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ABSTRACT
The optimisation of a peptide-capped glycine using the novel force field FFLUX is presented. FFLUX is a 
force field based on the machine-learning method kriging and the topological energy partitioning method 
called Interacting Quantum Atoms. FFLUX has a completely different architecture to that of traditional 
force fields, avoiding (harmonic) potentials for bonded, valence and torsion angles. In this study, FFLUX 
performs an optimisation on a glycine molecule and successfully recovers the target density-functional-
theory energy with an error of 0.89 ± 0.03 kJ mol−1. It also recovers the structure of the global minimum 
with a root-mean-squared deviation of 0.05 Å (excluding hydrogen atoms). We also show that the geometry 
of the intra-molecular hydrogen bond in glycine is recovered accurately.

1. Introduction

Many problems in biomolecular modelling, drug design, reac-
tivity and material science can only be tackled by means of force 
fields for the foreseeable future. In spite of continuing advances 
in first-principle simulations their time scale and system size 
remain restricted compared to those handled by force fields. 
Consequently there remains the challenge of improving force 
fields such that their predictions are more trustworthy. This chal-
lenge is enormous and has been taken up by several groups over 
the last two decades or more. Disconcerting proofs that the tradi-
tional force fields have not yet reached a good degree of predic-
tive power continue to appear. For example, very recent work [1] 
showed that traditional force fields used in molecular dynamics 
fail to provide a consistent picture of the complex conforma-
tional landscape of intrinsically disordered proteins. Structural 
information gleaned from ensembles generated by eight all-atom 
empirical force fields was compared against information from 
primary small-angle X-ray scattering and NMR. Ensembles 
obtained with different force fields exhibit marked differences 
in chain dimensions, hydrogen bonding and secondary struc-
ture content. These differences are unexpectedly large: changing 
the force field was found to have a stronger effect on secondary 
structure content than changing the entire peptide sequence.

The current abundance of computing power has put into 
sharper focus the need for accurate force fields. Groups involved 
in improving traditional force fields admit in the literature that 
more work needs to be done. A typical recent example is that 
of Nerenberg et al. [2], who stated that relatively little work has 

focused on the nonbonded parameters, many of which are two dec-
ades old. More troubling was the lack of improvement of amines 
and phenols even after exhaustive parameterisation of the van 
der Waals parameters. They blamed this flaw on the more than 
twenty year old 6-31G*/RESP model but then stated that … a 
more advanced charge model may yield greater accuracy and also 
obviate the need for a large number of unique atom types/vdW 
parameters. More examples [3–6] of such validation work sug-
gest that a strategy of starting afresh in designing a force field 
architecture is highly desirable and has a better chance of being 
future-proof if carefully thought through.

This is the strategy we have adopted some time ago, starting 
with the electrostatic interaction, which urgently needed treat-
ment beyond the traditional point charge [7] paradigm [8]. We 
introduced high-rank [9] multipolar electrostatics [10], which is 
the only way to accurately represent the electrostatic interaction 
at short and medium range [11,12]. However, because of pos-
sible divergence of the multipole expansion at very short range 
[13] atomic multipole moments do not feature in the current 
article. Instead, for the small system of only 19 atoms studied 
here, we use exact electrostatics without multipole expansion 
(although for 1,n (n > 5) interactions it would converge). Note 
that work is underway that incorporates [14] the electrostatics 
by multipole expansion, which will guarantee an accurate rep-
resentation for large systems such as a whole protein. The exact 
electrostatics used in the current article, both intra-atomic and 
inter-atomic, are delivered by a quantum chemical topological 
energy partitioning scheme called Interacting Quantum Atoms 
(IQA) [15], which was inspired by one of the first calculations 
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intra-atomic and inter-atomic energies are derived. Moreover, 
QCTFF handles charge transfer effects (via monopolar polarisa-
tion), ideally up to a milli-electron. In summary, QCTFF regards 
any chemical effect or phenomenon as a result of primary (i.e. 
physical rather than chemical) energy contributions. With the 
availability of analytical forces [42], geometry optimisations 
could be carried out for the first time using this novel architec-
ture, as shown in the case of the water monomer [43].

QCTFF then changed name to FFLUX [44], as it embarks 
on a much more ambitious journey towards tackling proteins 
in aqueous solution. On this long journey, the current contri-
bution is a pivotal proof-of-concept showing that FFLUX can 
successfully geometry-optimise the simplest amino acid in the 
gas-phase. This amino acid is glycine dipeptide, as it is often 
referred to in the literature (although it is actually a single amino 
acid, glycine, capped by N-acetyl and N-methyl groups at the N- 
and C-termini, respectively, i.e. N-acetylglycyl-N-methylamide). 
Many details can be found in the first-ever FFLUX geometry 
optimisation [43] and will therefore not be repeated here.

2. Methodology

2.1. Calculation of atomic energies using IQA

Traditional force fields use essentially penalty functions as func-
tional forms for their energy potentials. In other words, a par-
ticular energy such as bond energy, for example, is expressed as 
an energy change compared to a reference energy that is arti-
ficially set to zero, and which corresponds to the bond energy 
at equilibrium. Such an approach requires a reference coordi-
nate value, which FFLUX does not need. As the value of the 
coordinate deviates from the reference value, an energy penalty 
is added in traditional force fields. Such penalty functions are 
often parameterised harmonic potentials to model bond, angle, 
improper dihedral and Urey-Bradley energies. Instead, FFLUX 
regards the atom as the central object (not the bond) and focuses 
on how the atom’s energy changes. As a result, FFLUX is aware 
of the huge energies associated with a typical atom, which is of 
the order of a hundred thousand of kilojoules per mole for a 
second row atom. IQA quantitatively describes the total energy 
of an atom, even if the system is not at a stationary point in the 
potential energy surface. This total atomic energy is comprised 
of the energy associated with the atom itself (intra-atomic), and 
with energy resulting from the interaction between the atoms 
(interatomic). Equation (1) decomposes the molecular energy, 
denoted EIQA

molec, into atomic energies, one for each atom A, 
denoted EA

IQA, followed by its breakdown into intra-atomic and 
interatomic interaction energies,
 

It is possible to further break down the intra-atomic and inter-
atomic energies [35,43] into kinetic, exchange-correlation and 
electrostatic components, which are not explained because they 
do not feature in the current work. However, it is important 
to point out that IQA generates orbital-free quantities, that is, 
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of potential energy [16] between topological atoms [17]. These 
atoms were first proposed [18] by the Bader group leading to 
the Quantum Theory of Atoms in Molecules (QTAIM) [19]. Both 
IQA and QTAIM are part of Quantum Chemical Topology (QCT) 
[20,21], which is a parameter-free partitioning approach, using 
only the gradient vector.

Polarisation has long been recognised as an important effect 
that force fields should incorporate in their quest for realism and 
accuracy. Three popular methods are: (i) polarisable point dipoles 
[22], (ii) fluctuating atomic charges [23] and (iii) attaching a ficti-
tious negative charge (a Drude particle) [24] to the molecule by a 
harmonic spring. The first method causes a ‘polarisation catastro-
phe’, where the dipoles respond in such a way that the interac-
tion energy becomes infinite. This infelicity is typically overcome 
by damping functions. The point dipole method appears in the 
potentials [25] of the AMOEBA force field [26], where polar-
isable point dipoles are located on atomic centres. Within the 
SIBFA force field, polarisable point dipoles are situated now also 
at off-nuclear positions [27]. This is analogous to the method in 
the EFP force field [28,29]. In our force field, however, we use a 
more powerful and general way to tackle polarisation: machine 
learning establishes a direct link between an atomic multipole 
moment and the nuclear positions of surrounding atoms. Initially 
we used neural networks [30] but a comparison [31] of this 
machine learning method and a completely different one called 
kriging [32] ruled in favour of the latter, following our philos-
ophy that prediction accuracy is a priority over training speed. 
Note that our approach focuses on the result of the polarisation 
process rather than the process itself, and thus the polarisabil-
ity. However, it is possible, as was done a long time ago [33], to 
calculate polarisabilities within the QCT ansatz.

Subsequently, it turned out that the non-electrostatic energy 
contributions, such as kinetic energy [34], exchange [35] and 
correlation energies [36] could also be successfully kriged. The 
IQA approach provides all these energies but they can be grouped 
(i.e. summed) in various ways. One reason for such grouping can 
be theoretical: in this paper we use Density Functional Theory 
(DFT), which forces exchange and correlation to be combined 
[37]. Also, in this work, we lump all contributions (i.e. kinetic, 
electrostatic, exchange and correlation) into a single atomic 
energy denoted EA

IQA. Kriging this well-defined physical quan-
tity equips a topological atom with the knowledge of how to 
adjust its energy to a previously unseen atomic environment. This 
approach culminated in the first version of the topological force 
field called QCTFF, which is described in detail elsewhere [38].

Note that QCTFF completely overhauls the architecture of 
classical force field such as CHARMM. Indeed, amongst the 
several fundamental differences are first of all that QCTFF does 
not categorise interatomic interactions as bonding or non-bond-
ing, thereby avoiding an artificial and debatable boundary [39] 
between the two. Secondly, QCTFF does not introduce (har-
monic) bonding and valence angle potentials, nor torsion 
potentials, thereby avoiding a proliferation of cross-terms. 
Furthermore, other ad hoc corrections such as hydrogen bond 
terms, improper dihedral terms [40] are absent, and certainly 
the omnipresent Especific energy term of the ReaxFF [41] force 
field, which mops up lone pairs, conjugation and other effects. 
Thirdly, QCTFF ‘sees the electrons’ because it refers to the orig-
inal reduced first and second order density matrices from which 
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the energies it provides are typically obtained from orbitals but 
no orbital trace remains once the energies are calculated. This 
approach simplifies matters, also at the level of forces, thereby 
avoiding the unnecessary complexity [45] found in orbital-de-
pendent approaches such as EFP. Secondly, FFLUX does not 
operate within the framework of Rayleigh-Schrödinger pertur-
bation theory [46], which has a large imprint on the architec-
ture of current popular force fields (e.g. CHARMM, AMBER, 
GROMOS) and even next-generation force fields (e.g. AMOEBA, 
SIBFA, EFP). More details can be found in Section 2.10 of Ref. 
[44].

2.2. Kriging and forces

The most explicit account of kriging (also known as Gaussian 
process regression [47]) in the context of FFLUX can be found 
in our previous work [48]. As any machine learning method, 
kriging establishes a mapping between input data (called fea-
tures) and output data. Kriging operates in a feature space whose 
dimensionality is equal to that of the number of features (Nfeat), 
using a training set of Ntrain molecular geometries. FFLUX esti-
mates the molecular energy of a given geometry (previously 
unseen or seen) as a sum of all the predicted atomic energies, 
ÊA
IQA, as shown in Equation (2),

 

where μA is the mean value of all the training data points, aAj  is 
the kriging weight of training point j, �Ah  is the first of two cor-
relation function parameters, which represents the activity of 
feature-space described by summation index h, f Ah,j is the known 
feature value from training point j, f Ah  is the current feature for 
which a prediction must be made and pAh  is the second corre-
lation function parameter, which represents the smoothness of 
the feature space. Note that in this study pAh  is fixed at a value 
of two and therefore the so-called kernel (i.e. the exponential 
function) is Gaussian and hence has no cusp, thus assuming a 
smooth prediction space.

The features used for training and atomic property prediction 
are defined in the atomic local frame (ALF). Each atom in the 
system has its own ALF. For sake of completeness we point out 
that the need for an axis system stems from the installation of 
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multipole moments at an atomic nucleus, and moments are direc-
tional. Again, multipole moments do not feature in the current 
article but have done so in the past when we successfully trained 
for them. In the future, when both short-range (exact) and long-
range (multipolar) electrostatic energies are combined, the ALF 
will become once again crucial. However, the ALFs have another 
important role, which applies even to scalar (i.e. non-directional) 
atomic quantities such as ÊA

IQA(or the atomic charge). Indeed, 
an ALF makes it possible to define an atom’s (nuclear) position 
independently of the global frame and instead only requires the 
relative positions of other atoms in the system. As a result, an 
ALF ‘travels’ with its atom, regardless of the global rotation or 
translation of the molecular system.

Figure 1 shows the ALF of the carbonyl carbon in 
N-methylacetamide diagramatically. This carbon or central 
atom constitutes the origin of the ALF, with Cartesian coordi-
nates ��o, such that ��x

ALF
= �

�x − �
�0, �

�xy

ALF
= �

�xy − �
�0 and 

�
�n

ALF
= �

�n − �
�0. Defining the x- and y-axis of the ALF follows 

the Cahn-Ingold-Prelog convention, in that the heaviest atom 
neighbouring the central atom defines the ALF x-axis, the second 
heaviest defines the xy-plane (which in turn defines the ALF 
y-axis). The z-axis is then defined as orthogonal to both these 
axes. Subsequently, 3Natoms – 6 features are defined in the ALF 
of each atom, giving a total of Natoms(3Natoms – 6) features in a 
molecular system. A complete set of features for a given atom, 
A, can be seen in Equation (3),

 

The first three features in Equation (3) are related to the atoms 
that define the ALF where �Ax

ALF
 is the angle between the x-axis 

and the y-axis, while the next 3Natoms – 9 features are the spherical 
polar coordinates of all remaining atoms. Note that the polar 
angle θ should not be confused with the activity of feature-space 
appearing in Equation (2). The features are defined in Equations 
(4)–(9),
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1Figure 1.  (colour online) Schematic illustrating the atomic local frame (alF) of 
n-methylacetamide.
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noted that Equation (19) in the paper by Mills and Popelier the 
Kronecker-like symbol ΔΩn can return a third value other than 
−1 and 1: if the derivative of the feature has no dependence on 
the atom Ω then ΔΩn returns 0.

2.3. Training

We now discuss the process of training FFLUX, which involves a 
number of steps as outlined in the recent FFLUX geometry-op-
timisation work of Zielinski et al. [43] reiterated here:

(1)  Generate conformational ensemble for the construc-
tion of both training and (external) test sets.

(2)  Calculate the wavefunction for each conformation.
(3)  Perform IQA calculations to obtain atomic energies.
(4)  Map atomic energies to geometric features using the 

Kriging machine learning method.
(5)  Perform geometry optimisation using the Kriged 

atomic energy models.

The computational details associated with each step are outlined 
below. In this paper, our target molecule is a peptide-capped 
glycine monomer.

The training data were gathered by distorting about the 
normal modes evaluated at the global minimum of the pep-

tide-capped glycine [49] obtained at B3LYP/apc-1 level of the-
ory [50] (default GAUSSIAN09 parameters with 6D orbitals and 
‘NoSymm’ option). The in-house program EROS was used with 
a ‘stretch factor’ of 1.1, which means that the normal modes 
were distorted by a maximum of 10% from the global minimum 
geometry. For example, a pure single C–C bond (with a length 
of 1.54 Å) could then take values ranging within the interval 
1.39–1.69 Å throughout the data-set. In total, EROS generated 
4000 geometries. The wavefunctions for all 4000 conformations 
were calculated using the B3LYP/apc-1 [50] level of theory in 
GAUSSIAN09 [51], which is the same level of theory, using the 
same parameters, as for the global minimum previously found 
[49]. The IQA energies of the 4000 wavefunctions were calculated 
using the program AIMAll [52], with the default parameters 
and AIMAll’s initial implementation for the calculation of the 
two electron-integrals (as opposed to the more recent so-called 
‘TWOe implementation’). AIMAll reproduces the total energy of 
glycine very well (e.g. −1,198,554.42 kJ mol−1), returning energies 
that differ only in the second decimal place in kJ mol−1.

We are now in a position to start building kriging models. 
First, an atomic integration error threshold of L(Ω) = 0.001 
a.u. was applied to the 4000 geometries, in order to remove any 
configurations with a single atomic integration error larger than 
this threshold. Secondly, 1000 of the remaining conformations 
were chosen at random and used to build the training set. The 
in-house program FEREBUS [53] was used to build the Kriging 

where R�n

ALF
 is the position vector of atom n in the ALF of Ω and 

�
�n

i
 (i = 1, 2, 3) is a Cartesian coordinate expressed in the ALF. 

The full account of the above and the derivation of the analytical 
forces is intricate and given in great detail in previous work by 
Mills and Popelier [42]. However, note that the definition of χA 
in Equation (16) of that paper needs to be replaced by Equation 
(6) of the current article. We can only outline some key elements 
here.

To calculate the force on atom Ω, we take the partial derivative 
of the predicted energy ÊA

IQA with respect to global Cartesian 
coordinates (α). By applying the chain rule we can write this 
force as follows,

 

Equation (10) gives the force centred on atom Ω in the global 
Cartesian direction αi due to the energy and positions of all atoms 
in the system. Note that the summation over all atoms A includes 
Ω because as Ω’s position changes Ê𝛺

IQAwill also change because it 
depends on the position of this atom relative to all others.

The left partial derivative in Equation (10) is simplest to apply 
as it is not specific to the form of the features fA, and is given by 
Equation (11),
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partial derivative in Equation (10) has been previously defined 
for all features by Mills and Popelier [42]. One distinct difference 
to note is that the Equations (20)–(22) given by Mills and Popelier 
are replaced in the current work by their preliminary forms in 
their Supporting Information, such that the partial derivatives 
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ALF, �AALF and �A
ALF are given in Equations (12)–(14),
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3. Results and discussion

3.1. Kriging model quality

The molecular geometries used in the training set were generated 
by vibrating along the normal modes of the global minimum 
configuration. A 1000 geometries were then randomly selected 
to form the training set and 500 were used to build a test set. 
The quality of the Kriging model can be tested using an S-curve 
as shown in Figure 2. The prediction error is the absolute dif-
ference between the sum of atomic energies, as calculated by 
AIMAll, and those predicted by the kriging model. The y-axis 
of an S-curve gives the percentage of the test geometries with an 
error less than the value read off at the S-curve itself. For exam-
ple, about 90% of all test geometries (about 450) have an error 
of (the ubiquitous) 1 kcal mol−1 or ~4 kJ mol−1. Generally, it is 
desirable that an S-curve has a steep gradient, rapidly reaching 
for the 100% ceiling. Furthermore, a small mean energy error 
2.0 kJ mol−1, (which cannot be read off in Figure 2) and a small 
maximum error are also hallmarks of quality. Figure 2 shows 
that all of the test data are predicted with an error <10 kJ mol−1. 
Moreover, about 40% of the test geometries are predicted with an 
error of less than 1 kJ mol−1. Given that no design-of-experiment 
methods have been used to optimise the training set such that 
the error of prediction is minimised, and that pAh  was fixed at 2, 
the range of prediction error is within reasonable limits.

It should also be noted that the energy range of the test set 
is ~111 kJ mol-1, making the maximum error of 10 kJ mol−1 an 
order of magnitude smaller than the range of the energy values. 
With this in mind, 10 kJ mol−1 is not a large error considering the 
test set. We can also test for overfitting of the departure model 
(second term in Equation (2)). An indication that this term 
would be overfitted is that any predictions are very similar to μA 
for a given atom. However, we find that our departure model does 
not suffer from overfitting because no atomistic predictions are 
closer than 40 kJ mol−1 to their corresponding μA value. Despite 
the lack of overfitting and the reasonable maximum error, future 
work will examine further how to improve training sets using 

model. As previously mentioned, in this study the pAh  values are 
fixed at 2. Keeping pAh  fixed at 2 can be justified from previous 
work [48] in which the atomic multipole moments in many con-
formations of histidine dipeptide were predicted. It was found 
that optimising pAh  made very little difference on prediction 
quality. Fixing pAh  to 2 has also been shown to increase com-
putational speed with respect to training by a reduction in the 
number of parameters required to be optimised [54]. The values 
of the Kriging parameters �Ah  are optimised using particle swarm 
optimisation to maximise the concentrated log-likelihood. Particle 
Swarm Optimisation as used in FEREBUS has been described 
fully by Di Pasquale et al. [53].

The trained kriging models can then be used in ‘production 
mode’, which reduces to a geometry optimisation in this work 
but will be a finite temperature (condensed matter) molecular 
dynamics simulation in the near future. The forces calculated 
using Equation (10) are implemented in an in-house modified 
version of the molecular dynamics package DL_POLY 4.08 [55]. 
The FFLUX forces were implemented in a modular fashion to 
reduce the impact upon the internal working of DL_POLY. 
OpenMP parallelisation was also implemented over the first sum 
appearing in Equations (2) and (11). All 4000 of the initial confor-
mations generated by EROS were used as starting geometries for 
our geometry optimisations. In addition, to study the behaviour 
of FFLUX outside of its trained domain we performed a geome-
try optimisation with a starting geometry of higher energy. This 
configuration was not one of the 4000 generated by EROS and 
possessed feature values outside those of the training set domain.

All simulations were run using a 1 fs time step for 5000 fs 
using the 0 K optimiser. Tests on a variety of systems have indi-
cated that using time steps of less than 1 fs do not result in an 
increase in accuracy, while time steps greater than 1 fs do results 
in a decrease in accuracy. The equations of motion were inte-
grated using the velocity Verlet algorithm. The 0 K optimiser uses 
a minimal temperature (10 K) and resets the particle velocities at 
each step, which allows the forces on each particle to effectively 
be only dependent on the current configuration of the system.

Figure 2. the prediction error of the sum of the atomic energies EA
IQA

 for the 500 geometries in the test set.
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of the 4000 configurations within the training space shown in 
Figure 4, as discussed in Section 3.2), and the RMSD between 
the optimised and target configurations 0.15 Å (0.05 Å when 
the hydrogen atoms are excluded). In addition, we are able to 
predict, with a high degree of accuracy, one of the most impor-
tant geometric properties of the system: the intra-molecular 
hydrogen bond. This hydrogen bond is a well-known feature of 
the so-called C7 geometry [56] occurring in peptides and pro-
teins, which possesses the 7-membered ring consisting of C1-
C6-[N10-H11 ⋯ O9]-C8-N4 where the brackets mark the hydrogen 
bonded system. The hydrogen bond distance (H…O) predicted 
by FFLUX has a value of 2.045 Å, which deviates from the exact 
target B3LYP/acp-1 distance by only 0.001 Å. Meanwhile, the 
distance between the hydrogen donor (atom N10) and the hydro-
gen acceptor (atom O9) is predicted to be 2.940 Å, only 0.004 Å 
shorter than the distance obtained from the DFT calculation. The 
hydrogen bond-angle (∠(NHO)) has a value of 145.3°, which 
has an error of 0.6° compared to the target B3LYP energy. The 
agreement between FFLUX and DFT is also very good for the φ 
and ψ dihedral angles, within 5°.

The large dihedral movement (from φ = 180.0o to φ = −82.3o, 
see above) is shown in an *.avi video uploaded as Supplemental 
Material. This movie shows the actual [57] topological atoms as 
they change shape and relative position during the trajectory of 
the geometry optimisation discussed above. The movie consists 
of 300 frames taken from this trajectory where the first frame 
corresponds to an energy 639 kJ mol−1 above the GAUSSIAN09 
global minimum while the last frame corresponds to the 447th 
time step. This end geometry is energetically 0.38  kJ  mol−1 
higher than the global minimum, given by GAUSSIAN09, and 
1.27 kJ mol−1 higher than the final FFLUX minimum. Thus, con-
vergence was not quite reached but the movie was truncated here 
because little happened, visually, after this frame.

The above results show that, even when given an initial con-
formation with features far outside the training domain, an 
optimisation with FFLUX can result in a geometry in good agree-
ment with quantum mechanical calculations, both energetically 
and geometrically. However, the difference in energy for the ini-
tial conformation predicted by FFLUX is far too high compared 
to that predicated by the DFT calculation, ΔE = ~615 kJ mol−1. 
This observation is perhaps not that surprising, because when a 
kriging model is confronted with features outside of its training 
domain, the second term in Equation (2) may tend towards zero. 
Hence, the prediction of an atomic energy atom becomes the 
constant μA. Because μA is invariant with respect to coordinate 
change, the atomic forces will tend to zero, which indicates that 
the model lacks the necessary information to describe this region 
of feature space. Alternatively, the model may learn incorrect 
trends, in which case the prediction does not tend towards μA, 
and the kriging model instead gives large errors on the predicted 
properties. By considering the atomic energies over the course 
of the geometry optimisation we are able to distinguish between 
these two possibilities. In the present case the kriging model does 
not predict values similar to μA at the initial configuration and 
instead gives spurious predictions, as shown in Table S1.

We now analyse the convergence of different properties in 
Figures 5–7. Figure 5 shows the energy of the system (relative 
to the DFT minimum) as a function of time. The first point to 
note is that the system tends towards the global minimum despite 

methods such as k-fold cross validation or adaptive sampling 
methods.

3.2. Geometry optimisation

Figure 3 shows the numerically labelled configuration of the tar-
get energy minimum, which is the global minimum at B3LYP/
apc-1 level of capped glycine. First, we performed geometry opti-
misations with FFLUX in DL_POLY on all 4000 of the initial 
geometries generated by EROS. We found that 97% of the ener-
gies of the configurations converged to within 1 kJ mol−1 of the 
target minimum energy. Figure 4 shows the energy convergence 
over time for a representative 100 starting configurations. There 
is an initial rapid drop in energy and the majority of geometry 
optimisations have converged to within 1 kJ mol−1 within 1000 fs. 
Overall we find that the average root-mean-squared deviation 
(RMSD) between the final, geometry optimised 4000 configura-
tions and the target minimum is 0.16 ± 0.04 Å (over all 19 atoms 
per configuration). Overall, the Kriging models are competent at 
recovering the target minimum’s energy and geometry for con-
formations within the training domain.

3.3. Geometry optimisation outside the training domain

Building upon the success of the previous 4000 configurations 
that were within the training domain, we decided to explore 
how the Kriging model would behave for a system outside of 
the training domain. For this geometry optimisation we used 
an initial configuration that with one its dihedral angles (i.e. φ 
or C8-N4-C1-C6) set at a value (φ = 180.0o) far away from the 
target geometry (φ = −82.3o). The starting geometry for this test 
has an RMSD > 0.9 Å compared to the target minimum. We 
then used FFLUX to optimise this structure at 10 K using the 0 K 
optimisation method as discussed before. Despite the challenge 
we have given our Kriging model we find that the optimised 
geometry is in good agreement with that of the target. Table 
1 proves this assertion by comparing a number of geometrical 
parameters between the exact ab initio values and those predicted 
by FFLUX. The final energy error of FFLUX compared to the 
target minimum energy is only −0.89 kJ mol−1 (equivalent to 
the energy error observed when considering the optimisation 

Figure 3. (colour online) the global minimum geometry of peptide-capped glycine 
obtained at B3lYP/apc-1 level, with atomic labelling.
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the large errors in the kriging model’s prediction of the initial 
conformation. This indicates that the forces derived in FFLUX 
can have the wrong magnitude outside of the training domain 
but have the correct direction, that is, towards the minimum for 
which it was trained. The energy rapidly decreases, such that 
at 100  fs the energy has dropped from ~650 to ~28  kJ  mol−1 
(to <5% of the initial energy). From 100 fs onwards the energy 
converges at a slower rate, such that at 335 fs the energy is within 
1 kJ mol−1 of the target minimum. The convergence of the energy 
is confirmed in Figure 6, which shows the absolute energy dif-
ference between the current time step (tn) and the previous time 
step (tn−1). Figure 6 shows that the energy change continually 

Figure 4. (colour online) the energy convergence of 100 representative structures from the 4000 randomly generated structures, where the 0 kJ mol−1 values refers to the 
global minimum energy determined by GauSSian09.
notes: colours only serve to separate out the various trajectories.

Table 1. a comparison of selected geometric properties of the global energy min-
imum generated by an ab initio calculation at the B3lYP/acp-1 level of theory and 
that generated by FFluX.

Property

Method

ErrorB3LYP FFLUX
H ⋯ o/Å 2.046 2.045 0.001
n ⋯ o/Å 2.944 2.940 0.004
n

⌢

H o/° 145.9 145.3 0.6
ψ/° 67.7 63.3 4.4
φ/° −82.5 −82.3 0.2
Final energy/kJ mol−1 −1,198,554.42 −1,198,555.31 −0.89
rMSD/Å 0.15
rMSD (excl. H)/Å 0.05

Figure 5. (colour online) the relative energy (compared to the target minimum) of the system where the initial configuration was outside of the training domain as a 
function of time.
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hydrogen atoms on the terminal methyl groups being in dif-
ferent positions than those of the target minimum. The reason 
for the prediction error in methyl hydrogen atoms is the same 
as discussed earlier regarding the predicted energy error in the 
initial trajectory configuration (see Table S1), and is due to insuf-
ficient sampling for the training set (as seen primarily in Table 
S2). Therefore, the kriging model currently does not accurately 
describe these hydrogen atoms. This is not unexpected because 
the maximum normal mode distortion allowed in the training 
set was 10%. Therefore, the full rotational barrier of the terminal 
methyls would not have been properly trained for. Furthermore, 
harmonic potentials were used to distort the structure by 10%, 
which also contributed to the poorly sampled dihedral angles. 
Further investigation regarding training set construction is 
underway.

decreases, such that by 1000 fs the energy has converged within 
10−3 kJ mol−1 (which is less than the integration error associated 
with AIMAll or 0.004 kJ mol−1 away from the DFT minimum) 
and by 5000 fs within 10−6 kJ mol−1. Similarly, Figure S1 shows 
that the magnitude of forces of each atom decrease to less than 
10−2 kJ mol−1 Å−1 by 5000 fs.

Figure 7 shows the RMSD between the B3LYP/apc-1 global 
minimum and the conformation at each time step during 
FFLUX’s geometry optimisation. As seen with the energy con-
vergence in Figures 6 and 7 there is an initial rapid convergence 
towards the target conformation, with a much smaller rate of 
change from 1000 fs onwards. When all atoms are included, the 
RMSD between the final geometry and the target minimum is 
0.15 Å but when only the heavy atoms are included, the RMSD 
drops to 0.05 Å. This difference in RMSD values is due to the 

Figure 6. (colour online) the energy difference of glycine dipeptide, where Δenergy (y-axis) is the absolute energy difference of the current time step (tn) minus the energy 
of the previous time step (tn−1).

Figure 7. (colour online) a comparative rMSD of any geometry in the trajectory against the B3lYP target minimum geometry.
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6547.

[13]  Solano CJF, Pendás AM, Francisco E, et al. Convergence of the 
multipole expansion for 1,2 Coulomb interactions: the modified 
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atoms: a correlated energy decomposition scheme based on the 
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2005;1:1096–1109.

[16]  Popelier PLA. Quantum Chemical Topology. In: Mingos M, editor. 
The chemical bond – 100  years old and getting stronger. Cham: 
Springer; 2016. p. 71–117.

[17]  Popelier PLA, Aicken FM. Atomic properties of selected biomolecules: 
Quantum topological atom types of carbon occuring in natural amino 
acids and derived molecules. J Am Chem Soc. 2003;125:1284–1292.
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[21]  Popelier PLA. On Quantum chemical topology. In: Chauvin R, 
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p. 23–52.
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Finally, we note that for 5000 time steps the total runtime of 
FFLUX/DL_POLY was 328 s. Discounting the 25 s time required 
for initialisation, we calculate the average time per time step as 
0.06 s. More importantly, because at 335 fs the optimisation is 
within 1 kJ mol−1 of the exact energy, only 21 CPU seconds were 
needed for this degree of optimisation. Note that the 60 ms of 
CPU time correspond to modest hardware consisting of a single 
core of a 2.66 GHz Intel Westmere Node. Also note the GNU 
GFortran compiler was used without compiler optimisations 
(‘-O0 –g’). Imminent research will focus on optimising the perfor-
mance of FFLUX/DL_POLY via systematic testing on more recent 
platforms, with both the implementation of OpenMP and com-
piler optimisation. Speed-ups of at least a factor 2 are expected.

4. Conclusions

We have shown that the novel force field FFLUX is able to geom-
etry-optimise the peptide-capped amino acid glycine. This case 
study lends itself to showing further generalisability of the FFLUX 
code (along with the water optimisation previously mentioned) 
[43]. Although the study does not show that FFLUX is truly 
general, we believe that it will succeed for other amino acids, and 
this case study is a stepping-stone towards oligopeptides. FFLUX 
recovers the geometry of the heavy atoms to a good accuracy, 
and achieves this while the global minimum is absent from the 
training set. FFLUX recovers the global minimum consistently 
for 97% of the initial geometries within the training domain. For 
geometries outside of the training domain, FFLUX is unable to 
accurately predict the atomic energies and forces. However, we 
find that the direction of the force on the system leads to the 
system optimising to a region of feature space that is accurately 
described by the training set, which ultimately results in a geom-
etry in good agreement with the target conformation. In light 
of this, future work is evidently required to improve the range 
and accuracy of the training domain, such that FFLUX can be 
applied to a larger number of conformations.
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