. Res., vol. 9, no. 22, pp. 5968–5974, 2015. 

[46] A. Agbaria and R. Friedman, “Virtual-machine-based heterogeneous checkpointing,” Softw. - Pract. Exp., vol. 32, no. 12, pp. 1175–

1192, 2002. 

[47] D. Singh, J. Singh, and A. Chhabra, “High availability of clouds: Failover strategies for cloud computing using integrated 

checkpointing algorithms,” Proc. - Int. Conf. Commun. Syst. Netw. Technol. CSNT 2012, pp. 698–703, 2012. 

[48] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu, “Performance and availability aware regeneration for cloud 

based multitier applications,” Proc. Int. Conf. Dependable Syst. Networks, pp. 497–506, 2010. 

[49] M. Chtepen, F. H. a Claeys, B. Dhoedt, F. De Turck, P. Demeester, and P. a. Vanrolleghem, “Adaptive Task Checkpointing and 

Replication: Towards Efficient Fault-Tolerant Grids,” IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 2, pp. 180–190, 2008. 



 FAIL OVER STRATEGY FOR FAULT TOLERANCE IN CLOUD COMPUTING ENVIROMENT 
 

 

	

	

[50] P. Das and P. M. Khilar, “VFT: A virtualization and fault tolerance approach for cloud computing,” 2013 IEEE Conf. Inf. Commun. 

Technol. ICT 2013, no. Ict, pp. 473–478, 2013. 

[51] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann, “Combining partial redundancy and checkpointing for 

HPC,” Proc. - Int. Conf. Distrib. Comput. Syst., pp. 615–626, 2012. 

[52] H. Yanagisawa, T. Osogami, and R. Raymond, “Dependable virtual machine allocation,” 2013 Proc. IEEE INFOCOM, pp. 629–

637, 2013. 

[53] A. Israel and  d. raz, “Cost aware fault recovery in clouds,” 2013 IFIP/IEEE International Symposium on Integrated Network 

Management (IM2013), pp. 9–17, 2013. 

[54] I. P. Egwutuoha, S. Chen, D. Levy, and B. Selic, “A fault tolerance framework for high performance computing in cloud,” Proc. - 

12th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput. CCGrid 2012, pp. 709–710, 2012. 

[55] Y. Liu, R. Nassar, C. (Box) Leangsuksun, N. Naksinehaboon, M. Paun, and S. L. Scott, “An optimal checkpoint/restart model for a 

large scale high performance computing system,” 2008 IEEE Int. Symp. Parallel Distrib. Process., pp. 1–9, 2008. 

[56] G. F. Lawler, “Introduction to Stochastic Processes.” p. 248, 2006. 

[57] R. Gallager, “Discrete stochastic processes,” no. 0, pp. 92–138, 1996. 

[58] R. Nassar, B. Leangsuksun, and S. Scott, “High Performance Computing Systems with Various Checkpointing Schemes 2 Full 

Checkpoint / Restart Model,” vol. IV, no. 4, pp. 386–400, 2009. 

[59] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and D. H. Lorenz, “Guaranteeing high availability goals for virtual 

machine placement,” Proc. - Int. Conf. Distrib. Comput. Syst., pp. 700–709, 2011. 

[60] D. Sun, G. Chang, C. Miao, and X. Wang, “Analyzing, modeling and evaluating dynamic adaptive fault tolerance strategies in cloud 

computing environments,” J. Supercomput., vol. 66, no. 1, pp. 193–228, 2013. 

[61] M. Nita, F. Pop, M. Mocanu, and V. Cristea, “FIM-SIM : Fault Injection Module for CloudSim Based on Statistical Distributions.” 

[62] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A CloudSim-Based Visual Modeller for Analysing Cloud 

Computing Environments and Applications,” 2010 24th IEEE Int. Conf. Adv. Inf. Netw. Appl., pp. 446–452, 2010. 

[63] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable cloud computing environments and the cloudsim 

toolkit: Challenges and opportunities,” Proc. 2009 Int. Conf. High Perform. Comput. Simulation, HPCS 2009, pp. 1–11, 2009. 

[64] A. Zhou, S. Wang, Q. Sun, H. Zou, and F. Yang, “FTCloudSim: A Simulation Tool for Cloud Service Reliability Enhancement 

Mechanisms,” Proc. Demo Poster Track ACM/IFIP/USENIX Int. Middlew. Conf., pp. 2:1–2:2, 2013. 

	

 

	


