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Abstract 

In closed loop control systems fault isolation is extremely difficult due to the fact that if 
feedbacks are corrupted or actuators can’t produce a desired output, a system reacts due to 
an increase in error between the measured variable and the set input variable, which can 
cause oscillations.   

The goal of this project is to develop a fault detection and isolation system for the isolation 
of faults, which cause oscillatory conditions on a GE Diesel-Electric Locomotive’s excitation 
control system. The proposed system will illustrate the use of artificial neural networks as a 
replacement to classical analytical models. The artificial neural network model’s design will 
be based on model-based dedicated observer theory to isolate sensor, as well as component 
faults, where observer theory will be utilised to effectively select input-output data 
configurations for detection of sensor and component faults causing oscillations.  

Owing to the nature of the locomotive’s data acquisition abilities, the model-based observer 
design will utilise historical data to design an effective model of the system which will be 
used to perform offline sampled fault detection. This method is proposed as an alternative 
to trend checking, data mining, etc. Faults are thus detected through the use of an offline 
model-based dedicated observer residual generator.  

With the use of a neural network a number of parameters affect the accuracy of the 
network where the primary source of ensuring an accurate model is training. The project 
highlights and experiments with these parameters to ensure an accurate model is trained 
with the use of the gradient descent training algorithm. The parameters which are 
considered are learning rate, hidden layer neurons, momentum and data preparation.  

The project will also provide a literature review on residual evaluation techniques used in 
practice and describe and evaluate the proposed method to perform residual evaluation for 
this specific application. The proposed method for residual evaluation was based on two 
principles, namely the moving average, as well as the simple thresholding techniques.  

The developed FDI system’s performance was measured against known faults and produced 
100% accuracy for the detection and isolation of sensor and components causing oscillatory 
conditions on the locomotive’s excitation system.     
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Chapter 1: Introduction 

An unappealing characteristic of real world control systems is the fact that they are 
vulnerable to faults, malfunctions and unexpected modes of operations due to component 
and/or sensor failures. These failures affect operations in industrial plants negatively in 
terms of production or a plant’s operating time. 

In any production line, service centre or really any business, time plays a very important role. 
Time can be considered one of the key factor which determines delivery and quality, as well 
as profitability. One of the key factors affecting the operating time of machinery is 
unscheduled breakdowns which in turn requires unscheduled maintenance. Within the 
maintenance environment, “fault isolation” time, which can be defined as the time taken to 
isolate a faulty component, can be considered one of the most important factors affecting 
production or a plant’s operating time.  

Owing to the increasing demands on the reduction of this time, research in the field of fault 
detection and isolation has received increasing interest over the years, especially in 
automated environments, which has led to a significant improvement in the process of fault 
detection and isolation, with a large reduction in the need for limit checking or trend 
analysis, which requires expert knowledge of systems, in order to perform fault detection 
and isolation [1, pp.22-23]. 

In order to avoid the heavy economic losses involved in halted production, due to the 
replacement of elements, parts and fault isolation, literature on methods to perform fault 
diagnosis are mostly aimed at performing FDI with the use of model-based techniques, 
which are created with the use of analytical approaches. The problem with the analytical 
approach is that most industrial systems cannot easily be modelled due to their sheer size, 
complexity, unavailability of component data of the design, measurements being corrupted 
by noise and unreliable sensors within the control system. Owing to this, a number of 
researchers have focussed their research on the use of neural networks to produce models 
of industrial processes. This is due to the fact that neural networks have the ability to filter 
out noise and disturbances, thus providing a stable and highly sensitive model of an 
industrial system without the use of a mathematical model. 

This chapter presents a breakdown on the proposed concept of an FDI system to be used on 
a GE Diesel-Electric Locomotive’s excitation control system with the use of neural networks. 
The first section focusses on the importance of the need for an FDI system on the 
locomotive’s excitation system. The second section provides the reader with the overall 
objective, which the research aims to achieve. Section 3 highlights the Hypothesis. Section 4 
provides the reader with the delimitation of the research to be done. The organization of the 
dissertation is then given in section 5.  

1.1 Rationale and Motivation 

Transnet Engineering’s Maintenance department currently spends up to 3 hours to isolate 
oscillatory faults occurring on the D34 class Diesel-Electric Locomotive’s excitation system. 
The reason for the large amount of time spend, is due to the fact that the current control 
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system, does not perform fault detection and isolation for oscillatory control loop faults. 
Owing to this, the method followed to isolate faults is by elimination of possibilities. 

This method eliminates the possible faulty components, one at a time on the locomotive, by 
replacing each component which has an impact on the excitation control loop, with a new 
one. This method is effective but takes up a lot of time, due to the location, as well as the 
structure of the components. 

With time being one of the most important aspects within the maintenance environment 
and especially in the field of fault isolation, it is of great importance to research a method, 
which facilitates faster fault isolation on the excitation system of the locomotive. 

As previously mentioned, time is of great concern, but is not the only factor affected by this 
lengthy process. Figure 1.1 below shows that an increase in time, affects the overall costs 
due to an increase in the labour hours. Quality is not affected negatively in this case, due to 
the fact that the locomotive still leaves the depot in an excellent working condition.      

 

Figure 1.1: Project Management Triangle [38] 

Another important factor, which is not listed in Figure 1.1, is safety. Safety of Transnet’s 
most valuable assets, namely the workforce, could have been put at the top of the list as the 
replacement of the sensors used within the excitation system is labour intensive and located 
in confined spaces, increasing the risk of injuries. 

The research and design of an FDI system would not only be able to significantly reduce fault 
isolation times and labor costs, but would also provide fault isolation of locomotives not in a 
maintenance depot. This will reduce the out-of-service time of failed locomotives, hence 
improving the availability and reliability of the D34 class GE fleet.     

1.2 Overall Objective 

The overall aim of the research is to design and develop a software-based fault detection 
and isolation system, to be used on the D34 Class Diesel-Electric locomotive’s excitation 
control system for the detection and isolation of oscillatory faults. 

1.2.1 Sub-Objective   

The following objectives were accordingly specified for this project: 

 Research current Model-Based FDI methods 
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 Research current Model-Based Residual Generation methods 

 Gain an understanding of the use of Neural networks in the plant/system model 

design  

 Research Model-Based Residual Evaluation methods also known as the decision 

making stage  

 Design Neural Network models of the GE Diesel-Electric Locomotive’s Excitation System, 

which will be used as a residual generator to isolate component and sensor faults 

 Research various performance and training parameters of a Neural Network 

 Analyse the locomotive’s excitation control system (Neural Network input-output 

selection) 

 Experiment with different parameters to develop the optimal model of the plant 

for sensor and component fault detection 

 Design a residual evaluation technique to isolate component and sensor faults 

 Provide a literature review on different residual evaluation techniques used in 

practice  

 Evaluate residual evaluation technique performance 

 Test the FDI system’s ability to isolate faults. 

1.3 Hypothesis 

A software-based fault detection and isolation system will be developed to improve the 
productivity lost due to the time taken to perform fault finding and diagnosis on a GE D34 
Class Diesel-Electric Locomotive’s Excitation control system. The software will utilise 
intelligent systems to improve the fault detection and isolation time for dynamic faults on 
the excitation system of the locomotive. 

1.4 Delimitation of the Research 

The following limitations to the dissertation should be noted: 

 The FDI system will be limited to GE D34 class Diesel-Electric Locomotives operating 
with Brightstar constant horse power excitation control systems 

 The OEM Brightstar control software will remain standard with no alterations done to it  

 The FDI software will be an offline/data-model-based fault detection system 

 The FDI system will be designed to perform only fault detection and isolation on 
oscillatory faults occurring on the closed loop excitation control system of the 
locomotive 

 No additional Hardware will be added to the current Hardware-Architecture 

 Locomotive Notch Control will not be done manually. 

1.5 Organization of the Dissertation 

This section provides an overview of the organization of the dissertation. The dissertation is 
divided into 7 chapters, namely: 
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Chapter 1 – This chapter states the Rationale and Motivation, Overall Objective, Hypothesis 
and Delimitation of the research to be done. 

Chapter 2 – This chapter describes the proposed FDI system, literature reviews on up to date 
fault detection and isolation techniques and model-based fault detection, as well as different 
FDI and model-based applications. A brief review on the application of Artificial Neural 
Networks in FDI systems is also presented. In conclusion, this chapter will provide the reader 
with an idea of the proposed system and link relevant literature to the proposed system.  

Chapter 3 – The chapter starts with a brief history of artificial neural networks which is then 
followed by a review on general applications of artificial neural networks; literature review 
on real world applications of artificial neural networks in the field of FDI systems; analysis on 
feedforward neural networks and a literature review on the use of feedforward neural 
networks in FDI systems. Artificial neural network training is then further discussed with the 
focus being on supervised learning and the gradient descent learning algorithm. Different 
activation functions which are associated with their use in the back propagation training 
algorithm are also reviewed.   

Chapter 4 – This chapter sets the theoretical basis for the effective development of an 
optimum neural network model of the excitation control system of the locomotive, to be 
used as per the proposed FDI system. The theoretical basis covers the following: review on 
relevant literature on the implementation of the gradient descent training algorithm in FDI 
systems; overview on the performance measures of a neural network to consider in order to 
successfully model the locomotive’s excitation system; mathematical analysis on the 
locomotive’s excitation control system to determine the input-output data selection; 
literature review on data preparations, learning parameters, neural network configurations 
and training data.  

Chapter 5 – In this chapter the development of 7 neural networks is presented, where 1 
neural network is developed as a dedicated observer for component fault detection and a 
bank of six neural networks is developed for the modelling of dedicated observers for the 
detection of sensor failures. The development is done with the aid of the theoretical 
research done in Chapter 4, where the following training performance parameters were 
varied and experimented with in order to create accurate models; hence residual 
generators; Number of hidden layered neurons, scaling and stopping conditions. The chapter 
documents the results of the training done on each neural network and discusses the 
findings. The chapter ends with a detailed breakdown on the developed residual evaluation 
technique used in the FDI application where the two main components for fault isolation, 
used in this application, namely, moving average filter and simple thresholding, are 
discussed in detail. 

Chapter 6 – The chapter will highlight the overall designed FDI system and performance 
thereof, in terms of its ability to isolate oscillatory faults occurring in the excitation system of 
the locomotive. Results on the performance of the FDI system to detect specific faults will be 
tabulated and discussed. The chapter will also illustrate the developed FDI Application 
software and will provide the reader with an insight into the operation thereof. An 
additional design for the isolation of total component failures will also be presented. 
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Chapter 7 – This chapter presents a conclusion to the research done in terms of the outputs 
achieved and knowledge gained in the field of fault detection and isolation systems. It also 
discusses possible future research to be done.  
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Chapter 2 – Review on Fault Detection and Isolation 
methods and Model-based fault detection and 

isolation 

In this chapter the general idea of the proposed FDI system will be presented, followed by 
an in-depth literature study on different FDI methods and in particular model-based fault 
detection and isolation. The literature study will be used to direct the proposed idea and to 
find possible correlations between literature methods used and the proposed FDI system.   

2.1 Proposed FDI System 

This section highlights the proposed FDI system for fault detection and isolation on a Diesel-
Electric locomotive’s excitation control system. Firstly, an analysis on the locomotive’s data 
acquisition abilities was done which indicated that only recorded data could be obtained 
from the locomotive, thus rendering online fault diagnosis impossible. It was also found that 
the OEM’s controlling software was copyright protected and did not allow any online 
interface whatsoever. The recording function of the locomotive’s software provided data on 
the nominal operation of the excitation control system. Owing to this, an offline approach 
could be used where the FDI data receiving function was done as indicated in Figure 2.1 
below, where the following basic steps were followed: 

 Connect Laptop to BSS control system via USB interface 

 Operate the locomotive for 30 seconds whilst Hyperterminal records data plus creates a 
data file 

 Decode data file and import into Matlab 

 Create residuals in Matlab with the use of a neural network residual generator 

 Perform  residual evaluation using a residual evaluation technique 

 Isolated fault will then be displayed in a window. 

 

Figure 2.1: System Configuration 
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Figure 2.2 shows the overall intention of the proposed neural network FDI system which will 
be designed in Matlab.  

 

Figure 2.2: General Idea of the FDI System to be Developed 

It should be noted that the proposed FDI system illustrated in Figure 2.2, will be based on 
nominal models running in parallel with the plant, where the first model will be used to 
detect and isolate component failures, with the second set of models being used for sensor 
fault isolation. 

The input-output configuration of the plant as illustrated in Figure 2.2 will be in the form of a 
recording file, which will display the locomotive’s sensor readings for a specified time, in 
predefined time steps. Figure 2.3 below shows an example of a decoded recording file. This 
file will then be imported into Matlab, where a simulation of the system will be run through 
the FDI process.  
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Figure 2.3: Decoded Recording File 

As mentioned above, the first step will be to compare the model outputs with those of the 
system (which will be recorded and imported), to generate residuals. These residuals will 
then be evaluated in a residual evaluation process for each time step. Figure 2.3 above 
indicates the time steps. This process is indicated as component failure analysis in Figure 2.2. 
A count is made of how many times the residual for a specific reading exceeds a threshold 
value, where the highest number indicates the highest probability for the cause of the 
oscillation. With the possible cause isolated a neural network model is then selected in order 
to determine whether the fault is caused by a sensor failure. This process is illustrated as 
sensor failure analysis in Figure 2.2. The same evaluation process is followed as in the first 
step. The end result uses qualitative reasoning to determine whether the fault is a sensor or 
component failure.   

In order to effectively develop the proposed system, more research was necessary in 
different FDI methods, as well as in the field of model-based fault detection and isolation. 
Thus the succeeding sections will provide a review on relevant theories, with regard to FDI 
systems.  

2.2 Background on Fault Detection and Isolation Systems 

Because of increased demands on reliability, availability and safety of technical plants, 
research on improving the supervision and monitoring abilities of systems to increase their 
fault detection abilities, has received much attention over the years. Owing to this, there 
exists a lot of research in the field of fault diagnostics, where Bagajewicz and Chmielewski [2, 
p.288] indicates that fault diagnosis methods can be categorised in three main groups, 
namely: qualitative, quantitative and process history-based methods (See Figure 2.4 below). 

engNotchCmd pwrNotchCmd mainGenVolts mainGenFldAmps excFldAmps loadControlPot engineWaterTemp hump

2 0 5 0 0.057566 71.914062 100 0.19541

2 0 5 0 0.042925 71.914062 100 0.19541

2 0 5 0 0.028283 71.914062 100 0.19541

2 0 5 0 0.072235 71.914062 100 0.19541

2 0 5 0 0.057566 71.71875 100 0.19541

2 0 5 0 0.072235 72.109375 100 0

2 0 5 0 0.042925 71.914062 100 0.19541

2 0 5 0 0.028283 71.914062 100 0.19541

2 0 5 0 0.057566 71.71875 100 0.19541

2 0 5 0 0.057566 71.71875 100 0.19541

2 0 5 0 0.013641 71.71875 100 0.19541

2 0 5 0 0.072235 71.914062 100 0.19541

6 0 5 0 0.072235 71.71875 100 0.19541

6 0 1 1 -0.000999 71.71875 100 0.19541

6 0 2 3 0.057566 71.523438 100 0.19541

6 1 2 5 0.057566 71.328125 100 0.19541

6 1 2 6 0.057566 71.71875 100 0.19541

6 1 3 7 0.057566 71.914062 100 0.19541

6 1 3 8 0.042925 73.476562 100 0.19541

6 1 3 8 0.057566 73.476562 100 0.19541
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Figure 2.4: Diagnostic Methods 

2.2.1 Qualitative Methods 

These methods use symbolic reasoning to perform fault detection and isolation. The 
symbolic reasoning generally combines different kinds of knowledge with graph theory to 
analyse variables of a system. This method does not require an explicit model of the system 
and includes the following methods: 

 Fault Trees: This method traces the fault back to possible causes, to identify the cause 
effect, but is not useful in identifying the cause [2, p.288] 

 Rule-Based Approach: This approach utilises signed directed graphs, to determine the 
effect of a fault on a variable [2, p.288]  

 Failure Propagation Networks: Bagajewicz and Chmielewski [2, p.289] describes this as 
follows: “These are based on the notion that the effect of the fault propagates through 
equipment. Diagraphs with propagation times and failure probabilities are used.” 

 Knowledge-Based Approach: The knowledge-based approach makes use of available 
knowledge to either derive a qualitative description of the system in the form of a 
qualitative model or a rule-based representation. 

2.2.2 Quantitative Methods 

Quantitative Model-based methods require the use of an analytical model, where 
differences between plant and model behaviour are used to detect faults; thus the method 
is known as a quantitative Model-Based approach. Bagajewicz and Chmielewski [2, p.288] 
describes these methods as follows: “These are quantitative models (usually linear) used for 
fault detection and isolation. They use dynamic models (Kalman filters, diagnostic observers, 
parity relations, parameters estimation, etc.) that help generate estimators of measured and 
unmeasured variables and parameters. Then, measurements and estimators are used to 
generate residuals, which are used for diagnostics (Gertler, 1988; Frank, 1990; and Patton, 
1995) as well as the books by Himmelblau (1978), Patton et al. (1989), and Gertler (1998), 
among others.” 
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2.2.3 Process History-Based Methods 

Process History-based methods require historical data of a process, which serves as prior 
knowledge of the system. This knowledge can be in the form of feature extraction which 
could be qualitative or quantitative. Tools used within this method include the following 

 Artificial Neural Networks:  

 Multivariate Statistical Methods: These methods rely on principle component analysis, 
inverse least squares and principle component regression, as well as partial least 
squares.  

Frank, Garcia and Koppen-Seiliger [3] stated that the most powerful approaches are the ones 
which utilise a process model where quantitative, qualitative, knowledge-based, data-based 
models or a combination thereof are used. Data-based models can also be defined as a 
Model-based FDI where the historical data of a system is used to create a nominal model of 
a system to generate residuals from comparison with plant readings. 

There are different approaches to model-based FDI systems, where system modelling is the 
key concept. Most of the earliest successful approaches developed over the past 40 years 
were with the use of analytical models, which incorporated the use of mathematical models. 
Where work done by Chen & Patton, 1999; Frank,1990; Gertler, 1998; Himmelblau, 1978; 
Isermann, 1984, 1977; Patton, Frank,& Clark, 2000; Willsky, 1976 had contributed majorly 
towards FDI systems with the use of analytical models [4]. 

Figure 2.5, illustrates the general scheme of process model-based fault-detection and 
diagnosis used by Isermann [4, p.72]. 

 

Figure 2.5: General Scheme of Process Model-Based Fault-Detection and Diagnosis [4] 
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The fault detection and diagnosis system illustrated in Figure 2.5, has four main sections, 
namely: Process, Model-based fault detection, change detection and fault diagnosis. Where 
faults in the process can be detected with the aid of detection methods which generate 
residuals r, parameter estimates or state estimates, which are based on measured input 
signals U and output signals Y. The features are then compared with nominal features and if 
changes in them are detected, it leads to the generation of analytical symptoms s. The 
analytical symptoms, s, are then further analysed to isolate faults. Table 2.1 below shows the 
different methods which utilises NN to analyse s, to perform fault diagnosis. 
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Table 2.1: Fault Diagnosis Methods [4, p.77] 

 

With the above mentioned approaches, a number of fault detection and diagnosis systems 
have been designed, for example: fault diagnosis of a DC motor actuator used in an aircraft 
cabin control pressure system, where a combination of parameter estimation and parity 
equations were applied for the detection of several parametric and additive faults by using 
four measurements, followed by fuzzy logic interfacing; for fault detection and isolation on 
diesel engines, three different detection models were proposed to generate symptoms 
based on mainly production-type sensors. The symptoms were generated with non-linear 
input and output error parity equations. 20 symptoms were then generated, which allowed 
for in-depth diagnosis, e.g. by a fuzzy logic inference scheme [4, pp.77-84].  

It could be noted that the above mentioned approaches used mathematical models to 
perform fault detection and isolation. The development of mathematical models is 
dependent on the availability of component data of all components used within the process 
or plant. This data is not always readily available, which makes mathematical modelling 
challenging. 

To overcome the difficulties of using mathematical models and to make FDI algorithms more 
applicable to real systems, neural networks can be used to model system behaviour to both 
generate residuals, as well as isolate faults [5].  
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2.3 Neural Network Model-Based Fault Diagnosis 

By using Neural Networks to model a system, the problems associated with FDI methods 
being sensitive to modelling errors, parameter variation, noise and disturbance, experienced 
with the use of mathematical models are eliminated or reduced as no mathematical model is 
needed. Figure 2.6 illustrates a general scheme of a model-based fault diagnosis system 
which utilises neural networks as replacement to mathematical/analytical models.    

 

Figure 2.6: General Scheme of Model-Based Fault Diagnosis using Neural Networks 

From Figure 2.6 it could be noted that there are different models running in parallel, where 
each model represents one class of the system or plant’s behaviour. One model represents 
the system under normal operating conditions and each successive model thereafter 
represents a specific faulty condition.  

The inputs 𝑢(𝑘)  are fed into each model where the models then outputs 
𝑦0(𝑘), 𝑦1(𝑘), … . 𝑦𝑛(𝑘). These outputs are then compared to the plant’s output 𝑦(𝑘) to 
produce residual vectors [ 𝑟0, 𝑟1,… .𝑟𝑛 ], which characterizes a suitable class of system 
behaviour. This process is referred to as a residual generation function. The residual vector r 
is then transformed by a classification Neural Network to determine the location and time of 
the fault.  

One drawback to this method is the fact that it is impossible to model all potential system 
faults and normally only data containing normal operation is available, whereas data for 
faulty conditions have to be simulated, thus when designing faulty models using neural 
networks, serious problems can be encountered. [6, p.11] 

Even with the above mentioned challenges, Neural Networks have been successfully applied 
to many applications to perform FDI, for example: 

 In chemical processes: batch polymerisation and the distillation column, where a neural 
model prediction error was used as a residual, for fault diagnosis of sensors or 
components. Training time of the Neural Process model was reduced by the use of an 
input feature extraction process [6, p.22]  

 Singh and Murthy [7] presented a Neural Network-based Sensor Fault detection for 
flight control systems, where two different approaches were used and analysed. The 
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first approach was based on an algorithmic method which dealt with Luenberger 
observers, whereas the second approach utilised knowledge-based neural network fault 
detection (KBNNFD) which used a feedforward Neural Network trained with the 
gradient descent back propagation training algorithm  

 N.P. Srivastava, R.K. Srivastava and Vashishtha [5] highlighted a number of applications 
in which neural networks were successfully implemented which included fault diagnosis 
of nonlinear dynamic systems. The applications are as follows: 

 The use of a multilayer neural network to detect leakages in an electro-hydraulic 
cylinder drive of a fluid system [5, p.82] 

 The use of neural networks to detect internal leakages in control valves and motor 
faults in process plants [5, p.82] 

 Mhamdi, Dhouibi, Liouane and Simeu-Abazi [8] described the use of four independent 
artificial neural networks which were used to perform fault detection and classification 
on power transmission lines. The method used consecutive voltage and current readings 
as inputs to an ANN, where the ANN’s outputs were then used to indicate the presence 
and type of fault.  

The above mentioned research makes it clear that neural networks can be successfully 
applied to perform fault diagnosis using different approaches. The different approaches can 
be defined as Pattern recognition and residual generation and evaluation.  

In the field of residual generation and evaluation, thresholding techniques are of great 
concern. The decision whether or not a faulty condition exists, can be a daunting task, as 
signals are corrupted by noise and disturbances. These corrupted signals have a huge impact 
on the magnitude of residuals, where residuals can be defined as follows: 

𝑟𝑘0(𝑡) = 𝑧𝑘(𝑡) −  𝑧′𝑘(𝑡),          𝑘 = 1, … , 𝑛 (2.1) 

Residuals in fault free cases should be close to zero and should be far from zero in the case 
of a fault. Thus some threshold value is needed to determine whether a residual value 
indicates a fault or not. This threshold value can be defined by the following equation [9, 
p.3187]: 

|𝑟𝑘0(𝑡)| ≤ 𝑆𝑘0 : No Fault  (2.2) 

|𝑟𝑘0(𝑡)| > 𝑆𝑘0 : Fault Detected   (2.3) 

The challenge is in selecting a threshold value which is not affected by corrupted signals, but 
is still large enough to avoid false alarms, but small enough to still be sensitive to faults to 
prevent non-detections [9, p.3187]. 

Kourd, Lefebvre and Guersi [9] proposed a fault diagnosis method which is based on a three 
valued residuals system, where analysis of the residuals 𝑅𝑗(𝑡), 𝑗 = 0, … , 𝑝 are done with 

parallel computation of fault-free and faulty ANNs models (See Figure 2.7).  Detection and 
diagnosis are achieved according to a decision-making block, where diagnosis results are 
either from the use of usual thresholding or from online determination of fault probabilities 
and confidence factors [9, pp.3187-3189]. 
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Figure 2.7: FDI design with Models of Faulty Behaviours 

It could be noted that the main difference between Figures 2.6 and 2.7 is the fault diagnosis 
method, where Figure 2.6 uses a classification Neural Network and Figure 2.7 uses a decision 
block which utilises a fault probability estimation technique to perform FDI. 

Kourd, Lefebvre and Guersi [9] successfully applied the above mentioned FDI method on a 
DAMADICS system which consisted of a control valve, a pneumatic servomotor and a 
positioner [9, pp.3189-3195]. 

Other thresholding techniques frequently used are: Simple Thresholding, Density Estimation, 
adaptive thresholds and Fuzzy Threshold Adaptation [6, pp.124-136]. Some of these will be 
discussed in section 2.4.1.2. 

2.3.1 Conclusion 

It could be noted from the above mentioned literature review that a number of different 
approaches exist for the detection and isolation of faults in processes or plants. It was also 
noted that the type of fault detection and isolation method relies on knowledge of the 
system and data availability, as well as online or offline fault detection requirements; thus it 
could be said that the method is dependent on the application.  

When analysing the locomotive’s data acquisition abilities it was noted that historical data 
could be used to create a nominal model of the system with the use of a data-based 
approach which simply replaces the analytical approach.  

The literature review done in the above section showed that the use of a model to develop 
an FDI system has been implemented successfully into a number of applications and is 
known as model-based FDI systems. The proposed system design, as indicated in Figure 2.2, 
indicates that only nominal models were used in the FDI design; thus in order to effectively 
develop the proposed system, more research is necessary in the field of model-based fault 
detection and isolation. The next section will highlight different methods of model-based 
fault detection and isolation. 

2.4 Review on Model-based Fault Detection and Isolation    

From the previous sections it could be noted that Model-based fault detection and isolation 
has been successfully applied to a number of different applications. It could also be 
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gathered that the main requirement for a model-based fault detection and isolation system 
is a model of the system or process, which could be either in the form of a mathematical or 
neural network model. A number of model-based FDI systems have been developed which 
have yielded excellent results, where: 

 Xu, Lee, Zhou, and Yang [10] developed a model-based fault detection and isolation 
system for a rudder servo system, which used a mathematical model, with an observer 
scheme to detect actuator as well as sensor faults  

 Hashimoto, Kawashima and Oba [11] developed a model-based fault detection and 
diagnosis for internal sensors used on a mobile robot. Faults were grouped under three 
failure modes, namely: hard failure modes, noise failure modes and scale failure modes. 
The detection and isolation of faults were based on interacting estimators where the 
residual evaluation was done with the aid of kalman filters  

 Addel-Geliel, Zakzouk and Sengaby [12] used a model-based observer scheme to detect 
abnormalities in an industrial boiler. Different fault scenarios were simulated on an 
identification model. To validate sensor readings an observer-based fault detection 
algorithm was used, where after a fault detection algorithm was applied to detect 
abnormal behaviours  

 Zafira and Rahman [13] used a model-based observer system which utilised a genetic 
algorithm for optimization of the membership function to develop a fault detection and 
diagnosis system for a process control rig. The residuals generated from the observer 
model were used by an artificial neural network to classify faults  

 Odgaard, Lin, and Jorgensen [14] presented and compared three different approaches 
to fault detection and isolation in power plant mills. The three approaches analysed 
were: observer, data-based fault detection and a combination of the two. The model 
development was done with the use of a mathematical model.  

It could be noted that most of the above mentioned examples performed residual 
generation with the use of observer schemes. Observers are models of a system or process 
which can be in either a mathematical or neural network model form, where the neural 
network model can be developed with the use of historical process data or real time data.  

The principle of design for each model-based fault diagnostic system is similar and will be 
discussed in this section. The section will further provide a review on applied and known 
theories surrounding model-based fault detection systems, where a more in depth analysis 
will be done on dedicated observer schemes, which were found to be used with great 
success in many applications [12],[13],[14],[16]. 

Research in the classical approaches of model-based fault detection, which utilise 
mathematical models, is necessary due to the fact that the only difference is the model 
used, which could be either mathematical or neural network based (which could be 
developed online or with the use of historical data), whereas all other residual generation 
and evaluation techniques are exactly the same. 
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2.4.1 Model-Based Fault Diagnosis  

Model-based fault diagnosis depends on the analysis of the deviation between a model and 
real system responses. Figure 2.8 below shows a breakdown of model-based fault detection 
methods, which can be grouped into two main groups namely [12]: 

 Quantitative Model-Based fault detection, and 

 Qualitative Model-Based fault detection.  

 
Figure 2.8: Model-Based Fault Diagnosis 

The general idea of a Quantitative model-based fault diagnosis system is to compare 
measurements from a monitored system with that of predicted values obtained from a 
nominal model of the system. The difference between these two values is known as a 
residual. Figure 2.9 below shows the general idea of a Model-Based Fault Diagnosis System 
as described above. 

 

Figure 2.9: Principle of Operation of a Model-Based Fault Detection System 

Figure 2.9 indicates that the system consists of two parts to perform fault detection and 
isolation, namely: 

 Residual Generation (e(t)), and 

 Residual Evaluation (r(t)) also known as a Decision-Making System. 
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The residual generation process is performed by the comparison of the measured signal y(t) 
and the predicted output signal y^(t) from the model. Under ideal conditions the residual 
will be zero, which should give a fault-free condition, whereas a faulty condition will 
produce a deviation from zero.  The residuals are normally calculated with the use of 
analytical methods such as parity equations, observers and parameter estimators. These will 
be discussed in more detail in section 2.4.1.1. 

The second part of the fault detection and isolation is known as residual evaluation where 
the Primary Residual is analyzed for likelihood of faults. The evaluation process may consist 
of the following methods: 

 simple thresholding,  

 moving average of the residual, and 

 Methods based on statistical decision making theory; e.g. generalized likelihood ratio 
testing or sequential probability ratio testing [15].  

These methods will be discussed in more detail in section 2.4.1.2. 

Qualitative Model-Based fault detection methods on the other hand use symbolic reasoning 
to analyse the relationships between variables of a system. The symbolic reasoning 
combines different kinds of knowledge with graph theory to analyse the relationships 
between the variables. This type of model-based fault detection does not require an explicit 
model of the system; thus it is advantageous in systems where analytical models of a system 
is not available [3]. 

2.4.1.1 Residual Generation Methods 

As illustrated in Figure 2.8 above, quantitative model-based fault diagnosis can be done 
using three main analytical processes, namely: 

 Parameter Estimation 

 Parity Equations 

 Observers. 

This section will highlight the differences of the different quantitative model-based residual 
generation techniques, where observers will be discussed in more detail due to its use in 
this project.  

2.4.1.1.1 Parameter Estimation 

Parameter Estimation can be defined as the process of estimating some or all of a system 
model’s parameters using its input and output measurements. Residuals are then created 
when the estimated parameters are compared with the measured values [16]. This can only 
be done if the basic structure of the process is known. K Patan [6] explained parameter 
estimation by considering a process described by 

𝑦(𝑘) =  𝛹𝑇𝜃 (2.4) 

Where 𝛹 and 𝜃 are the regressive and parameter vector respectively and can be given by: 

𝛹 =  [−𝑦(𝑘 − 1) … , … . , −𝑦(𝑘 − 𝑚), 𝑢(𝑘) … , … , 𝑢(𝑘 − 𝑛)]𝑇 (2.5) 
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𝜃 = [𝑎1, … , 𝑎𝑚, 𝑏0, … , 𝑏𝑛]𝑇 (2.6) 

Patan [6] stated that if “𝜃 is assumed to have physical meaning, the task consists in 
detecting faults in a system by measuring the input u(k) and the output y(k), and then giving 

the estimate of the parameters of the system model 𝜃” [6, p.12]. 

If the fault acting on the system is modelled as an additive term 𝑓, then 𝜃 can be expressed 
as follows:   

𝜃 =  𝜃𝑛𝑜𝑚 + 𝑓 (2.7) 

where  𝜃𝑛𝑜𝑚 represents the nominal (fault-free) parameter vector. The change detection 
can then be expressed as  

∆𝜃 =  𝜃 −  𝜃 (2.8) 

The change detection is then put through an evaluation process to determine whether a 
faulty condition is present. This is done by means of limit checking, where checks are done 
to ascertain whether the parameter change is greater than a predefined threshold value.  

Patan [6] highlighted a drawback of this method where he stated: 

“The main drawback of this approach is that the model parameters should have physical 
meaning, i.e. they should correspond to the parameters of the system. In such situations, the 
detection and isolation of faults is very straightforward. If this is not the case, it is usually 
difficult to distinguish a fault from a change in the parameter vector 𝜃 resulting from time-
varying properties of the system. Moreover, the process of fault isolation may become 
extremely difficult because the model parameters do not uniquely correspond to those of the 
system. It should also be pointed out that the detection of faults in sensors and actuators is 
possible but rather complicated [6, p.12].” 

2.4.1.1.2 Parity Relations 

In order to define the parity relation let’s consider Figure 2.10, which was set up by 
Isermann [1]. 

 

Figure 2.10: Parity Relations [1] 

It can be seen that the Parity Relation, can be described by considering the following linear 
process’s transfer function: [6, pp.12-13], [16, p.9] 
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𝐺𝑝(𝑠) =  
𝐵𝑝(𝑠)

𝐴𝑝(𝑠)
 (2.9) 

Now if the parameters as well as the structure of the process, are known, the process model 
can be represented as: 

𝐺𝑀(𝑠) =  
𝐵𝑀(𝑠)

𝐴𝑀(𝑠)
 (2.10) 

And if we assume that 𝑓𝑢(𝑡) and 𝑓𝑦(𝑡) are addictive faults acting on the input and output of 

the system and 𝐺𝑝(𝑠) = 𝐺𝑀(𝑠) , the output error can be expressed as follows: 

𝑒′(𝑠) = 𝑦(𝑠) − 𝐺𝑀(𝑠) 𝑢(𝑠) =  𝐺𝑃(𝑠) 𝑓𝑢(𝑠) +  𝑓𝑦(𝑠) (2.11) 

The residual 𝑒′(𝑡) changes with different transients due to faults which influence the input 
and or output of the process. 𝐺𝑀(𝑠)′𝑠 polynomials can also be used to form a polynomial 
error, which can be expressed as: 

𝑒(𝑠) =  𝐴𝑀(𝑠)𝑦(𝑠) − 𝐵𝑚(𝑠)𝑢(𝑠) =  𝐴𝑃(𝑠)𝑓𝑦(𝑠) +  𝐵𝑝(𝑠)𝑓𝑢(𝑠) (2.12) 

The above equations are parity equations. Fault isolation for sensor faults can be easily 
realized, with the use of parity equations, where the general scheme for a dedicated fault 
isolation scheme is used to create parity equations to isolate faults for single sensor faults. 
This can be done by assuming that there are no actuator faults present in the system [6, 
p.13]. 

When considering actuator fault isolation, it can be done in a similar manner as sensor 
faults, by a process named the single-actuator parity relations scheme. Patan [6] indicates 
that although the single-actuator parity relations scheme is possible, not all actuator faults 
are isolatable using this scheme [6, p.13]. It could also be noted that some form of 
mathematical modeling is necessary to use this method. 

2.4.1.1.3 State Estimators (Observers) 

Observer Model-based fault detection systems have been successfully implemented in a 
number of applications [12], [13], [14]. The method allows for the detection of actuator as 
well as sensor faults and has different configurations for the detection of sensor and 
actuator faults. A requirement for this project is the isolation of actuator and sensor faults 
causing oscillations, thus making this method suitable as a residual generation technique. 
When considering the applications to which this method has been successfully applied, an 
important factor to be taken into account is data availability and knowledge about the 
process.  In this section an overview on the operation of observers will be given. 

State Estimators are used to reconstruct measurable or unmeasured state variables, from 
measuring input and output variables. Additive faults can be easily detected using this 
technique whereas multiplicative faults are more complicated to detect due to the fact that 
residual changes can be affected by changes in parameter, input and state variables; thus it 
is not easily detected in the output. State estimators also require an accurate mathematical 
model of the process; thus the performance of the estimation is dependent on the accuracy 
of the model [4]. 
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To provide a mathematical explanation of an observer system let’s consider the following 
state equations of a system [16, p.10]: 

𝑥(𝑚 + 1) = 𝐴𝑥(𝑚) + 𝐵𝑢(𝑚), (2.13) 

𝑦(𝑚) = 𝐸𝑥(𝑚) =  �̂�(𝑚) (2.14) 

Where: 

𝐴 = 𝑆𝑡𝑎𝑡𝑒 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥, 

𝐵 = 𝐼𝑛𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥, 

𝐸 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥, 

𝑥 = 𝑆𝑡𝑎𝑡𝑒 𝑉𝑒𝑐𝑡𝑜𝑟, 

𝑢 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝐼𝑛𝑝𝑢𝑡 𝑎𝑛𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

The estimates of the measured signals are then compared with their originals to compute 
the residuals as follows: 

𝑟(𝑚) = 𝑦(𝑚) −  𝐸�̂�(𝑚) (2.15) 

It could be noted from the above equation that state estimators’ main objective is to 
estimate the outputs of a system, thus estimating the entire state vector is unnecessary. 
This is due to the fact that reduced order observers can be employed facilitating state 
estimation significantly. 

Figure 2.11 below shows the general idea of an observer-based system as per the above 
discussed. 

 

Figure 2.11: General idea of an Observer-Based System 

Different types of observers have been developed over the years to enable different types 
of fault detections. These observers can be classified as follows: 

 Generalized Observer Scheme [8] 

 Output observers [8] 

 Dedicated Observer Scheme. 
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For this project only the generalized and dedicated observer schemes will be analysed. 
Where the generalized observer scheme is formed by a bank of observers of reduced order; 
where for sensor faults (IFD) each observer uses all the inputs and n-1 outputs and for 
actuator fault detection each observer uses all the outputs and m-1 inputs. Where m is the 
number of inputs. [16, p.10] The generalized observer scheme can be described in layman 
terms as a bank of observers excited by all outputs or inputs except one which is then 
supervised. 

In a dedicated observer scheme several observers constitute a bank of reduced order 
observers, where for the detection of sensor faults each observer uses all the inputs and just 
one output to detect faults. Here the number of observers equals the number of outputs 
which is also equal to the number of sensors. Dedicated observer schemes can also be used 
to detect actuator faults, where each observer uses one input and all outputs. The DOS 
scheme allows for the localization of multiple faults for either sensor or actuator faults [8]. 

The above mentioned dedicated observer schemes can be further grouped into the 
following: 

a) Observer excited by one input: this was mentioned above but simply means that one 
observer is excited by a single input while the other outputs are estimated and 
compared to measured signals. This allows for single sensor faults (additive faults). 

b) Kalman Filter excited by all outputs: Here a hypothesis test is used to detect residual 
changes of which changes in the characteristics of zero mean white noise with known 
covariance when a fault occurs. 

It could be noted that a lot of observer-based systems exist, which works on the same 
principle as the above mentioned. An example of the application of the dedicated observer 
scheme was highlighted in [14] where a dedicated observer scheme was used to isolate 
sensor and actuator faults in a power plant coal mill.  

Application of Observers within this Dissertation: 

When considering the aim of this project, the detection and isolation of sensor and 
component faults are of primary concern in the event of oscillatory failing conditions which 
cause the entire close loop control system to oscillate, hence making fault isolation 
extremely difficult. 

When considering Figure 2.2 which illustrated the proposed system, the dedicated observer 
scheme would provide a method to isolate both sensor and component faults. The two 
sections specified in the proposed system, namely: sensor and component fault analysis will 
be done with the use of the dedicated observer system, but observation will be performed 
offline on recorded data and not in real time.  

This section showed that an observer scheme is dependent on a model of the system, which 
is normally a mathematical model. In the next section we will give an alternative to the 
mathematical model, namely: a Neural Network model to perform residual generation.  
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2.4.1.1.4 Neural Network Residual Generator  

As mentioned above, the models discussed in section 2.4.1.1 used for residual generation or 
fault diagnosis required the use of mathematical models of the process. Even though 
software packages such as Matlab have applications which can generate mathematical 
models from input and output data, accurate mathematical models which models all 
system’s physical conditions influencing a system are not easy to create.  When considering 
technological plants, which are normally described by non-linear high-order differential 
equations, simplification is inevitable to accommodate quantitative modelling for residual 
generation. Difficulties arise from this due to reduction of dynamics order and linearization, 
as well as the problems which arise from unknown process parameters which have the 
effect that effective residual generation cannot be done with the use of conventional 
analytical models which are not accurate enough [6].  

In these cases an alternative to analytical models are artificial neural networks, which can 
replace the analytical models by learning the process under normal operating conditions. 
Figure 2.12 shows a model-based neural network FDI system [6].  

 

Figure 2.12: Model-Based Neural Network FDI System 

In order for an artificial neural network to learn the process under normal conditions, data is 
required from the plant. Dependent on the system or process, the data can be gathered 
either directly from the plant or from a simulated model that represents the process as 
realistically as possible. Training can then either be on-line or off-line. The type of training is 
dependent on the availability of data.  

Once the NN is trained, it represents the process under normal operating conditions and can 
be used to generate residuals using the below mentioned equation: 

𝑟(𝑚) = 𝑦(𝑚) − �̂�(𝑚) (2.16) 

Where 𝑟(𝑚) is the residual generated from comparing the measured output 𝑦(𝑚) with the 
NN predicted output �̂�(𝑚). Thus it shows that NNs can be used to replace mathematical 
models. 
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It is this method which will be used within this project to model a system and generate 
residuals. As per section 2.4.1.1, a dedicated observer scheme will be used in conjunction 
with a neural network to generate the residuals. The neural network model will be 
developed from recorded process data from the locomotive’s excitation system. Thus it will 
be designed as a model but more as a data-based model.  

Accuracy of a model used for residual generation is one of the most important factors within 
the application of FDI; thus the training of ANNs will be discussed in more detail in Chapter 3 
and residual evaluation techniques will be discussed in the next section. 

2.4.1.2 Residual Evaluation Techniques 

Any Model-Based fault detection system, whether analytical, ANN or fuzzy logic, consists of 
a residual generation process and a decision-making process, where the residuals are 
evaluated to make a decision whether or not a fault occurred. The decision-making process, 
is responsible for alerting a user of the occurrence of a fault. Residual evaluation is basically 
a logical decision-making process which transforms quantitative knowledge into qualitative 
Yes-No statements. To perform the transformation from quantitative knowledge into 
qualitative statements, some measures need to be put in place to enable the FDI system to 
perform robust decisions. 

In order to fully consider the necessity of a robust decision-making system let’s revisit 
section 2.4.1.1 where the residual generator was defined as a deviation between a 
measured signal and a model estimate of the signal. The residual  �̅�𝑘 can then be defined as 
[16, p.47]: 

�̅�𝑘 = (𝑦𝑟𝑒𝑎𝑙𝑘 −  �̂�𝑘)2 (2.17) 

Where  𝑦𝑟𝑒𝑎𝑙𝑘  and �̂�𝑘  are the sensor measurements and model estimations of plant 
characteristics at time instant 𝑘. Ideally the model estimate and the sensor measurement 
should be equal, leading to a residual of zero for fault-free conditions, thus indicating that a 
threshold value of zero could be used for the decision-making process. However in practice 
signals or measurements are affected by unknown inputs, which are due to the presence of 
noise contained within a signal. The model estimate can also be affected by modelling errors 
and these factors cause the residual to be greater than zero even in a fault free case, hence 
causing false alarms. A simple solution to this is to raise the threshold value; however this 
increases the risk of not detecting faults. Owing to this, a number of well-established 
approaches to residual evaluation and/or threshold calculations have been developed over 
the years where the objective was to have the decision-making process or threshold values 
be insensitive to uncontrolled effects such as modelling errors and other disturbances in the 
system. In this section we will discuss the following residual evaluation techniques which are 
used to calculate thresholds and or evaluate residuals [16, p.47]: 

 Simple Thresholding   

 Adaptive Thresholding  

 Moving Average  

 Neural Networks 

 Statistical decision-making theory, e.g. generalized likelihood ratio testing or 
sequential probability ratio testing [15].  
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2.4.1.2.1 Simple Thresholding  

Simple thresholding is one of the simplest methods used for residual evaluation. The 
theoretical analysis of a healthy system is defined as follows: if the residual generated is 
smaller than a threshold value, the process is considered healthy, otherwise it is faulty. In 
theory a fault-free case refers to a condition in which the residual value is zero. However, in 
practice this is not feasible due to modelling errors and noisy signals; thus thresholds need 
to be larger than zero to prevent false alarms. In order to select a threshold range, let’s 
assume that a residual satisfies the following: 

𝑟(𝑘, 𝜃) =  𝜖(𝑘),          𝑘 = 1, … . , 𝑁, (2.18) 

Where 𝜖(𝑘)  is equal to 𝒩(𝑚, 𝑣), which are random variables with a mean value 𝑚 and 
standard deviation 𝑣. 𝑁 specifies the number of samples which are used to calculate 𝑚 
and 𝑣. 𝜃 represents the vector of the model parameters and 𝛽 the significance level which 
corresponds to the probability that a random value 𝑡𝛽  is exceeded by a residual 

with 𝒩(0,1). [6, pp.124-125]The significance level 𝛽 can be expressed as: 

𝛽 = 𝑃 (|
𝑟(𝑘)−𝑚

𝑣
| > 𝑡𝛽) (2.19) 

𝑡𝛽 is tabulated in most statistical books and can be obtained by assuming a significance 

level 𝛽 and then a threshold, 𝑇, can be calculated using the following equation: 

𝑇 =  𝑡𝛽𝑣 + 𝑚 (2.20) 

Residual evaluation is then done by comparing the absolute residual value and comparing it 
to its assigned threshold 𝑇. [6, pp.124-125] A diagnostic signal is then created and assigned 
a value, according to the following: 

𝑠(𝑟) =  {
0 𝑖𝑓   |𝑟(𝑘)| < 𝑇 

1 𝑖𝑓   |𝑟(𝑘)| > 𝑇
 (2.21) 

The diagnosis signal 𝑠(𝑟) is assigned a value of zero if the residual’s absolute value is less 
than the threshold 𝑇, and one if it is greater. 

Thresholds can also be calculated using the following threshold calculation, which 
eliminates the need for the determination of 𝑡𝛽. [6, pp.124-125] The threshold value is 

derived using 𝜁- standard deviation where the residual is assumed to be a random 
variable 𝒩(𝑚, 𝑣). Thresholds are then calculated as follows: 

𝑇 = 𝑚 ±  𝜁𝑣 (2.22) 

Where 𝑚 𝑎𝑛𝑑 𝑣 is defined as follows: 

𝑚 =  
1

𝑁
∑ 𝑟𝑖

𝑁
𝑖=1  (2.23) 

And 

𝑣 =  
1

𝑁−1
∑ (𝑟𝑖 − 𝑚)2𝑁

𝑖=1  (2.24) 
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With 𝑁  being the number of samples and 𝑟𝑖  being the residual value. 𝜁  defines the 
probability that a sample exceeds the threshold value 𝑇, where the probability is equal to 
0.15866 for 𝜁 = 1, 0.02275 for 𝜁 = 2 and 0.00135 for 𝜁 = 3 [6, p.125]. The effect of 
changing 𝜁 is indicated in Figure 2.13 [6, p.125].  

 

Figure 2.13: Residual Thresholds calculated with 𝜁 = 1 (𝑏); 𝜁 = 2 (𝑐) 𝑎𝑛𝑑 𝜁 = 3 (𝑑) [6, 
p.125]  

When analysing the above figure it could be noted that for smaller values of 𝜁  the 
confidence level is narrow, which makes the decision-making system sensitive to faults and 
produces a large number of faults. By increasing the value of 𝜁, the confidence interval 
becomes larger, thus making the system less sensitive to faults. Thus it could be noted that 
the choice of the threshold value is a compromise between fault detection sensitivity and 
false alarm rates. 

The above method works well and gives satisfying results when the residual is assumed to 
be normal. In order to determine whether residuals are normal, a normality test is needed. 
One of the most used methods used to test normality is to compare the cumulative 
distribution function of a residual 𝐹𝑟(𝑥) with the normal distribution 𝐹(𝑥) [6, pp.125-126]. 
With this method the residual first needs to be normalised. Patan [6] showed that this can 
be done as follows: 

𝑟𝑛(𝑘) =  
𝑟(𝑘)−𝑚

𝑣
,        𝑘 = 1, … , 𝑛, (2.25) 

Where 𝑚 = 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟(𝑘) 𝑎𝑛𝑑 𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟(𝑘). The residual 
can then be ordered by indexing time instants as follows: 

𝑟𝑛(𝑘1) ≤  𝑟𝑛(𝑘2) ≤ ⋯ ≤ 𝑟𝑛(𝑘𝑛) (2.26) 

The cumulative distribution function can then be defined as: 
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𝐹𝑟(𝑥) =  {

0        𝑖𝑓                            𝑥 <  𝑟𝑛(𝑘1)
𝑖

𝑛
      𝑖𝑓     𝑟𝑛(𝑘𝑖)  ≤ 𝑥 <  𝑟𝑛(𝑘𝑖+1)

1       𝑖𝑓                            𝑟𝑛(𝑘𝑛)  ≤ 𝑥

 

 𝐹𝑟(𝑥) can then be plotted against the cumulative distribution function of a normal variable 
 𝒩(0,1) - F(x) [6, p.126]. Figure 2.14 below shows the Normality testing of the residual 
using the above mention method. 

 

Figure 2.14: Normality Test with the use of the Cumulative Function [6, p.127] 

It could be noted that when comparing the dashed cumulative distribution function of the 
residual with the normal distribution, that the empirical cumulative distribution function of 
the residual is not symmetric thus indicating that the normality function is not valid in this 
case and by assuming that the residual has normal distribution, and applying a confidence 
level will cause significant mistakes in the decision making process [6]. 

An alternative method for normalised testing is what is known as probability plots, 
where 𝐹(𝑥) is plotted as a function of 𝑖 𝑛⁄ .  In this method the normality assumption is 
accepted if the plot is close to a straight line [6, p.127].  Let’s consider Figure 2.15 below, 
which shows an example of a probability plot. 

 

 

 

 

 

 

 
 
 

Figure 2.15: Normality Test with the use of the Probability Plot [6, p.127] 
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It can be seen that there are large deviations from the normal distribution, thus indicating 
that the normality assumption is invalid. 

As mentioned above, if a normality test fails and normal distribution statistics for decision 
making is used, it can cause significant mistakes in the fault detection process. In order to 
prevent the latter, the selection of a threshold should be done in a proper way by 
determining the distribution of the residual or by the transformation of the residual to 
another known distribution should be performed [6]. 

2.4.1.2.2 Adaptive Thresholds 

As mentioned above, in practice modelling uncertainty and measurement noise, makes it 
necessary to set threshold values larger than zero to avoid false alarms. Owing to this, a 
compromise between fault detection sensitivity and false alarms needs to be reached and 
for this reason, adaptive thresholds are applied. The main idea of adaptive thresholds is that 
they should vary with time due to the fact that disturbances and other uncontrolled inputs 
can also vary with time. Adaptive thresholding can be constructed based on the estimation 
of statistical parameters which is based on historical observed residual data [6, p.133]. 

If the residual can be an approximation of normal distribution then the values of the mean 
can be estimated over the past n sample as follows: 

 𝑚(𝑘) =  
1

𝑛
∑ 𝑟(𝑖)𝑘

𝑖=𝑘−𝑛 ,    (2.27) 

𝑣(𝑘) =  
1

𝑛−1
∑ (𝑟(𝑖) − 𝑚(𝑘))

2𝑘
𝑖=𝑘−𝑛  (2.28) 

Where 𝑣(𝑘) is the variance and 0 < 𝑛 < 𝑘. Substituting these two equations into the 
following equation a threshold can be calculated: 

𝑇(𝑘) =  𝑡𝛽𝑣(𝑘) + 𝑚(𝑘), (2.29) 

A problem with equation 2.27 and 2.28 is the selection of the length of the time window 𝑛. 
If 𝑛 is too small, the threshold adapts very quickly to any change in the residual caused by 
any factor (These factors includes disturbances, noise or a fault). On the other hand, if 𝑛 is 
too large the threshold does not adapt sufficiently and acts as a constant one, hence 
decreasing fault sensitivity. [6, p.133] To prevent too fast an adaptation, a weighted sum of 
current and previous residual statistics is used as follows:   

𝑇(𝑘) =  𝑡𝛽�̅�(𝑘) +  �̅�(𝑘), (2.30) 

Where �̅�(𝑘) 𝑎𝑛𝑑  �̅�(𝑘) can be calculated as follows: 

�̅�(𝑘) =  𝜁𝑣(𝑘) + (1 − 𝜁)𝑣(𝑘 − 1), (2.31) 

And  

�̅�(𝑘) =  𝜁𝑚(𝑘) + (1 − 𝜁)𝑚(𝑘 − 1), (2.32) 

Where 𝜁 is a momentum parameter, which is used to control the influence of the current 
and previous value of the standard deviation on the threshold. It is used for the same 
function on �̅�(𝑘). 
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Figure 2.16 below shows the operation of the adaptive threshold calculation as per the 
above mentioned. 

 

Figure 2.16: Adaptive Thresholding [6, p.135] 

Figure 2.16 shows the residual as a solid line and the adaptive threshold as a dotted line 
when using equation 2.29 and a dashed line which represents the use of equation 2.30. It 
could be noted that when using equation 2.29, the threshold value takes the form of the 
residual itself rendering it useless. This is due to the short time window which makes the 
threshold adapt to residual changes quickly. 

When considering the dashed threshold, it could be noted that the threshold is not 
influenced by fast changes in the residual statistics. This is due to the momentum term 
which is usually defined as 𝜁 = 0.99. The problem with this method is the selection of a 
proper or ideal momentum term, which can become troublesome [6, p.135]. 

More methods exist which take into account model uncertainties, which take into account 
measurable inputs and outputs [6].  

A lot of different threshold adaptation methods exist such as Fuzzy Threshold adaptation 
which utilises fuzzy logic approach, but for this project we will only highlight the above 
mentioned [6, pp.123-140]. 

2.4.1.2.3 Moving Average Filter 

The generated residual, can be filtered with the use of a moving average filter, as to 
sufficiently dampen the residual noise.[16, p.47] The residual can then be expressed as 
follows: 

𝑟𝑘𝑅𝐺𝐸 =  
�̅�

Ω
 ∑ �̅�𝑗

𝑘
𝑗=𝑘−(Ω−1)  (2.33) 

Where the arithmetic mean is chosen as the average and the weighted moving average of 
the past Ω residuals generated.  �̅� is equal to a user defined weight and 𝑟𝑘𝑅𝐺𝐸 is the residual 
generated at sample instant 𝑘. Now the generated residual can be evaluated with the use of 
a predefined threshold value. The moving average method is basically a moving average 
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filter which filters out noise from the generated residual as per equation 2.17. [16, p.47] 
Figure 2.17 (a) and (b) below shows the difference between a residual with and without the 
use of the moving average filter as per the above mentioned.  

 

Figure 2.17 (a): Residual with a Moving Average Filter 

 

Figure 2.17 (b): Residual without a Moving Average Filter 

It should be noted that the user defined weight, �̅� , for the above graph was set equal to 1. 
It could be noted from the graph that the overall noise is dramatically minimized by using 
the moving average filter. The filtered residual is so effectively done that the theoretical 
fault diagnosis principle of a residual of zero, indicating fault-free and greater than zero, 
indicating a fault can almost be realized. 
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The above mentioned method was further developed to reduce the effect of noise on the 
residual in order to further reduce the number of false alarms. The method as indicated by 
[16], uses the same steps as the above mentioned but introduces an additional artificial data 
parameter known as a padding factor.  Equation 2.33 is then modified to give the following: 

𝑟𝑘𝑅𝐺𝑃𝐸 =  
�̅�

Ω+𝑃𝑝𝑎𝑑
[∑ �̅�𝑗

𝑘
𝑗=𝑘−(Ω−1) + 𝑃𝑝𝑎𝑑𝑚𝑖𝑛{�̅�𝑘 − (Ω − 1): 𝑘}]  (2.34) 

 Where  

𝑟𝑘𝑅𝐺𝑃𝐸 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑘 

𝑃𝑝𝑎𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑡𝑜 𝑏𝑒 𝑎𝑑𝑑𝑒𝑑 

min = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

The residual padding is used to extend the Ω samples from the original equation 2.33 with 
𝑃𝑝𝑎𝑑  artificial data points before the moving average calculation is done. The added 

artificial data points are equal to the minimum value in the original samples  [16, pp.47-48].    

Residual padding is used as an attempt to dampen the effects of unknown inputs by 
assuming that: 

 “the residual has a fast spike type effect and settles to a close-to-zero value” [16, p.48] 

 It also assumes that faults have permanent effects on the residuals. In other words, the 
residual does not settle back to close-to-zero once a fault occurs.  

It works on the principle of reducing the overall average of a residual when residual noise is 
present. This then reduces the chances of the residual exceeding a threshold value, resulting 
in false alarms. The average is reduced by extending the residual set by adding artificial data 
which is equal to the minimum data value from the residual set. This process is known as 
padding [16, pp.47-48]. 

The above mentioned algorithms are good at reducing noise which is located in a signal, but 
excessive padding and amplification using  �̅� should be avoided as this can increase fault 
detection time or completely dampen faults and increase the false alarm rate. Thus the 
tuning factors for the two methods mentioned above should be carefully chosen; these 
factors are; �̅�, 𝑃𝑝𝑎𝑑  𝑎𝑛𝑑 Ω  respectively [16, pp. 48]. 

2.4.1.2.4 Residual Evaluation with Neural Networks 

Residual evaluation methods using neural networks have become more and more attractive 
in recent years. Where a number of evaluation systems have been developed with the use 
of supervised Neural Networks which act as classifiers [17, p.352]. For these Neural 
Networks prior knowledge of the faults is needed to perform fault isolation. Koppen-Selige 
and Frank [18] used a multi-layered feedforward neural network to perform residual 
evaluation with the above mentioned technique. 

Garcia, Schubert and Frank [19] used a Restricted Coloumb Energy Neural network to 
perform residual evaluation on a winding machine, where the Neural Network 
simultaneously evaluated 5 residuals in order to isolate a fault. This method also used a 
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scoring system where the highest probable cause of failure had the highest fault count 
number, thus isolating the fault. 

2.5 Conclusion  

With all the relevant literature reviews done it could be stated that the proposed FDI system 
is indeed plausible, due to the amount of similar methods used in a number of different 
applications. Thus for this project a neural network dedicated observer scheme will be 
utilized to detect and isolate oscillatory sensor and component faults. The observer scheme 
will utilize a neural network model of the system to perform residual generation. This 
method of residual generation was selected due to the nature of the locomotive’s data 
acquisition abilities which only allows recorded data to be captured, which makes it perfect 
for modeling the excitation system under normal conditions. 

Literature indicated that a number of residual evaluation techniques exist and for this 
project the threshold values will be calculated using the simple thresholding technique in 
conjunction with a moving average filter.The fault detection and isolation of component and 
sensor faults using a dedicated observer scheme, will work as per Figure 2.18 below.  

 

Figure 2.18: Breakdown on the Operation of the Proposed FDI System 

As mentioned above, there are two types of faults to be isolated, which can be categorised 
as: sensory or component faults. These faults have a direct impact on the number of NN 
models to be used for the fault detection process. Thus let’s revisit section 2.4.1.1.3, which 
stated that sensor faults are detected with the use of a dedicated observer scheme, where 
all inputs are used and just one output and where the output is equal to the number of 
sensors. Alternatively, component faults are isolated using one input and all outputs. Thus 
for this project, as indicated in section 2.1, the proposed system will have two stages of fault 
isolation. Firstly, the component fault isolation will be done where the primary controlling 
factor of the system will be the input and all affecting variables will be compared to 
measured readings. Then the highest failing section/component from the first test is 
evaluated further with the aid of the dedicated neural network observer scheme for sensor 
fault detection or sensor validation.  

From the above mentioned it could be noted that two main factors affect the performance 
of any FDI system, which can be given as the accuracy of the model used to represent the 
plant and the threshold calculation which is used in the decision-making process. Owing to 
the fact that the accuracy of the model is of utmost importance to the successful 
implementation of a FDI system, Chapter 3 will discuss the artificial neural network in terms 
of its use in FDI systems, as well as a brief background on the operation and training thereof.  
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Chapter 3 – Artificial Neural Network Review and 
Applications in FDI systems 

Chapter 2 highlighted the use of a neural network as a replacement to mathematical models 
within the application of Model-Based fault detection and isolation. This chapter will further 
elaborate on the artificial neural network and its use in real world FDI applications. The 
question as to why artificial neural networks and not classical statistical methods for FDI will 
also be discussed. First a brief history on the fundamentals of neural networks will be given. 

3.1 History of Neural Networks 

The human brain is an amazing but complex organism; it sets human beings apart from all 
species on earth due to its abilities which enable us to walk, talk, read, write, analyze 
odours, have learning abilities, control motion, recognize abilities, memorize, etc. It should 
be noted that the brain itself cannot perform all these functions alone, but works hand in 
hand with all senses of the human body, where the senses act as inputs to the brain. The 
brain then outputs commands to the body’s different organs to execute a specific process. 
To perform all the above mentioned tasks, the brain uses what is known as biological neural 
networks.  

The biological neural network is estimated to house in the order of 10-500 billion neurons 
with 60 trillion synapses, where the neurons are arranged in approximately 1000 main 
modules, each having 500 neural networks.  It’s these interconnected neural networks 
which give the brain the ability to solve several problems simultaneously, and more 
importantly give the brain its ability to learn, memorize and still generalize. It is the latter 
which prompted research in algorithmic modeling of biological neural systems, which is 
today known as artificial neural networks [20, pp.3-4]. 

Artificial neural networks can be described as mathematical models of real world systems 
which are equated by changing weights to obtain a satisfactory output or give a solution. 
Many different artificial neural networks exist and these are used for many different 
applications. 

This chapter will consider the use of an artificial neural network to model a closed loop 
control system for a Diesel-Electric locomotive’s excitation system, as well as highlight 
different approaches to training neural networks.  

The chapter is divided into 6 sections where reviews are done on artificial neural networks, 
neural network architectures, learning paradigms, feedforward neural networks and 
activation functions. The chapter will then conclude in section 3.7, where it states which 
techniques will be used in the project. 

3.1.1 Biological Neural Systems 

To effectively define the operation of an artificial neural network, it is advantageous to first 
consider the basic building blocks of a biological neural system, which consist of neurons. 
Figure 3.1 below illustrates the anatomy of a neuron which consists of a cell body, dendrites 
and an axon.  It could be noted that neurons are interconnected with the connections 
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known as synapses, which is between the axon of one neuron and the dendrite of another 
neuron. Signals are propagated from the dendrites through the cell body to the axon. From 
the axon the signal is propagated to all connected dendrites.  A neuron either inhibits or 
excites a signal, where the signal is excited only when the neuron “fires” [20, pp.5-7]. 

 

Figure 3.1: Biological Neural Network System [20, p.6] 

3.1.2 Artificial Neural System 

An artificial neuron (AN) is a mathematical model of a biological neuron (BN), which 
simulates a BN’s principle of operation. Figure 3.2 illustrates an artificial neuron, where the 
input signals are inhibited or excited through numerical weights which are associated with 
each connection to the AN. The firing strength of the artificial neuron is controlled via a 
function known as an activation function [37, pp.8-10]. 

 

Figure 3.2: Artificial Neuron [37, p.8] 

The AN computes the output signal as follows:  

The input signals are multiplied by individual weights and then summed together. The 
summed inputs are then subtracted by a Bias (ɵ) to create the net.  

The net input signal can then be represented as: 

𝑛𝑒𝑡 = ∑ 𝑥𝑖𝑤𝑖
𝐼
𝑖=1 − ɵ (3.1) 

Where 𝑥𝑖 = 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 ,  𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡, I = Number of input vectors and ɵ = 𝑥𝐼+1𝑤𝐼+1 
where 𝑥𝐼+1 is always -1. 

𝑛𝑒𝑡 = ∑ 𝑥𝑖𝑤𝑖
𝐼
𝑖=1 + 𝑥𝐼+1𝑤𝐼+1 (3.2) 

Thus the equation can be simplified to calculate the net as follows: 

𝑛𝑒𝑡 = ∑ 𝑥𝑖𝑤𝑖
𝑖+1
𝑖=1  (3.3) 
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From this, the output signal is calculated using the equation 

𝑦 = 𝑓(𝑛𝑒𝑡) = 𝑓(∑ 𝑥𝑖𝑤𝑖
𝑖+1
𝑖=1 ) (3.4) 

It is important to note that artificial neurons, which is also known as perceptrons, as 
described above, can be used to realize linearly separable functions without any error, but 
cannot learn non-linear functions with the same accuracy. To learn non-linear functions a 
layered neural network is needed. This will be discussed in the next section 3.2.   

3.2 Artificial Neural Network – Overview 

Artificial neural networks have the ability to extract patterns and detect trends by deriving 
meaning from complex, incomplete or imprecise datasets. These datasets are usually too 
complex to be analyzed by either humans or conventional computer techniques.   A 
supervised neural network which is trained on a set of data can be used to approximate an 
output for a set of inputs, which was not in the training set. Thus the neural network could 
be considered an expert on the dataset which it has learned. Similarly, an unsupervised 
neural network can approximate outputs from a set of inputs for which it was never trained 
or where the training did not include a target vector to evaluate the neural network’s 
performance. 

Owing to the ability of neural networks to learn, memorize and generalize, a number of 
applications for artificial neural networks exist. Below is an incomplete list of a number of 
applications:  

 Process Modeling  

 Fault Detection and Isolation of Control Systems  

 Diagnosis of Diseases  

 Speech Recognition 

 Data  

 Composition of Music 

 Image Processing 

 Forecasting 

 Robot Control 

 Credit Approvals 

 Classification 

 Pattern Recognition 

 Compression and many others. 

The above mentioned applications can be divided into three main categories according to 
Edward and Jones [21]. The categories are as follows:  

 Forecasting/Prediction: Where both quantitative and categorical input data are used to 
predict one or more quantitative outcomes 

 Classification: where input data is classified into one of two or more categories 

 Pattern Recognition: where patterns are uncovered among a set of variables. 

Before neural networks these problems were solved using traditional statistical methods 
such as [21, pp.7-8]: 
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 Linear Regression 

 Logistic Regression 

 Principal Component Analysis 

 Discriminant Analysis 

 K-nearest Neighbour Classification 

 ARMA and non-linear ARMA Time Series Forecasts. 

However neural networks provided a single framework to solve many of these traditional 
problems and even extend the range of problems that can be solved in some cases. 
Research indicates that a simple neural network configuration yields the same result as 
most traditional statistical applications. It was also found that neural networks provide more 
accurate and robust results for problems, where tradition methods cannot be completely 
used or applied to [21, p.8]. 

When considering forecasting or prediction problems, traditional methods have been shown 
to be problematic when a time series [21, p.8]: 

 Is non-stationary 

 Data is noisy 

 Or the data is too short, in other words not enough data presented. 

Traditional methods have been shown to produce poor forecasting abilities when one of the 
above mentioned problems existed. Neural networks, on the other hand, can produce good 
results from data sets where the above mentioned problems exist, due to their ability to 
adapt to changes in a non-stationary series, filter out noise and train on less data. Thus it 
could be noted that neural networks provide a single tool for problems, where a variety of 
traditional statistical methods would be needed to solve a problem [21, p.8]. 

It could be noted that in order for neural networks to solve the problems associated with 
the different applications which were categorized as forecasting, pattern recognition and 
classification, a number of different types of neural networks have been developed over the 
years, for example: 

 Single Layered Neural Networks 

 Multi Layered Neural Networks 

 Temporary Neural Networks, such as Recurrent Neural Networks and Time-Delayed 
Neural Networks 

 Self-organizing Neural Networks, such as the Kohonen self-organizing maps  

 Combined Supervised and Unsupervised Neural Networks. 

The different neural networks discussed above are used to solve the three different 
problems as highlighted in this section. It should be noted that even though these networks 
solve different problems, they are always the result of computations that proceed from 
network inputs and outputs, where the network inputs are referred to as patterns and the 
outputs as classes.  
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3.2.1 Artificial Neural Networks Real World Applications 

The project is based on FDI systems; thus all the applications will be listed with reference to 
FDI systems. Neural networks have been successfully implemented in many linear and non-
linear systems to perform fault diagnosis. Below is a list of real world FDI systems: 

 Watton and Pham used multi-layer perceptron networks to detect leakages in electro-
hydraulic cylinder drive in a fluid power system[5] 

 Sharif and Grosvenor applied neural networks to detect internal leakages in control 
valves and motor faults in process plants [5] 

 Butler highlighted the use of a neural network to perform fault diagnosis for power 
distribution networks [5] 

 James and Yu used a neural network to perform condition motoring and fault diagnosis 
of a high pressure air compressor valve [5]. 

These are just a few of real world applications which exist for the use of neural networks in 
FDI systems. Neural networks have also been successfully applied as residual generators as 
well as residual evaluators within dynamic systems [5]. These neural networks were used as 
follows: 

 Neural networks were applied to state and parameter based FDI schemes by Han and 
Frank [5], where they proposed a parameter estimation based FDI system using neural 
networks to estimate physical parameters 

 Fuente and Vega used neural networks for FDI on a biotechnological process [5] 

 Yu et al. researched the use of a radial based neural network to generate residuals for 
diagnosing sensor faults in a reactor [5]. 

Not all of the neural networks used in the above applications have the same network 
architecture due to the fact that network architecture is application specific. In the next 
section network architectures will be discussed and highlighted. 

3.3 Neural Network Architecture 

When considering neural network architecture, three parameters are essential: topology, 
learning paradigm and learning algorithms. This section will concentrate on the network 
topology, whereas a learning paradigm and learning algorithms will be discussed in      
section 3.5. Before continuing it is important to define what a network topology is. A 
network topology can be referred to as the manner in which the nodes in the neural 
network are connected and organized, and the way data and error information travel from 
one layer of nodes to the next. Fundamentally, network topology can be grouped into two 
main groups, namely: feedforward and feedback. The main difference between these two 
topologies is the manner in which the inputs from preceding layers are combined in the 
hidden layers. A number of neural network designs have been developed over the years 
with different combinations of these three parameters [22]. As mentioned above, a number 
of FDI systems have been developed which utilize neural networks. When looking at a 
topology which is simple yet effective for fault detection and isolation, the feedforward 
network has been implemented successfully for modeling/residual generation, as well as for 
residual evaluation in the following systems: 
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 Guo, Liu, Xu and Chen [23] used a multi-layered feedforward neural network, trained 
using back propagation to isolate faults in a hydro turbine governor 

 Taplak, Uzmay and Yıldırım [24] used a feedforward neural network with only one 
hidden layer to model a ball-bearing system, which was then further used to perform 
FDI using vibrations based fault diagnosis  

 Mousavi and Khorasani [25] used a dynamic multi-layered feed forward neural network 
to perform residual generation, by modelling an altitude control subsystem of a 
formation flying satellite. The neural network incorporated an IIR filter, but was still 
based on the same principles as a normal feedforward neural network and was trained 
using the BP training algorithm  

 Saravanan, Duyar, Guo and Merrill [26] used a feedforward neural network that was 
trained using back propagation to model a space shuttle main engine.  

With the above mentioned systems and the use of a feedforward neural network as either a 
model/residual generator or a residual evaluator, it is clear that even though the feed 
forward neural network is considered the simplest neural network, it has the ability to 
model any non-linear or linear system with relatively high accuracy, using a back 
propagation training algorithm. Thus for the application of FDI on the locomotive’s 
excitation control system, a standard multi-layered feedforward neural network will be 
used. Owing to its contribution in this project, the operation of a feedforward neural 
network will be discussed in the next section. 

3.4 Feedforward Neural Network Model 

A feedforward neural network consists of three layers, namely: input, hidden and output 
layers which form what is known as a layered network. The layered network has 
feedforward connections from the input layer to the hidden layer, which is then in turn 
connected to the output layer which displays the result. The term feedforward is used to 
indicate that the network operates in one direction and does not have any feedback loops.    

Figure 3.3 illustrates a multi-layered feedforward neural network (FFNN). Here it can be 
seen that the network consists of three layers as mentioned in the above section (an input 
layer, a hidden layer and an output layer). It should be noted that a FFNN can have more 
than one hidden layer. The three layers serve the following functions: 

 The input layer receives the user input or data input from a source. 

 Each hidden layer processes the input layer’s data net sum as well as its bias. Then it 
runs it through an activation function. No node on the hidden layer is interconnected. 

 Each output layer neuron then receives the data input from each individual hidden layer 
neuron, to compute the net sum plus bias, before calculating the result by passing the 
net sum through an activation function. 
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Figure 3.3: Feedforward Neural Network [37, p.28] 

This process can be mathematically expressed as follows: the output for any input pattern 
𝑍𝑝 can be calculated by a single forward pass through the network. Thus for each output 𝑂𝑘 

we have: 

𝑂𝑘,𝑝 =  𝑓𝑜𝑘(𝑛𝑒𝑡𝑜𝑘,𝑝) 

                                    =  𝑓𝑜𝑘 (∑ 𝜔𝑘𝑗𝑓𝑦𝑗
(𝑛𝑒𝑡𝑦𝑗,𝑝

)

𝐽+1

𝑗=1

) 

                                      =  𝑓𝑜𝑘 (∑ 𝜔𝑘𝑗𝑓𝑦𝑗
(∑ 𝑣𝑗𝑖𝑧𝑖,𝑝

𝐼+1
𝑖=1 )𝐽+1

𝑗=1 ) (3.5) 

Where 𝑓𝑜𝑘
 and 𝑓𝑦𝑗

 are activation functions for the hidden unit 𝑦𝑗 and output unit 𝑜𝑘.There 

are different activation functions and these are highlighted in section 3.6. 𝜔𝑘𝑗 𝑎𝑛𝑑 𝑣𝑗𝑖  are 

the weights between the output unit 𝑜𝑘 and hidden unit 𝑦𝑗, with 𝜔𝑘,𝐽+1 𝑎𝑛𝑑 𝑣𝑗,𝐼+1 being the 

weights from the biases to the respective hidden and output units [20, p.28]. 

In order for the neural network to predict an output from a set of input vectors, it needs to 
adjust its weight to enable its output to effectively provide an accurate result from the 
inputs. This is done by the use of what is known as neural network learning. The next 
section will describe neural network learning for a feedforward neural network. 

3.5 Neural Network Learning 

Before a neural network can perform any function, it first needs to be taught how to process 
inputs in order to produce a satisfying output. It does this by adjusting weights and bias 
values until a certain criterion is met. The criterion is normally a measure of the neural 
network’s output versus a target value. The process of changing the weight values to 
approximate a target value is known as neural network learning. The ultimate aim of 
learning is to enable a neural network to accurately output a result from input data which 
was not part of the training set. In order to achieve optimal performance, network training 
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can be grouped into 4 groups namely: learning paradigm, learning rate and learning 
algorithm [22]. In this section the learning paradigms, learning algorithm and activation 
functions used for learning of feedforward neural networks will be discussed.  

3.5.1 Learning Paradigm 

Learning paradigms can be grouped into two main groups, namely: 

 Unsupervised Learning 

 Supervised Learning. 

Where unsupervised learning was effectively defined by Gao [22] as follows: 

“Unsupervised learning is based on local information. Data presented to the network are 
self-organized to detect their collective properties via competitive learning and hebbian 
learning. In competitive learning all output nodes compete with one another for the right to 
respond to a request. Hebbian learning minimizes the same error function that is equivalent 
to the sum of squared distances between each training case and a linear subspace of the 
input space (with distances measured perpendicularly), as an auto associative network with 
a linear hidden layer (Sarle, 2002). However, the distinction between supervised and 
unsupervised learning is not always so clear-cut because in unsupervised learning a 
summarized distribution of probability can be used to make predictions [22].” 

With regard to this project, supervised learning will be evaluated in more detail in the next 
section due to the nature of the locomotive’s human machine interface, which does not 
allow direct monitoring of sensor readings but rather recording data for a specified time, 
which supports supervised learning. 

3.5.1.1 Supervised Learning 

Supervised learning utilizes a data set which is also referred to as a training set which 
consists of input and target (Desired output) vectors associated with each input vector. A 
neuron or neural network is then provided with the training set where training then takes 
place by adjusting the weight values to minimize the error between the neuron or neural 
network output and the target output values.  

Engelbrecht [20, p.37] classifies neural network learning further as follows:  

 Stochastic/online Learning: where the weights are updated after each pattern 
presentation 

 Batch/Offline learning: for this type of learning the weight updates are accumulated 
and used to adjust the weights only after all the training patterns have been presented. 

Stochastic learning has both advantages and disadvantages and Gao [22] gives a thorough 
account thereof as follows: 

“It is advantageous in that non-stationary environments where the best model gradually 
changes over time can be better monitored. There is less chance for noise to develop into 
local minima. Online learning is often faster than off-line learning if the training dataset has 
a high degree of redundancy (Orr et al., 1999). The downside of online learning is that it is 
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unable to take advantage of many network optimization measures that are widely practised 
in off-line learning, such as multiple random initialization, computation of a minimum of the 
objective function to any desired prevision, conjugate and second-order gradient methods, 
support vector machines, and bayesian methods. Thus, off-line learning is easier and more 
reliable than online learning. A compromise can be reached by combing online learning with 
off-line learning in which the weights are updated only after certain number of data points 
[22].” 

Looking at the advantages and disadvantages as stated above, batch/offline learning will be 
implemented in the training of the neural network in this project. To apply batch learning, a 
learning algorithm is needed; thus it is necessary to discuss different learning algorithms 
used to train feedforward neural networks. This will be done in the next section. 

3.5.1.1.1 Supervised Learning Algorithms 

In this project a neural network will be used as an estimator, which estimates state variables 
(Sensor Measurements) of a control system. It could be noted that the performance and 
acceptability of a neural estimator is largely related to the performance of the learning 
algorithm used. There are a number of different training algorithms used for training 
feedforward neural networks of which we will evaluate the following due to their popularity 
in FDI system design.  

 Gradient Descent Optimization 

The Gradient Descent Optimization performance will be evaluated in Chapter 4, where it will 
be used to train a feedforward neural network to model the excitation system of a GE D-E 
locomotive’s excitation control System. But first a discussion on the basic principle of 
operation of the back propagating learning algorithm will be done. Examples where the GD 
training algorithm was used will also be presented. 

3.5.1.1.2 Gradient Descent Optimization 

Gradient descent optimization has led to one of the most popular learning algorithms used 
for neural network learning, namely the backpropagation algorithm. Owing to its simplicity 
and accuracy, it has been used in many modeling and FDI applications, performed by 
training of neural networks. These applications include the following: 

 Taplak, Uzmay and Yıldırım [24], used the GD backpropagation learning algorithm with 
momentum to model a rotor bearing system.  

 The modeling of a space shuttle main engine, which used a feedforward neural network 
training with the use of the generalized delta rule, which is a type of GD back 
propagation [26] 

 Napolitano, Silvestri, Windon, Casanova and Innocentri [27] used an extension of the 
back propagation learning algorithm to perform on-line sensor validation. 

From the above mentioned applications, it could be noted that the basis of all neural 
networks used for modeling of systems used in the specified FDI systems, the GD learning 
algorithm or extensions thereof were used. Where a standard GD learning algorithm works 
as follows: each learning iteration consists of a feedforward pass and the backward 
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propagation. The feedforward pass simply calculates the output value as per equation 3.5. 
The backward propagation propagates the error signal back from the output layer towards 
the input layer. Weights are then updated in accordance to the error signal.  

The error signal is determined using the sum of squared errors and is defined as 

𝜀 =
1

2
 ∑ (𝑡𝑝 − 𝑦𝑝)2𝑝

𝑝=1  (3.6) 

Where 𝑡𝑝 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 

 𝑦𝑝 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 

 𝑝 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑡𝑎𝑢𝑔ℎ𝑡 (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡) 

In order to minimise the error, the gradient of the error is then plotted and the weights are 
determined and the weight is moved along the negative gradient; therefore decreasing 
error. This is done by taking partial derivative of the error function with respect to 𝑤𝑖  as 
shown in equation 

𝜕𝜀

𝜕𝑤𝑘,𝑗
=

𝜕𝜀

𝜕𝑤𝑜𝑘
 

𝜕𝑂𝑘

𝜕𝑛𝑒𝑡𝑜𝑘
 

𝜕𝜀

𝜕𝑤𝑘,𝑗
  

 
𝜕𝜀

𝜕𝑤𝑘,𝑗
=  −(𝑡𝑘 − 𝑜𝑘) × 𝑓′(𝑛𝑒𝑡) × 𝑦𝑗 (3.7) 

Let’s assume the output activation function is linear, thus 𝑓′(𝑛𝑒𝑡) = 1, then the above 
equation can be written as follows: 

𝜕𝜀

𝜕𝑤𝑘,𝑗
=  −(𝑡𝑘 − 𝑜𝑘) × 𝑦𝑗  (3.8) 

If the weight update is given as  

𝑤𝑘,𝑗(𝑡 + 1) =  𝑤𝑘,𝑗(𝑡) − (𝜂 ×
𝜕𝜀

𝜕𝑤𝑖
) (3.9) 

Then  

 
𝑤𝑘,𝑗(𝑡 + 1) =  𝑤𝑘,𝑗(𝑡) + 𝜂 × (𝑡𝑘 − 𝑜𝑘) × 𝑦𝑗     (3.10) 

When the hidden layer is added to this, the weights’ updates of the hidden layer are 
calculated as follows: 

𝑣𝑗,𝑖(𝑡 + 1) =  𝑣𝑗,𝑖(𝑡) − (𝜂 ×
𝜕𝜀

𝜕𝑣𝑗,𝑖
)  (3.11) 

Where 
𝜕𝜀

𝜕𝑣𝑗,𝑖
  can be calculated as: 

𝜕𝜀

𝜕𝑣𝑗,𝑖
=  

𝜕𝜀

𝜕𝑜𝑘
 

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑜𝑘
 
𝜕𝑛𝑒𝑡𝑜𝑘

𝜕𝑓𝑦𝑗
 

𝜕𝑓𝑦𝑗

𝜕𝑛𝑒𝑡𝑦𝑗
 
𝜕𝑛𝑒𝑡𝑦𝑗

𝜕𝑣𝑗,𝑖
 

𝜕𝜀

𝜕𝑣𝑗,𝑖
= −(𝑡𝑘 − 𝑜𝑘) × 𝑜𝑘 × (1 − 𝑜𝑘) × 𝑤𝑘,𝑗 × 𝑦𝑗 × (1 − 𝑦𝑗) × 𝑥𝑖  (3.12) 
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Thus the weight update is calculated as follows: 

𝑣𝑗,𝑖(𝑡 + 1) =  𝑣𝑗,𝑖(𝑡) − 𝜂 ∑(−(𝑡𝑘 − 𝑜𝑘) × 𝑜𝑘 × (1 − 𝑜𝑘) × 𝑤𝑘,𝑗 × 𝑦𝑗 × (1 − 𝑦𝑗) × 𝑥𝑖)       (3.13) 

Training is stopped by monitoring the neural network’s mean squared error and the 
generalization errors. These can be calculated as follows: 

𝜀𝑇 =  
∑ ∑ (

1

2
(𝑡𝑘,𝑝−𝑜𝑘,𝑝)

2
)𝐾

𝑘=1
𝑃𝑇
𝑝=1

𝑃𝑇𝐾
  (3.14) 

where 𝜀𝑇  is the training error, where 𝑃𝑇  is the total number of training patterns in the 
training set and K  is the number of output units. The generalization error 𝜀𝐺  is 
approximated in the same way.  

𝜀𝐺 =  
∑ ∑ (

1

2
(𝑡𝑘,𝑝−𝑜𝑘,𝑝)

2
)𝐾

𝑘=1
𝑃𝐺
𝑝=1

𝑃𝐺𝐾
  (3.15) 

The only difference is that the first summation is over 𝑃𝐺  patterns, which are the patterns of 
the generalization data set. Training is then stopped when 𝜀𝑇  still decreases but 𝜀𝐺 
increases.   

As mentioned above, the performance of the neural network is dependent on the 
performance training algorithm whereas the training algorithm has a set of performance 
parameters itself. These will be discussed in Chapter 4, where this algorithm will be used to 
train a neural network to model the excitation control system of the locomotive.  

From the equations above it could be noted that there were references made to 𝑓(𝑛𝑒𝑡); 
this is called an activation function and is explained in depth in the next section. 

3.6 The Activation Function 

The activation function 𝑓𝐴𝑁 was first introduced in section 3.1.2, equation 3.1. From there it 
could be noted that the activation function 𝑓𝐴𝑁 receives the net inputs and the bias, from 
which it determines the output of a neuron. Activation functions are generally 
monotonically mappings where (Except for the linear function): 

𝑓𝐴𝑁(−∞) = 0 𝑜𝑟 𝑓𝐴𝑁(−∞) = −1 

𝑎𝑛𝑑 

𝑓𝐴𝑁(∞) = 1 

Theoretically any differential function can be used as an activation function, but it should be 
noted that the linear and sigmoid functions are used the most in neural networks [21, p.14].  
A brief overview of the most typical ones used will be highlighted in this section. 

3.6.1 The Linear Function 

The linear activation function, also known as the identity function, is a flow through 
mapping of a neuron’s potential to its output. These functions are normally used in the 
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output layer of a neural network used for forecasting or predictions [21, p.14]. Figure 3.4 
below shows a linear activation function. 

 

Figure 3.4: The Linear Activation Function [20] 

Where the linear activation function can be mathematically expressed as follows: 

𝑓𝐴𝑁(𝑛𝑒𝑡 − 𝜃) =  𝜆(𝑛𝑒𝑡 − 𝜃) 

The slope of the function is controlled or set via the constant 𝜆 and produces a linearly 
modulated output.  

3.6.2 The Step Function 

Figure 3.5 shows a step activation function. It could be noted that the output is a specific 
number. Thus the step function can be considered to be binary and is mostly used for binary 
classification schemes. It could also be used as a feature detector to solve clustering of 
classification problems. 

 

Figure 3.5: The Step Activation Function 

Where the step function can be mathematically expressed as: 

𝑓𝐴𝑁(𝑛𝑒𝑡 − 𝜃) = {
𝛾1 𝑖𝑓 𝑛𝑒𝑡 ≥  𝜃
𝛾2 𝑖𝑓 𝑛𝑒𝑡 <  𝜃

 

Where the step function produces one of two scalar values, which is dependent on the 
value of the threshold 𝜃. For binary output code, mentioned above 𝛾1 = 1 𝑎𝑛𝑑 𝛾2 = 0 and 
if a bipolar output is needed the scalar values are set as  𝛾1 = 1 𝑎𝑛𝑑 𝛾2 = −1. [21, p.15] 
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3.6.3 The Ramp Function 

The ramp function is a combination of the step and identity functions. Figure 3.6 below 
represents the ramp function: 

 

Figure 3.6: The Ramp Activation Function 

Where the ramp function can be mathematically expressed as follows: 

𝑓𝐴𝑁(𝑛𝑒𝑡 −  𝜃) =  {

𝛾                       𝑖𝑓   𝑛𝑒𝑡 − 𝜃 ≥  𝜖           
𝑛𝑒𝑡 −  𝜃          𝑖𝑓  − 𝜖 < 𝑛𝑒𝑡 − 𝜃 < 𝜖 
−𝛾                   𝑖𝑓   𝑛𝑒𝑡 − 𝜃 ≤  −𝜖        

 

The ramp function works on the principle that as long as the activation is smaller than or 
equal to the threshold value −𝜖, the output will be the scalar value −𝛾. If the activation is 
smaller than the threshold value 𝜖 but bigger than −𝜖 the output will be 𝑛𝑒𝑡 −  𝜃. Then if 
the activation is greater than or equal to 𝜖, then the output will be equal to the output 
scalar 𝛾 [20], [21]. 

3.6.4 The Sigmoid Function 

The sigmoid activation functions are differential functions which map a neuron’s potential 
outputs to a range of values. The sigmoid function can further be described as a continuous 
version of the ramp function. Figure 3.7 illustrates the sigmoid activation function. 

 

Figure 3.7: The Sigmoid Activation Function 

The mathematical representation of the sigmoid function is as follows: 

𝑓𝐴𝑁(𝑛𝑒𝑡 − 𝜃) =  
1

1 + 𝑒−𝜆(𝑛𝑒𝑡−𝜃)
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Where 𝑓𝐴𝑁(𝑛𝑒𝑡)  ∈ (0,1)and the parameter 𝜆 controls the steepness of the function and is 
usually equal to 1. The sigmoid function is normally used in the hidden layer of a neural 
network to scale the inputs between 0 and 1, after which a linear function is used to provide 
a scalar output [20]. 

3.6.5 The Hyperbolic Tangent Function 

The Hyperbolic Tangent activation functions can be proven to be linearly related to the 
logistic activation functions. Thus forecasts or predictions produced by using the logistic 
activation functions should be close to those produced by hyperbolic tangent activation 
functions. Research shows that the use of hyperbolic tangent activation functions takes up 
less training time compared to logistic activation functions [21, p.15].  

 

Figure 3.8: The Hyperbolic Tangent Function 

Considering Figure 3.8 the mathematical representation of the hyperbolic tangent function 
can be given as follows: 

𝑓𝐴𝑁(𝑛𝑒𝑡 − 𝜃) =  
2

1 + 𝑒−𝜆(𝑛𝑒𝑡−𝜃)
− 1 

The output of the hyperbolic tangent function is in the range (-1, 1). 

3.6.6 The Gaussian Function 

The Gaussian activation function can be expressed by the following equation: 

𝑓𝐴𝑁(𝑛𝑒𝑡 − 𝜃) =  𝑒−(𝑛𝑒𝑡−𝜃)2/𝜎2
 

Where 𝑛𝑒𝑡 − 𝜃 is the mean and 𝜎 is the standard deviation of the Gaussian distribution. 
Figure 3.9 below illustrates a graphical representation of the Gaussian function. 
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Figure 3.9: The Gaussian Function 

3.7 Conclusion 

From the above literature review of different applications of neural networks in the general 
field and more importantly the field of FDI, it was noted that the proposed system which 
required the use of a model to model the excitation control system of the locomotive could 
be done with the use of artificial neural networks. Chapter 2 indicated that the two models 
required by the proposed system could be realized with the use of dedicated observers and 
Chapter 3 showed that these observers could be designed with the use of a feedforward 
neural network, trained using supervised learning and the gradient descent training 
algorithm. The training algorithm has different parameters affecting its performance which 
will be discussed in the next chapter.  
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Chapter 4 – Neural Network Parameter Setup for the 
Modelling of the Locomotive’s Excitation System 

Chapters 2 and 3 indicated that an artificial neural network could be used as a replacement 
to the classical mathematical model of a process or plant. This makes modelling of processes 
or plants much easier when no analytical data of a plant is available. Neural networks’ ability 
to generalize and filter out noise makes them perfect for this function. Thus in this chapter a 
neural network model of the locomotive’s excitation control system will be developed.  The 
gradient descent algorithm will be used as the primary training algorithm within this project 
due to its successful implementation in numerous modelling and FDI system developments 
[23],[24],[25],[26]. 

The gradient descent training algorithm has a number of different training parameters 
which increase the performance of a neural network. This chapter will highlight some of 
these performance measures and provide an overall view of parameters which will be 
considered when designing the neural network to model the system using the gradient 
descent training algorithm.  

The chapter is divided into 5 main sections, namely: Overview of the performance 
measurements of a neural network, data preparation (where an analysis of the excitation 
control system was done to determine the neural network’s input-output configuration), 
Learning Rate and momentum, training stopping conditions and network configuration.     

4.1 Overview of Performance Measures of a Neural Network to 
consider  

The performance of a neural network can be divided into two main groups namely; accuracy 
and complexity [20]. 

4.1.1 Accuracy 

Accuracy of a neural network is extremely important and is normally measured in terms of 
its generalization ability. Generalization can be defined as the ability of a neural network to 
provide an output from patterns which were not part of the training set. The objective of 
training a neural network is to produce a low generalization error. Chapter 3 highlighted the 
performance measurements based on the generalization and training errors. It was noted 
that the training should stop at the instant where the generalization error increases while 
the training error still decreases. If training is not stopped at this instant, overfitting can 
occur [20, pp.95-98]. 

Overfitting is an important factor, due to the fact that when overfitting occurs, the neural 
network memorizes the training patterns and loses its ability to generalize. Thus the NN 
loses its ability to predict outputs from data not seen during training. Factors which were 
found to lead to overfitting are: 

 Too Large Network Architecture 

 Training Time – NN trained too long. 
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The point of overfitting is described as the point at which the training error continues to 
decrease while the generalization error starts to increase. Engelbrecht [20] stated that it is 
at this stage that training should be stopped and that if a set number of iterations or the 
training error alone, were to be used as a stopping condition, overfitting would occur.  

To detect overfitting the data set is divided into three sets, namely: training set, 
generalization set and the validation set, where the validation set is used to estimate the 
generalization error. Determining overfitting is not straight forward due to both the training 
and validation errors fluctuating. Thus overfitting can be detected when the following 
conditions are met: 

𝜀𝑣 >  𝜀�̅� +  𝜎𝜀𝑣 

Where 𝜀𝑣 is the MSE on the validation set and 𝜀�̅� 𝑎𝑛𝑑 𝜎𝜀𝑣 are the average of the MSE and 
the standard deviation of the validation set.   

It could be noted from the above mentioned that the accuracy of a neural network is a 
trade-off between the training and generalization errors. 

4.1.2 Complexity 

There are two main factors which affect the computational complexity of a neural network 
namely: 

 The Network Architecture: the larger the architecture the more feedforward 
calculations are needed and the more training calculations are needed per pattern 
during 

 The Training Set Size: the larger the training set size the more training patterns are 
presented per epoch. 

Both of these factors have a huge impact on the training time. 

4.1.3 Performance Factors  

In order to develop a successful neural network model of the excitation system, keeping in 
mind the performance measures discussed above, the following performance factors need 
to be evaluated:  

 Data Preparation 

 Learning Rate and Momentum  

 Stopping Condition 

 Network Configuration. 

The remainder of the chapter will evaluate the above mentioned parameters in order to 
design a neural network model of the locomotive’s excitation control system. The gradient 
descent training algorithm was discussed in Chapter 3, but before implementing the training 
algorithm, a system analysis will be done. 
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4.2 Data Preparation 

Data preparation is the most important step in neural network training, as it defines which 
parameters from the data set should be used as inputs and outputs. Chapter 2 highlighted 
two types of dedicated observer schemes, where one was used for the detection of sensor 
faults and another for actuator faults. For the detection of sensor faults each observer used 
all the inputs and just one output to detect faults. The number of observers equalled the 
number of outputs which was also equal to the number of sensors. Actuator faults were 
isolated with the use of an observer system where each observer used one input and all 
outputs. The DOS scheme allows for the localization of multiple faults for either sensor or 
actuator faults [8]. 

In this section an analysis of the excitation control system will be done, in an effort to 
determine which parameters can be used to estimate other parameters. The controlling 
variables will be used to estimate all output values (sensor readings).  

4.2.1 Locomotive’s Excitation Control System 

The GE U26C Diesel-Electric locomotive which is also known as the BSS locomotive is DC 
powered, and operates with a constant horsepower type excitation control system named 
“Micro-CHEC”. The excitation system utilizes a microcomputer to optimize performance and 
provide on-board diagnostics. Figure 4.1 below shows the Diesel-Electric locomotive’s 
energy flow. The excitation system is at the heart of the operation and controls the 
electrical power to the traction motors. 

 

Figure 4.1: Diesel-Electric Locomotive’s Energy Flow 

The process starts with the conversion of heat energy from the chemical combustion of 
diesel fuel in the engine into work (linear force x piston travel, changed to rotational force x 
circular movement via crankshaft action). The rotational energy is then converted into 
electrical energy by the alternator, which then in turn supplies the traction motors with 
electrical power. The energy is then converted back to rotational mechanical energy and 
exerted onto the wheels, which provides linear forward mechanical energy.  

The GE D34 class D-E locomotive on which the project is based, utilises 8 power levels where 
the locomotive’s engine speed is at max RPM from notches 5-8, meaning the amount of fuel 
injected is increased while the RPM remains constant, in order to obtain higher power 
levels. The engine’s RPM and torque are controlled via a mechanical engine governing unit, 
known as the Governor. The Governor controls the engine’s RPM through 4 electrically 
actuated solenoid valves. Table 4.1 below shows the Governor’s RPM selection via the 
solenoid valves. 
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    Table 4.1: Governor Control Table 

 

It could be noted that the solenoid sequence is determined on the power or throttle notch 
selection, manually done by the train operator.    

The Governor also incorporates a load sensing function where changes in the load 
conditions trigger a hydraulic mechanism that regulates oil pressure to either one side or 
the other of a vane servo motor which is in turn coupled to a circular load control 
potentiometer. The device provides the BSS control system with a voltage feedback, 
indicating the conditional mechanical power of the engine, hence balancing the electrical 
output power from the alternator and the mechanical power of the engine.    

The alternator’s rotor shaft is directly coupled to the engine’s crankshaft, hence rotating at 
the same RPM as the engine so that the constant mechanical engine power is converted to 
constant electrical power for each of the 8 power levels. The alternator is excited by a 
separately excited DC generator, known as the exciter. The exciter’s armature is 
mechanically rotated by the alternator via a gear train, with the exciter’s field excited via the 
BSS excitation control system. Figure 4.2 below shows a block diagram of the BSS excitation 
control system. 

 

Figure 4.2: BSS Excitation Control System 

AV BV CV DV

Shutdown Neutral 0 0 0 1 0

Idling (Ready) Neutral 1 0 0 0 2 519-549

1 1 1 0 0 4 685-702

2 1 1 0 0 6 865-873

3 0 1 1 0 7 960-968

4 0 1 1 0 7 960-968

5 1 1 1 0 8 1045-1055

6 1 1 1 0 8 1045-1055

7 1 1 1 0 8 1045-1055

8 1 1 1 0 8 1045-1055

MU Eng. Stop ANY 0 0 0 1

Engine Speed Control Above Idling

Condition Throttle Notch Command

Governor Solenoid Valves

Equiv Notch Engine Speed (RPM)
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Figure 4.2, indicates all the sensor feedbacks, used within the excitation system. The sensor 
feedbacks used are as follows: 

 EXACT – Exciter Armature Current 

 EXFM – Exciter Field Current 

 SCM8 – Rectified Alternator Voltage 

 TM1-7 CT’s – Traction Motor Currents. 

Figure 4.2 further illustrates the basic feedbacks used in the control of the exciter’s field 
current. The next section will provide an analysis of the electrical power generating control 
system, which is controlled via the exciter’s field current.  

As per Figure 4.2, it could be noted that the excitation system can be grouped into three 
main components, namely: Separately Excited DC Generator, 3 Phase Alternator and 6 
Separately Excited DC Motors. In order to further analyse the operation or principle of 
control of the electrical power generating system, each component’s operation will be 
highlighted and analysed in the succeeding sections.  

4.2.1.1 Separately Excited DC Generator (Exciter) 

In a separately excited DC generator the field coils are excited by an external DC power 
source. This source maybe any dc source such as a battery, another dc generator or in this 
case the BSS control system which supplies a voltage across the field winding. 

 

Figure 4.3: Separately Excited DC Generator Circuit 

Figure 4.3 above shows the steady state model of a separately excited dc generator where:  
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𝑈𝑓 =  𝐼𝑓𝑅𝑓 +  𝐿𝑓
𝑑𝐼𝑓

𝑑𝑡
 (4.1) 

𝑈𝑎 =  −𝐼𝑎𝑅𝑎 − 𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝐿𝑎𝑓𝐼𝑓𝑊𝑟 (4.2) 

Where 𝐿𝑎𝑓 is a constant which is equal to 
𝑁𝑓𝑁𝑎

𝑅𝑚(90°)
 and 𝑈𝑎 is connected to the field windings 

of the three phase AC alternator. The voltage output of the alternator is increased with an 
increase in the speed rotation, thus increasing the number of force lines being cut per 
second. As the field excitation increases, in this case 𝑈𝑎, the magnetic field is increased to 
the point of saturation, for a given rotational speed. 

In order to effectively control the alternator’s voltage output, it needs to be driven at a 
constant speed while varying the field excitation. The alternator’s frequency is a direct 
function of the field current and rotational speed, thus making it more feasible to drive the 
alternator at a constant speed, whilst varying the excitation current. Figure 4.4 below shows 
the principle of operation of a 3 phase synchronous ac alternator as indicated by [28, pp.17-
19]. 

 

Figure 4.4: Three Phase Synchronous AC Machine [28, p.17] 

The 𝑉𝑓 displayed in Figure 4.4, can be defined by the following: 

𝑉𝑓 =  𝐼𝑟𝑅𝑟 +  
𝑑𝐼𝑟

𝑑𝑡
 𝐿𝑟 (4.3) 

Where  

𝑉𝑓 = Alternator Field Excitation Voltage 

𝑅𝑟 =Alternator Excitation field resistance (Rotor Field Resistance) 

𝐿𝑟 =Alternator Excitation field Inductance (Rotor Field Inductance) 

 
As the exciter is electrically connected to the alternator’s field winding it could be noted 
that  𝑉𝑓 =  𝑈𝑎  and 𝐼𝑟 =  𝐼𝑎. Equation 4.3 can then be rewritten as follows: 

𝑈𝑎 =  𝐼𝑎𝑅𝑟 +  
𝑑𝐼𝑎

𝑑𝑡
 𝐿𝑟  (4.4) 

Substituting equation 4.4 into equation 4.2 gives us: 
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𝐼𝑎𝑅𝑟 +  
𝑑𝐼𝑎

𝑑𝑡
 𝐿𝑟 =  −𝐼𝑎𝑅𝑎 − 𝐿𝑎

𝑑𝐼𝑎

𝑑𝑡
+ 𝐿𝑎𝑓𝐼𝑓𝑊𝑟 

𝐼𝑎 =
𝐿𝑎𝑓𝐼𝑓𝑊𝑟− 

𝑑𝐼𝑎
𝑑𝑡

( 𝐿𝑟+𝐿𝑎)

(𝑅𝑟+ 𝑅𝑎)
 (4.5) 

In the above equation it could be noted that the following are constants: 𝐿𝑎 , 𝐿𝑟 , 𝐿𝑎𝑓 , 𝑅𝑎, 𝑅𝑟 . 

Thus the only varying factors which affect the alternator’s rotor current is the exciter’s field 
current plus the angular velocity of the exciter’s armature. At this point it could be noted 
that by monitoring the exciter’s field current, 𝐼𝑓 , as well as its armature’s angular velocity, 

the alternator’s rotor excitation current can be calculated. 

4.2.1.2 Three Phase Synchronous Generator 

To effectively model the electrical operation of the alternator, building on equation 4.5, 
Figure 4.5 below will be used to illustrate schematically the cross section of a three phase 
cylindrical rotor synchronous machine in order to derive dynamic equations for the 
alternator phase voltages. 

 
                   

 

 

 

 

 

 

Figure 4.5: Schematic Diagram of a Three Phase Cylindrical Rotor Synchronous Machine [28, 
p.17] 

Figure 4.5 represents the three stator windings (aa’, bb’ and cc’) which produce sinusoidal 
𝑚𝑚𝑓 and flux density waves rotating in the air gap whereas ff’ is used to represent the field 
winding on the rotor. This winding represents a distributed winding which produce 
sinusoidal 𝑚𝑚𝑓 and flux density waves centred on its magnetic axis and rotating with the 
rotor [28, pp.17-20]. 

With reference to Figure 4.5 and [28], the electrical circuit equations for the three phase 
windings can be expressed with the use of Kirchhoff’s Voltage law as follows: 

𝑉𝑎 =  −𝑅𝑎𝑖𝑎 +  
𝑑𝜆𝑎

𝑑𝑡
 (4.6) 

𝑉𝑏 =  −𝑅𝑏𝑖𝑏 + 
𝑑𝜆𝑏

𝑑𝑡
 (4.7) 

𝑉𝑐 =  −𝑅𝑐𝑖𝑐 + 
𝑑𝜆𝑐

𝑑𝑡
 (4.8) 
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Where 𝑉𝑎, 𝑉𝑏𝑎𝑛𝑑 𝑉𝑐 represent the voltages across the windings and 𝑅𝑎, 𝑅𝑏𝑎𝑛𝑑 𝑅𝑐 being the 
winding resistances. 𝜆𝑎, 𝜆𝑏𝑎𝑛𝑑 𝜆𝑐 represent the total flux linkages of the windings of phases 
a, b and c. Assuming a symmetric three phase stator winding: 

𝑅𝑎 =  𝑅𝑏 =  𝑅𝑐 

𝜆𝑎, 𝜆𝑏𝑎𝑛𝑑 𝜆𝑐 can be expressed as follows: 

𝜆𝑎 =  −[𝜆𝑎𝑎 +  𝜆𝑎𝑏 +  𝜆𝑎𝑐] +  𝜆𝑎𝑓 =  −[𝐿𝑎𝑎𝑖𝑎 + 𝐿𝑎𝑏𝑖𝑏 + 𝐿𝑎𝑐𝑖𝑐] +  𝐿𝑎𝑓1𝑖𝑓  (4.9) 

𝜆𝑏 = −[𝜆𝑏𝑎 +  𝜆𝑏𝑏 +  𝜆𝑏𝑐] +  𝜆𝑏𝑓 = −[𝐿𝑏𝑎𝑖𝑎 + 𝐿𝑏𝑏𝑖𝑏 +  𝐿𝑏𝑐𝑖𝑐] +  𝐿𝑏𝑓𝑖𝑓  (4.10) 

𝜆𝑐 = −[𝜆𝑐𝑎 +  𝜆𝑐𝑏 +  𝜆𝑐𝑐] +  𝜆𝑐𝑓 = −[𝐿𝑐𝑎𝑖𝑎 + 𝐿𝑐𝑏𝑖𝑏 +  𝐿𝑐𝑐𝑖𝑐] +  𝐿𝑐𝑓𝑖𝑓  (4.11) 

Where the mutual and self-inductances are expressed as follows: 

𝐿𝑎𝑎 =  𝐿𝑏𝑏 =  𝐿𝑐𝑐 =  𝐿𝑎𝑎𝑜 +  𝐿𝑎𝑙  

𝐿𝑎𝑏 =  𝐿𝑏𝑎 =  𝐿𝑎𝑐 =  𝐿𝑐𝑎 = − 𝐿𝑎𝑎𝑜/2 

𝐿𝑎𝑓1 =  𝐿𝑎𝑓𝑚 cos 𝜃 

𝐿𝑏𝑓 =  𝐿𝑎𝑓𝑚 cos(𝜃 − 120°) 

𝐿𝑐𝑓 =  𝐿𝑎𝑓𝑚 cos(𝜃 − 240°) 

When considering a balanced three phase machine, 𝐿𝑎𝑎𝑜 =  
Φ𝑎𝑎𝑜

𝑖𝑎
 , 𝐿𝑎𝑙 =

Φ𝑎𝑙

𝑖𝑎
 , Φ𝑎𝑎𝑜 is the 

flux that links all three phase windings. Φ𝑎𝑙 represent the flux that links only the phase 
winding and 𝜃 =  𝜔𝑡 +  𝜃0 [28, p.18]. 

If the stator windings outputs balanced three phase currents, then: 

𝑖𝑎𝑝ℎ𝑎𝑠𝑒 +  𝑖𝑏𝑝ℎ𝑎𝑠𝑒 +  𝑖𝑐𝑝ℎ𝑎𝑠𝑒 = 0 

The total flux linkage of the phase ‘a’ winding can be further written as follows: 

 𝜆𝑎 =  −(𝐿𝑎𝑎𝑜 +  𝐿𝑎𝑙)𝑖𝑎 +
𝐿𝑎𝑎𝑜𝑖𝑏

2
+

𝐿𝑎𝑎𝑜𝑖𝑐

2
+ 𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 +  𝜃0) 

      =  −(𝐿𝑎𝑎𝑜 +  𝐿𝑎𝑙)𝑖𝑎 +
𝐿𝑎𝑎𝑜

2
(𝑖𝑏 +  𝑖𝑐) + 𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 +  𝜃0)   

 =  −(𝐿𝑎𝑎𝑜 +  𝐿𝑎𝑙)𝑖𝑎 −
𝐿𝑎𝑎𝑜

2
(𝑖𝑎) + 𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 + 𝜃0)        

=  − (
3𝐿𝑎𝑎𝑜

2
+  𝐿𝑎𝑙) 𝑖𝑎 + 𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 +  𝜃0)                         

  =  −𝐿𝑠𝑖𝑎 + 𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 +  𝜃0)                                                   (4.12) 

The total flux linkages of phases b and c (𝜆𝑏 𝑎𝑛𝑑 𝜆𝑐) can then be written as: 

𝜆𝑏 =  −𝐿𝑠𝑖𝑏 + 𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 +  𝜃0 − 120°)    (4.13) 

𝜆𝑐 =  −𝐿𝑠𝑖𝑐 + 𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 +  𝜃0 − 240°)    (4.14) 
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[28] highlighted that in this method the three phase windings can be mathematically de-
coupled, when considering a balanced three phase synchronous machine; hence it is only 
necessary to solve the circuit equation from one phase. When substituting equation 4.12 
into 4.6 we obtain 

𝑉𝑎 =  −𝑅𝑎𝑖𝑎 +  
𝑑(−𝐿𝑠𝑖𝑎 + 𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 +  𝜃0)  )

𝑑𝑡
 

𝑉𝑎 =  −𝑅𝑎𝑖𝑎 +  
𝑑(−𝐿𝑠𝑖𝑎)

𝑑𝑡
+  

𝑑(𝐿𝑎𝑓𝑚𝑖𝑓 cos(𝜔𝑡 +  𝜃0))

𝑑𝑡
 

𝑉𝑎 =  −𝑅𝑎𝑖𝑎 − 𝐿𝑠  
𝑑(𝑖𝑎)

𝑑𝑡
+ 𝐿𝑎𝑓𝑚[cos(𝜔𝑡 +  𝜃0)

𝑑𝑖𝑓

𝑑𝑡
−  𝑖𝑓𝜔 sin (𝜔𝑡 +  𝜃0)]  (4.15) 

The line to line voltage can then be written as follows: 

𝑉𝑎𝑙𝑖𝑛𝑒 = √3{−𝑅𝑎𝑖𝑎 − 𝐿𝑠  
𝑑(𝑖𝑎)

𝑑𝑡
+  𝐿𝑎𝑓𝑚[cos(𝜔𝑡 +  𝜃0)

𝑑𝑖𝑓

𝑑𝑡
−  𝑖𝑓𝜔 sin (𝜔𝑡 +  𝜃0)]}  (4.16) 

Where 𝑖𝑓 is equal to 𝑖𝑎 and when the phase current 𝑖𝑎 in the above equation is labelled as 

𝑖𝑎𝑝ℎ𝑎𝑠𝑒, and 𝑅𝑎 =  𝑅𝑎𝑆𝑡𝑎𝑡𝑜𝑟  then the above equation can be written as: 

 

By analysing the above equation it could be noted that the line to line voltage is dependent 
on the following variables: 

𝑖𝑓 = 𝐸𝑥𝑐𝑖𝑡𝑒𝑟′𝑠 𝐹𝑖𝑒𝑙𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝑊𝑟 = 𝐸𝑥𝑐𝑖𝑡𝑒𝑟′𝑠 𝑅𝑜𝑡𝑜𝑟 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑟𝑎𝑑/𝑠𝑒𝑐 

𝜔 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑟𝑎𝑑/𝑠𝑒𝑐 

𝜔 can be expressed as follows [28, p.5]: 

𝜔 =  
𝑃

2
𝜔𝑚  (4.18) 

Where 𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑜𝑟  and 𝜔𝑚 = 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑟𝑎𝑑/𝑠𝑒𝑐 . 𝜔  in 
the equation 4.16 can then be replaced with the mechanical angular velocity; hence 𝑉𝑎𝑙𝑖𝑛𝑒 is 
dependent on 𝑖𝑓 , 𝑊𝑟 𝑎𝑛𝑑 𝜔𝑚 . Where 𝑊𝑟 𝑎𝑛𝑑 𝜔𝑚  can be related by considering the 

mechanical linkages between the primary mover (diesel engine), alternator and the exciter. 
Where the primary mover mechanically drives the alternator which then in turn drivers the 
Exciter via a gear train: 

𝑁𝐴

𝑁𝐸
=  

𝑊𝑟

𝜔𝑚
  (4.19) 

Here 
𝑁𝐴

𝑁𝐸
 is the gear ratio which is a constant, thus 𝑊𝑟 can be expressed in terms of 𝜔𝑚as 

follows: 
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𝑊𝑟  =  
𝑁𝐴

𝑁𝐸
𝜔𝑚  (4.20) 

When substituting the above mentioned equations into equation 4.17, 𝑉𝑎𝑙𝑖𝑛𝑒 is equal to the 
following: 

 

[28, p.19] states that the above equation can be expressed in the steady state in terms of 
voltage and current phasors as: 

𝑉𝑎𝑠 =  𝐸𝑎 − (𝑅𝑎 + 𝑗𝜔𝐿𝑠)𝐼𝑎 

  =  𝐸𝑎 − (𝑅𝑎 + 𝑗𝑋𝑠)𝐼𝑎      (4.21) 

Where 𝑋𝑠 =  𝜔𝐿𝑠 , which is known as the synchronous reactance and 𝐸𝑎 can be expressed 
as follows: 

𝐸𝑎 = 𝑗
𝜔𝐿𝑎𝑓𝑚𝐼𝑓

√2
= 𝑗

2𝜋

√2
𝑓𝑘𝑤𝑁𝑝ℎΦ𝑓  (4.22) 

Where 

𝐼𝑓 = 𝐹𝑖𝑒𝑙𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

Φ𝑓 = 𝑅𝑜𝑡𝑜𝑟 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝐹𝑙𝑢𝑥 𝑖𝑛 𝑎𝑖𝑟 𝑔𝑎𝑝 

 
From the analysis of the above equations it could be noted that  𝑉𝑎𝑙𝑖𝑛𝑒 is dependent on two 
main variables, namely, 𝑖𝑓 𝑎𝑛𝑑 𝜔𝑚 respectively as all the other values are constants. Thus 

by monitoring 𝑖𝑓 𝑎𝑛𝑑 𝜔𝑚, 𝑉𝑎𝑙𝑖𝑛𝑒 can be determined. 

4.2.1.3  Three Phase Bridge Rectifier 

The alternator’s star connected stator windings are connected to three rectifier banks on 
the locomotive, one for each phase. The output voltage is then connected across the 
traction motor’s power circuit. Where the output voltage can be expressed as: 

𝑣𝑎𝑏 =  √2 𝑉𝑎𝑏  sin 𝜔𝑡    for     
𝜋

3
 ≤  𝜔𝑡 ≤  

2𝜋

3
  (4.23) 

Where 𝑉𝑎𝑏  is the line-to-line rms input voltage which is equal to 𝑉𝑎𝑙𝑖𝑛𝑒  or 𝑉𝑎𝑠 . When 
substituting 𝑉𝑎𝑙𝑖𝑛𝑒 into equation 4.23 𝑣𝑎𝑏 is equal to: 

 

The output current can then be expressed as follows: 

𝐿
𝑑𝑖𝑜

𝑑𝑡
+ 𝑅𝑖𝑜 + 𝐸𝑏 =  |√2𝑉𝑎𝑏 sin 𝜔𝑡|  for  𝑖0  ≥ 0  (4.24) 
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Where L, R and 𝐸𝑏will be defined in the next section when the load is discussed. 

4.2.1.4  DC Traction Motors 

As indicated in Figure 4.6 below, the alternator’s ac output is rectified by means of a full 
wave bridge rectifier, which supplies DC power to 6 separately excited dc traction motors. 

 

Figure 4.6: Schematic Diagram of the Power Circuit Connections [30] 

Figure 4.6 also indicates that 6 separately excited DC traction motors are connected in a 
parallel combination, with their fields and armature windings connected in series. Modelling 
of one traction motor can thus be expressed as follows [29], [32]: 

𝑉𝑑𝑐 =  𝐼𝑚[𝐿𝑎𝑓1𝜔𝑚𝑜𝑡𝑜𝑟 + 𝑅𝑎 +  𝑅𝑓] +  
𝑑𝐼𝑚

𝑑𝑡
[𝐿𝑎 +  𝐿𝑓]  (4.25) 

Where 𝐼𝑚 =  
𝐼𝑜

6⁄ , if all 6 traction motor’s field and armature windings are equal and 

𝑉𝑑𝑐 =  𝑣𝑎𝑏 which is the rectified voltage generated by the alternator. 
 
Equation 4.23 can be rewritten as follows: 

𝑣𝑎𝑏 =  𝐼𝑜
[𝐿𝑎𝑓1𝜔𝑚𝑜𝑡𝑜𝑟+𝑅𝑎+ 𝑅𝑓]

6
+  

𝑑𝐼𝑜

𝑑𝑡

[𝐿𝑎+ 𝐿𝑓]

6
  (4.26) 

 
Equation 4.26 can then be written in terms of the output current 𝐼𝑜: 

𝐼𝑜  =  
6𝑣𝑎𝑏− 

𝑑𝐼𝑜
𝑑𝑡

[𝐿𝑎+ 𝐿𝑓]

𝐿𝑎𝑓1𝜔𝑚𝑜𝑡𝑜𝑟+𝑅𝑎+ 𝑅𝑓
  (4.27) 

If 𝐿𝑎  𝑎𝑛𝑑 𝐿𝑓 is neglectable, with 𝐿𝑎𝑓1, 𝑅𝑎 𝑎𝑛𝑑 𝑅𝑓 being constants, the output current 𝐼𝑜, is 

dependent on 𝜔𝑚𝑜𝑡𝑜𝑟  and 𝑣𝑎𝑏. Where 𝑣𝑎𝑏 was determined to be dependent on 𝑖𝑓 𝑎𝑛𝑑 𝜔𝑚. 

Which are the exciter’s field current and the velocity of the primary mover.  
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When considering the test conditions in which the locomotive will be tested, which would 
be a stationary condition, it could be noted that 𝜔𝑚𝑜𝑡𝑜𝑟 = 0, thus making it a constant, 
hence  𝐼𝑜 is also dependent on 𝑖𝑓 𝑎𝑛𝑑 𝜔𝑚. 

Section Conclusion: 𝑖𝑓 𝑎𝑛𝑑 𝜔𝑚 can be used as inputs to a Neural Network to approximate 

Rectified Alternator Voltage (SCM8 Sensor) and Exciter Armature Current/Alternator Field 
Current (EXACT Sensor). 

4.2.1.5 Engine Governing Unit 

As mentioned in the previous section, the locomotive’s electrical power is controlled by a 
constant horsepower excitation control system. The traction alternator excitation is initiated 
in response to throttle notch signals controlled by the operator. In order to achieve the 
electrical power output, a balance between the electrical power generated by the alternator 
and the mechanical power of the diesel engine is required. The governor acts as the primary 
feedback for the control of the electrical power, as its function is to control the mechanical 
engine power through an increase in fuel. The governor controls the fuel supply to the 
engine by sensing momentary drops in the engine’s RPM due to the power demand from 
the alternator exceeding the engine’s output. The alternator’s power demand is increased 
due to an increase in the traction effort requirement selected by the operator, which causes 
the control system to increase excitation on the alternator’s rotor windings [30]. 

The Governor reacts to (momentarily) supply more fuel to the engine to correct the RPM. 
During this event a pilot valve in the governor seeds oil under pressure to a vane servo 
motor, which drives a circular rheostat. This changes the electrical resistance of the rheostat 
and if power matching cannot be done, reduction in the governor’s voltage feedback signal 
is made, via the rheostat. This then reduces the excitation on the alternator’s rotor winding, 
thus decreasing electrical power to the traction motors. This condition is brought forward 
when the mechanical power cannot match the alternator’s request [30].  

The governor’s power matching function can be expressed as follows: 

% 𝐿𝐶𝑃 =  
𝐸𝑛𝑔𝑖𝑛𝑒𝑝

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑜𝑟𝑝
 × 100  (4.28) 

Where 𝐸𝑛𝑔𝑖𝑛𝑒𝑝 𝑎𝑛𝑑 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑜𝑟𝑝 represent the mechanical and electrical powers and the 

𝐿𝐶𝑃 is the electrical voltage signal, which is connected to the rheostat situated on the 
engine governing unit. [31] stated that the engine’s output is kept at a constant level for 
every notch, to enable the directly driven alternator to have the same constant electrical 
power (Disregarding any losses). Thus the engine power can be considered to be a constant 
when the locomotive is powering and stationary position. The alternator’s output power 
which represents the electrical power can be expressed as follows: 

𝑃𝑎 =  𝐼𝑑𝑐𝑉𝑑𝑐  (4.29) 

Where 𝑉𝑑𝑐 =  𝑣𝑎𝑏   and 𝐼𝑑𝑐 =  𝐼𝑜  from equations 4.25 and 4.27 respectively. If the 
locomotive is stationary with the mechanical power kept constant as per [31] the %LCP can 
be defined as follows: 

% 𝐿𝐶𝑃 =  
𝐸𝑛𝑔𝑖𝑛𝑒𝑝

𝑣𝑎𝑏𝐼𝑜
 × 100 
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From the previous sections it was proved that 𝑣𝑎𝑏   and 𝐼𝑜  are both dependent 
on 𝑖𝑓 𝑎𝑛𝑑 𝜔𝑚 which is the exciter generator’s field current and the engine’s rotation in 

rad/sec; hence it could then be noted that the LCP is indirectly proportional to 𝑖𝑓 𝑎𝑛𝑑 𝜔𝑚. 

Thus by monitoring  𝑖𝑓  𝑎𝑛𝑑 𝜔𝑚 with 𝐸𝑛𝑔𝑖𝑛𝑒𝑝 being constant, the LCP could be determined. 

4.2.1.6 Engine Speed Selection 

Let’s revisit Table 4.1, which highlighted the functions which controls the engine’s speed via 
4 solenoid valves located within the engine’s governor. The process of control was discussed 
in section 4.2.1.  

 

It could be noted that the engine’s RPM is dependent on the notch command made by the 
operator, as well as the actuated solenoid valves. The engine’s RPM remains constant for 
notches 3 and 4 and at 1045-1055RPM for notches 5 – 8.  

The preceding sections proved that the two main controlling factors, affecting the alternator 
and exciter’s outputs are their field currents and rotor/armature RPMs. Thus the output can 
be controlled by driving the shaft at a constant RPM while varying the field current or vice 
versa. This being said, it could be noted from the above table that both these principles are 
utilised by the locomotive’s excitation control system; hence the throttle notch position as 
well as the actuated solenoid sequence could be determined by monitoring the exciter’s 
field current (𝐼𝑓) and primary mover’s (Engine) speed in rad/sec (𝜔𝑚). 

4.2.2 Neural Network Input-Output Selection 

As per the above sections it could be noted that the input-output data selection for training 
the neural network model can be defined as illustrated in the Figure 4.7 below. 

 

Figure 4.7: Neural Network Input-Output Configuration for a Dedicated Observer Scheme 

AV BV CV DV

Shutdown Neutral 0 0 0 1 0

Idling (Ready) Neutral 1 0 0 0 2 519-549

1 1 1 0 0 4 685-702

2 1 1 0 0 6 865-873

3 0 1 1 0 7 960-968

4 0 1 1 0 7 960-968

5 1 1 1 0 8 1045-1055

6 1 1 1 0 8 1045-1055

7 1 1 1 0 8 1045-1055

8 1 1 1 0 8 1045-1055

MU Eng. Stop ANY 0 0 0 1

Engine Speed Control Above Idling

Condition Throttle Notch Command

Governor Solenoid Valves

Equiv Notch Engine Speed (RPM)
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When analysing the input-output signals to and from the neural network it can be noted 
that they closely resemble a fault detection and isolation system for a dedicated observer 
scheme for detection of actuator or component faults. In order to provide an accurate FDI 
system, which can detect sensor as well as actuator faults, an additional input-output 
training data set is needed. Mhamdi, Dhouibi, Liouane and Simeu-Abazi [8] describes an 
observer scheme for the detection of sensor faults as an observer which constitutes a bank 
of observers which receives all inputs and produces only one output, where the number of 
observers is equal to the number of sensors. Using this principle for the detection of sensor 
faults, the inputs and targets need to be different, thus indicating that additional observer 
models are needed, hence neural networks. In this case the number of additional neural 
networks is equal to 6, where all other measurements are used to predict a single sensor 
measurement.  

According to [20],[22],[35] and [21], if all the inputs and targets of the neural network have 
been defined the following steps to data preparation should be done: 

 Dealing with Missing Values 

 Coding of Input Values 

 Outliers 

 Noise Injection 

 Scaling and Normalization. 

With reference to this project, missing values, coding of input values and noise injection will 
not be discussed due to the nature of the dataset, as well as the number of training 
parameters present. Outliers and Scaling of the input parameters will however be discussed. 

4.2.2.1 Scaling and Normalization: 

Scaling of data is not considered a necessity but scaling of the input values to the active 
domain of the activation functions can improve the performance of a neural network [20, 
pp. 102-105]. A number of different approaches exist, but for this project the focus will be 
on: 

 Amplitude or Min-Max Scaling 

 Mean Centering Scaling 

 Variance Scaling 

 Combination of Mean and Variance Scaling (Z-Score normalization). 

4.2.2.2 Amplitude or Min-Max Scaling: 

For bounded functions such as the sigmoid function and the hyperbolic tangent functions 
min-max scaling is used to scale the target values to the range of the activation functions 
used, for example (0,1) for the sigmoid function and (-1,1) for the hyperbolic tangent. 
Where amplitude scaling can be expressed as follows [20, p.102],[21],[22]: 

𝑡𝑠 =  
𝑡𝑢 − 𝑡𝑢,𝑚𝑖𝑛

𝑡𝑢,𝑚𝑎𝑥 − 𝑡𝑢,𝑚𝑖𝑛
(𝑡𝑠,𝑚𝑎𝑥 − 𝑡𝑠,𝑚𝑖𝑛) +  𝑡𝑠,𝑚𝑖𝑛 
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where 

𝑡𝑠 = 𝑆𝑐𝑎𝑙𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡 

𝑡𝑠,𝑚𝑖𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑆𝑐𝑎𝑙𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡 

𝑡𝑠,𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑐𝑎𝑙𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡 

𝑡𝑢 = 𝑈𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡 

𝑡𝑢,𝑚𝑖𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑈𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡 

𝑡𝑢,𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑈𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡 

This function then linearly maps the target range [𝑡𝑢,𝑚𝑖𝑛, 𝑡𝑢,𝑚𝑎𝑥] to the range [𝑡𝑠,𝑚𝑖𝑛, 𝑡𝑠,𝑚𝑎𝑥]. 

It should be noted that scaling target values into smaller ranges have the disadvantage of 
increased training times. Engelbrecht [20] showed that a neural network must be trained 
longer to reach a desired accuracy when using the above mentioned method.  

4.2.2.3 Z-Score normalization 

Z-Score normalization will be discussed as it is essentially a combination of mean centering 
and variance scaling, which is useful for dealing with outliers in data. For z-score 
normalization: 

𝑍𝑖,𝑝
𝑀𝑉 =  

𝑍𝑖,𝑝 − �̅�𝑖

𝜎𝑍𝑖

 

𝑇𝑘,𝑝
𝑀𝑉 =  

𝑇𝑘,𝑝 − �̅�𝑘

𝜎𝑡𝑘

 

where 

�̅�𝑖 =  ∑
𝑍𝑖,𝑝

𝑃

𝑃

𝑝=1

 

And 

�̅�𝑘 =  ∑
𝑇𝑘,𝑝

𝑃

𝑃

𝑝=1

 

And 𝜎𝑡𝑘
 𝑎𝑛𝑑 𝜎𝑧𝑖

 are the standard deviations of the target matrix T and the input matrix Z. 

This method will be used and its performance measured in Chapter 5. It has also been 
successfully used in the following reference: 

 Saravanan, Duyar, Guo and Merrill [26] used normalization through the standardization 
of deviations from steady state values.  
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4.3  Learning Rate and Momentum 

The learning rate is also directly proportional to the convergence speed of a neural network. 
The function of the learning rate is to control the size of the step toward the minimum of 
the objective function. It can become a tricky process due to the following challenges which 
may arise: 

 Learning rate too small causes weight adjustments to also be small; hence more 
iterations would be necessary to reach the local minimum, thus increasing the training 
time.  This type of learning rate closely approximates the gradient path and could also 
become trapped in a bad local minimum depending on its starting point. See Figures 
4.8a and 4.8d. 

 Alternatively, too large learning rates cause large weight adjustments. This could also 
cause the neural network to “jump” over a good local minimum during the training 
process. The advantage of a large learning rate is that convergence can be reached fast 
but then could become oscillatory. See Figures 4.8b and 4.8c 

Two common methods used for selecting an optimum learning rate are: 

 To start with a small learning rate and increase it if convergence is too slow, or decrease 
it if the error did not decrease fast enough. 

 Plaut et al. proposed a method where the learning rate should be inversely proportional 
to the fanin of the neuron [37, pp.98-101]. 

  

Figure 4.8: Learning Rate Adjustments [37, p.99]  

An alternative to the above mentioned methods is the use of the dynamic learning rate [33]. 
Engelbrecht [20] defines a dynamic learning rate as follows: 
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“One of the simplest approaches is to assume that each weight has a different learning rate 
ηkj. The following rule is then applied to each weight before that weight is updated: if the 
direction in which the error decreases at this weight change is the same as the direction in 
which it has been decreasing recently, then ηkj is increased; if not, ηkj is decreased [410]. 
The direction in which the error decreases is determined by the sign of the partial derivative 
of the objective function with respect to the weight. Usually, the average change over a 
number of pattern presentations is considered and not just the previous adjustment [20].” 
  

Research into the use of a dynamic learning rate with the use of a BP algorithm was 
reported in [33] and has proven to work well in most cases. Therefore, neural network 
training will be done with the use of a dynamic learning rate with the GD training algorithm, 
with the use of Matlab’s build-in functions within this project. This method was also 
selected due to its use in a number of applications, specifically in the field of modelling of 
control systems and FDI systems [24]. 

4.3.1 Momentum 

When considering stochastic learning, a network spends a huge amount of time going back 
and forth, unlearning what the previous steps have learned. A solution to this is what is 
known as the momentum term where the idea is to average the weight changes to ensure 
that the search path is in an average downhill direction.  A static value of 0.9 is usually used 
for the momentum term [20]. Adaptive momentum rates have also been developed, where 
each weight has a different momentum term. Engelbrecht [20, p.109] highlighted this 
method. 

For this project Matlab’s build-in functions will be used to train a neural network with 
adaptive learning rate and static momentum.  

4.4 The Stopping condition 

The stopping condition is one of the most important factors to consider during training due 
to the occurrence of overfitting. This concept was briefly discussed in section 4.1.1. One of 
the earliest yet successful stopping condition is given as follows by [34]: 

“The first subset is the training data set, which is used for computing the gradient and 
updating the network weights and biases. The second subset is used as a validation data set 
and the third subset is used to evaluate the final accuracy of the NN. The error on the 
validation data set is monitored during the training process. After some number of 
iterations, the NN begins to overfit the data and, consequently, the error on the validation 
data set begins to rise. In order to deal with this problem, when the validation error 
increases during a specified number of iterations, the algorithm stops the training section 
and applies the weights and biases at the minimum of the validation error in the NN model 
[34].” 
 
The error is defined by the specific objective function used, where the objective function 
can be generally defined as the difference between the network’s output and the target 
output, given in the training data. A number of different objective functions exist, where the 
most commonly used are: 



 

Page | 65  

 

 Mean Squared Error, 

 Mean Absolute Error, and 

 Sum of Squared Error. 

Recently McMillan [35] highlighted the use of genetic algorithms and evolutionary 
computing techniques to train neural networks, where the objective functions were defined 
in the training algorithms.  

A number of different approaches exist where the main objectives are aimed at modifying 
the objective function. A summary of the different methods which utilizes evolutionary 
computing techniques, modifications done to objective functions, etc., was done by [34].  

For this project the focus will be on MSE and MAE as stopping conditions. These two 
objective functions will be experimented with in Chapter 5.   

4.5 Network Configuration 

In any artificial neural network the selection of an appropriate network model is of utmost 
importance, where the success of the network depends on the proper configuration of the 
network model. However the selection of a proper network configuration is more 
challenging due to the absence of generalized rules for defining a suitable network 
configuration. Thus it is difficult to define the number of hidden layers, hidden nodes and 
learning rate.  

These can be determined from scratch through experiments, with the classical trial and 
error method. Engelbrecht [20] stated that if several network architectures fit a training set 
equally well, then on average the simplest one will give the best generalization 
performance. Sietsma and Dow tested and confirmed this in their journal. Engelbrecht [37] 
presented a simple method to determine the optimum model by training a few different 
network architectures and then choose the one with the lowest generalization error as 
estimated by the generalised predicted error. Gao [22] provided an additional check to 
determine whether there are too few hidden units, by monitoring the training error. If the 
training error is large then more hidden units are needed. From the above mentioned it 
could be noted that the selection of the number of hidden layers and hidden units is not 
easily determined and needs to be done experimentally to determine which architecture 
provides the best neural network predictions.   

4.5.1 Hidden Layers 

When considering the number of hidden layers, it is important to realize that the more 
hidden layers are used, the more feedforward calculations are needed and hence the more 
computational time is needed. As noted in the above section, it is important to note that the 
simplest NN construction is always the best to use if it provides similar results to those of 
larger network constructions. Another important aspect to consider is the use of more 
hidden layers which has the disadvantage of reduced ability to generalize from unseen 
patterns outside of the training set [36]. 

In determining the number of hidden layers, it has been shown that one hidden layer neural 
network is sufficient to uniformly approximate any continuous functions [36]. Therefore, a 
single hidden layered neural network with tan-sig activation function will be used. 
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4.5.2 Hidden Layer Nodes 

When considering the number of hidden nodes, it is important to note that there is no 
definitive method for deciding a priori number of nodes. The number of nodes can be 
closely related to the complexity of the non-linearity of the function to be generated by the 
network. The same as with the number of hidden layers: if too many hidden nodes are used 
the network is prone to overfitting and if too few are selected the accuracy of the network is 
negatively impacted.  Thus a general procedure for selecting the optimum number of nodes 
as used by Saravanan, Duyar, Guo and Merrill [26], which is also highlighted by Engelbrecht 
[20], is to start with a small number of nodes and increase the number of nodes up to the 
point that there is no significant change in the networks accuracy. This method was 
successfully implemented by Saravanan, Duyar, Guo and Merrill [26]. 

Gao [22] further indicated that when one hidden layer is used the number of nodes to be 
used should be equal to 20. Experiments will be done using the above mentioned methods 
to find the optimum network structure. 

4.6 Conclusion 

This chapter provided the theoretical analysis on the method to design the excitation model 
using the gradient descent method. It showed that experiments into the different 
parameters are necessary to effectively develop an accurate model. Examples presented in 
this chapter, as well as in Chapter 3 showed that the use of a neural network trained using 
the back propagation training algorithm is sufficient to be used as dedicated observers. 

 In the next chapter the above parameter analyses and training data will be used to train 
neural networks to model the system in its nominal form. This will be done with the use of 
the gradient decent training algorithm. Two main neural networks will be designed, namely, 
a neural network for the use of a dedicated observer scheme to detect actuator faults, as 
well as a separate bank of neural network observers for sensor faults. 
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Chapter 5 – Excitation Model Design for the detection    
of Sensor and Component faults 

Chapter 4 highlighted all the parameters to be used and experimented with in order to 
successfully train a neural network for use as a residual generator. Let us review the 
proposed system as illustrated in Figure 5.1 below. 

 

Figure 5.1: Review of Proposed System Design 

Chapter 2 indicated that if the dedicated observer scheme is to be used as a residual 
generator, two separate banks of observers would be needed to isolate component and 
sensor faults. Figure 5.1 above shows these observers, with the component observer 
highlighted in orange and the sensor observer in green. Chapter 2 further indicated that 
these observers require different training sets in order to detect the different type of faults.   

In this chapter the gradient descent training algorithm with momentum and dynamic 
learning rate will be used to train 2 sets of dedicated neural observers to perform as a 
residual generator for both sensor and component faults.  Where the observer used for 
sensor faults will consist of 6 different neural networks, which constitutes a bank of 
observers.  

The chapter will be divided into three main sections, namely: Neural Network Model Design 
for detection of component faults, model design for the detection of sensor faults and the 
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development of a residual evaluation technique with the use of thresholding and a moving 
average filter. 

Experiments will be done in accordance with the neural network performance theory 
highlighted in Chapter 4, which highlighted the control parameters to be varied or set to 
static values as per literature reviews in the respective areas. The experiments will be done 
on all both the observer neural network types. 

5.1 Neural Network Model design for Component faults 

Using the analysis done in Chapter 4, a neural network will be developed and trained using 
Matlab’s Build-in functions to facilitate an adaptive learning and momentum gradient 
descent learning algorithm. The training set was modified to satisfy the input-output 
configuration to isolate actuator faults. Figure 5.2 below recalls the input-output selection 
made in chapter 4. 

 

Figure 5.2: Input-Output Configuration for Component Fault Observer Model 

In this section, experiments will be done with regard to the following: 

 Number of Hidden Neurons 

 Scaling 

 Stopping Conditions (Objective Functions). 

The parameters for the first experiment are illustrated in Table 5.1: 

  Table 5.1: Experiment 1 Training Parameters 

 

The network architecture for the first experiment was randomly selected at 10 hidden layer 
neurons and will be further developed later on in the analysis. The learning rate was made 
small as per the procedure set forth in Chapter 4. Performance was measured using the MSE 
performance measurement for the first couple of experiments. Where the data set was 
divided into three main datasets namely; training, validation and the test set. The division 
was done as follows: 70%, 15% and 15%.  

The experiment results are shown in Table 5.2:  

 

Learning Rate Learning Rate Increment Learning Rate Decrement Momentum Network Architecture Scaling

0.0001 1.0005 0.007 0.9 10 Min/Max Scaling
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 Table 5.2: Experiment 1 Results 

 

5.1.1 Z-Score Normalization Training Experiment 

In this experiment the Z-Score normalization as discussed in Chapter 4 will be used in an 
effort to further improve the performance of the feedforward neural network. This 
experiment will be referred to as experiment 2. This method is also used to compensate for 
outliers in the training data [20]. The experimental setup will be as follows:  

  Table 5.3: Experiment 2 Training Parameters 

 

The experiment’s results are displayed in Table 5.4 below. It could be noted that the overall 
average error is lower for all three of the measured MSE’s, when compared with the min-
max scaling method used in experiment 1. 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 5.330547255 5.586274834 5.277217197

2 5.303593464 4.899633586 5.312831778

3 5.013874924 5.852223293 6.28926204

4 5.278003262 5.525092302 6.311138052

5 5.42896673 4.983707799 5.66261327

6 5.51385784 4.085628528 4.695762704

7 5.633449078 4.812728948 3.935995461

8 5.260224245 5.645437511 5.585492427

9 5.571294812 4.759818946 5.904372127

10 5.322038561 5.617055016 4.918024054

11 5.318679907 4.737281792 5.656448638

12 5.985529554 5.245279095 5.377745021

13 5.404414247 5.640671188 5.041086677

14 5.365335679 4.982594391 5.194110872

15 5.328027436 5.408010372 4.785417975

16 5.499116649 4.812475263 4.674197483

17 5.011983508 5.311209601 6.39876134

18 5.098403564 5.873629913 6.44977643

19 5.395145317 5.586960712 4.510954197

20 4.80428168 6.662653305 6.123008951

21 5.43715457 5.045835634 5.602591809

22 5.351241865 5.787244191 4.811050139

23 5.507104322 5.311389176 5.527994761

24 4.793563179 7.451825961 5.23196447

25 5.175011071 5.857296045 4.786852679

26 5.243963999 6.003176953 4.570595661

27 5.485378762 5.429752638 5.215878109

28 5.20278036 5.088501434 5.487863401

29 5.092331846 5.524778806 5.484659296

30 5.021121503 7.321296004 5.678160949

Average Error 5.30588064 5.494982108 5.350060932

Learning Rate Learning Rate Increment Learning Rate Decrement Momentum Network Architecture Scaling

0.0001 1.0005 0.007 0.9 10 Z-Score
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 Table 5.4: Experiment 2 Results 

 

5.1.2  Hidden Layer Neurons Experiment 

Chapter 4 highlighted two methods to determine the optimum number of hidden layer 
neurons. The principle of method 1, which indicated that one should start with a small 
number of hidden neurons and then increase it until there is no remarkable increase in the 
accuracy of the neural network’s output was experimented with and the results are 
indicated in Appendix A, where Table A5 highlights the results from executing the theory set 
forth by [22], which stated that when one hidden layer is used the number of nodes to be 
used should be equal to 20. 

Table 5.5 below highlights the results from the tests done in Appendix A, where the number 
of hidden layer neurons was varied from 8 to 24. From the table it could be noted, that the 
mean training error decreased with an increase in the number of hidden layer neurons, but 
the network’s generalization ability decreased with an increase in the number of neurons. 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 4.993645982 6.024774917 5.789848881

2 5.439486592 4.745341743 5.056765908

3 4.985683878 4.942098116 6.817434064

4 5.264175986 6.319690795 4.468169975

5 4.945919038 6.272820421 5.381287384

6 5.346911514 5.449227453 4.898826596

7 4.926470627 6.692524949 5.03560999

8 5.384815167 4.873275943 4.714247075

9 4.948042006 5.7562921 5.556065732

10 5.277533195 3.321207121 6.50831937

11 5.215327751 5.49441129 4.80426023

12 5.310232332 5.346592704 4.70311175

13 5.075252699 5.475634695 5.618012286

14 5.456961821 3.962200483 5.031286781

15 4.768614412 7.050491759 4.97540448

16 5.637553404 5.301822837 3.094273215

17 4.830792394 6.008942807 5.735395984

18 5.575277807 4.90252097 4.24212453

19 5.306151465 5.220063427 5.056982912

20 5.20119293 5.366820712 4.827136978

21 5.401679297 6.030997774 5.47952995

22 4.787632955 5.612888615 6.307488579

23 4.892325095 6.48556515 6.448027551

24 5.096961132 5.851769548 4.825849193

25 5.246037081 3.516159175 6.357946115

26 5.206682691 5.21861362 5.386553008

27 4.9932249 5.397237547 5.431478792

28 5.165834352 5.44927092 5.247784871

29 5.251096146 5.459896872 4.840255247

30 5.301809755 6.137852508 3.840440063

Average Error 5.174444147 5.456233566 5.21599725
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This was also the observation of Skidmore in his analysis on the effect of adding hidden 
layered neurons [20]. 

The generalization ability for the use of 20 hidden layer neurons, which were selected in 
accordance with [22], did not decrease and showed a significant improvement over the 
other neural network architectures with regard to the training and test results. However, 
the best generalization results were gathered from the network architecture of 10 hidden 
neurons. 

Table 5.5: Average Error Comparison for Varying Hidden Layer Nodes (8-24) 

 

In an effort to validate the two best performing network architectures, training was done 
again to ensure that the results were accurate and that the correct architecture selection for 
further development could be made. Both architectures were trained 30 times again and 
their averages compared. Table 5.6 below shows the comparison.  

   Table 5.6: Average Error Comparison for Hidden Layer Nodes (10 and 20) 

 

With the additional tests as per the above mentioned, the network architecture to be used 
in the next section will be as follows: 

 

As the test error is used to evaluate the accuracy of the neural network’s generalization 
ability, the decision was based on the fact that the test error is constantly lower for 10 
hidden neurons as compared to a network architecture consisting of 20 hidden neurons in 
the hidden layer. Network complexity also played an important part but overall for an FDI 
system, an accurate model is of most importance. In the next experiment the stopping 
condition will be made changed to the MAE objective function. 

5.1.3 Objective Function 

In this experiment all the same training parameters will be used except for the objective 
function which will be the mean absolute error (MAE) instead of the mean squared error. 
The experiment will be referred to as experiment 3, where the two stopping conditions will 
be compared and the best trained neural network will be used as the system model for the 

Hidden Layer Nodes Training Error (MSE) Validation Error (MSE) Test Error (MSE)

8 5.235 5.273 5.423

10 5.174 5.456 5.125

12 5.153 5.215 5.446

15 5.113 5.465 5.312

18 5.16 5.381 5.184

20 5.101 5.261 5.129

24 5.094 5.131 5.186

Hidden Layer Nodes Simulations Training Error (MSE) Validation Error (MSE) Test Error (MSE)

10 1 5.291 5.259 5.188

2 5.245 5.125 5.308

20 1 5.038 5.49 5.328

2 5.053 5.319 5.365

Inputs Hidden Layers Hidden Layer Neurons Outputs Hidden Layer Activiation Function Scaling

2 1 10 6 Tansig Z-Score
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excitation control system. Table 5.7 below shows the neural network performance when 
using MAE as the stopping condition. 

Table 5.7: Test Results using the MAE as Objective Function 

 

When comparing the two methods, it is necessary to take the square root of the MSE 
objective function results. Table 5.8 highlights the square root average error from the best 
performing MSE results. It could be noted that the performance of the neural network with 
the use of MAE outperforms the MSE objection function. Thus the MAE will be used to 
develop the model of the system. In the next section the model will be trained and tested 
against untrained data. 

Simulation Training Set Error (MAE) Validation Set Error (MAE) Test Set Error(MAE)

1 0.631718384 0.656437029 0.687043248

2 0.790052889 0.836778804 0.732591615

3 0.796937879 0.795089958 0.831040151

4 0.750459893 0.716378003 0.740243744

5 0.729714621 0.633074676 0.717497811

6 0.718760043 0.696392883 0.740257296

7 0.772377236 0.734869649 0.765026613

8 0.680179549 0.685004955 0.738600055

9 0.75288602 0.744375287 0.746416961

10 0.880332805 0.826662698 0.868383932

11 0.677340575 0.717787281 0.647679243

12 0.701032 0.714333482 0.737112986

13 0.727084495 0.725044209 0.730831506

14 0.726335994 0.673518937 0.768084853

15 0.792848886 0.723338244 0.737708685

16 0.744971391 0.747726251 0.730158674

17 0.703282348 0.739544257 0.74813902

18 0.732864136 0.795855025 0.789711257

19 0.738344621 0.747613435 0.743654611

20 0.693846646 0.691205004 0.667825677

21 0.687640043 0.745492408 0.647089175

22 0.682276248 0.693803713 0.664054985

23 0.783687827 0.665107224 0.808965273

24 0.755681267 0.752951743 0.746786088

25 0.734940809 0.732784558 0.740905123

26 0.695236491 0.695428373 0.710813806

27 0.768846508 0.752622031 0.763646827

28 0.807282327 0.832248248 0.750554706

29 0.708335453 0.755844805 0.770046931

30 0.714820051 0.699488826 0.69934916

Average Error 0.736003915 0.7308934 0.739007334
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Table 5.8: Test Results using the MSE as Objective Function with 10 Hidden Neurons 

 

5.1.4 Model design 

The model was designed using the training parameters used in experiment 3. A neural 
network was trained 30 times and the best performance in terms of generalization was 
selected. Table 5.9 below shows the results. The best performing neural network is 
highlighted, with a testing error 0.627. Figure 5.3 below shows the performance of the 
training algorithm. 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 7.13513757 6.243367564 6.408967601

2 6.614764759 7.185734735 7.834411458

3 6.999417689 6.580587916 7.2712324

4 7.472850561 6.979292755 7.125984567

5 7.223198156 7.554414032 6.518684944

6 6.765265954 7.979145912 5.914255129

7 6.636864283 7.571433638 7.142409519

8 6.946766064 7.03583033 7.196978469

9 6.890212599 6.801672213 6.629602638

10 6.942303772 7.144529903 6.818721577

11 6.627625919 8.215745371 8.104436548

12 6.99611702 6.295543981 7.617274954

13 6.535668364 6.942778419 7.911566188

14 6.69124927 8.001679915 7.039079792

15 6.773964111 6.8138639 7.000092949

16 7.3948874 7.379583703 7.662407334

17 6.980704164 7.59019337 6.649124473

18 6.776704659 7.130022338 7.020446707

19 7.833692222 7.322152403 8.786507062

20 6.729297943 7.895906332 7.723821842

21 6.983963716 7.002703141 6.915247846

22 6.81947151 6.825227501 7.266004596

23 7.091536904 7.732001246 7.960833821

24 7.290288862 6.79360475 5.485859705

25 7.696144878 7.834515919 7.760804286

26 7.079569261 7.896731564 8.062195235

27 6.999937468 6.995264827 7.943375775

28 6.560836378 9.068201852 6.184948761

29 6.693450732 5.62414933 8.49696478

30 6.805055425 7.340266487 6.500985986

Average Error 2.639361966 2.694291158 2.689195834
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Table 5.9: Final Model Design for Component Fault Observer 

 

 

Simulation Training Set Error (MAE) Validation Set Error (MAE) Test Set Error(MAE)

1 0.715821678 0.73365324 0.747815455

2 0.791444226 0.777218225 0.741351103

3 0.770414371 0.73109854 0.775976244

4 0.727599435 0.711852136 0.716021753

5 0.701663912 0.762314096 0.711494772

6 0.726035492 0.682323222 0.679359616

7 0.771758682 0.75673137 0.691252163

8 0.746745626 0.710496697 0.82016818

9 0.764544324 0.753512696 0.706508842

10 0.680920671 0.70515299 0.654672033

11 0.774918359 0.722450459 0.753370662

12 0.688032275 0.795636151 0.697648982

13 0.712235368 0.743168124 0.637120864

14 0.775094977 0.794107564 0.7966061

15 0.68480608 0.653265746 0.686951586

16 0.755908685 0.699247796 0.814870698

17 0.795811172 0.804242042 0.864998941

18 0.674077269 0.72270708 0.791242436

19 0.734592863 0.768423871 0.745658849

20 0.664854018 0.689508365 0.627161423

21 0.671277205 0.780356595 0.713587328

22 0.696651569 0.722459298 0.681696253

23 0.781551238 0.706254479 0.735188745

24 0.748904117 0.757716561 0.73739184

25 0.811195359 0.797955965 0.836476216

26 0.856825052 0.847498818 0.863361037

27 0.646779791 0.681524673 0.735486271

28 0.717912183 0.699979078 0.741823558

29 0.750169932 0.747200586 0.740275376

30 0.859572789 0.858722664 0.813710408

Average Error 0.739937291 0.743892638 0.741974924
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Figure 5.3: Training Test Result for Component Fault Observer Model  

5.1.5 Conclusion 

Through the analysis of a number of literatures on neural networks used in the field of 
model design and FDI systems, a model with a testing error of 0.627 was developed. This 
was done by varying training parameters, of which was recorded in literature. The successful 
implementation of a model for the excitation system, to be used as a residual generator for 
the detection of actuator faults was done and the performance thereof will be tested in 
Chapter 6.  As illustrated in Figure 5.1, the primary model is then evaluated using a 
thresholding technique where the fault is isolated and evaluated further to determine 
whether it is a sensor or a component failure. In order to determine whether it is a sensor or 
component failure an additional neural network structure for each component is necessary. 
These are in the form of a dedicated observer scheme which constitutes a bank of observers 
to isolate sensor faults. Appendix N section N1 illustrates the code used for training the 
neural network which was experimented with in this section. The next section will focus on 
the development of these neural networks. 

5.2 Neural Network Model design for Sensor faults 

Using the analysis done in Chapter 4 a neural network will be developed and trained using 
Matlab’s Build-in functions to facilitate an adaptive learning and momentum gradient 
descent learning algorithm. The training set was modified to satisfy the input-output 
configuration to isolate sensor faults. A total of 6 neural networks will be designed which 
constitutes a bank of observers used to isolate sensor faults. This section will be divided into 
6 sections, where each section will represent an observer. These will be as follows: 
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 SCM 8 

 EXACT 

 EXFM 

 LCP 

 Engine Notch Command 

 Power Notch Command. 

The same principle of network design will be followed as in section 5.1, and for each section 
the training set will be displayed, as the training set will differ for each neural observer. 

5.2.1 Neural Observer Design for the Rectified Voltage Sensor (SCM 8) 

Figure 5.4 below shows the input-output configuration of the training data to be used for 
training a neural network as a residual generator, to be used as a sensor fault detector for 
the SCM8 voltage transducer.  

 

Figure 5.4: Input-Output Configuration for the SCM8 Sensor Neural Observer Model 

It could be noted that the training data configuration in terms of the number of inputs 
differs from that of the actuator faults observer. This is due to the fact that all inputs were 
not randomly selected but were selected in terms of their effect on the output. Chapter 4 
indicated the data preparation which highlighted the system parameters and dependencies 
of specific variables. The selection of the inputs was done in accordance with this. The 
following criteria were used to train the neural network. 

 Table 5.10: SCM8 Experiment Training Parameters 

 

Z-Score scaling was used; this is due to the results gained from the previous experiments, 
which showed that when using Z-Score and MAE the neural network gave the best results in 
terms of generalization. The network architecture was varied from 2 to 30. Where hidden 
layer with 20 nodes was selected as highlighted in [22]. The results for varying the network 
architecture with the above mentioned parameters are presented in Appendix B. 

Table 5.11 below shows the results from experiments done in Appendix B where the 
average error of the training, testing and validation set was calculated for each variation in 
the number of hidden layer neurons. It could be noted that the best generalization abilities 
were at 24 and 30, but 24 was selected as the networks generalization ability decreased 
with the use of 30 neurons, thus indicating that the use of larger hidden layered neuron 

Learning Rate Learning Rate Increment Learning Rate Decrement Momentum Network Architecture Scaling

0.0001 1.0005 0.007 0.9 2-30 Z-Score
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structure decreased the generalization ability. The optimum network structure was at 24 
hidden neurons.  

Table 5.11: Average Error Comparison for Varying Hidden Layer Nodes (2-30) for 
SCM8 Neural Observer Model Design 

 

Table 5.11 above indicated that an accurate observer model for the detection of sensor 
faults could be sufficiently developed with the use of following training parameters: 

Table 5.12: Optimum Training Parameters for SCM8 Neural Observer Model Design 

 

Table 5.13, below highlights the best trained neural network which produced a mean 
generalization error of 0.569. This was done with varying the training parameters, which 
were recorded in literature and which are highlighted in Table 5.12. The successful 
implementation of a model for the excitation system to be used as a residual generator for 
the detection of the SCM8 sensor faults was done and the performance thereof will be 
tested in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

Hidden Layer Nodes Training Error (MAE) Validation Error (MAE) Test Error (MAE)

2 0.770565221 0.768202103 0.767971904

4 0.708832607 0.699527538 0.710097628

8 0.686970229 0.691215282 0.693393075

10 0.679214962 0.693920957 0.699474683

12 0.683395091 0.682636344 0.708430358

15 0.680100948 0.669396973 0.700614289

20 0.677945426 0.689987127 0.690598694

24 0.665720289 0.676433707 0.674228199

30 0.678319073 0.674845265 0.679630734

Learning Rate Learning Rate Increment Learning Rate Decrement Momentum Network Architecture Scaling

0.0001 1.0005 0.007 0.9 24 Z-Score
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 Table 5.13: Final Model Design Results for SCM8 Neural Observer Model 

 

It was noted that the training parameters as indicated in Table 5.12, provided the best 
results for sensor fault neural network architectures where a hidden layer of 24 neurons 
was used. When comparing the training parameters with those of the actuator fault residual 
generator, it could be noted that the best results were achieved with the use of 10 hidden 
layered neurons; this is due to the difference in the input-output construction. Appendix N 
section N2 illustrates the code used for training the neural network. 

 

 

 

Simulation Training Set Error (MAE) Validation Set Error (MAE) Test Set Error(MAE)

1 0.711152778 0.692058592 0.663406303

2 0.665241522 0.642661134 0.67196563

3 0.660539967 0.666781822 0.686965569

4 0.691123963 0.646528152 0.710125137

5 0.669308487 0.777671831 0.709491469

6 0.650050981 0.700732451 0.689105511

7 0.689331004 0.69696175 0.702803379

8 0.702285029 0.649982301 0.717501259

9 0.66976497 0.675747499 0.670614464

10 0.689207329 0.613867054 0.652368049

11 0.691533943 0.639054555 0.67058114

12 0.63717792 0.755479317 0.72510463

13 0.682746259 0.642940413 0.625601941

14 0.68115507 0.708822848 0.682823757

15 0.672221595 0.672811242 0.627735408

16 0.7004104 0.66603741 0.608903358

17 0.699709988 0.621929878 0.674189953

18 0.679517259 0.592767655 0.663711906

19 0.682382944 0.694874242 0.766172432

20 0.674851978 0.672901934 0.786588871

21 0.703838668 0.703201956 0.605732155

22 0.6516365 0.7368768 0.608164349

23 0.664116545 0.661085315 0.674642997

24 0.672162482 0.807210607 0.689615537

25 0.686263807 0.685900781 0.651976198

26 0.664858593 0.661754287 0.607698321

27 0.684216019 0.747336914 0.61839335

28 0.662606401 0.68992917 0.611134732

29 0.647681051 0.686672762 0.654615132

30 0.689567249 0.62882628 0.569193443

Average Error 0.677555357 0.681313565 0.666564213
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5.2.2 Neural Observer Design for the Exciter Armature Current Sensor 
(EXACT) 

Figure 5.5 below shows the input-output training configuration for the development of the 
neural network to be used as a dedicated observer for the detection of sensor faults which 
could occur due to EXACT sensor faults. 

 

Figure 5.5: Input-Output Configuration for the EXACT Sensor Neural Observer Model 

In this section the same experimental procedure was applied as illustrated in table 5.10. The 
experimental results from varying the neural network architecture are highlighted in 
Appendix C. Table 5.14, below, provides a breakdown on the results gathered from the 
experiments done in Appendix C, where the three main performance criteria are 
highlighted, namely: training, validation and test errors. 

Table 5.14: Average Error Comparison for Varying Hidden Layer Nodes (2-30) for 
EXACT Neural Observer Model Design 

 

Table 5.14, indicates the optimum result in terms of the generalization ability of the neural 
network, which resulted from the use of a neural network architecture with 10 hidden 
layers. It was also noted that the average error in the model did not vary much with the use 
of different number of neurons, but due to the application for which the model is required, 
the most accurate model was selected. Table 5.15 below highlights the test results of the 
optimum EXACT observer model, which will be used as a residual generator within the 
proposed FDI system. Appendix N section N6 illustrates the code used for training the neural 
network.   

 

 

Hidden Layer Nodes Training Error (MAE) Validation Error (MAE) Test Error (MAE)

2 1.727022699 1.761281855 1.736610799

4 1.662718812 1.696843326 1.713621373

8 1.622961574 1.616008946 1.65513393

10 1.625604145 1.663400935 1.599714939

12 1.626314708 1.681595051 1.69524953

15 1.571445237 1.593553497 1.654360347

20 1.594914798 1.605752674 1.612801809

24 1.624352472 1.663974391 1.692291666

30 1.674346436 1.713416664 1.688187963
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Table 5.15: Final Model Design Results for EXACT Neural Observer Model 

 

5.2.3 Neural Observer Design for the Exciter Field Current Module 
(EXFM) 

Figure 5.6 below shows the input-output training configuration for the development of the 
neural network to be used as a dedicated observer for the detection of a sensor fault which 
could occur in the EXFM module. The module provides the control system with a feedback 
of the exciter field current. 

Simulation Training Set Error (MAE) Validation Set Error (MAE) Test Set Error(MAE)

1 1.662088158 1.569816944 1.615536438

2 1.478081399 1.484494597 1.39948898

3 1.502027101 1.382701101 1.572712292

4 1.472190351 1.568652744 1.457692064

5 1.616250454 1.583574529 1.533592551

6 1.439879536 1.573255947 1.586474925

7 1.521149959 1.452567252 1.599602689

8 1.648115438 1.590245056 1.546331723

9 1.505785176 1.730534772 1.628846132

10 1.476816093 1.525330231 1.596260816

11 1.586099447 1.513693474 1.503454053

12 1.502363083 1.521950849 1.424640164

13 1.491151795 1.68453253 1.407643081

14 1.627143676 1.690451283 1.515475647

15 1.500361829 1.735631507 1.562113315

16 1.740845818 1.986936894 1.614396668

17 1.583000376 1.626076181 1.5257342

18 1.385691767 1.302460101 1.233806977

19 1.466817308 1.514314607 1.48517933

20 1.689528834 1.754139614 1.563854195

21 1.622583213 1.706871055 1.546680533

22 1.459042172 1.733079241 1.363992312

23 1.559528902 1.623517294 1.513574103

24 1.567664904 1.563526817 1.383680377

25 1.536506671 1.696618073 1.348006441

26 1.600244098 1.576840284 1.556031406

27 1.755907229 1.778396222 1.602833184

28 1.555368981 1.400758637 1.458188884

29 1.554256743 1.557303111 1.423130274

30 1.541909103 1.565353472 1.457630291

Average Error 1.554946654 1.599787481 1.500886135



 

Page | 81  

 

 

Figure 5.6: Input-Output Configuration for the EXFM Sensor Neural Observer Model 

The experimental results from varying the neural network architecture are highlighted in 
Appendix D. Table 5.16, below, provides a breakdown on the results from the experiments 
done, where the three main performance criteria are highlighted as training, validation and 
test errors. 

Table 5.16: Average Error Comparison for Varying Hidden Layer Nodes (2-30) for 
EXFM Neural Observer Model Design 

 

The table above highlights the network architecture which produced the best results in 
terms of generalization ability, which is one of the core principles needed for an effective 
residual generator. Thus for the detection of sensor faults, in the EXFM sensor a network 
architecture of 15 hidden neurons was selected.  

Table 5.18 below highlights the results from training the neural network using the training 
parameters as mentioned above. The training yielded a testing error of 0.215 which is 
acceptable for the application of sensor validation within this project. Appendix N section 
N5 illustrates the code used for training the neural network. 

5.2.4 Neural Observer Design for the Load Control Potentiometer 
(LCP) 

Figure 5.7 below shows the input-output training configuration for the development of the 
neural network to be used as a dedicated observer for the detection of a sensor fault which 
could occur in the feedback of the load control potentiometer which provides the control 
system with a measurement of the balance between the electrical and mechanical power. 
The input-output selection was done as per the data preparation section in Chapter 4. 

Hidden Layer Nodes Training Error (MAE) Validation Error (MAE) Test Error (MAE)

2 0.241604521 0.241471387 0.240154233

4 0.232418746 0.2335026 0.233177337

8 0.230330026 0.231662941 0.23304112

10 0.232665968 0.233097429 0.234477523

12 0.231228296 0.228213765 0.231829391

15 0.230995053 0.234026295 0.230822365

20 0.230459524 0.232681625 0.231756483

24 0.231264283 0.232744234 0.232708437

30 0.229539413 0.229645749 0.232336711
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Figure 5.7: Input-Output Configuration for the LCP Neural Observer Model 

Appendix E highlights the experimental results from varying the neural network architecture 
in the training of the model. Table 5.17, below shows the average errors, gathered from 
these experiments. 

Table 5.17: Average Error Comparison for Varying Hidden Layer Nodes   (2-30) for 
LCP Neural Observer Model Design 

 

The optimum result was obtained with a neural network architecture of 15 hidden neurons. 
It could be noted that the generalization ability of the neural network decreased with an 
increase in the neural network architecture greater than 15 neurons; thus an architecture of 
15 hidden neurons was selected to develop the residual generator for fault detection of LCP 
sensor faults.  

When considering the measurement range of the LCP sensor, which is 0-74Vdc, the overall 
error which the model could produce per pattern is approximately 0.813%, which is 
considerably small.  

Table 5.19 below highlights the results from training the neural network 30 times with a 
network architecture of 15 hidden layer neurons. The best result in terms of generalization 
is highlighted and will be used in the proposed FDI system. Appendix N section N4 illustrates 
the code used for training the neural network. 

 

 

 

 

Hidden Layer Nodes Training Error (MAE) Validation Error (MAE) Test Error (MAE)

2 0.658702283 0.657784819 0.67142268

4 0.651317164 0.6473576 0.649317713

8 0.644255169 0.632234932 0.661954604

10 0.651289991 0.633567137 0.649810316

12 0.653408599 0.626083662 0.668026748

15 0.652138067 0.661662163 0.602125805

20 0.646168418 0.674383678 0.668378295

24 0.639018843 0.661861834 0.636210317

30 0.645015016 0.650299479 0.639773112
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Table 5.18: Final Model Design Results for EXFM Neural Observer Model 

 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MAE) Validation Set Error (MAE) Test Set Error(MAE)

1 0.22071177 0.224664026 0.222114352

2 0.236087638 0.2364175 0.230479361

3 0.224506838 0.227356888 0.215558741

4 0.227597859 0.226512531 0.222241641

5 0.224977447 0.225323941 0.226325113

6 0.236818466 0.221077782 0.230285043

7 0.227857851 0.214947443 0.229748302

8 0.239610985 0.23858941 0.231887564

9 0.22777054 0.230632327 0.229181948

10 0.237202941 0.230857997 0.232651987

11 0.222804736 0.236953862 0.21524314

12 0.221084195 0.22118566 0.223910406

13 0.232855038 0.234621463 0.225460653

14 0.227976476 0.235630771 0.226751776

15 0.22860935 0.2398432 0.224035536

16 0.237345369 0.234306571 0.228066889

17 0.22560633 0.222284158 0.226143301

18 0.238995347 0.229527461 0.231971428

19 0.236880538 0.233964994 0.228106809

20 0.232521511 0.227105423 0.231686992

21 0.225788818 0.233477605 0.220121893

22 0.238280127 0.228002619 0.227890169

23 0.235111387 0.238063985 0.230695852

24 0.208555619 0.215719118 0.225387124

25 0.233525243 0.23952723 0.23229434

26 0.232291803 0.227403926 0.229471348

27 0.220732102 0.228084988 0.218824914

28 0.226888551 0.233112687 0.223913609

29 0.222851854 0.226228381 0.232120493

30 0.231782235 0.232817859 0.231936667

Average Error 0.229454299 0.22980806 0.226816913
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 Table 5.19: Final Model Design Results for LCP Neural Observer Model 

 

5.2.5 Neural Observer Design for the Power Notch Command 

The power notch command is the primary interface between the user and the BSS control 
system. The selection of a notch provides the BSS control system with a reference to what 
the excitation should output to produce a specified traction effort. Figure 5.8 below shows 
the input-output training configuration for the development of the neural network to be 
used as a dedicated observer for the detection of sensor faults which could occur in the 
feedback from the cam controller. 

Simulation Training Set Error (MAE) Validation Set Error (MAE) Test Set Error(MAE)

1 0.596084527 0.605047293 0.613251651

2 0.630606824 0.777435816 0.586081199

3 0.602181185 0.586690803 0.59429399

4 0.589996878 0.716747011 0.636730676

5 0.646946484 0.639307369 0.559378377

6 0.619601757 0.883906529 0.487499848

7 0.634888918 0.671567896 0.599579846

8 0.603249602 0.652667252 0.635751878

9 0.719452368 0.637111793 0.622347656

10 0.693910919 0.5621524 0.509220423

11 0.618938981 0.496465019 0.63565375

12 0.688216617 0.514796372 0.617259189

13 0.564977659 0.777911841 0.595368453

14 0.656222861 0.547051685 0.533940507

15 0.656023388 0.787004168 0.44213671

16 0.638428511 0.731430067 0.542792421

17 0.629359348 0.589227348 0.542347873

18 0.667328165 0.764440937 0.509079415

19 0.590682348 0.626753667 0.424970109

20 0.594752129 0.550734932 0.567521547

21 0.67218783 0.633174568 0.615904231

22 0.669388061 0.704617924 0.623359292

23 0.664544956 0.775502962 0.502030504

24 0.673544041 0.430277232 0.506435562

25 0.62794679 0.663251425 0.606456524

26 0.671467179 0.564786814 0.605854975

27 0.688453387 0.519228849 0.638926381

28 0.63784188 0.495597035 0.574219598

29 0.651132073 0.535002575 0.567515714

30 0.683824725 0.675337268 0.609073952

Average Error 0.642739346 0.637174228 0.570166075
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Figure 5.8: Input-Output Configuration for the Power Notch Command Neural Observer 
Model 

The neural observer was trained using the same procedure as indicated in the previous 
observer designs where the main varying factor was the network architecture in terms of 
the number of hidden layer neurons. The results from these experiments, as illustrated in 
Appendix F, in terms of average training, generalization and validation errors are illustrated 
in Table 5.20 below.  

Table 5.20: Average Error Comparison for Varying Hidden Layer Nodes (2-30) for 
Power Notch Command Neural Observer Model Design 

 

The best result was obtained from the use of network architecture of 4 hidden layer 
neurons. Table 5.21 below highlights the results from training the neural network 30 times 
with a network architecture as illustrated in Table 5.20. The best result in terms of 
generalization is highlighted and will be used in the proposed FDI system for the detection 
of sensor faults in the power notch command. Appendix N section N7 illustrates the code 
used for training the neural network. 

 

 

 

 

 

 

 

Hidden Layer Nodes Training Error (MAE) Validation Error (MAE) Test Error (MAE)

2 0.055110602 0.05617222 0.054935207

4 0.015757447 0.015664357 0.015649187

8 0.016489381 0.015898326 0.017628388

10 0.018612734 0.019180387 0.017944392

12 0.017569264 0.017391822 0.01824393

15 0.018607196 0.018428942 0.018256354

20 0.018518536 0.018838072 0.019648028

24 0.018923032 0.020192946 0.020090172

30 0.019323907 0.021056801 0.021507685
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Table 5.19: Final Model Design Results for Power Notch Command Neural Observer 
Model 

 

5.3 Residual Evaluation 

Chapter 2 highlighted the proposed residual evaluation and provided a literature review on 
residual evaluation techniques. The proposed residual evaluation was then further reviewed 
and it was decided that simple thresholding in conjunction with a moving average filter 
would be used to perform residual evaluation. Figure 5.9 below shows the proposed system 
with the addition of the threshold calculation to be equated. The threshold calculation was 
done by analysing the generated residuals from the worst oscillating excitation system of a 
normal or fault free locomotive. 

Simulation Training Set Error (MAE) Validation Set Error (MAE) Test Set Error(MAE)

1 0.013883725 0.012721601 0.015244943

2 0.015000018 0.013492382 0.013454159

3 0.013586017 0.01776692 0.011566301

4 0.015920405 0.010433298 0.012698814

5 0.01553687 0.010080354 0.011148366

6 0.015015079 0.01635825 0.013570081

7 0.015714371 0.012928998 0.013166063

8 0.019329127 0.011069761 0.014238121

9 0.016579305 0.01668431 0.014369854

10 0.013638965 0.022759821 0.013423068

11 0.015164771 0.015419828 0.014865452

12 0.015240179 0.009297374 0.008316444

13 0.014468926 0.020368682 0.012506617

14 0.016283927 0.017193926 0.012303558

15 0.013856161 0.014058314 0.012739515

16 0.015045866 0.016258387 0.012851845

17 0.014788618 0.013357377 0.010189717

18 0.013156784 0.021784261 0.014339475

19 0.015749191 0.012690641 0.011472479

20 0.013361141 0.012373665 0.015254229

21 0.01446528 0.016172094 0.014904323

22 0.016863361 0.015719625 0.015784017

23 0.014952424 0.009034401 0.013795891

24 0.01516484 0.017336303 0.009494061

25 0.013583137 0.016967935 0.012822094

26 0.014674483 0.016803832 0.014297713

27 0.013674311 0.012838726 0.015916868

28 0.016233364 0.017314619 0.014232728

29 0.01421185 0.018458173 0.011531994

30 0.01768771 0.012916788 0.012645922

Average Error 0.01509434 0.015022022 0.013104824
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Figure 5.9: Proposed Residual Evaluation System 

In order to develop the residual evaluation system the following steps had to be followed: 

 Residual Scaling 

 Filter Residual to eliminate Noise and Outliers 

 Threshold limit calculation by using Simple Thresholding 

 Fault Count Method. 

This section will be divided into four sections, where section one will focus on the scaling 
method used; section two, the moving average filter design used to eliminate outliers and 
noise in the residual signal; section three will then focus on normality tests done on the 
residual data to determine whether the simple thresholding technique could be used to 
calculate and select the optimum threshold value. Section four then gives a breakdown of 
the fault count method to be used to detect and isolate faults. All threshold calculations and 
filtering source code is highlighted in Appendix O. 

5.3.1 Residual Scaling 

Owing to the difference in residual sizes of the measured signals, the hyperbolic tangent 
function was used to scale the residual data in the range of 0-1, by doing the following: 

𝑅𝑗,𝑜 = (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘)2 (5.1) 

Where 𝑅 is the residual and 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  and 𝑦𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 are the measured and predicted 
outputs of the monitored system. The square root is then used to ensure only positive 
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residual values are obtained. Residual scaling is then done using the hyperbolic tangent 
function as indicated below.  

𝑅𝑛 =  
2

1+ 𝑒
− ∑ 𝑅𝑗,𝑜

𝐽=1
𝑗=𝑘

− 1 (5.2) 

The scaled data is then filtered with the use of a moving average filter to filter out any noise 
and outliers in the data set. This will be discussed in the next section. 

5.3.2 Moving Average Filter 

The moving average filter is classified as the most common filter used in discrete sampled 
processes due to its simple design. Chapter 2 highlighted the use of this filter as a method of 
residual evaluation and in this section the filter will be applied to the proposed residual 
evaluation system. Let’s review the moving average filter design which [16] gives as follows: 

𝑦[𝑖] =  
1

M
 ∑ 𝑥[𝑖 + 𝑗]𝑀−1

𝑗=0  (5.3) 

Where M is the number of points used in the moving average calculation, x is the input data 
and y is the filtered output.  The degree of smoothing is determined by the number of 
points specified by M. A sample number (M) of 5 samples were used for smoothing the 
residual which consisted of 145 samples per locomotive recording, but with the use of the 
filter specified above, the total number of usable samples drops to 140, due to the filter 
being a forward moving average filter. Figure 5.10 (a) and (b) below shows an example of 
the effect of using the moving average filter on the scaled residuals generated for the 
EXACT.  

 

 

 

  

 

 

 

 

 

 

 

Figure 5.10 (a): EXACT Residual without a Filtering 
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Figure 5.10 (b): EXACT Residual with a Moving Average Filter  

It could be noted from the figure above that the moving average filter, removes most of the 
noise in the residual, which makes thresholding calculation easier and minimizes the 
possibility of false alarms due to noise. M was selected to be 5, through the 
experimentation done in Appendix G, where it could be noted that with an increase in M, 
there is a decrease in the amount of noise but also a decrease in the discreet time steps.  

5.3.3 Simple Thresholding 

Simple thresholding is a technique used to calculate a threshold value. The technique can 
only be used with a high confidence level if the normality assumption is satisfied. Thus it is 
important to verify whether the filtered residuals are normally distributed and satisfy the 
normality assumption. Patan [6] stated that if simple thresholding is to be used on data 
which is not normally distributed, the system will tend to give more false alarms. Thus in this 
section normality tests will be done on the residuals observed from the component and 
sensor fault detection sections. The thresholds will then be calculated and tabulated for 
each observed measurement. 

5.3.3.1 Component Fault Detection 

The component fault detection input-output configuration was highlighted in section 5.1, 
where 6 outputs were observed and compared to 6 neural network outputs, excited by two 
inputs. The difference between the neural network outputs and the observed outputs 
produces residuals and in this section analysis will be done to verify whether the data is 
normally distributed to verify whether the simple thresholding technique can be applied 
with high confidence.  Two main checks, namely: a probability plot and the Chi-Square 
Goodness of fit test, were used to check if the residuals were normally distributed. 
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Appendix H highlights the probability tests done for the residual data generated for isolating 
component faults. Table 5.20 below highlights the results obtained from analysis done on 
the probability plots and Chi-Square Goodness of fit test. 

Table 5.20: Normality Test Results for Component Neural Observer Model 

 

From the table it could be noted that the Power Notch Command input is not normally 
distributed; hence the simple thresholding technique cannot be used to accurately calculate 
a threshold value.  Owing to the function of the Power Notch Command, on the locomotive 
the threshold value could be easily selected manually without the use of statistical 
techniques. 

With the normality tests done, the threshold values for the component or sectional fault 
isolation could be done, with the use of the simple thresholding technique. Appendix I 
shows the threshold limits for each measurement. Table 5.21 below gives a summary of the 
threshold values calculated for each observed measurement. 

 Table 5.21: Threshold Values for Component Residuals 

 

These values were calculated from data obtained from the worst oscillating locomotive 
under normal conditions, meaning that the oscillations were still within limits.  

5.3.3.2 Sensor Fault Detection 

The sensor fault detection system is divided into 6 main groups, where each group 
constitutes a sensor reading validation. The sensor to be validated is selected from the 
highest failing component or sectional failure determined by the component failure analysis 
section. Sensor validation is done with the use of a dedicated observer scheme for the 
detection of sensor faults which has the effect that the configuration of the fault detection 
system is different in terms of its input-output configuration, when compared to component 
or sectional fault detection. As the configurations and errors of the neural network are 
different from that of the component analysis section, the residuals would also be different; 
hence normality tests on each sensor observers residual output is necessary.  

The same two methods for determining the distribution of the residuals in section 5.3.3.1 
were used in this section. Appendix J illustrates the probability plots for each observed 
residual. Table 5.22 below highlights the results obtained from the tests done in Appendix J. 

Residual Data Test Visual Probability Plot Chi-square Goodness of Fit

EXACT Skewed Distribution (Semi Long Tails) Accepts the Null Hypothesis at a 1% significance Level

EXFM Normal Distribution Accepts the Null Hypothesis at a 5% significance Level

SCM8 Normal Distribution Accepts the Null Hypothesis at a 5% significance Level

Engine Notch Command Left Skewed Distribution Accepts the Null Hypothesis at a 5% significance Level

Power Notch Command Short Tails Distribution Rejects the Null Hypothesis

Exciter Reference Field Normal Distribution (One Outlier) Accepts the Null Hypothesis at a 5% significance Level

LCP Left Skewed Distribution Accepts the Null Hypothesis at a 1% significance Level

Residual Observed Engine Notch CMD Power Notch CMD SCM8 EXACT EXFM LCP

Lamda 1 N/A 1.5 1.5 1.5 1

Threshold Value 0.00378276 0.45 0.702682577 0.789902293 0.203869739 0.201130211
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Table 5.22: Normality Test Results for Sensor Neural Observer Models 

 

It could be noted from the above table that all the residuals are normally distributed except 
for the LCP’s residual. Thus for the cases where the normality assumption can be made, 
simple thresholding could be used to calculate a threshold value. For the LCP threshold 
value, system knowledge had to be incorporated and the effect of the LCP on the system, as 
discussed in Chapter 4, had to be taken into consideration. Owing to the fact that the LCP 
reading had to be constant during notch 1 at 72Vdc, the neural network model’s average 
testing error was added to a user defined maximum allowable residual of 3% to calculate 
the threshold. Table 5.23 below highlights the threshold values for each observed residual. 
The threshold was calculated from the worst yet in limit oscillating control system.  
Appendix K shows the graphs of the threshold against the residual. 

Table 5.23: Threshold Values for Sensor Residuals  

 

The threshold values in the table will be used to detect whether a residual value is out of 
limits. Owing to the fact that the FDI system is an offline approach and to prevent false 
alarms or false detections due to intermittent faults, a count process was implemented for 
fault isolation. This process will be discussed in the next section. 

5.3.4 Fault Count Process 

In its simplest form, the fault count process can be described as the number of times a 
residual exceeds a threshold value over a given time period. The reasoning behind using a 
count process is to eliminate false alarms caused by intermittent or abrupt signals by 
monitoring the system to see whether the fault persists. 

The hypothesis seems to be simple and effective but does not work well with oscillatory 
faults within a closed loop control system, where the system’s aim is to minimize the error 
between the output variable and the reference signal, causing all the sensor readings in the 
system to oscillate in excess of their threshold. It is for this reason that a simple count or 
penalty system could not be used for the isolation of faulty sensor or component faults 
causing oscillations. 

The proposed fault counting process is indicated below, where it could be noted that the 
count is done over 𝑀  samples, where the count increment is based on the percentage of 
how far above the threshold value the residuals are. Thus if the residuals are far above the 
threshold it will give a 1 count otherwise it will increment with the percentage above the 
threshold. 

𝐶𝑜𝑢𝑛𝑡(𝑎) = ∑
𝑅𝑛(𝑚,𝑎)−𝑇(𝑎)

1−𝑇(𝑎)

𝑀=140
𝑚=1  (5.4) 

Residual Data Test Visual Probability Plot Chi-square Goodness of Fit

EXACT Normal Distributed Accepts the Null Hypothesis at a 5% significance Level

EXFM Long Tails Accepts the Null Hypothesis at a 5% significance Level

SCM8 Long Tails Accepts the Null Hypothesis at a 1% significance Level

Engine Notch Command Normal Distributed Accepts the Null Hypothesis at a 5% significance Level

Power Notch Command Normal Distributed Accepts the Null Hypothesis at a 5% significance Level

LCP Long Tails Rejects the Null Hypothesis

Residual Observed Engine Notch CMD Power Notch CMD SCM8 EXACT EXFM LCP

Lamda 3.2 2 1.1 1.2 1.5 N/A

Threshold Value 4.13E-08 9.97E-07 0.614165657 0.940231032 0.139353725 0.887494133
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Where  

𝑅𝑛 is the filtered residual 

𝑀 is the number of samples 

𝑇(𝑎) is the threshold for the observed signal 

𝐶𝑜𝑢𝑛𝑡(𝑎) is the fault count for the observed signal. 

This method is based on the assumption that within a closed loop control system the 
greater the error the more system response is needed to correct the error, thus the residual 
which deviates the most from the norm, has a higher probability of causing the oscillation 
compared to that of a reading with a smaller deviation, which would cause a smaller error, 
hence less system response. 

5.4 Conclusion 

This chapter highlighted the successful development of residual generators, as well as 
residual evaluation techniques to be used within the proposed FDI system. The residual 
evaluation technique which incorporated a probability analysis was done and will be tested 
in the next chapter.  

Up to this point all relevant theories, as well as the successful development of the proposed 
system were developed with great accuracy. Chapter 6 will use these principles and 
designed FDI components to develop a user friendly software package to perform FDI on GE 
diesel-electric locomotive’s excitation control system. The performance of the FDI system 
will be assessed and discussed. 
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Chapter 6 – FDI Application Setup and Performance 
Evaluation  

In this chapter all relevant theories, designs and developments dealt with in the previous 
chapters will be combined to develop a prototype user-friendly Matlab GUI application, to 
perform fault detection and isolation on sensor and component faults which cause 
oscillations in the excitation system of a 34 class GE Diesel-Electric locomotive. 

The chapter is divided into three main sections namely: FDI application operation, FDI 
performance evaluation and total component failures analysis. These three sections gives a 
breakdown on the operation of the application software designed to perform FDI, analysis 
on the performance of the FDI’s ability to isolate faults and an additional approach being 
followed for isolating total component failures.  

6.1 FDI Application Operation 

This section will discuss the developed FDI system, where Figure 6.1 below illustrates a 
flowchart of the developed FDI system’s software configuration. 

 

Figure 6.1: FDI GUI Application Flowchart  

Here it could be noted that the FDI system incorporates the use of 3 software packages, 
namely: Matlab GUI, Hyperterminal and DOS Box, to perform fault detection and isolation 
on the locomotive’s excitation system. The reasons for utilizing 3 software packages should 
be noted from their functions in the FDI Application. These functions are as follows: 

 Matlab GUI Application software 

 Primary User Machine interface via a GUI 
 Performs all computations for residual generation and evaluations 
 Performs inter-program communications 
 Step-by-step instruction Guide for the FDI Process 
 Provides the user with the results of the FDI 
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 Hyperterminal Software 

 Communicates with the Locomotive’s microcontroller system  
 Creates a .rec file from the recorded measurements  

 DOS Box Software 

 Used to run the 16 bit decoding program on a 64bit Windows Operating System 
 Decoding Software decodes .rec file and outputs a .txt file.  

From the functions highlighted above it could be noted that the Hyperterminal software is 
required to communicate with the locomotive’s control system, whereas Dos Box is used to 
run the Decoding software which is a 16bit program and was found to be incapable of 
running on a 64bit Windows operating system. The Matlab GUI on the other hand is at the 
core, fulfilling the role of a master with the DOS Box and the Hyperterminal packages being 
the slaves. Figure 6.2 below illustrates the Matlab GUI application. Source Code for the GUI 
application is given in Appendix P. 

 

Figure 6.2: Developed FDI Matlab GUI Program 

It could be noted that the FDI system requires user interface, whilst guiding the user via a 
status-bar located in the middle of the window and provides results for component as well 
as sensor faults. The general flow of the program as indicated by Figure 6.1 and illustrated in 
Figure 6.2, can be described in the following steps: 

1. Matlab GUI requires a user input at the ‘Locomotive Number’ textbox. 
2. The instruction box in the middle of the window instructs the user to notch the 

locomotive to notch one and then press the start button. 
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3. Matlab GUI sends control commands to Hyperterminal software to enable recording. 
4. Hyperterminal then creates a .rec file. 
5. Matlab GUI then sends control commands to close Hyperterminal and open DOS Box. 
6. Matlab then sends commands to Dos Box to decode the .rec file to a .txt file. 
7. When .txt file is created, Matlab closes Dos Box and imports the .txt file. 
8. The imported .txt file is then saved in a matrix and sorted to allow input variables to be 

inputted into the component failure analysis neural network.  
9. Matlab then performs residual generation by comparing the neural network output to 

the measured outputs (.txt). 
10. Residuals are then evaluated with the use of thresholding via Matlab and the highest 

failing component is then sent to second stage for sensor validation. 
11. For sensor validation the .txt file is again sorted to incorporate the input-output 

configuration for the sensor neural network. 
12. Matlab then again performs residual generation by comparing the neural network 

output to the measured outputs (.txt). 
13. Residuals are then evaluated with the use of thresholding via Matlab and if the first and 

second evaluation is high then it is a sensor fault but if the sensor validation shows low 
then it is a component causing the oscillation. See Figure 6.3 below. 

14. The GUI then highlights the component and/or sensor readings which has the highest 
calculated probability of causing an oscillation fault in the control system. 

15. The GUI also displays the fault in the textbox located in the centre of window.    

Appendix M provides a flowchart representation of the internal operations of the above 
mentioned process. Appendix P highlights the code for the Matlab GUI application.  

   

Figure 6.3: Developed FDI System Principle 



 

Page | 96  

 

6.2 FDI Performance Evaluation 

In this section the performance of the FDI system will be evaluated in terms of its ability to 
detect and isolate faults in an oscillatory system. To effectively test the performance of the 
developed FDI system, tests were done on real faults occurring on locomotives and not 
simulated faults. Table 6.1 below shows the results of fault isolation with the use of the 
developed FDI system.   

Table 6.1: FDI System Test Results 

 

Table 6.1 indicates that the developed FDI system accurately isolates component or sensor 
faults which cause oscillations in the locomotive’s excitation control system. Where the 
average accuracy of isolating a fault is as follows: 

 SCM8 – 99.25% for the sectional isolation stage and 94.13% on the sensor validation 

 EXACT – 100% for the sectional isolation stage and 96.6% on the sensor validation stage  

 LCP – 99.99% for the sectional isolation stage and 98.14% on the sensor validation stage 

 EXFM - 92.37% for the sectional isolation stage and 98.81% on the sensor validation 
stage.  

Appendix L, shows the graphs of the different residuals obtained from the tests done in 
Table 6.1. 

6.2.1 SCM8 Results Analysis 

When analyzing the SCM8 tests, it could be observed that the probability of failure for the 
EXACT is high in certain cases even though it is not as high as the SCM8’s probability. This 
was noted when there was an increase in the magnitude of the oscillation, which then 
caused an increase in the probability of failure for the EXACT. Even at the worst oscillation 
the FDI system still isolated the faulty section and/or sensor with a high confidence level, 
thus indicating that the FDI system was accurate. 

Fault Type Test
Probability Engine 

Notch Command

Probability Power 

Notch Command

Probability 

SCM8

Probability 

EXACT

Probability 

EXFM

Probability 

LCP

Sensor Fault 

Probability

Component 

Failure(Complete) Results

SC
M

8

1 3.32% 0.00% 96.74% 66.46% 8.58% 0.00% 90.43% N/A SCM8 Sensor Fault

2 0.56% 0.00% 100.00% 26.20% 1.37% 0.00% 97.00% N/A SCM8 Sensor Fault

3 0.00% 0.00% 100.00% 17.20% 0.00% 0.00% 96.98% N/A SCM8 Sensor Fault

4 0.01% 0.00% 100.00% 29.83% 0.00% 0.00% 97.31% N/A SCM8 Sensor Fault

5 0.03% 0.00% 100.00% 31.57% 0.00% 0.00% 97.54% N/A SCM8 Sensor Fault

6 0.08% 0.00% 100.00% 23.15% 0.00% 0.00% 90.84% N/A SCM8 Sensor Fault

7 0.01% 0.00% 99.99% 9.47% 0.00% 0.00% 87.09% N/A SCM8 Sensor Fault

8 3.70% 0.00% 97.25% 68.22% 10.49% 0.00% 95.88% N/A SCM8 Sensor Fault

SC
M

8

EX
ACT

1 19.98% 0.00% 8.70% 100.00% 10.60% 0.00% 96.93% N/A EXACT Sensor Fault

2 25.80% 0.00% 15.53% 100.00% 22.47% 0.02% 96.53% N/A EXACT Sensor Fault

3 32.17% 0.00% 23.35% 100.00% 26.76% 0.00% 97.14% N/A EXACT Sensor Fault

4 28.18% 0.00% 15.07% 100.00% 21.36% 0.00% 97.14% N/A EXACT Sensor Fault

5 44.67% 0.00% 100.00% 100.00% 100.00% 51.01% N/A 3

Total Failure 

Component Fault

6 44.68% 0.00% 100.00% 100.00% 100.00% 0.01% N/A 3

Total Failure 

Component Fault

7 44.68% 0.00% 100.00% 100.00% 100.00% 0.00% N/A 3

Total Failure 

Component Fault

LC
P

EX
ACT

1 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 98.09% N/A Sensor Fault

2 11.13% 0.00% 9.33% 16.40% 13.05% 99.99% 0.00% N/A Component Fault

3 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 98.19% N/A LCP Sensor Fault

EX
FM

LC
P

1 0.00% 0.00% 0.00% 0.00% 85.37% 0.00% 96.43% N/A EXFM Sensor Fault

2 57.98% 0.00% 78.42% 83.17% 100.00% 0.00% 100.00% N/A EXFM Sensor Fault

3 0.00% 0.00% 0.00% 19.94% 92.13% 30.94% 100.00% N/A EXFM Sensor Fault
EX

FM

Norm
al

1 0.00% 0.00% 0.00% 0.32% 0.00% 0.00% N/A N/A No Fault

2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% N/A N/A No Fault

3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% N/A N/A No Fault

4 0.00% 0.00% 6.85% 0.12% 0.00% 0.30% N/A N/A No Fault
Norm

al
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6.2.2 EXACT Results Analysis 

Analysis on the EXACT results indicated that the FDI system detected and isolated faulty 
components or sensors with a high confidence level except for total component failure 
faults, where it was unable to detect or isolate the cause of failure. Section 6.3 discusses the 
reasons for this and also provides the solution to the problem.  

For oscillatory faults within the system the proposed FDI system detected faults with a high 
confidence level and it was noted that oscillations in the system did have a major effect on 
the probabilities of the other monitored signals. Thus in conclusion it could be noted that 
the developed FDI system isolated EXACT sensor faults in an oscillatory system with high 
confidence.  

6.2.3 LCP Results Analysis 

For the LCP test the results component and sensor faults were isolated with high confidence 
levels. Two of the three faults which caused oscillations were sensor failures and one was a 
component failure. The developed FDI’s performance on all of the different faults was 
satisfactory and it was noted that the other monitored readings were not majorly affected 
by oscillations in the LCP’s sensor readings’ oscillations but were affected by governor 
oscillations, which is a component oscillation.  

6.2.4 EXFM Results Analysis 

Analysis done on the results from the EXFM indicated that the FDI system isolated faults 
with a high confidence level for the detection of sensory faults. It was also noted that for 
Test 2, as indicated in Table 6.1, the oscillation in the EXFM signal caused heavy oscillations 
in the other sensor readings as well. This specific fault was found to be a negative wire fault 
where the EXFM sensor’s negative wire was burned off. This then caused the signal to 
impact on all the shared negative signals in the system. This was found to be the worst case 
scenario, where if the oscillations were greater than this it would be unsafe to power notch 
the locomotive in the conventional manner and loadbox connection would need to be 
implemented. 

Total component failures on this section of the excitation system will be discussed in section 
6.3. 

6.2.5 Normal Results Analysis 

A number of tests were done on non-faulty locomotives to test the FDI system’s 
performance on normal locomotives. As indicated in Table 6.1, it could be noted that the 
results indicated the FDI system displayed with high confidence levels that no faults 
occurred in the system. This ability to evaluate and store the performance of non-faulty 
locomotives could theoretically be used for preventative maintenance measures. This 
concept will be discussed in more detail in Chapter 7.     
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6.3 Total Component Failure Analysis 

Table 6.1, test 5-7 for the EXACT indicated that there was a 100% probability of failure on 
three of the sections monitored, which had the effect that the FDI system was unable to 
isolate the fault. Analysis on the fault indicated that the problem occurred with the 
complete failure of a component in the system, where a complete failure can be described 
as a component for which there is an input but no output.   

With a complete component failure the locomotive’s control system adjusts the controlled 
variable upwards in an attempt to read an output on the measured output variable. This 
causes the input variables for the sectional fault isolation on the developed FDI system to be 
far beyond that of the training data used to train the neural network. The magnitude of the 
value is of such a size that it cannot be predicted by the neural network, due to the fact that 
the neural network can only successfully predict or generalize within the range it was 
trained and in this application the training data was gathered from a locomotive powering in 
a stationary position from notch 1 to 2. The training data was chosen as the function of the 
FDI system was to detect and isolate oscillatory faults. 

It should also be noted that the control system of the locomotive does provide fault 
detection on total component failures and that the purpose of the project was not to isolate 
total component failures but rather oscillatory faults caused by faulty components or 
sensors; however, it was decided that due to the “.rec” file import capability of the 
developed system, which would enable FDI on the “.rec” file of the locomotive and not on 
the locomotive itself, to incorporate a fault detection and isolation for total component 
failures as well. This would enable the FDI to also detect these faults, which are indicated by 
the control system but are not included in the “.rec” file. To realize this, the following 
options were considered: 

 Include the data from a total component failure in the training set 

 Train neural network from locomotive power notch 1 to 8 

 Use system analysis as done in section 4.2.1.1 to determine cause and effect of the 
interconnected components and develop a neural network to isolate the fault 

 Use a knowledge base system which incorporates a fuzzy logic system.   

In an effort not to alter the complete design of the FDI system’s neural network design, the 
second option was selected to perform FDI for total component failures. Section 6.3.1 below 
provides a breakdown on the operation of the proposed system. 

6.3.1 Total Component Failure FDI Application Design 

As not to alter the design of the original specified FDI system for the detection of oscillatory 
faults, the analysis done in section 4.2.1.1 was used to construct a logical flow of the 
interconnected system to set up training data to train a neural network to isolate faults 
during total component failures. Figure 6.4 below illustrates the logical flow of the 
excitation system. 
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Figure 6.4: Power Flow of the Locomotive’s Excitation System 

Here it can be seen that the LCP and Power Notch Command have an impact on the exciter 
field current which is controlled by the locomotive’s control system, which then has an 
effect on the exciter’s output, thus affecting the alternator’s rotor current and alternator’s 
output going to the traction motors. Table 6.2 shows the theoretical fault classification 
based on the logical flow of the excitation system: 

Table 6.2: Theoretical Fault Classification Based on a Two-Valued System 

 

The percentages represent the probability that a fault is active in that specified section. The 
probabilities will be received from the sectional fault isolation section of the FDI system. 

The problem with this theory is that the sectional fault isolation, was not trained to notch 8; 
thus prediction of the compensated input variables is incorrect even if there is a reading 
which is not zero. To fully explain this, let’s consider Figure 6.2 again; if there is no exciter 
armature current the control system increases the exciter’s field current to 100%; this then 
gives a value of x amps. Now the sectional neural network predicts or estimates the exciter 
field current to its maximum value which would be close to the current obtained in notch 2, 
whereas the actual current flow would be notch 8(x amps). The residual generated from this 
will then also have a high probability close to or equal to 100%. This is due to the fact that 
the residuals are squared to remove all negative values from the residuals, thus scaling the 
data between 0 and 1 with the use of the tan-sig function. Owing to this the highlighted 
probabilities in Figure 6.2, will all be the same as the “Exciter Field Open Circuit” fault.  

To counteract this, the residual from the sectional results were scaled into three groups 
with the use of the tan-sig function. The groups were as follows: 

 ‘0’ No Fault 

 ‘1’ Measured Signal  >  Neural Network Estimation 

 ‘-1’ Measured Signal  <  Neural Network Estimation. 

From this a logical thought process was used to set up training data for a neural network, 
which would then be used to output a number which is coupled to a specific fault. Table 6.3 
below shows the theoretical fault classification based on the three-valued system as 
discussed above. 

Faults

ENC PNC SCM8 EXACT EXFM LCP Fault Description

0 0 0 0 0 0 Power Notch Command Fault

0 0 100% 100% 100% 100% Load Control Potentiometer Fault

0 0 100% 100% 100% 0 Exciter Field Open Circuit

0 0 100% 100% 0 0 Exciter Armature/Alternator Rotor No Output

0 0 100% 0 0 0 Alternator Field Open Circuit

Inputs
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 Table 6.3: Theoretical Fault Classification Based on a Three-Valued System 

 

Noise injection was performed on the data as specified in Table 6.3, to increase the number 
of training patterns in an effort to increase the neural networks generalization ability. A 
neural network was then trained to output a number which corresponds to a specified fault. 
See Appendix Q for the training results of the neural network. Figure 6.5 below shows the 
basic flow diagram of how the total component failure fault isolation is done.  Appendix M 
provides a general flow of the integration of the FDI system for oscillatory faults and total 
component failure detection. 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Total Component Failure Isolation Flow Diagram 

From the figure above it could be noted that the output from the sectional fault isolation 
was monitored to see if more than one section had a high probability of being faulty. This 
was indicated by the n>1 and If this condition is true then the residuals from the sectional 
isolation are redone but not squared, thus providing negative values as well. These values 
are then scaled between -1 to 1 using a tan-sig function and ran through a neural network, 
which then outputs fault code or number as illustrated in Table 6.1.  

6.4 Conclusion 

The chapter showed that the FDI system was implemented with great success and that a 
small addition to the design made fault isolation of total component failures possible. The 
addition did not require any major research and was based on knowledge of the system 

ENC PNC SCM8 EXACT EXFM LCP Outputs Faults Description

0 0 -1 -1 -1 -1 1 LCP

0 0 -1 -1 -1 0 2 Exciter Field Fault

0 0 -1 -1 1 0 3 Exciter Fault

0 0 -1 1 1 0 4 SCM8

0 0 0 0 0 0 5 Power Notch Command Fault

Inputs Faults
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which was obtained from Chapter 4’s analysis of the excitation control system. The isolation 
of faults causing oscillation in the excitation system performed with high accuracy. 

A user friendly interface application was developed and proved to be easy to understand 
and effective for the purpose of fault isolation. 
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Chapter 7 – Conclusion  

This chapter will discuss the success of the research done and look at possible 
improvements and future research. The chapter will thus be divided into two main sections; 
namely: Dissertation Conclusion and Future Research. 

7.1 Dissertation Conclusion 

The research done proved that a simple feedforward neural network trained with a gradient 
descent training algorithm can be used to model a complex closed loop control system. The 
model could be trained to function as a dedicated neural observer to detect and isolate 
components or sensors causing oscillatory faults. In order to detect sensor faults using a 
neural observer the neural network’s input-output configuration needed to change; hence a 
bank of different neural networks was needed to detect sensor and component faults, 
where the number of neural networks was equal to the number of sensors being monitored. 

The neural observer’s accuracy was dependent on the amount of training data available, 
where it was beneficial to include all normal operational data, which would enable the 
observer to accurately estimate outputs from all different conditions of the plant. This was 
noted in this application where for oscillatory faults the neural observer was only trained to 
estimate outputs from the locomotive’s power notch 1 and 2, due to the fact that excessive 
oscillation could be detected in the locomotive’s power notch 1. When the FDI system’s 
abilities to isolate total component failures were tested, it was found that it could not 
sufficiently isolate the faults with the design for the detection and isolation of oscillatory 
faults. Analysis of the input data to the different neural observers indicated that it was due 
to the control system increasing its reference input to try to compensate for the no output 
condition of the failing component. It was also noted that the reference input was increased 
to power notch 8 of the locomotive’s power notches, but with the observer trained with 
data gathered from the locomotive’s power notch 1 to 2 it could not sufficiently estimate 
outputs from the locomotive’s power notch 8’s reference input; thus it could not isolate the 
fault sufficiently. The detection of a total component failure was not the primary concern in 
this project as the locomotive’s human machine interfacing module (HMI) could detect total 
component failures, but due to the fact that .rec files could be loaded into the GUI 
application the project included an extension which satisfactorily isolated total component 
faults. 

As the literature in the document indicated, the residual evaluation technique was of 
utmost importance and it was found that the use of a normal fault count method which 
incremented if a residual exceeded a threshold was insufficient due to the fact that all signal 
feedbacks oscillate in the system if a sensor or component starts to oscillate. An alternative 
approach was used, which incorporated the use of a tan-sig and percentage above the 
threshold function. This function sufficiently isolated the faulty components and sensors in 
the case of oscillatory faults.  

It was also noted that the oscillatory conditions were increased whenever a negative was 
removed from a sensing unit and even then the FDI system sufficiently isolated the faulty 
component, but with the decision margins being closer to each other than for normal 
oscillatory faults. See Table 6.1 EXFM Test 2. 
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In conclusion to the research done, it could be noted that the developed FDI system isolated 
oscillatory faults with high confidence and produced a 100% accuracy for the detection and 
isolation of the sensor or component causing the oscillation. The use of a neural observer 
model indicated that some knowledge of the system or plants architecture with regard to 
input-output configuration was necessary to develop an optimum FDI system. This 
knowledge of the system would enable the neural network to be trained on true cause and 
effect data, making training easier and errors smaller. The overall aim of the project, which 
was to develop a user friendly software based FDI system to isolate faults which cause 
oscillations, whilst decreasing the fault finding and isolation time from hours to minutes was 
successfully met. The project enabled technicians to isolate faults within 2 to 3 minutes and 
repair within 10 minutes compared to the approximately 3 hours previously. This had a 
major positive impact on the productivity, and enabled more work to be outputted with less 
time spend on one fault.  

7.2 Future Research 

More research is required in the use of the probability data to perform preventative 
maintenance. This would incorporate the use of data analysis of a normal performing 
locomotive’s excitation control system during its service every 45 days. The analysis will 
entail the recording of the probability results from testing the locomotive gathered from the 
developed FDI system, as indicated in Figure 6.2, and using this data to predict a possible 
remaining life cycle for the sensing components. 

Research into the use of different threshold limits to detect small oscillations due to 
interference or dirty components will also be done in an effort to increase the stability of 
the excitation system.  

The ultimate result would be to design a system which could perform FDI onboard through 
the use of a network interfacing protocol. Fault isolation in terms of a redundant system 
which could isolate a faulty sensor reading and still have the locomotive operate normally to 
its service depot, would be the end result.   
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Appendix A 

 Table A1: Experiment Results with the use of 8 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 5.090510908 4.259531145 6.983463273

2 4.947172123 5.700768941 6.712496066

3 5.264834926 4.557873941 5.911645794

4 4.886852427 6.693479352 5.848715852

5 5.603079136 4.758541021 4.635395013

6 5.158823557 4.464950476 5.944989395

7 5.421517248 5.975706796 4.712164564

8 5.036405685 5.638361279 5.520037824

9 5.129762225 6.068639414 4.851277591

10 5.18580781 6.185575724 5.414525735

11 4.946563491 6.179400989 5.572490846

12 5.140545687 6.255690048 4.468293669

13 5.31067794 4.600115608 6.129550385

14 5.293192986 5.417373528 5.032602481

15 5.185217826 4.403599089 6.328160686

16 5.402418087 5.578507239 4.297129512

17 5.018736495 5.591398958 5.867900382

18 5.210822077 5.796082571 4.934649578

19 5.157424741 5.994681392 4.9033612

20 4.808541227 6.095678166 6.168993299

21 5.31029426 4.36904281 6.348731654

22 5.505568481 3.599695479 5.959529589

23 5.461175851 5.334083706 4.400796773

24 5.541317936 4.067263838 5.106201826

25 5.385538104 4.503751653 5.272168568

26 5.556114567 4.996495888 4.181048062

27 5.144932098 5.837192726 5.331431299

28 5.473620113 4.36643784 5.394754514

29 5.261313712 5.258298072 5.779452151

30 5.237695708 5.652616885 4.700272375

Average Error 5.235882581 5.273361152 5.423740999
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 Table A2: Experiment Results with the use of 10 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 7.13513757 6.243367564 6.408967601

2 6.614764759 7.185734735 7.834411458

3 6.999417689 6.580587916 7.2712324

4 7.472850561 6.979292755 7.125984567

5 7.223198156 7.554414032 6.518684944

6 6.765265954 7.979145912 5.914255129

7 6.636864283 7.571433638 7.142409519

8 6.946766064 7.03583033 7.196978469

9 6.890212599 6.801672213 6.629602638

10 6.942303772 7.144529903 6.818721577

11 6.627625919 8.215745371 8.104436548

12 6.99611702 6.295543981 7.617274954

13 6.535668364 6.942778419 7.911566188

14 6.69124927 8.001679915 7.039079792

15 6.773964111 6.8138639 7.000092949

16 7.3948874 7.379583703 7.662407334

17 6.980704164 7.59019337 6.649124473

18 6.776704659 7.130022338 7.020446707

19 7.833692222 7.322152403 8.786507062

20 6.729297943 7.895906332 7.723821842

21 6.983963716 7.002703141 6.915247846

22 6.81947151 6.825227501 7.266004596

23 7.091536904 7.732001246 7.960833821

24 7.290288862 6.79360475 5.485859705

25 7.696144878 7.834515919 7.760804286

26 7.079569261 7.896731564 8.062195235

27 6.999937468 6.995264827 7.943375775

28 6.560836378 9.068201852 6.184948761

29 6.693450732 5.62414933 8.49696478

30 6.805055425 7.340266487 6.500985986

Average Error 6.966231587 7.259204845 7.231774231
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 Table A3: Experiment Results with the use of 12 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 5.434360699 4.374705067 4.774517055

2 5.126189072 5.692946829 5.72253091

3 5.260564908 3.662444934 6.893615715

4 5.04137397 4.676348623 6.26550731

5 4.955315694 5.212316943 5.846250068

6 5.397173437 4.976147424 5.098215675

7 5.341109445 4.575686764 5.459267097

8 5.138479355 5.327256748 5.6815396

9 5.125712222 4.928883142 5.677985146

10 5.185828076 5.296001362 5.999390114

11 5.346478346 4.502787078 5.014295169

12 5.120792157 5.022291725 6.240096828

13 5.289483389 5.966994061 4.409034437

14 5.314089539 4.35406318 4.930274693

15 5.017654888 5.254393883 5.683489032

16 5.099268993 5.44024179 5.300749956

17 4.936714527 5.294415925 6.489766312

18 4.950182207 7.428475078 4.604015769

19 4.959219758 6.560709578 4.74591713

20 5.29404219 5.163559626 4.180917607

21 5.090221013 6.079280493 4.71676264

22 4.678211012 6.737321609 6.039732248

23 5.427959064 4.068584213 5.26948119

24 4.642628975 7.234094705 6.315326506

25 5.485697446 3.567561653 4.913198234

26 5.102751524 5.315326287 5.867793643

27 4.803310154 5.211923103 6.302642445

28 5.342698752 4.625352473 5.013853978

29 5.45437141 4.984004433 5.001812929

30 5.24996237 4.922281733 4.927515528

Average Error 5.153728153 5.215213349 5.446183165
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 Table A4: Experiment Results with the use of 15 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 5.296996329 4.542477813 5.211958783

2 4.85116613 5.191864756 6.676569428

3 5.483907619 4.974437639 4.619719225

4 5.145299214 5.060735661 6.256549351

5 5.389632162 5.908173576 3.917809798

6 4.894362477 5.328530835 5.965893025

7 4.96078345 5.542360894 6.054485343

8 5.188943006 5.168674469 4.312485776

9 5.340240091 5.459292831 4.03578741

10 5.095229317 5.263783914 5.422178068

11 5.277119676 4.367789081 5.386647825

12 5.26331277 6.76351615 4.436919928

13 4.967211258 6.743006474 4.744580444

14 4.835958069 7.382490575 5.166465441

15 4.631539587 7.033344746 6.213142889

16 5.139658661 5.256899968 5.242881975

17 5.028227903 5.211801462 5.86802305

18 5.15688294 4.702573389 6.735438613

19 5.274222981 4.25584304 6.289108935

20 5.279700899 4.758150953 4.713673525

21 5.145719074 5.544759396 4.978902247

22 4.969867389 6.151150171 5.394635376

23 5.077225804 5.945698906 5.216265893

24 4.885035409 5.155373685 6.191632871

25 4.922911737 6.452316087 4.446481541

26 5.35174764 5.088510658 3.997676745

27 5.270203108 4.898251915 5.076055995

28 4.878127676 5.119945883 6.464125734

29 5.369650433 4.302214212 5.837963181

30 5.028694764 6.399287558 4.488105568

Average Error 5.113319252 5.465775223 5.312072133
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 Table A5: Experiment Results with the use of 18 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 5.243233285 5.245917195 4.530222415

2 5.320491122 4.796482433 5.242652337

3 5.822781383 5.720179014 6.847904459

4 5.199915865 4.368479418 5.375350041

5 5.261952201 5.056675672 4.661371291

6 4.995846977 4.893030244 6.746767748

7 5.327636241 4.494416684 4.923074126

8 5.277255639 5.485752737 4.213386689

9 4.984784994 4.614815025 6.426470362

10 4.537210107 7.2342359 5.969250554

11 5.057215284 4.831229255 5.469373841

12 5.366990484 5.01612358 4.854076292

13 4.75829124 6.872016724 4.925562

14 4.853579635 6.23895069 5.172453889

15 4.888106383 5.302182174 5.858947116

16 5.078095039 4.458054946 6.806764231

17 5.13557604 5.802976007 4.31502222

18 5.210936804 5.88591254 4.121707345

19 5.476215359 4.752228303 3.967136837

20 5.278184973 5.223056096 4.498383018

21 5.096189464 5.912930032 5.2093355

22 5.333683092 6.652522665 5.657675577

23 5.271425564 4.544820428 5.05766683

24 4.951583503 7.105712187 4.67850578

25 5.264219515 5.043499947 4.980287791

26 5.096998757 5.057809735 6.19411686

27 5.019489546 5.967047062 4.222374449

28 5.109103524 4.956334467 5.53220782

29 5.417284862 5.261700752 3.951224199

30 5.168462027 4.651864717 5.11078465
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 Table A6: Experiment Results with the use of 20 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 5.26576381 5.465415116 4.580874926

2 4.940113099 4.647396004 6.194101866

3 4.901906769 5.730248376 5.264514099

4 5.023455608 4.886398952 6.203375492

5 5.205175556 5.207611361 4.46084015

6 4.914486447 5.727828741 5.406518459

7 5.194301491 4.607342796 5.341905871

8 5.130659679 5.854037938 4.847002904

9 5.179113381 5.060721571 4.843222713

10 5.01037482 5.095026765 5.579895887

11 4.933751785 5.576129059 5.555158302

12 5.142624858 5.235787124 4.961007044

13 5.492231219 5.476237229 3.043934906

14 5.00703621 6.042829122 5.3088609

15 5.08517627 3.575771067 5.906266388

16 5.180363802 4.779014101 5.193068867

17 5.270640174 5.184469884 5.450143008

18 4.979304423 4.513143631 6.017144383

19 5.087415729 4.919405641 6.178110325

20 5.018122058 5.996446011 4.697993546

21 4.916359041 5.215874187 5.67233273

22 5.453863561 3.40513819 5.347494271

23 5.540453904 3.636638572 4.962769129

24 4.99357788 7.496589127 3.21942398

25 4.950274425 5.670412183 4.941032679

26 4.823449473 6.716745636 4.931209845

27 5.220331053 6.515183025 4.078343564

28 5.018083417 5.005235241 5.327376027

29 5.162116852 4.862452083 5.590329642

30 5.015937918 5.728064993 4.791769695

Average Error 5.101882157 5.261119791 5.129867387
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 Table A7: Experiment Results with the use of 24 Hidden Layer Neurons 

 

 

 

 

  

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 5.322693008 4.072671127 5.680327525

2 5.03217556 5.595679089 4.628336895

3 5.32802557 4.240885286 5.073326697

4 4.807669975 5.822646248 5.258812651

5 5.017155749 5.375515516 4.957694419

6 5.109327125 4.828215258 5.96605122

7 5.144956238 5.082003898 5.035106952

8 4.949843875 6.271310487 4.564924972

9 5.232186508 4.81061029 4.200882696

10 4.860358717 6.004906689 5.83659572

11 4.978049976 4.973652226 5.957321114

12 4.819228528 6.603569439 5.473395162

13 5.336747508 5.333487771 3.908504653

14 4.853994352 5.669398631 5.588456442

15 4.935913196 5.148591102 5.279129231

16 5.073870271 5.83667815 5.022211941

17 4.962491195 4.990092367 5.465878493

18 5.176851537 4.372916876 4.62703784

19 5.062275347 4.702467572 6.20483242

20 5.28643744 4.052428122 5.704617471

21 5.027622728 5.168562934 5.373816972

22 5.122010712 5.482613485 5.568475467

23 5.140091078 5.181024254 5.194275206

24 5.091005896 5.964582323 4.385918365

25 5.326353677 3.566099609 5.193500228

26 5.049837319 5.8265518 4.513363253

27 5.078366209 5.143379384 5.37587651

28 5.354336099 4.329512152 4.995947786

29 4.976054716 4.930627681 5.669737353

30 5.368933826 4.570239467 4.888265472

Average Error 5.094162131 5.131697308 5.186420704



 

Page | 114  

 

Appendix B 

 Table B1: Experiment Results with the use of 2 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.749650807 0.761656543 0.736602789

2 0.782621888 0.706938196 0.835427548

3 0.875685748 0.860163291 0.765452008

4 0.805008186 0.783877131 0.832654054

5 0.864373094 0.865044936 0.814355344

6 0.759015018 0.764429602 0.811791116

7 0.708397614 0.700593429 0.743617045

8 0.762386574 0.74516203 0.869651543

9 0.729145513 0.798774444 0.695702761

10 0.70930569 0.710111906 0.694540237

11 0.789656407 0.731669664 0.781088023

12 0.724928461 0.730277805 0.631744029

13 0.753652732 0.695864688 0.762702941

14 0.702497626 0.688610729 0.718916657

15 0.731455063 0.786146886 0.768595783

16 0.715612272 0.769372965 0.671763128

17 0.687292714 0.68082393 0.787431634

18 0.870141516 0.830156393 0.895001159

19 0.853419203 0.868684231 0.876475341

20 0.875189963 0.803810985 0.781893928

21 0.786619016 0.700839601 0.742028379

22 0.716460003 0.671950961 0.727557072

23 0.755883027 0.831891381 0.700376227

24 0.701127441 0.727230341 0.740570584

25 0.772747573 0.755987553 0.795641911

26 0.738052699 0.713620368 0.695513097

27 0.816895816 0.90768529 0.848944157

28 0.710124828 0.764269032 0.676001079

29 0.730776011 0.756392566 0.722030328

30 0.938834141 0.934026212 0.915087206

Average Error 0.770565221 0.768202103 0.767971904
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 Table B2: Experiment Results with the use of 4 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.707417702 0.708816752 0.650744015

2 0.702706265 0.762808087 0.707398513

3 0.684941981 0.718869952 0.715526768

4 0.705106861 0.673605729 0.768526346

5 0.693000921 0.628818065 0.717780429

6 0.698742865 0.627450706 0.672089231

7 0.708319359 0.639727409 0.726588994

8 0.710841673 0.738641348 0.774030199

9 0.655461507 0.740641237 0.696095582

10 0.728226681 0.616349046 0.692849027

11 0.783365944 0.942021664 0.790694337

12 0.698389866 0.66304652 0.70195991

13 0.7231463 0.738613924 0.65674968

14 0.71657477 0.689498734 0.71205901

15 0.675305902 0.647934438 0.686843968

16 0.705254645 0.687149163 0.670014656

17 0.670094257 0.622847357 0.707737762

18 0.718368972 0.722458665 0.679119665

19 0.697791791 0.706268655 0.690066688

20 0.717589987 0.672969523 0.713178339

21 0.672729294 0.750321676 0.666921408

22 0.743204701 0.753627258 0.790633398

23 0.695641594 0.726482039 0.570052704

24 0.761503003 0.756019557 0.809435684

25 0.716655974 0.717397886 0.720931307

26 0.730167709 0.700763892 0.748158496

27 0.707568135 0.664601508 0.729013034

28 0.697462282 0.693587792 0.685268032

29 0.719779044 0.656596313 0.704458744

30 0.71961824 0.617891257 0.748002909

Average Error 0.708832608 0.699527538 0.710097628
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 Table B3: Experiment Results with the use of 8 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.70708368 0.760108844 0.705503813

2 0.711495043 0.710287008 0.663759354

3 0.692000749 0.726532809 0.687600987

4 0.704520901 0.672150917 0.629646988

5 0.700927743 0.784320546 0.7584697

6 0.699892844 0.652697521 0.621975015

7 0.651281062 0.722033099 0.66184284

8 0.674724014 0.819684207 0.671912057

9 0.710633431 0.716699862 0.752497191

10 0.686499789 0.700183152 0.653242783

11 0.690934711 0.606658373 0.771347878

12 0.696177644 0.638929535 0.704146573

13 0.676972881 0.689884895 0.66346862

14 0.704798193 0.715156999 0.702024984

15 0.714101429 0.713215894 0.712807209

16 0.64695766 0.744721496 0.781854283

17 0.673563949 0.670691377 0.684651056

18 0.682990189 0.640631696 0.667361412

19 0.695751292 0.63777554 0.742657059

20 0.663440661 0.694981048 0.738440514

21 0.644633372 0.643585986 0.781746295

22 0.678544189 0.687859986 0.650575082

23 0.730521254 0.664981667 0.658664262

24 0.65522965 0.645293403 0.716169152

25 0.69437983 0.706944 0.730525693

26 0.680641463 0.683046786 0.611721215

27 0.660589205 0.655928076 0.633213787

28 0.691066276 0.575338318 0.659945112

29 0.663067071 0.727885889 0.622941891

30 0.72568669 0.728249534 0.761079434

Average Error 0.686970229 0.691215282 0.693393075
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 Table B4: Experiment Results with the use of 10 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.708314898 0.658814214 0.730291116

2 0.668583855 0.729388058 0.701850856

3 0.664717584 0.631192566 0.727750514

4 0.692927795 0.745891831 0.814125729

5 0.667611383 0.727473758 0.671314573

6 0.685407132 0.678129887 0.675553592

7 0.693778532 0.677402763 0.663964421

8 0.66824542 0.616463436 0.650390811

9 0.677365532 0.572263084 0.674561142

10 0.706144879 0.707500293 0.697598901

11 0.670579221 0.734965727 0.705254052

12 0.713478766 0.719901012 0.702086308

13 0.670829821 0.779855368 0.744228693

14 0.661874278 0.724789549 0.675125216

15 0.666342159 0.656890058 0.633310501

16 0.667926762 0.723047419 0.688555189

17 0.671688053 0.70828534 0.695714374

18 0.682804916 0.67009355 0.679390463

19 0.670804873 0.703318614 0.694960943

20 0.671690234 0.65629787 0.716474209

21 0.641790197 0.736285907 0.770731238

22 0.681886315 0.776981543 0.638625263

23 0.682036323 0.607339679 0.822090976

24 0.71068833 0.768330021 0.674432635

25 0.647814158 0.731880974 0.650991996

26 0.682528827 0.684476076 0.647944647

27 0.679790389 0.672152396 0.624317919

28 0.710905791 0.680229159 0.730771301

29 0.699912581 0.622070635 0.74555584

30 0.657979864 0.715917911 0.736277079

Average Error 0.679214962 0.693920957 0.699474683



 

Page | 118  

 

 Table B5: Experiment Results with the use of 12 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.683151237 0.677002358 0.644419905

2 0.691772186 0.698133096 0.737476583

3 0.679802869 0.583856915 0.698781935

4 0.669288422 0.604069389 0.715468959

5 0.72823056 0.669129866 0.652355512

6 0.683504293 0.754917733 0.78052712

7 0.662459603 0.68830394 0.717339969

8 0.679126099 0.678420606 0.600487724

9 0.693774231 0.780131519 0.740662653

10 0.67804251 0.646509904 0.778686539

11 0.673098743 0.670229966 0.817686025

12 0.668761436 0.677907363 0.689660524

13 0.790652165 0.732331676 0.829180647

14 0.674413075 0.613405016 0.732820239

15 0.681283299 0.715529489 0.74047214

16 0.675491913 0.704614935 0.759334325

17 0.686994831 0.680208713 0.679851364

18 0.665865936 0.723191897 0.689774877

19 0.676911226 0.738738971 0.742583152

20 0.66805417 0.733549323 0.666120154

21 0.66347673 0.688212836 0.705659708

22 0.65196817 0.637255293 0.636364022

23 0.676653095 0.599228846 0.731533342

24 0.663488612 0.703157845 0.696702076

25 0.701873811 0.714529875 0.71785327

26 0.696647799 0.67888871 0.617789821

27 0.700238094 0.707282998 0.689696306

28 0.694975713 0.691734244 0.747584007

29 0.64279014 0.666680246 0.654380242

30 0.699061752 0.621936754 0.641657596

Average Error 0.683395091 0.682636344 0.708430358
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 Table B6: Experiment Results with the use of 15 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.686501736 0.722974948 0.69758199

2 0.645565405 0.645383065 0.656578238

3 0.72707346 0.708021923 0.669540285

4 0.670298163 0.673257438 0.706205987

5 0.647077959 0.659514345 0.735177613

6 0.676192624 0.61294399 0.702215413

7 0.728794756 0.757005548 0.67717608

8 0.683725302 0.648570556 0.648196144

9 0.671216049 0.687271933 0.777405844

10 0.649322873 0.57073732 0.713141701

11 0.69325363 0.631303654 0.623412997

12 0.641997557 0.716825257 0.676782611

13 0.647529 0.684332507 0.68304243

14 0.700302129 0.729362361 0.657653738

15 0.671735221 0.626770841 0.712431368

16 0.711269907 0.725736339 0.692215032

17 0.718661797 0.752328624 0.669083786

18 0.686091967 0.652134335 0.66600756

19 0.679002332 0.599584543 0.675903598

20 0.671370873 0.696320859 0.777951276

21 0.6869675 0.693936882 0.811240424

22 0.674045437 0.677745386 0.688451348

23 0.684421504 0.647800277 0.780959928

24 0.661605712 0.630671918 0.683816384

25 0.660510305 0.58931051 0.745400442

26 0.709264608 0.596558081 0.628221943

27 0.729316463 0.772502758 0.681403973

28 0.681580292 0.643744418 0.693288222

29 0.646311795 0.639263183 0.773787593

30 0.662022085 0.68999538 0.714154712

Average Error 0.680100948 0.669396973 0.700614289
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 Table B7: Experiment Results with the use of 20 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.644075889 0.705327803 0.704872685

2 0.641150178 0.709764795 0.71424395

3 0.723854952 0.665804753 0.712938967

4 0.713086208 0.67747907 0.71824449

5 0.681715707 0.636802965 0.64267686

6 0.657433972 0.680953349 0.695600808

7 0.676677005 0.671692699 0.648985812

8 0.672688388 0.736518078 0.828842762

9 0.69706489 0.798467326 0.790974919

10 0.670819313 0.721493995 0.670108838

11 0.680235005 0.75575124 0.662205266

12 0.680296669 0.669260789 0.669482631

13 0.645240023 0.636321475 0.731856594

14 0.716340363 0.739655468 0.60792319

15 0.687765388 0.687272911 0.700934837

16 0.681805991 0.637707965 0.615850085

17 0.66587249 0.662268704 0.6328169

18 0.685339536 0.708155233 0.715842417

19 0.70781416 0.716227523 0.756283429

20 0.669843137 0.685911557 0.554292049

21 0.734992992 0.640016946 0.661320074

22 0.667435004 0.729490698 0.766741342

23 0.639974067 0.781478192 0.748748073

24 0.68265247 0.599905832 0.581512751

25 0.683536842 0.638749549 0.793600246

26 0.690733765 0.710729806 0.682542528

27 0.674542902 0.673270932 0.652238434

28 0.65165389 0.64095976 0.689332879

29 0.648426956 0.72256019 0.707214546

30 0.665294621 0.659614212 0.659732467

Average Error 0.677945426 0.689987127 0.690598694
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 Table B8: Experiment Results with the use of 24 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.656156899 0.728967576 0.617522688

2 0.687405713 0.636700886 0.67353764

3 0.681325981 0.65618274 0.603394871

4 0.666995336 0.779720872 0.651997893

5 0.671522863 0.665493637 0.718306138

6 0.660152427 0.615371364 0.735279243

7 0.667477993 0.643425064 0.637393423

8 0.658425321 0.612705822 0.748172455

9 0.669456618 0.646478148 0.650240335

10 0.668415627 0.583967185 0.688065192

11 0.667305105 0.649943783 0.670337688

12 0.672070765 0.657373085 0.691213648

13 0.64302068 0.688154147 0.637851548

14 0.670723414 0.690712888 0.664211481

15 0.666127647 0.759820982 0.571902749

16 0.663312627 0.695718247 0.691273258

17 0.631631481 0.723199909 0.717762748

18 0.660196248 0.722387065 0.651966893

19 0.651027823 0.684787731 0.659328858

20 0.663652818 0.640366649 0.689049436

21 0.669785711 0.722199062 0.663119271

22 0.678727387 0.615985216 0.696583632

23 0.643144911 0.697351368 0.667057858

24 0.688135033 0.621458639 0.674674428

25 0.714367824 0.706581979 0.751299745

26 0.672812877 0.675259579 0.693512512

27 0.657329459 0.69489572 0.715479596

28 0.634239149 0.664609674 0.704606511

29 0.667367774 0.756850545 0.65887969

30 0.669295168 0.65634166 0.632824557

Average Error 0.665720289 0.676433707 0.6742282
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 Table B9: Experiment Results with the use of 30 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.647720946 0.649228996 0.649459194

2 0.689200491 0.633690143 0.654902679

3 0.678829719 0.621571217 0.739682826

4 0.668268077 0.697960468 0.743521152

5 0.679567549 0.585312486 0.647981259

6 0.719248268 0.72054642 0.707596563

7 0.658667026 0.688925986 0.696023538

8 0.712431273 0.698993623 0.651199873

9 0.661978267 0.66888373 0.658058346

10 0.711425547 0.704969264 0.662246196

11 0.655662977 0.633454625 0.728510256

12 0.647791904 0.747085439 0.638121384

13 0.699653453 0.727371735 0.76600092

14 0.675133459 0.716593391 0.624154506

15 0.726500586 0.76765975 0.659003338

16 0.661680978 0.635575564 0.727761656

17 0.690013844 0.614571432 0.724847536

18 0.695803129 0.62752748 0.67344855

19 0.690321854 0.667772328 0.667910564

20 0.660214483 0.719636387 0.652706443

21 0.673944068 0.639892976 0.679328408

22 0.688157063 0.629945647 0.677718468

23 0.680044483 0.67892734 0.697806139

24 0.678894135 0.652731415 0.716353045

25 0.662651061 0.62982248 0.640898374

26 0.664266403 0.689535484 0.686488938

27 0.67608807 0.662266601 0.630315222

28 0.690723734 0.718265256 0.655960652

29 0.655369669 0.701250291 0.648717067

30 0.649319677 0.715389993 0.68219894

Average Error 0.678319073 0.674845265 0.679630734
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Appendix C 

 Table C1: Experiment Results with the use of 2 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.656016052 1.713828815 1.692215008

2 1.668915921 1.908915038 1.876573492

3 1.900800911 1.865628795 1.915391726

4 1.743798777 1.696116632 1.819554482

5 1.678738028 1.623846758 1.511708519

6 1.696598326 1.938038004 1.644255247

7 1.70351775 1.742470877 1.527907319

8 1.664627037 1.789864332 1.691009659

9 1.81064654 1.64669392 1.741107389

10 1.649146799 1.805121822 1.678554745

11 1.666230302 1.69612932 1.832513037

12 1.576221948 1.916250907 1.760764125

13 1.767982528 1.75287325 1.756343293

14 1.664389222 1.841541143 1.438424469

15 1.806197021 1.78771782 1.800591159

16 1.688840476 1.625278101 1.532484897

17 1.664741963 1.604952267 1.553041984

18 1.682121065 1.643902359 1.539562915

19 1.796031477 1.602036947 1.81633221

20 1.691931674 1.576866158 1.745969928

21 1.740097503 1.644457021 1.942397581

22 1.721689364 1.747986437 1.815788805

23 1.861381698 1.906788931 1.883602409

24 2.117258581 2.239902454 1.933370281

25 1.677506398 1.720618956 1.695357891

26 1.688036303 1.668629841 1.718230086

27 1.816431832 2.056647296 1.881273933

28 1.605590512 1.53318513 1.751352968

29 1.749821177 1.685966242 1.850249713

30 1.655373775 1.856200073 1.752394714

Average Error 1.727022699 1.761281855 1.736610799
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 Table C2: Experiment Results with the use of 4 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.701423183 1.653554703 1.932118672

2 1.561519555 1.796592186 1.821799848

3 1.719521021 1.747240464 1.770380624

4 1.557481693 1.715520619 1.769140914

5 1.645333348 1.695757977 1.774607532

6 1.599486167 1.681201235 1.48033913

7 1.603506248 1.903030374 1.845073251

8 1.767411526 1.817759617 1.618872183

9 1.732734755 1.492214549 1.793141918

10 1.672791275 1.776028899 1.685028746

11 1.694648539 1.797936274 1.679418423

12 1.7715021 1.872627673 1.866409936

13 1.404433264 1.262785105 1.298258706

14 1.659324936 1.791293604 1.808519575

15 1.639962392 1.736768561 1.917403314

16 1.627446243 1.752151046 1.683392266

17 1.567390177 1.364541077 1.687532168

18 1.926392045 1.830555628 1.78028086

19 1.725984096 1.542365281 1.67100255

20 1.727425456 1.681362803 1.26193546

21 1.67077041 1.592457858 1.944408434

22 1.503312038 1.702733109 1.368520943

23 1.524415795 1.502357925 1.587801661

24 1.785867044 1.855755699 1.770699381

25 1.745810495 1.863267427 1.67529483

26 1.785566182 1.925908617 1.725584306

27 1.730355539 1.663813956 1.830762487

28 1.583765492 1.48851405 1.866552975

29 1.586604697 1.612037962 1.662796089

30 1.659378657 1.787165501 1.831563998

Average Error 1.662718812 1.696843326 1.713621373
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 Table C3: Experiment Results with the use of 8 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.808767782 1.502940512 1.765334493

2 1.608605599 1.540238259 1.726992194

3 1.683976789 1.5294674 1.85439071

4 1.557996485 1.431752378 1.506492513

5 1.521581937 1.395997955 1.585402443

6 1.618808625 1.518209935 1.836092874

7 1.589299698 1.728933616 1.443326761

8 1.503071672 1.504245989 1.614411853

9 1.885549189 1.670480196 1.848860401

10 1.513974299 1.72454472 1.524982692

11 1.399785442 1.636635437 1.503801565

12 1.49779055 1.723606709 1.395793921

13 1.520089168 1.515640773 1.672287795

14 1.766445576 1.745399376 1.58759051

15 1.745057016 1.750168958 1.587769937

16 1.653966271 1.74534385 1.585769155

17 1.369348606 1.490946333 1.451115057

18 1.651007642 1.56844775 1.778600013

19 1.640487237 1.687302993 1.881545131

20 1.380086472 1.427003956 1.473853939

21 1.877021388 1.932909212 1.740649607

22 1.503336414 1.580884074 1.735535922

23 1.681798259 1.803175833 1.754199448

24 1.652303531 1.770112623 1.701267366

25 1.630017156 1.867906015 1.694977536

26 1.648053205 1.384985553 1.688393233

27 1.762563361 1.577842624 1.621818888

28 1.730242851 1.570591433 1.827781948

29 1.54990044 1.628607593 1.524985803

30 1.737914555 1.525946329 1.7399942

Average Error 1.622961574 1.616008946 1.65513393
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  Table C4: Experiment Results with the use of 10 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.535899466 1.504338142 1.511504248

2 1.56824551 1.696698043 1.456044953

3 1.632996503 1.563649628 1.557622771

4 1.734256778 1.775137861 1.770269021

5 1.575175089 1.43822386 1.704750135

6 1.593495378 1.360798016 1.488580628

7 1.677125244 1.602929982 1.647326776

8 1.660140248 1.984745311 1.975871538

9 1.680150772 1.391449778 1.508943423

10 1.580116283 1.970779298 1.85091427

11 1.612293285 1.635808192 1.557621476

12 1.652950184 1.782130486 1.66644679

13 2.008293852 2.097974334 1.961789933

14 1.593331787 1.481565335 1.696224222

15 1.715848164 1.410932377 1.568257195

16 1.505348786 1.506970965 1.511411188

17 1.591167508 1.616942559 1.648125371

18 1.586734267 1.719364872 1.573302589

19 1.767698554 1.825184464 1.790531123

20 1.540157861 1.80891584 1.525668006

21 1.575772795 1.528811283 1.398037688

22 1.679918593 1.772844252 1.48000907

23 1.468056405 1.648251468 1.491385857

24 1.549159158 1.47573419 1.391413274

25 1.66593797 1.801603475 1.438402438

26 1.640174663 1.630063366 1.507041029

27 1.668113339 1.895279534 1.841149255

28 1.465283414 1.438228381 1.5408054

29 1.63981483 1.786732874 1.438943126

30 1.604467659 1.749939877 1.493055364

Average Error 1.625604145 1.663400935 1.599714939
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 Table C5: Experiment Results with the use of 12 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.571355443 1.683582707 1.772237624

2 1.477527538 1.59538205 1.65671493

3 1.617747058 1.533634654 1.718423816

4 1.663665436 1.808124454 1.769889477

5 1.603595487 1.526244044 1.608444335

6 1.818619568 2.005455092 1.927933346

7 1.677046477 1.973948891 1.539382469

8 1.535982724 1.545178459 1.944854999

9 1.755109625 1.853686797 1.726781289

10 1.728972884 1.639811373 1.623588046

11 1.500194526 1.325009663 1.690435373

12 1.489241072 1.590796303 1.684162599

13 1.678501251 1.711180369 1.460848417

14 1.643972671 1.625428389 1.397645667

15 1.578781781 1.85958933 1.654871869

16 1.456391358 1.402236702 1.428586936

17 1.644820348 1.719146702 1.849995805

18 1.743499643 1.850405429 1.908348085

19 1.657431718 1.508296232 1.581636338

20 1.695717136 1.778361669 1.739710339

21 1.486570008 1.571347256 1.628289808

22 1.643254816 1.853763881 1.720961446

23 1.740717563 1.501908782 1.808217439

24 1.713441849 1.86151524 1.974650653

25 1.644013716 1.696622965 1.830392673

26 1.513128046 1.516141411 1.341257271

27 1.681572395 1.667137163 1.760113187

28 1.620525412 1.751456117 1.693064301

29 1.550724273 1.70847087 1.716960705

30 1.657319408 1.783988543 1.699086655

Average Error 1.626314708 1.681595051 1.69524953
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 Table C6: Experiment Results with the use of 15 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.611682463 1.79386189 1.473028047

2 1.470843583 1.482249121 1.303380301

3 1.477297932 1.579117754 1.580789422

4 1.803208215 1.538107683 1.695114002

5 1.506823445 1.397021348 1.6552298

6 1.563893667 1.42441382 1.717353508

7 1.661044461 1.515957353 1.715247838

8 1.450559911 1.538878874 1.803137042

9 1.564357214 1.621853786 1.742228954

10 1.475518077 1.643220675 1.610282387

11 1.531780055 1.592642987 1.499446946

12 1.659846433 1.56576322 1.934301212

13 1.530873878 1.470411603 1.580876071

14 1.596676503 1.786766996 1.591614186

15 1.450671857 1.403847622 1.554580228

16 1.51796867 1.556795828 1.626498727

17 1.692697009 1.526244859 1.689430777

18 1.456471939 1.692005697 1.523747281

19 1.551660795 1.453574752 1.602837955

20 1.440858416 1.536754906 1.558484543

21 1.528699405 1.602062498 1.902113043

22 1.851107997 1.65267346 1.844777949

23 1.680563665 1.684343827 1.630052925

24 1.575001802 1.583036097 1.802023504

25 1.488277429 1.622772147 1.508368706

26 1.522001131 1.687277256 1.580537652

27 1.590362854 1.498022219 1.631871731

28 1.648138383 1.797800246 1.575540618

29 1.666644922 1.924912689 1.897906131

30 1.577825009 1.634213689 1.800008918

Average Error 1.571445237 1.593553497 1.654360347
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 Table C7: Experiment Results with the use of 20 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.443370691 1.487219244 1.566047027

2 1.382895541 1.337650027 1.462357501

3 1.57835011 1.429870051 1.552108653

4 1.611629099 1.468121131 1.591615342

5 1.720552645 1.6870914 1.438036844

6 1.582661221 1.492488951 1.438121348

7 1.517425119 1.301513339 1.725263877

8 1.786995375 2.061309576 1.872517742

9 1.757293916 1.939003033 1.804202346

10 1.586042126 1.642144801 1.777648819

11 1.636238082 1.801821064 1.699443727

12 1.623154773 1.621876806 1.723082229

13 1.576410012 1.667407872 1.571804185

14 1.617664355 1.673611494 1.801299799

15 1.511791108 1.531863938 1.449274399

16 1.599054131 1.530900994 1.591765135

17 1.617281102 1.580153768 1.532925748

18 1.730445967 1.6609215 1.635316581

19 1.511399319 1.271484997 1.566172021

20 1.720429651 1.632393084 1.9434375

21 1.597989059 1.592448131 1.619519758

22 1.709988502 1.69853364 1.582081302

23 1.589830704 1.864775801 1.588951804

24 1.524670944 1.651737847 1.545722504

25 1.571214664 1.473971339 1.723205843

26 1.605062887 1.684660469 1.459237537

27 1.526119193 1.476388961 1.749034624

28 1.471577841 1.480197851 1.507437319

29 1.60369175 1.73485129 1.440256524

30 1.536214063 1.696167835 1.426166232

Average Error 1.594914798 1.605752674 1.612801809
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 Table C8: Experiment Results with the use of 24 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.403621897 1.479315375 1.421510005

2 1.539524557 1.560761602 1.588567772

3 1.44985016 1.600100659 1.689733763

4 1.571096364 1.393682613 1.681674048

5 1.789774762 1.915357464 1.85411924

6 1.724253313 1.736066795 1.685901278

7 1.765196884 1.850034806 1.878766206

8 1.586155556 1.573582106 1.765640367

9 1.716848522 1.851896387 1.523727107

10 1.931399884 1.832143831 1.972136256

11 1.61675267 1.847178849 1.608209993

12 1.540582401 1.555132293 1.65250828

13 1.517082346 1.662221835 1.732844017

14 1.502180785 1.602503423 1.459984709

15 1.569430517 1.630157567 1.489956957

16 1.536218829 1.400016801 1.708134749

17 1.586419844 1.453757043 1.562019094

18 1.502308532 1.698435463 1.717616986

19 1.514742236 1.615633798 1.428006406

20 1.687319168 1.841374312 1.919780734

21 1.57993189 1.57459623 1.609359237

22 1.638795652 1.357260596 1.646986857

23 1.46800022 1.722906682 1.531767666

24 1.798677189 1.752090463 1.935664664

25 1.75146818 1.892565195 1.847622164

26 1.672578306 1.753301527 1.816421102

27 1.803601944 1.607044088 1.81386158

28 1.599938187 1.676429054 1.519367432

29 1.744912877 1.817784533 1.949543388

30 1.621910497 1.665900341 1.757317922

Average Error 1.624352472 1.663974391 1.692291666
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 Table C9: Experiment Results with the use of 30 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 1.875137868 1.984004747 1.847579867

2 1.882976822 1.752513353 1.998804148

3 1.735837266 1.901095078 1.626599117

4 1.558307866 1.53598618 1.471074125

5 1.483962626 1.484847086 1.388802272

6 1.547204546 1.848099539 1.567360311

7 1.725508038 1.847306869 1.994410112

8 1.790999314 1.681289817 1.870715667

9 1.678367264 1.716674362 1.4903873

10 1.595206448 1.703476287 1.50316256

11 1.778318323 1.678212263 1.908910572

12 1.685197741 1.822642356 1.870871585

13 1.766756502 1.644814994 1.770144119

14 1.605649108 1.665005516 1.669027237

15 1.681477736 1.515618113 1.693429278

16 1.773012434 1.967779651 1.832162279

17 1.667263584 1.885308776 1.580044199

18 1.57571175 1.552145494 1.336116101

19 1.497814427 1.813139576 1.713264062

20 1.757295994 1.775520674 1.859679943

21 1.494424173 1.457463095 1.451346398

22 1.554511912 1.612060325 1.469516528

23 1.674827954 1.785541603 1.731666144

24 1.630786377 1.629188867 1.787322069

25 1.839046536 1.701479747 1.910880354

26 1.661174389 1.530590445 1.567255659

27 1.866224207 1.887325357 1.815727215

28 1.684611403 1.670819683 1.634472693

29 1.499721934 1.645947362 1.550150228

30 1.663058551 1.706602714 1.734756743

Average Error 1.674346436 1.713416664 1.688187963
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Appendix D 

 Table D1: Experiment Results with the use of 2 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.236378419 0.239034363 0.232368859

2 0.250854696 0.241758296 0.240624851

3 0.239663992 0.245115792 0.241122379

4 0.240290834 0.242917905 0.234343598

5 0.227136261 0.228759534 0.232388164

6 0.23687898 0.241008921 0.249247472

7 0.252614882 0.253102892 0.247777478

8 0.22724621 0.245069142 0.243021777

9 0.243399623 0.243833361 0.242205234

10 0.236427083 0.241148401 0.238905315

11 0.255049676 0.260772535 0.260891672

12 0.258489775 0.24467522 0.250156664

13 0.239552732 0.227699815 0.2320814

14 0.239547069 0.234554504 0.242621696

15 0.239174462 0.239039062 0.232335918

16 0.238876921 0.243293423 0.231047645

17 0.235267808 0.235464828 0.234621977

18 0.247808182 0.246677547 0.239248708

19 0.244431888 0.248678447 0.229891678

20 0.249771299 0.249587885 0.25262257

21 0.227863439 0.230740656 0.227908951

22 0.235549022 0.24686033 0.250076963

23 0.259974683 0.258270826 0.245430795

24 0.237486576 0.230154145 0.223233299

25 0.25079062 0.237830599 0.248903683

26 0.242314385 0.237140807 0.258070871

27 0.236986043 0.231626197 0.233303401

28 0.229330193 0.239566516 0.218797564

29 0.25322721 0.239696894 0.258581079

30 0.235752676 0.240062774 0.23279533

Average Error 0.241604521 0.241471387 0.240154233
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 Table D2: Experiment Results with the use of 4 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.236417588 0.233698076 0.233135731

2 0.234096411 0.234697101 0.241508211

3 0.224619125 0.223726463 0.225639337

4 0.236960451 0.240374141 0.242127841

5 0.229372549 0.227688772 0.230229953

6 0.224677843 0.22510748 0.221246688

7 0.236290726 0.235417404 0.221570142

8 0.225359725 0.22382915 0.220643035

9 0.219187862 0.230637459 0.223466516

10 0.221016304 0.226938417 0.227752567

11 0.240019405 0.251099467 0.245636669

12 0.236769692 0.23363363 0.234325631

13 0.225848178 0.233403013 0.219214629

14 0.227690477 0.227885398 0.235096088

15 0.226908199 0.23576755 0.239278819

16 0.238077439 0.23054 0.246408256

17 0.226368665 0.220770161 0.221701219

18 0.237901812 0.236618484 0.237525683

19 0.239719308 0.233996706 0.242167407

20 0.237898901 0.237896665 0.23534388

21 0.240919791 0.244652447 0.237711852

22 0.23132919 0.22691614 0.222836588

23 0.238972743 0.23227613 0.237762864

24 0.224631297 0.232905839 0.230294258

25 0.23738082 0.242740866 0.234709967

26 0.226207109 0.220495753 0.234713993

27 0.238576094 0.23744368 0.242542486

28 0.238273974 0.232062408 0.235872016

29 0.239419935 0.248206077 0.227032147

30 0.231650777 0.243653124 0.247825645

Average Error 0.232418746 0.2335026 0.233177337
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 Table D3: Experiment Results with the use of 8 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.227880525 0.231271935 0.23582548

2 0.226384968 0.214527622 0.22805228

3 0.234335379 0.233901307 0.238803795

4 0.236932183 0.227836089 0.23272224

5 0.236997337 0.233900158 0.225755857

6 0.220917614 0.237144218 0.215369046

7 0.239303515 0.23489239 0.239546616

8 0.222582915 0.230331396 0.231071003

9 0.235228118 0.244060439 0.24178465

10 0.23223875 0.230510763 0.234318556

11 0.233696223 0.223278523 0.243947326

12 0.216707141 0.222369258 0.220848791

13 0.234834853 0.238918937 0.233127262

14 0.222588869 0.233232697 0.221650083

15 0.241342491 0.237346882 0.246950568

16 0.231443078 0.218634072 0.229807014

17 0.234109069 0.234040555 0.242532444

18 0.235060255 0.238412171 0.25224906

19 0.228506631 0.235484002 0.219583167

20 0.234786074 0.234088894 0.234593146

21 0.214634681 0.219551619 0.223939518

22 0.22909119 0.233142723 0.236609209

23 0.234023478 0.231660307 0.249053786

24 0.226346999 0.231256124 0.228389931

25 0.226114813 0.23878307 0.236689641

26 0.219535739 0.232264626 0.223896865

27 0.239785619 0.238546862 0.229130405

28 0.229101668 0.235617059 0.238416979

29 0.228189058 0.226209538 0.216470321

30 0.237201543 0.228673991 0.240098575

Average Error 0.230330026 0.231662941 0.23304112
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 Table D4: Experiment Results with the use of 10 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.240496176 0.231517058 0.234578922

2 0.221376968 0.237625471 0.220698447

3 0.238182633 0.240303953 0.229198895

4 0.226924942 0.234464386 0.221572044

5 0.234990798 0.222757592 0.224327439

6 0.235760924 0.232667375 0.235885242

7 0.227637323 0.229363726 0.226986595

8 0.219638268 0.228865322 0.22363059

9 0.233171805 0.238903169 0.242429424

10 0.240331561 0.227924638 0.228639541

11 0.232192111 0.231638295 0.242087131

12 0.240923644 0.253603328 0.251229372

13 0.232673723 0.237783057 0.240364688

14 0.226528418 0.229875728 0.220600453

15 0.234466422 0.235044539 0.240919189

16 0.235913195 0.237758734 0.23073223

17 0.243844392 0.24056142 0.253368158

18 0.234072411 0.233406742 0.227571415

19 0.238232702 0.224472201 0.235107974

20 0.22719346 0.22794899 0.241670585

21 0.236520093 0.243472503 0.2490897

22 0.23159895 0.222216161 0.244011649

23 0.219250727 0.221985758 0.228350881

24 0.230766464 0.230753269 0.238258197

25 0.23102376 0.220724941 0.230844193

26 0.225167408 0.226212707 0.224213582

27 0.228013166 0.232394912 0.232675081

28 0.239686592 0.239654847 0.233386427

29 0.235925784 0.23242086 0.236070812

30 0.237474223 0.246601188 0.245826838

Average Error 0.232665968 0.233097429 0.234477523
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 Table D5: Experiment Results with the use of 12 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.23295818 0.211684221 0.22738149

2 0.226980976 0.211264741 0.228073261

3 0.234770767 0.23440925 0.238960463

4 0.231415474 0.235760029 0.237542998

5 0.234674065 0.246149501 0.244907889

6 0.241995903 0.228804956 0.238924287

7 0.230579619 0.237842716 0.238965268

8 0.237319338 0.22753074 0.249517287

9 0.234906994 0.22977016 0.222722603

10 0.233390691 0.240492856 0.227292485

11 0.229199247 0.220702018 0.235735567

12 0.223693409 0.214569901 0.215208526

13 0.225403181 0.219873736 0.224449649

14 0.229533929 0.217195024 0.234754814

15 0.224494918 0.229170056 0.219562158

16 0.228072237 0.225810071 0.241406416

17 0.232365201 0.240603878 0.237362106

18 0.224052841 0.222188486 0.225712253

19 0.22487817 0.222279945 0.21769476

20 0.233583278 0.224080225 0.233595643

21 0.237590334 0.226366374 0.236349179

22 0.231223291 0.231271257 0.230685528

23 0.234614198 0.231415725 0.229387613

24 0.23442272 0.241324814 0.233717447

25 0.238238379 0.23282502 0.236987142

26 0.2195346 0.227109885 0.21948211

27 0.228633959 0.232399621 0.226142556

28 0.230237094 0.235538935 0.23367058

29 0.233521247 0.218261729 0.237062753

30 0.234564646 0.229717095 0.231626909

Average Error 0.231228296 0.228213766 0.231829391
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 Table D6: Experiment Results with the use of 15 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.23849353 0.23760681 0.241190393

2 0.238024054 0.228841728 0.238904583

3 0.221080844 0.21558861 0.208413889

4 0.227068284 0.243969705 0.230108291

5 0.232416699 0.247296145 0.240362779

6 0.238834448 0.235105989 0.225411462

7 0.236990271 0.237735571 0.235639484

8 0.234646268 0.234526162 0.229692081

9 0.226211631 0.23654241 0.236132998

10 0.225346829 0.226614733 0.225763503

11 0.234504471 0.232992315 0.228860827

12 0.230560041 0.232236214 0.220081816

13 0.219868756 0.240010925 0.222321348

14 0.222920723 0.227954339 0.225574605

15 0.234943969 0.233029144 0.229829562

16 0.235825653 0.244574032 0.224820069

17 0.22645886 0.225144576 0.22804375

18 0.222206642 0.226013829 0.23192505

19 0.234928701 0.240348496 0.229945486

20 0.222591066 0.220660979 0.238300233

21 0.233748021 0.232953521 0.221659717

22 0.231107948 0.238541586 0.236145713

23 0.230732588 0.234510985 0.232951121

24 0.230459052 0.236668422 0.237977459

25 0.235085134 0.238304037 0.238484264

26 0.235088652 0.231807699 0.239625025

27 0.233560281 0.241225537 0.227229817

28 0.230906068 0.23758427 0.228382734

29 0.230142112 0.224966335 0.232903117

30 0.235099983 0.237433754 0.237989787

Average Error 0.230995053 0.234026295 0.230822365
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 Table D7: Experiment Results with the use of 20 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.233230026 0.215366457 0.240906803

2 0.227444322 0.231827719 0.230258276

3 0.223133206 0.237987699 0.217078525

4 0.22008439 0.220885522 0.222934146

5 0.224895194 0.230758169 0.228057918

6 0.232323242 0.243004424 0.236746619

7 0.240363695 0.236524962 0.243170738

8 0.239609924 0.238532448 0.236991795

9 0.219923316 0.224907869 0.214767113

10 0.228762163 0.239000408 0.23392547

11 0.238791428 0.244258407 0.229834997

12 0.237112994 0.235684701 0.244573434

13 0.242435565 0.24104179 0.24490712

14 0.224925558 0.238653387 0.220185525

15 0.24075235 0.224507063 0.246618068

16 0.226435057 0.211649043 0.221360906

17 0.220476628 0.232503127 0.226297552

18 0.220996057 0.216404797 0.218602632

19 0.231890541 0.227177409 0.244520897

20 0.22837518 0.230751032 0.232773128

21 0.221754407 0.226836236 0.222572416

22 0.222167698 0.223452551 0.21747153

23 0.219440896 0.222836501 0.220478001

24 0.240558384 0.242388414 0.249858869

25 0.231288663 0.232771231 0.225777332

26 0.236704765 0.256317378 0.227442627

27 0.234289414 0.228003904 0.235921826

28 0.234061839 0.236665452 0.231852017

29 0.241234958 0.239920312 0.248918751

30 0.230323846 0.249830333 0.237889457

Average Error 0.230459524 0.232681625 0.231756483
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 Table D8: Experiment Results with the use of 24 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.234405966 0.242632628 0.233575366

2 0.230270606 0.242174003 0.227849429

3 0.225808106 0.233041531 0.231798466

4 0.227708798 0.231088713 0.229678916

5 0.22190394 0.222395601 0.224832237

6 0.22351717 0.235280525 0.217666319

7 0.223241761 0.228204532 0.229376063

8 0.235809818 0.239272529 0.234404813

9 0.234376402 0.227486949 0.237454673

10 0.220282032 0.226399893 0.239550023

11 0.239536383 0.236744363 0.234135976

12 0.230172309 0.226184019 0.23683513

13 0.232332379 0.235170587 0.251113306

14 0.23339577 0.237914459 0.230933619

15 0.221591946 0.216006457 0.226952355

16 0.238901057 0.237238584 0.238883034

17 0.228435422 0.221458159 0.223868467

18 0.236539827 0.254006852 0.238071877

19 0.229833493 0.237184097 0.224221465

20 0.237194594 0.2283653 0.234477085

21 0.235301317 0.222166926 0.235523335

22 0.232401809 0.225172258 0.230195665

23 0.232934434 0.231361392 0.239185326

24 0.23795321 0.231687412 0.243898014

25 0.242352966 0.237656216 0.227636935

26 0.227464709 0.231834056 0.230464017

27 0.228467859 0.226654621 0.228164379

28 0.233429427 0.228765169 0.229328795

29 0.229308205 0.234391545 0.232754065

30 0.233056784 0.254387632 0.238423945

Average Error 0.231264283 0.232744234 0.232708437
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 Table D9: Experiment Results with the use of 30 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.23777317 0.24986245 0.245640766

2 0.222733198 0.224663492 0.233569644

3 0.234565727 0.235430619 0.235894588

4 0.233176689 0.235806125 0.230814764

5 0.232295814 0.222817536 0.233083732

6 0.231064293 0.22747038 0.234087231

7 0.248731588 0.257566632 0.235859727

8 0.229167553 0.226552058 0.236236257

9 0.229059287 0.22676396 0.234953409

10 0.221270395 0.226385561 0.221297177

11 0.227195242 0.228084647 0.224386528

12 0.220058044 0.220251232 0.223216745

13 0.221169314 0.222822772 0.221765953

14 0.236602794 0.229056374 0.240477218

15 0.235008826 0.229574766 0.241960181

16 0.222066506 0.220889686 0.233381843

17 0.222649412 0.213651621 0.229110833

18 0.233271714 0.252655767 0.235663401

19 0.22446603 0.227634571 0.238663685

20 0.229499645 0.237143414 0.220079688

21 0.226099052 0.230538769 0.239074591

22 0.234735485 0.23397857 0.232039037

23 0.222099853 0.227811079 0.224763976

24 0.220668576 0.226260812 0.235469882

25 0.237949503 0.23616712 0.232238605

26 0.231667199 0.217542292 0.222497161

27 0.233763505 0.225193013 0.236371518

28 0.225108451 0.226538554 0.231720889

29 0.235349477 0.234929734 0.240906292

30 0.226916061 0.215328853 0.224876006

Average Error 0.229539413 0.229645749 0.232336711
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Appendix E 

 Table E1: Experiment Results with the use of 2 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.667713292 0.691425073 0.639642315

2 0.642514074 0.872872272 0.502283436

3 0.667013499 0.526764885 0.71429327

4 0.715390164 0.52208352 0.501038876

5 0.674102494 0.751217593 0.734375284

6 0.708219964 0.563734777 0.512974104

7 0.670066858 0.797450632 0.519053001

8 0.651708604 0.476837777 0.861928428

9 0.666535834 0.619837735 0.725047516

10 0.658007146 0.65620412 0.633493815

11 0.687029421 0.6107431 0.504077885

12 0.612865734 0.774273378 0.739504998

13 0.706356208 0.636615192 0.834371425

14 0.645392726 0.764717567 0.641209012

15 0.668336078 0.568585089 0.673898146

16 0.645092753 0.622816744 0.757306014

17 0.637245132 0.653861343 0.741510481

18 0.652503812 0.606135272 0.683262838

19 0.625826986 0.742181483 0.713644116

20 0.638455328 0.668324313 0.72231102

21 0.638034123 0.83007129 0.592178878

22 0.655788154 0.717363302 0.591148456

23 0.637634377 0.618720328 0.863709142

24 0.673078866 0.648952422 0.59835557

25 0.638515326 0.648327342 0.733056728

26 0.677252473 0.571440342 0.615383978

27 0.653461401 0.649396769 0.658673293

28 0.622575247 0.731583932 0.728387322

29 0.667587989 0.659724021 0.649085514

30 0.656764431 0.531282969 0.757475528

Average Error 0.658702283 0.657784819 0.67142268
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 Table E2: Experiment Results with the use of 4 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.609529601 0.758076547 0.904022926

2 0.644000875 0.579506318 0.721989652

3 0.632297997 0.671074637 0.743476332

4 0.594482158 0.904837865 0.650412522

5 0.663666618 0.747583344 0.533230308

6 0.663031949 0.848924088 0.427772847

7 0.644588837 0.692863627 0.630671662

8 0.695105708 0.580638931 0.490101379

9 0.649030912 0.581857745 0.758402036

10 0.610528497 0.768795226 0.745249496

11 0.585877923 0.813377991 0.794285579

12 0.670054964 0.709061668 0.51008259

13 0.672848379 0.615795274 0.582041458

14 0.646931461 0.674003167 0.623457694

15 0.627825507 0.645622009 0.478505151

16 0.697958401 0.498527276 0.618191063

17 0.665602645 0.688711236 0.548547113

18 0.696482913 0.611545952 0.51883404

19 0.626451753 0.710221999 0.689818161

20 0.661902292 0.532735321 0.788364994

21 0.689190125 0.421465973 0.719166312

22 0.615088997 0.681346575 0.779554674

23 0.683016667 0.525937829 0.624763268

24 0.659622352 0.390265121 0.598754191

25 0.692293493 0.493118399 0.629950996

26 0.59914735 0.84823205 0.713236556

27 0.67062869 0.540201684 0.685956451

28 0.667553929 0.563995534 0.69635546

29 0.614017532 0.786040481 0.670603881

30 0.690756383 0.536364149 0.603732594

Average Error 0.651317164 0.647357601 0.649317713
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 Table E3: Experiment Results with the use of 8 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.681622954 0.481240651 0.670200251

2 0.653309829 0.500647257 0.707144462

3 0.655534653 0.504658572 0.781397179

4 0.639819988 0.500733949 0.855382667

5 0.643209806 0.675617958 0.617503932

6 0.613392626 0.803704695 0.70025559

7 0.645225984 0.565512579 0.776837583

8 0.670292594 0.707726038 0.491819816

9 0.589994033 0.716107621 0.801486012

10 0.672457066 0.435033262 0.691249644

11 0.607369323 0.819004319 0.586712418

12 0.65543877 0.487946822 0.840813191

13 0.668845825 0.617369867 0.58769666

14 0.664854949 0.579705562 0.657032203

15 0.62410267 0.752808003 0.632159911

16 0.607241654 0.781131193 0.695674241

17 0.667511539 0.516901949 0.699681944

18 0.677971564 0.480809321 0.645735919

19 0.598806379 0.618413434 0.549494639

20 0.653936569 0.48893482 0.758853841

21 0.574938447 0.854004843 0.599294354

22 0.6539592 0.686307073 0.623875485

23 0.669560461 0.736838585 0.498241779

24 0.648102746 0.693771466 0.589592724

25 0.651431617 0.726328029 0.515063593

26 0.615064946 0.693503326 0.727486731

27 0.62156789 0.716308919 0.771073955

28 0.686791041 0.657813324 0.433890055

29 0.642027388 0.676429489 0.709798022

30 0.673272554 0.49173504 0.643189317

Average Error 0.644255169 0.632234932 0.661954604
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 Table E4: Experiment Results with the use of 10 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.64681649 0.719985374 0.577857861

2 0.667305588 0.699572792 0.626340582

3 0.548017647 0.595329987 0.864646542

4 0.644830235 0.689933358 0.596406972

5 0.707880304 0.527926923 0.61689104

6 0.677831597 0.821873482 0.57630001

7 0.6520426 0.736303518 0.647418645

8 0.645381996 0.739976105 0.563995295

9 0.656954395 0.586400428 0.739369361

10 0.636433835 0.582472165 0.565814113

11 0.678987001 0.505520069 0.592593243

12 0.657170411 0.547958912 0.646161139

13 0.647911616 0.643823031 0.729641106

14 0.711789029 0.390748533 0.67436575

15 0.705002937 0.544075677 0.559718199

16 0.634683814 0.751076485 0.612682237

17 0.634247605 0.517382431 0.895893964

18 0.650425211 0.584606012 0.511711717

19 0.651029892 0.646515788 0.60109127

20 0.628056811 0.716291154 0.526086434

21 0.583246093 0.828090476 0.813674477

22 0.598952078 0.804402481 0.673848703

23 0.698970421 0.40907674 0.618192164

24 0.669711083 0.629202445 0.64172781

25 0.667168605 0.593883672 0.953561695

26 0.622545124 0.583772092 0.823475834

27 0.681256828 0.600878428 0.589822262

28 0.64976612 0.736715359 0.576497971

29 0.650821252 0.692464712 0.498810391

30 0.633463115 0.580755465 0.579712706

Average Error 0.651289991 0.633567136 0.649810316
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 Table E5: Experiment Results with the use of 12 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.624596793 0.642224588 0.772254634

2 0.616597043 0.499549352 0.700746233

3 0.678257263 0.503124233 0.684792724

4 0.642770401 0.876299078 0.39450962

5 0.629052243 0.711993073 0.76420939

6 0.61256436 0.630918657 0.611567227

7 0.611913684 0.692429726 0.65487001

8 0.676038953 0.631986539 0.563710573

9 0.68820909 0.601468477 0.595651283

10 0.659232147 0.530573714 0.667375794

11 0.613060739 0.696579205 0.780473792

12 0.679000604 0.478494246 0.619250715

13 0.681397015 0.57310387 0.63600688

14 0.655877517 0.495861586 0.828485652

15 0.635695989 0.42754227 0.902231649

16 0.601607642 0.632617259 0.648454505

17 0.650836777 0.59884212 0.604991985

18 0.667745815 0.689742391 0.647924435

19 0.615278698 0.762704537 0.763874837

20 0.736714381 0.56214995 0.868774571

21 0.617064554 0.730844423 0.664122658

22 0.682756644 0.867620222 0.669548139

23 0.685271543 0.653357664 0.581635931

24 0.718069657 0.56373867 0.40585666

25 0.620772501 0.683586869 0.657967426

26 0.700801648 0.492311508 0.616878901

27 0.639670344 0.69940324 0.695418712

28 0.614517958 0.701929586 0.735268546

29 0.693214503 0.600262022 0.619710601

30 0.653671478 0.551250788 0.684238359

Average Error 0.653408599 0.626083662 0.668026748
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 Table E6: Experiment Results with the use of 15 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.717503906 0.665363883 0.446204754

2 0.63136588 0.810739319 0.69891084

3 0.630520177 0.77842037 0.504515474

4 0.615777461 0.767976027 0.645379912

5 0.63651573 0.573582944 0.582265114

6 0.653834649 0.549382651 0.567963527

7 0.625039128 0.791016705 0.710685387

8 0.692099655 0.64751755 0.603328944

9 0.686717014 0.803476607 0.503954958

10 0.630578432 0.78562071 0.697952131

11 0.60252887 0.619860896 0.561369923

12 0.712245414 0.507622785 0.471413146

13 0.632690117 0.589063025 0.740847142

14 0.663093252 0.653175071 0.585816398

15 0.667649293 0.470321332 0.716681213

16 0.727626135 0.522037133 0.537058144

17 0.658793455 0.607006569 0.578545768

18 0.652646396 0.678727157 0.433681071

19 0.715728153 0.643350329 0.636376615

20 0.578252429 0.725483797 0.550032011

21 0.648456921 0.614941881 0.713482064

22 0.629489509 0.764042085 0.570897753

23 0.602946093 0.781404099 0.555949199

24 0.669407894 0.637110611 0.625989003

25 0.644722049 0.623189193 0.679942557

26 0.590750991 0.689594932 0.857711624

27 0.636086651 0.754190052 0.605771421

28 0.715011338 0.537887099 0.363586277

29 0.660107888 0.67056929 0.713811988

30 0.635957131 0.587190794 0.603649799

Average Error 0.652138067 0.661662163 0.602125805
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 Table E7: Experiment Results with the use of 20 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.612053936 0.669157534 0.620829738

2 0.580105495 0.802128601 0.677205146

3 0.653786113 0.556375552 0.635661049

4 0.650134001 0.571664557 0.781470668

5 0.614819035 0.822795363 0.612998746

6 0.681901013 0.602214438 0.616751094

7 0.647625183 0.555469108 0.706364679

8 0.599928448 0.61130774 0.952648124

9 0.60614755 0.666447903 0.826399125

10 0.997800421 1.210894175 1.200166603

11 0.605442423 0.892189714 0.42681525

12 0.672709177 0.628597677 0.572349785

13 0.621724014 0.644648657 0.671523219

14 0.625297087 0.638629839 0.750872284

15 0.570292431 0.644491038 0.631212696

16 0.616876516 0.577401705 0.657368127

17 0.610083278 0.805499661 0.685050589

18 0.719839097 0.52208492 0.701989052

19 0.670685605 0.55475011 0.582140589

20 0.584313128 0.706329912 0.716845669

21 0.729117492 0.474399808 0.556055881

22 0.605715064 0.703319066 0.738969011

23 0.586559201 0.58483264 0.87771036

24 0.634163646 0.715323939 0.5905825

25 0.67952308 0.630924339 0.557871558

26 0.647256893 0.702241587 0.475773124

27 0.647071358 0.515211629 0.684201071

28 0.629545723 0.622568707 0.551237453

29 0.641074957 0.81199136 0.539765037

30 0.643461183 0.787619074 0.452520623

Average Error 0.646168418 0.674383678 0.668378295
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 Table E8: Experiment Results with the use of 24 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.654072428 0.681572758 0.587593853

2 0.627713578 0.687633583 0.882082657

3 0.630165149 0.603879608 0.656818374

4 0.666635272 0.735333533 0.670854629

5 0.653773317 0.529038253 0.624308878

6 0.654020716 0.755306194 0.498773042

7 0.632399636 0.782950236 0.676294464

8 0.664838404 0.656678749 0.580309455

9 0.602585829 0.76555648 0.62645708

10 0.592999804 0.899205327 0.501915835

11 0.646832086 0.542168097 0.490774744

12 0.612365504 0.713434275 0.522143349

13 0.605769086 0.836932585 0.675981986

14 0.632938431 0.69853933 0.459580133

15 0.609913775 0.775529705 0.774798716

16 0.621565198 0.517230522 0.736811915

17 0.692619444 0.528715261 0.815168629

18 0.620082571 0.749641937 0.690641565

19 0.659246588 0.542920012 0.586859686

20 0.65670955 0.455616668 0.723896645

21 0.642287694 0.603120582 0.681001168

22 0.574668326 0.714765989 0.638706522

23 0.718262695 0.548022989 0.437565144

24 0.696649159 0.636128691 0.671902013

25 0.639747112 0.615719134 0.612648505

26 0.608713237 0.751697757 0.65821042

27 0.602926069 0.64103157 0.546009822

28 0.685273658 0.583255026 0.618842652

29 0.623833448 0.77045839 0.668959674

30 0.640957529 0.533771765 0.770397956

Average Error 0.639018843 0.661861834 0.636210317
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 Table E9: Experiment Results with the use of 30 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.60385803 1.004198886 0.674169626

2 0.690748137 0.588149285 0.698824372

3 0.638661059 0.621910605 0.608617551

4 0.686148262 0.641902846 0.605795964

5 0.664262937 0.600337866 0.705009589

6 0.611321443 0.700601665 0.62236577

7 0.591993474 0.714468901 0.564247704

8 0.57768389 0.826389096 0.683972808

9 0.736645277 0.52377495 0.51068211

10 0.597210611 0.506334446 0.703350317

11 0.688924881 0.643592116 0.634825292

12 0.641799867 0.666845223 0.547607421

13 0.586426661 0.744074785 0.749070679

14 0.657530671 0.624933122 0.659492677

15 0.566247514 0.753648389 0.570302698

16 0.64548582 0.497883173 0.726421727

17 0.737606392 0.668689875 0.718262106

18 0.634147799 0.499256332 0.541317721

19 0.614831349 0.89264729 0.63831838

20 0.645176379 0.529180211 0.774723314

21 0.653488816 0.776417534 0.381999877

22 0.591090322 0.735849885 0.673538777

23 0.649513069 0.582640229 0.659217601

24 0.677411262 0.568949243 0.688176091

25 0.656611459 0.431591929 0.686908301

26 0.687312125 0.729629169 0.554454049

27 0.640416137 0.761565572 0.350044801

28 0.67354587 0.606219963 0.748174324

29 0.621079252 0.639022074 0.709861724

30 0.683271727 0.428279701 0.803439979

Average Error 0.645015016 0.650299479 0.639773112
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Appendix F 

 Table F1: Experiment Results with the use of 2 Hidden Layer Neurons 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.114845936 0.116040766 0.126949535

2 0.013937963 0.016865107 0.010908025

3 0.01696825 0.013043887 0.016779125

4 0.122753802 0.100076222 0.130280107

5 0.01484339 0.018954629 0.014462688

6 0.013710807 0.011719951 0.015984542

7 0.012939286 0.01405091 0.011949086

8 0.122270045 0.12742026 0.119211673

9 0.116554319 0.123580172 0.113709477

10 0.013236681 0.016146956 0.010255974

11 0.014045768 0.018563488 0.011058649

12 0.018990854 0.019364979 0.01767949

13 0.013630994 0.014645002 0.010483787

14 0.122121409 0.115172645 0.11818469

15 0.115559016 0.134674518 0.130576611

16 0.014097596 0.014878977 0.013296507

17 0.082810365 0.093229761 0.078343091

18 0.122276469 0.114893745 0.111528655

19 0.012831026 0.014521079 0.016787226

20 0.011555967 0.019214983 0.015146477

21 0.123329529 0.123142293 0.103972059

22 0.122206816 0.115277252 0.118280892

23 0.013610601 0.013206121 0.012374045

24 0.013542761 0.010187384 0.021503097

25 0.014264311 0.012493049 0.01145576

26 0.016713389 0.014303432 0.016630634

27 0.117221754 0.126163484 0.129309145

28 0.015146903 0.01209564 0.00403826

29 0.11448473 0.126198793 0.12349105

30 0.012817331 0.01504111 0.013425844

Average Error 0.055110602 0.05617222 0.054935207
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 Table F2: Experiment Results with the use of 4 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.015115828 0.018218932 0.019101247

2 0.015631577 0.018232824 0.016773405

3 0.015869369 0.010702945 0.010397716

4 0.015007248 0.019063783 0.017158618

5 0.014022313 0.017305239 0.02322116

6 0.0132023 0.015881132 0.014887189

7 0.019932646 0.022515398 0.019721838

8 0.013038051 0.016499984 0.019438773

9 0.01629779 0.015115574 0.010711554

10 0.011946172 0.02125933 0.011140371

11 0.01545279 0.018352154 0.013807938

12 0.015998779 0.013163104 0.010642433

13 0.014809195 0.015629922 0.017006965

14 0.014475772 0.010602666 0.012861635

15 0.016102004 0.009896368 0.015971292

16 0.019966022 0.015346268 0.014800246

17 0.014176757 0.017217688 0.011904339

18 0.014802031 0.01418719 0.012300117

19 0.015024604 0.015087395 0.013622795

20 0.015735129 0.012534169 0.016129122

21 0.012933934 0.015533271 0.01913282

22 0.015560815 0.009819841 0.009866731

23 0.016956517 0.013944501 0.0106282

24 0.015642442 0.018295373 0.016672667

25 0.017316322 0.017975969 0.018674864

26 0.018149317 0.010397402 0.021386514

27 0.014812078 0.015767831 0.022861057

28 0.01617801 0.01386089 0.016725837

29 0.019521318 0.018611529 0.021405063

30 0.019046291 0.018912047 0.010523112

Average Error 0.015757447 0.015664357 0.015649187
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 Table F3: Experiment Results with the use of 8 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.015514516 0.013304821 0.025174979

2 0.014576764 0.016628186 0.016857828

3 0.013563793 0.016817833 0.012678149

4 0.017055843 0.015664196 0.019090476

5 0.018514942 0.014613967 0.02129795

6 0.01626642 0.012789124 0.012168348

7 0.015886323 0.018977425 0.016722845

8 0.017241706 0.011286062 0.01624925

9 0.016742953 0.01248488 0.017531922

10 0.015232839 0.01556589 0.015053018

11 0.017715122 0.015177777 0.020700919

12 0.013758777 0.012908518 0.022064971

13 0.013898923 0.015985817 0.016721807

14 0.016905668 0.01518528 0.014440182

15 0.016421864 0.018037546 0.012818958

16 0.017226776 0.018863489 0.014612888

17 0.016907799 0.019208004 0.016229079

18 0.020566607 0.022013991 0.017497217

19 0.017185043 0.016240747 0.017418758

20 0.016395208 0.015943401 0.019297852

21 0.018404061 0.014623424 0.023452737

22 0.01673129 0.014706572 0.010049485

23 0.016902596 0.013317978 0.017760189

24 0.015787516 0.019157877 0.015155997

25 0.01542527 0.016870794 0.017716684

26 0.016580665 0.015053596 0.027202375

27 0.016139203 0.01652126 0.020093157

28 0.018291239 0.016006447 0.015385356

29 0.01872671 0.015767061 0.020367753

30 0.014115002 0.017227814 0.01704051

Average Error 0.016489381 0.015898326 0.017628388
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 Table F4: Experiment Results with the use of 10 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.025443131 0.028679524 0.023638157

2 0.017188332 0.015366743 0.016622522

3 0.01813184 0.022423104 0.019818414

4 0.015688326 0.013868225 0.016999417

5 0.015834834 0.014016587 0.014980548

6 0.018604681 0.019181157 0.018540244

7 0.019108774 0.019326161 0.016901194

8 0.016025266 0.014487583 0.013664733

9 0.01951408 0.012706056 0.015478966

10 0.017151726 0.016531622 0.015816954

11 0.017840688 0.016860469 0.020792861

12 0.021928476 0.022930172 0.018982192

13 0.01915612 0.021698217 0.01594559

14 0.021504452 0.020456077 0.014531285

15 0.019500518 0.025739888 0.016638959

16 0.017812059 0.019134115 0.015108307

17 0.015495167 0.016019268 0.022638726

18 0.019322976 0.018630128 0.022790015

19 0.017284668 0.020171545 0.019610053

20 0.016888454 0.017737122 0.013964506

21 0.015533702 0.019813359 0.019564639

22 0.018748379 0.013304339 0.012909621

23 0.014860008 0.021151419 0.016985094

24 0.016921163 0.023424557 0.012920029

25 0.018608863 0.016065833 0.022753763

26 0.017886218 0.014696263 0.012264595

27 0.019111102 0.022201448 0.024360256

28 0.022404231 0.01765961 0.020020704

29 0.022102375 0.024200653 0.023014961

30 0.022781418 0.026930351 0.020074463

Average Error 0.018612734 0.019180387 0.017944392
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 Table F5: Experiment Results with the use of 12 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.015756669 0.021403713 0.01871602

2 0.01620617 0.018303225 0.020075393

3 0.016701861 0.018985885 0.010023039

4 0.016666441 0.016747626 0.019494693

5 0.015541649 0.019497495 0.015976876

6 0.015835639 0.022270776 0.020966082

7 0.016120691 0.01609243 0.017928378

8 0.017630691 0.011480376 0.018870719

9 0.015256053 0.016371554 0.015349694

10 0.018274123 0.013795462 0.023616617

11 0.020924658 0.020501112 0.016306048

12 0.01511559 0.014956624 0.018717599

13 0.015414543 0.010982498 0.01680195

14 0.017911077 0.016563779 0.02069509

15 0.019009826 0.012401617 0.014025592

16 0.015904608 0.015659666 0.018460964

17 0.018993623 0.017902374 0.017575063

18 0.018531468 0.020043861 0.01808011

19 0.018427091 0.016040163 0.014566574

20 0.020335293 0.016165574 0.015389235

21 0.015906799 0.015692236 0.017146341

22 0.018618196 0.019595201 0.015915437

23 0.017973153 0.018695183 0.021001884

24 0.021699149 0.024679924 0.024305969

25 0.018153482 0.017598051 0.020918751

26 0.017622821 0.017841133 0.014976036

27 0.016797814 0.015073757 0.014428622

28 0.017215965 0.01978079 0.021583975

29 0.016875941 0.01534 0.01114678

30 0.021656822 0.021292584 0.034258366

Average Error 0.017569264 0.017391822 0.01824393
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 Table F6: Experiment Results with the use of 15 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.016161235 0.014026028 0.020309079

2 0.017754333 0.012493261 0.016725932

3 0.016569109 0.025228367 0.017871372

4 0.016044391 0.012107916 0.016151993

5 0.01669761 0.011169471 0.02153247

6 0.021580037 0.019245521 0.021318239

7 0.017918196 0.016498691 0.020511717

8 0.019619934 0.017040264 0.017350234

9 0.022145102 0.021705899 0.019795238

10 0.017926523 0.016774614 0.020786178

11 0.019920903 0.022908478 0.020730247

12 0.019483244 0.021439176 0.015270377

13 0.016527634 0.02045347 0.017250197

14 0.014652527 0.016959853 0.019869305

15 0.020382253 0.016277783 0.018161664

16 0.022311043 0.028519875 0.026481125

17 0.0253355 0.026848361 0.02503446

18 0.018182628 0.015925235 0.019067254

19 0.017251902 0.023592588 0.015974328

20 0.016215791 0.016775344 0.017876171

21 0.017125227 0.017357298 0.015071691

22 0.018798685 0.011995278 0.015297154

23 0.017259378 0.01583904 0.01197171

24 0.018705211 0.019316954 0.015407256

25 0.018930799 0.020363068 0.016825089

26 0.020440476 0.017456789 0.021002213

27 0.01920116 0.01926816 0.016572215

28 0.019119663 0.018139954 0.012467373

29 0.019356228 0.015786221 0.017766969

30 0.016599148 0.0213553 0.017241372

Average Error 0.018607196 0.018428942 0.018256354
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 Table F7: Experiment Results with the use of 20 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.01937282 0.018291966 0.012166577

2 0.018889538 0.015936114 0.017341873

3 0.020143162 0.015675289 0.022720357

4 0.019364844 0.016137906 0.022645952

5 0.019155674 0.01581808 0.016786442

6 0.017399133 0.026908491 0.015001928

7 0.014978839 0.018370469 0.017320631

8 0.019146099 0.017466195 0.016952214

9 0.018017656 0.015384463 0.013434255

10 0.017612284 0.01477512 0.023880715

11 0.018754557 0.020054527 0.021886374

12 0.019228019 0.02011105 0.02075904

13 0.019016037 0.017072954 0.017924779

14 0.01823724 0.015059522 0.017763641

15 0.018121693 0.023030565 0.018820591

16 0.019578489 0.024043839 0.025294103

17 0.015048036 0.017787899 0.018093215

18 0.018659626 0.01583757 0.018945299

19 0.014276049 0.018927476 0.019991156

20 0.018448155 0.023328144 0.027369701

21 0.019106399 0.022774597 0.024549656

22 0.020001555 0.024424515 0.024035675

23 0.023487443 0.01908468 0.01639416

24 0.01726014 0.015692395 0.022414346

25 0.016325711 0.014157574 0.025674187

26 0.01851629 0.019434452 0.018125726

27 0.020310063 0.014954756 0.021738923

28 0.01731609 0.020595033 0.018989202

29 0.019029328 0.020678635 0.016108453

30 0.020755098 0.023327872 0.016311681

Average Error 0.018518536 0.018838072 0.019648028



 

Page | 157  

 

 Table F8: Experiment Results with the use of 24 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.022077938 0.017688649 0.020087145

2 0.021426066 0.019394398 0.023418337

3 0.019616308 0.018261375 0.021010527

4 0.017285456 0.022391012 0.016003216

5 0.018296467 0.016684067 0.023904087

6 0.017475798 0.017049303 0.020554082

7 0.015586737 0.021196627 0.01928545

8 0.018403672 0.021066782 0.017123576

9 0.023145228 0.023775852 0.026348147

10 0.020647943 0.025279341 0.024789109

11 0.020977598 0.02127528 0.019337629

12 0.018113755 0.017270068 0.015971635

13 0.020597745 0.01926635 0.026993276

14 0.015740491 0.0216707 0.020330236

15 0.018500498 0.017264158 0.014907976

16 0.020283919 0.023101027 0.017307358

17 0.016175267 0.01852986 0.019569569

18 0.022564343 0.020815379 0.014721321

19 0.018289441 0.022811718 0.022375351

20 0.016984406 0.017868009 0.016193051

21 0.018462214 0.018639279 0.021360201

22 0.017466125 0.017686164 0.020759361

23 0.020620968 0.017409795 0.022545497

24 0.018673551 0.023102096 0.019520507

25 0.019658704 0.019988826 0.023409966

26 0.015943418 0.020274716 0.023379358

27 0.017727805 0.020767755 0.018889979

28 0.018019965 0.023608019 0.012651199

29 0.019290644 0.02103875 0.020644501

30 0.019638499 0.020613028 0.019313526

Average Error 0.018923032 0.020192946 0.020090172
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 Table F9: Experiment Results with the use of 30 Hidden Layer Neurons 

 

 

 

 

 

 

 

 

Simulation Training Set Error (MSE) Validation Set Error (MSE) Test Set Error(MSE)

1 0.021826665 0.02352665 0.022374986

2 0.020619442 0.017857479 0.024895334

3 0.016309333 0.018212973 0.019344155

4 0.018906839 0.018543006 0.023420731

5 0.022545457 0.028151942 0.029520882

6 0.020708317 0.020280308 0.020020989

7 0.018573138 0.021354054 0.020254409

8 0.021583848 0.020644621 0.025608276

9 0.019338751 0.022760238 0.018103636

10 0.017010955 0.022023278 0.010140958

11 0.019426397 0.015490423 0.016808223

12 0.017410772 0.020289728 0.021145902

13 0.018965593 0.016055712 0.020835027

14 0.018782712 0.019697642 0.02371784

15 0.020465464 0.0224925 0.029614379

16 0.019950584 0.022289383 0.021736807

17 0.020515357 0.019748547 0.014666111

18 0.017708202 0.022009027 0.024390611

19 0.017522075 0.018534942 0.02616724

20 0.018831101 0.026492335 0.023716075

21 0.022327193 0.023139977 0.023449257

22 0.023034036 0.024327531 0.02009028

23 0.020158656 0.023000573 0.019604229

24 0.018111547 0.020620675 0.026518825

25 0.017982845 0.020324042 0.023113171

26 0.01952029 0.025984317 0.017813277

27 0.016110817 0.024471954 0.016988395

28 0.019539424 0.019852422 0.026782198

29 0.018207076 0.016046457 0.016806877

30 0.017724334 0.017481296 0.017581483

Average Error 0.019323907 0.021056801 0.021507685
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Appendix G 

 

Figure G1: Sampling Number M = 2 

 

Figure G2: Sampling Number M = 4 
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Figure G3: Sampling Number M = 5 

 

Figure G4: Sampling Number M = 7 
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Figure G5: Sampling Number M = 10 

 

Figure G6: Sampling Number M = 20 
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Appendix H 

 

Figure H1: Exciter field current Probability Plot  

 

Figure H2: Engine Notch Command Probability Plot  
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Figure H3: EXACT Probability Plot  

 

Figure H4: EXFM Probability Plot  
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 Figure H5: LCP Probability Plot  

 

Figure H6: Power Notch Command Probability Plot  
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Figure H7: SCM8 Probability Plot  
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Appendix I 

 

Figure I1: SCM8 Threshold and Residual Plot  

 

Figure I2: Engine Notch Command Threshold and Residual Plot  
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Figure I3: EXACT Threshold and Residual Plot  

 

Figure I4: EXFM Threshold and Residual Plot  
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Figure I5: LCP Threshold and Residual Plot  

 

Figure I6: Power Notch Command Threshold and Residual Plot  
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Appendix J 

 

Figure J1: EXFM Probability Plot  

 

Figure J2: Engine Notch Command Probability Plot  
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Figure J3: EXACT Probability Plot  

 

 Figure J4: LCP Probability Plot  
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Figure J5: Power Notch Command Probability Plot  

 

Figure J6: SCM8 Probability Plot  
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Appendix K 

 

Figure K1: SCM8 Threshold and Residual Plot  

 

Figure K2: Engine Notch Command Threshold and Residual Plot  
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Figure K3: EXACT Threshold and Residual Plot  

 

Figure K4: EXFM Threshold and Residual Plot  
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Figure K5: LCP Threshold and Residual Plot  

 

Figure K6: Power Notch Command Threshold and Residual Plot  
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Appendix L 

L1.1   SCM8 Test 1 Results 

 

Figure L1.1: SCM8 Test 1: Engine Notch Command Test Result 

  

Figure L1.1.2: SCM8 Test 1: EXACT Test Result 



 

Page | 176  

 

 

Figure L1.1.3: SCM8 Test 1: EXFM Test Result 

 

Figure L1.1.4: SCM8 Test 1: LCP Test Result 
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Figure L1.1.5: SCM8 Test 1: Power Notch Command Test Result 

 

Figure L1.1.6: SCM8 Test 1: SCM8 Test Result 
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Figure L1.1.7: SCM8 Test 1: SCM8 Sensor Validation Test Result 
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L1.2   SCM8 Test 2 Results 

 

Figure L1.2.1: SCM8 Test 2: Engine Notch Command Test Result 

 

Figure L1.2.2: SCM8 Test 2: EXACT Test Result 
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Figure L1.2.3: SCM8 Test 2: EXFM Test Result 

 

Figure L1.2.4: SCM8 Test 2: LCP Test Result 
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Figure L1.2.5: SCM8 Test 2: Power Notch Command Test Result 

 

Figure L1.2.6: SCM8 Test 2: SCM8 Test Result 
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Figure L1.2.7: SCM8 Test 2: SCM8 Sensor Validation Test Result 
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L1.3   SCM8 Test 3 Results 

 

Figure L1.3.1: SCM8 Test 3: Engine Notch Command Test Result 

 

Figure L1.3.2: SCM8 Test 3: EXACT Test Result 
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Figure L1.3.3: SCM8 Test 3: EXFM Test Result 

 

Figure L1.3.4: SCM8 Test 3: LCP Test Result 
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Figure L1.3.5: SCM8 Test 3: Power Notch Command Test Result 

 

Figure L1.3.6: SCM8 Test 3: SCM8 Test Result 
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Figure L1.3.7: SCM8 Test 3: SCM8 Sensor Validation Test Result 
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L1.4   SCM8 Test 4 Results 

 

Figure L1.4.1: SCM8 Test 4: Engine Notch Command Test Result 

 

Figure L1.4.2: SCM8 Test 4: EXACT Test Result 
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Figure L1.4.3: SCM8 Test 4: EXFM Test Result 

 

Figure L1.4.4: SCM8 Test 4: LCP Test Result 
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Figure L1.4.5: SCM8 Test 4: Power Notch Command Test Result 

 

Figure L1.4.6: SCM8 Test 4: SCM8 Test Result 
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L1.5   SCM8 Test 5 Results 

 

Figure L1.5.1: SCM8 Test 5: Engine Notch Command Test Result 

 

Figure L1.5.2: SCM8 Test 5: EXACT Test Result 
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Figure L1.5.3: SCM8 Test 5: EXFM Test Result 

 

Figure L1.5.4: SCM8 Test 5: LCP Test Result 
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Figure L1.5.5: SCM8 Test 5: Power Notch Command Test Result 

 

Figure L1.5.6: SCM8 Test 5: SCM8 Test Result 
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Figure L1.5.7: SCM8 Test 5: SCM8 Sensor Validation Test Result 
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L1.6   SCM8 Test 6 Results 

 

Figure L1.6.1: SCM8 Test 6: Engine Notch Command Test Result 

 

Figure L1.6.2: SCM8 Test 6: EXACT Test Result 
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Figure L1.6.3: SCM8 Test 6: EXFM Test Result 

 

Figure L1.6.4: SCM8 Test 6: LCP Test Result 
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Figure L1.6.5: SCM8 Test 6: Power Notch Command Test Result 

 

Figure L1.6.6: SCM8 Test 6: SCM8 Test Result 
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Figure L1.6.7: SCM8 Test 6: SCM8 Sensor Validation Test Result 
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L1.7   SCM8 Test 7 Results 

 
 

Figure L1.7.1: SCM8 Test 7: Engine Notch Command Test Result 

 

Figure L1.7.2: SCM8 Test 7: EXACT Test Result 



 

Page | 199  

 

 

Figure L1.7.3: SCM8 Test 7: EXFM Test Result 

 

Figure L1.7.4: SCM8 Test 7: LCP Test Result 
 



 

Page | 200  

 

 

Figure L1.7.5: SCM8 Test 7: Power Notch Command Test Result 

 

Figure L1.7.6: SCM8 Test 7: SCM8 Test Result 
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Figure L1.7.7: SCM8 Test 7: SCM8 Sensor Validation Test Result 
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L1.8   SCM8 Test 8 Results 

 
 

Figure L1.8.1: SCM8 Test 8: Engine Notch Command Test Result 

 

Figure L1.8.2: SCM8 Test 8: EXACT Test Result 
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Figure L1.8.3: SCM8 Test 8: EXFM Test Result 

 

Figure L1.8.4: SCM8 Test 8: LCP Test Result 
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Figure L1.8.5: SCM8 Test 8: Power Notch Command Test Result 

 

Figure L1.8.6: SCM8 Test 8: SCM8 Test Result 
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Figure L1.8.7: SCM8 Test 8: SCM8 Sensor Validation Test Result 
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L2.1 EXACT Test 1 Results 

 

Figure L2.1.1: EXACT Test 1: Engine Notch Command Test Result 

 

Figure L2.1.2: EXACT Test 1: EXACT Test Result 
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Figure L2.1.3: EXACT Test 1: EXFM Test Result 

 

Figure L2.1.4: EXACT Test 1: LCP Test Result 
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Figure L2.1.5: EXACT Test 1: Power Notch Command Test Result 

 

Figure L2.1.6: EXACT Test 1: SCM8 Test Result 
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L2.2 EXACT Test 2 Results 

 

Figure L2.2.1: EXACT Test 2: Engine Notch Command Test Result 

 

Figure L2.2.2: EXACT Test 2: EXACT Test Result 
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Figure L2.2.3: EXACT Test 2: EXFM Test Result 

 

Figure L2.2.4: EXACT Test 2: LCP Test Result 
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Figure L2.2.5: EXACT Test 2: Power Notch Command Test Result 

 

Figure L2.2.6: EXACT Test 2: SCM8 Test Result 
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L2.3 EXACT Test 3 Results 

 
Figure L2.3.1: EXACT Test 3: Engine Notch Command Test Result 

 

Figure L2.3.2: EXACT Test 3: EXACT Test Result 
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Figure L2.3.3: EXACT Test 3: EXFM Test Result 

 

Figure L2.3.4: EXACT Test 3: LCP Test Result 
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Figure L2.3.5: EXACT Test 3: Power Notch Command Test Result 

 

Figure L2.3.6: EXACT Test 3: SCM8 Test Result 
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Figure L2.3.7: EXACT Test 3: EXACT Sensor Validation Test Result 
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L2.4 EXACT Test 4 Results 

 

Figure L2.4.1: EXACT Test 4: Engine Notch Command Test Result 

 

Figure L2.4.2: EXACT Test 4: EXACT Test Result 
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Figure L2.4.3: EXACT Test 4: EXFM Test Result 

 

Figure L2.4.4: EXACT Test 4: LCP Test Result 
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Figure L2.4.5: EXACT Test 4: Power Notch Command Test Result 

 

Figure L2.4.6: EXACT Test 4: SCM8 Test Result 



 

Page | 219  

 

 

Figure L2.4.7: EXACT Test 4: EXACT Sensor Validation Test Result 
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L2.5 EXACT Test 5 Results 

 

Figure L2.5.1: EXACT Test 5: Engine Notch Command Test Result 

 

Figure L2.5.2: EXACT Test 5: EXACT Test Result 
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Figure L2.5.3: EXACT Test 5: EXFM Test Result 

 

Figure L2.5.4: EXACT Test 5: LCP Test Result 
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Figure L2.5.5: EXACT Test 5: Power Notch Command Test Result 

 

Figure L2.5.6: EXACT Test 5: SCM8 Test Result 
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Figure L2.5.7: EXACT Test 5: EXACT Sensor Validation Test Result 
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L2.6 EXACT Test 6 Results 

 

Figure L2.6.1: EXACT Test 6: Engine Notch Command Test Result 

 

Figure L2.6.2: EXACT Test 6: EXACT Test Result 
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Figure L2.6.3: EXACT Test 6: EXFM Test Result 

 

Figure L2.6.4: EXACT Test 6: LCP Test Result 
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Figure L2.6.5: EXACT Test 6: Power Notch Command Test Result 

 

Figure L2.6.6: EXACT Test 6: SCM8 Test Result 
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Figure L2.6.7: EXACT Test 6: EXACT Sensor Validation Test Result 
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L2.7 EXACT Test 7 Results 

 

Figure L2.7.1: EXACT Test 7: Engine Notch Command Test Result 

 

Figure L2.7.2: EXACT Test 7: EXACT Test Result 
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Figure L2.7.3: EXACT Test 7: EXFM Test Result 

 

Figure L2.7.4: EXACT Test 7: LCP Test Result 
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Figure L2.7.5: EXACT Test 7: Power Notch Command Test Result 

 

Figure L2.7.6: EXACT Test 7: SCM8 Test Result 
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Figure L2.7.7: EXACT Test 7: EXACT Sensor Validation Test Result 
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L3.1 LCP Test 1 Results 

 

Figure L3.1.1: LCP Test 1: Engine Notch Command Test Result 

 

Figure L3.1.2: LCP Test 1: EXACT Test Result 
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Figure L3.1.3: LCP Test 1: EXFM Test Result 

 

Figure L3.1.4: LCP Test 1: LCP Test Result 
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Figure L3.1.5: LCP Test 1: Power Notch Command Test Result 

 

Figure L3.1.6: LCP Test 1: SCM8 Test Result 
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L3.2 LCP Test 2 Results 

 

Figure L3.2.1: LCP Test 2: Engine Notch Command Test Result 

 

Figure L3.2.2: LCP Test 2: EXACT Test Result 
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Figure L3.2.3: LCP Test 2: EXFM Test Result 

 

Figure L3.2.4: LCP Test 2: LCP Test Result 
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Figure L3.2.5: LCP Test 2: Power Notch Command Test Result 

 

Figure L3.2.6: LCP Test 2: SCM8 Test Result 
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Figure L3.2.7: LCP Test 2: LCP Sensor Validation Test Result 
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L3.3 LCP Test 3 Results 

 

Figure L3.3.1: LCP Test 3: Engine Notch Command Test Result 

 

Figure L3.3.2: LCP Test 3: EXACT Test Result 
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Figure L3.3.3: LCP Test 3: EXFM Test Result 

 

Figure L3.3.4: LCP Test 3: LCP Test Result 
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Figure L3.3.5: LCP Test 3: Power Notch Command Test Result 

 

Figure L3.3.6: LCP Test 3: SCM8 Test Result 
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Figure L3.3.7: LCP Test 3: LCP Sensor Validation Test Result 
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L4.1 EXFM Test 1 Results 

 

Figure L4.1.1: EXFM Test 1: Engine Notch Command Test Result 

 

Figure L4.1.2: EXFM Test 1: EXACT Test Result 
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Figure L4.1.3: EXFM Test 1: EXFM Test Result 

 

Figure L4.1.4: EXFM Test 1: LCP Test Result 
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Figure L4.1.5: EXFM Test 1: Power Notch Command Test Result 

 

Figure L4.1.6: EXFM Test 1: SCM8 Test Result 
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Figure L4.1.7: EXFM Test 1: EXFM Sensor Validation Test Result 
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L4.2 EXFM Test 2 Results 

 

Figure L4.2.1: EXFM Test 2: Engine Notch Command Test Result 

 

Figure L4.2.2: EXFM Test 2: EXACT Test Result 
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Figure L4.2.3: EXFM Test 2: EXFM Test Result 

 

Figure L4.2.4: EXFM Test 2: LCP Test Result 
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Figure L4.2.5: EXFM Test 2: Power Notch Command Test Result 

 

Figure L4.2.6: EXFM Test 2: SCM8 Test Result 
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L4.3 EXFM Test 3 Results 

 

Figure L4.3.1: EXFM Test 3: Engine Notch Command Test Result 

 

Figure L4.3.2: EXFM Test 3: EXACT Test Result 
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Figure L4.3.3: EXFM Test 3: EXFM Test Result 

 

Figure L4.3.4: EXFM Test 3: LCP Test Result 
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Figure L4.3.5: EXFM Test 3: Power Notch Command Test Result 

 

Figure L4.3.6: EXFM Test 3: SCM8 Test Result 
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L5.1 Normal Test 1 Results 

 

Figure L5.1.1: EXFM Test 1: Engine Notch Command Test Result 

 

Figure L5.1.2: Normal Test 1: EXACT Test Result 
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Figure L5.1.3: Normal Test 1: EXFM Test Result 

 

Figure L5.1.4: Normal Test 1: LCP Test Result 
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Figure L5.1.5: Normal Test 1: Power Notch Command Test Result 

 

Figure L5.1.6: Normal Test 1: SCM8 Test Result 
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L5.2 Normal Test 2 Results 

 

Figure L5.2.1: EXFM Normal 2: Engine Notch Command Test Result 

 

Figure L5.2.2: Normal Test 2: EXACT Test Result 
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Figure L5.2.3: Normal Test 2: EXFM Test Result 

 

Figure L5.2.4: Normal Test 2: LCP Test Result 
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Figure L5.2.5: Normal Test 2: Power Notch Command Test Result 

 

Figure L5.2.6: Normal Test 2: SCM8 Test Result 
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L5.3 Normal Test 3 Results 

 

Figure L5.3.1: Normal Test 3: Engine Notch Command Test Result 

 

Figure L5.3.2: Normal Test 3: EXACT Test Result 
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Figure L5.3.3: Normal Test 3: EXFM Test Result 

 

Figure L5.3.4: Normal Test 3: LCP Test Result 
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Figure L5.3.5: Normal Test 3: Power Notch Command Test Result 

 

Figure L5.3.6: Normal Test 3: SCM8 Test Result 
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L5.4 Normal Test 4 Results 

 

Figure L5.4.1: Normal Test 4: Engine Notch Command Test Result 

 

Figure L5.4.2: Normal Test 4: EXACT Test Result 
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Figure L5.4.3: Normal Test 4: EXFM Test Result 

 

Figure L5.4.4: Normal Test 4: LCP Test Result 
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Figure L5.4.5: Normal Test 4: Power Notch Command Test Result 

 

Figure L5.4.6: Normal Test 4: SCM8 Test Result 
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Appendix M 

 

 

Figure M: GUI Program Flow Chart 
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Appendix N 

N1 Component Neural Network Model Training Source Code 

% Neural Network Training for Component or sectional Residual Generator 

result = zeros(30,3); 

x = input'; 

t = target'; 

while (n<31) 

trainFcn = 'traingdx'; % Gradient Descent with adaptive learning rate and 

% momentum backpropagation. 

% Create a Feedforward Network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize,trainFcn); 

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.input.processFcns = {'mapstd'}; 

net.output.processFcns = {'mapstd'}; 

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand'; % Divide data randomly 

net.divideMode = 'sample'; % Divide up every sample 

net.trainParam.epochs = 500000; 

net.trainParam.lr = 0.0001; 

net.trainParam.lr_inc = 1.0005; 

net.trainParam.lr_dec = 0.007; 

net.trainParam.mc = 0.9; 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% Performance Function 

net.performFcn = 'mae'; % Mean Squared Error 

%Plot Functions 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,x,t); 

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y); 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y); 

valPerformance = perform(net,valTargets,y); 

testPerformance = perform(net,testTargets,y); 

result(n,1) = [trainPerformance]; 

result(n,2) = [valPerformance]; 

result(n,3) = [testPerformance]; 

%Function to check for the best generalization results 

if n>1 

for e = 1:n-1 

if (result(n,3) < result(e,3)) 

c = c +1; 

end 

end 

end 

%Create Function + Plot for best generalization results 
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if (c == (n-1)) 

genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

y = myNeuralNetworkFunction(x); 

figure, plotperform(tr), grid on, title('Best Generalization Result') 

end 

c=0; 

n=n+1 

end 
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N2 SCM8 Neural Network Model Training Source Code 

%SCM8 Training Algorithm 

x = input'; 

t = target'; 

while (n<31) 

trainFcn = 'traingdx'; % Gradient Descent with adaptive learning rate and 

% momentum backpropagation. 

% Create a Feedforward Network 

hiddenLayerSize = 24; 

net = fitnet(hiddenLayerSize,trainFcn); 

% Input and Output Pre/Post-Processing Functions 

net.input.processFcns = {'mapstd'}; 

net.output.processFcns = {'mapstd'}; 

% Setup Division of Data for Training, Validation, Testing 

net.divideFcn = 'dividerand'; % Divide data randomly 

net.divideMode = 'sample'; % Divide up every sample 

net.trainParam.epochs = 500000; 

net.trainParam.lr = 0.0001; 

net.trainParam.lr_inc = 1.0005; 

net.trainParam.lr_dec = 0.007; 

net.trainParam.mc = 0.9; 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

%Performance Function 

net.performFcn = 'mae'; % Mean Squared Error 

% Plot Functions 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,x,t); 

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y); 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y); 

valPerformance = perform(net,valTargets,y); 

testPerformance = perform(net,testTargets,y); 

result(n,1) = [trainPerformance]; 

result(n,2) = [valPerformance]; 

result(n,3) = [testPerformance]; 

if n>1 

for e = 1:n-1 

if (result(n,3) < result(e,3)) 

c = c +1; 

end 

end 

end 

if (c == (n-1)) 

genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

y = myNeuralNetworkFunction(x); 

%figure, plotperform(tr), grid on, title('Best Generalization Result') 

end 

c=0; 

end 
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N3 Power Notch Command Neural Network Model Training Source Code 

%Power Notch Command Training Algorithm 

x = input'; 

t = target'; 

while (n<31) 

trainFcn = 'traingdx'; % Gradient Descent with adaptive learning rate and 

% momentum backpropagation. 

% Create a Feedforward Network 

hiddenLayerSize = 4; 

net = fitnet(hiddenLayerSize,trainFcn); 

% Input and Output Pre/Post-Processing Functions 

net.input.processFcns = {'mapstd'}; 

net.output.processFcns = {'mapstd'}; 

% Setup Division of Data for Training, Validation, Testing 

net.divideFcn = 'dividerand'; % Divide data randomly 

net.divideMode = 'sample'; % Divide up every sample 

net.trainParam.epochs = 500000; 

net.trainParam.lr = 0.0001; 

net.trainParam.lr_inc = 1.0005; 

net.trainParam.lr_dec = 0.007; 

net.trainParam.mc = 0.9; 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% Performance Function 

net.performFcn = 'mae'; % Mean Squared Error 

% Plot Functions 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,x,t); 

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y); 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y); 

valPerformance = perform(net,valTargets,y); 

testPerformance = perform(net,testTargets,y); 

result(n,1) = [trainPerformance]; 

result(n,2) = [valPerformance]; 

result(n,3) = [testPerformance]; 

if n>1 

for e = 1:n-1 

if (result(n,3) < result(e,3)) 

% Generate a matrix-only MATLAB function for neural network code 

% generation with MATLAB Coder tools. 

c = c +1; 

end 

end 

end 

if (c == (n-1)) 

genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

y = myNeuralNetworkFunction(x); 

%figure, plotperform(tr), grid on, title('Best Generalization Result') 

end 

c=0; 

end 
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N4 LCP Neural Network Model Training Source Code 

%LCP Training Algorithm 

x = input'; 

t = target'; 

while (n<31) 

trainFcn = 'traingdx'; % Gradient Descent with adaptive learning rate and 

% momentum backpropagation. 

% Create a Feedforward Network 

hiddenLayerSize = 15; 

net = fitnet(hiddenLayerSize,trainFcn); 

% Input and Output Pre/Post-Processing Functions 

net.input.processFcns = {'mapstd'}; 

net.output.processFcns = {'mapstd'}; 

% Setup Division of Data for Training, Validation, Testing 

net.divideFcn = 'dividerand'; % Divide data randomly 

net.divideMode = 'sample'; % Divide up every sample 

net.trainParam.epochs = 500000; 

net.trainParam.lr = 0.0001; 

net.trainParam.lr_inc = 1.0005; 

net.trainParam.lr_dec = 0.007; 

net.trainParam.mc = 0.9; 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% Performance Function 

net.performFcn = 'mae'; % Mean Squared Error 

% Plot Functions 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,x,t); 

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y); 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y); 

valPerformance = perform(net,valTargets,y); 

testPerformance = perform(net,testTargets,y); 

result(n,1) = [trainPerformance]; 

result(n,2) = [valPerformance]; 

result(n,3) = [testPerformance]; 

if n>1 

for e = 1:n-1 

if (result(n,3) < result(e,3)) 

c = c + 1; 

end 

end 

end 

if (c == (n-1)) 

genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

y = myNeuralNetworkFunction(x); 

%figure, plotperform(tr), grid on, title('Best Generalization Result') 

end 

c=0; 

end 
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N5 EXFM Neural Network Model Training Source Code 

%EXFM Training Algorithm 

x = input'; 

t = target'; 

while (n<31) 

trainFcn = 'traingdx'; % Gradient Descent with adaptive learning rate and 

% momentum backpropagation. 

% Create a Feedforward Network 

hiddenLayerSize = 15; 

net = fitnet(hiddenLayerSize,trainFcn); 

% Input and Output Pre/Post-Processing Functions 

net.input.processFcns = {'mapstd'}; 

net.output.processFcns = {'mapstd'}; 

% Setup Division of Data for Training, Validation, Testing 

net.divideFcn = 'dividerand'; % Divide data randomly 

net.divideMode = 'sample'; % Divide up every sample 

net.trainParam.epochs = 500000; 

net.trainParam.lr = 0.0001; 

net.trainParam.lr_inc = 1.0005; 

net.trainParam.lr_dec = 0.007; 

net.trainParam.mc = 0.9; 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% Performance Function 

net.performFcn = 'mae'; % Mean Squared Error 

% Plot Functions 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,x,t); 

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y); 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y); 

valPerformance = perform(net,valTargets,y); 

testPerformance = perform(net,testTargets,y); 

result(n,1) = [trainPerformance]; 

result(n,2) = [valPerformance]; 

result(n,3) = [testPerformance]; 

if n>1 

for e = 1:n-1 

if (result(n,3) < result(e,3)) 

c = c +1; 

end 

end 

end 

if (c == (n-1)) 

genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

y = myNeuralNetworkFunction(x); 

%figure, plotperform(tr), grid on, title('Best Generalization Result') 

end 

c=0; 

end 
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N6 EXACT Neural Network Model Training Source Code 

%EXACT Training Algorithm 

x = input'; 

t = target'; 

while (n<31) 

trainFcn = 'traingdx'; % Gradient Descent with adaptive learning rate and 

% momentum backpropagation. 

% Create a Feedforward Network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize,trainFcn); 

%Input and Output Pre/Post-Processing Functions 

net.input.processFcns = {'mapstd'}; 

net.output.processFcns = {'mapstd'}; 

% Setup Division of Data for Training, Validation, Testing 

net.divideFcn = 'dividerand'; % Divide data randomly 

net.divideMode = 'sample'; % Divide up every sample 

net.trainParam.epochs = 500000; 

net.trainParam.lr = 0.0001; 

net.trainParam.lr_inc = 1.0005; 

net.trainParam.lr_dec = 0.007; 

net.trainParam.mc = 0.9; 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% Performance Function 

net.performFcn = 'mae'; % Mean Squared Error 

% Plot Functions 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,x,t); 

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y); 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y); 

valPerformance = perform(net,valTargets,y); 

testPerformance = perform(net,testTargets,y); 

result(n,1) = [trainPerformance]; 

result(n,2) = [valPerformance]; 

result(n,3) = [testPerformance]; 

if n>1 

for e = 1:n-1 

if (result(n,3) < result(e,3)) 

c = c +1; 

end 

end 

end 

if (c == (n-1)) 

genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

y = myNeuralNetworkFunction(x); 

%figure, plotperform(tr), grid on, title('Best Generalization Result') 

end 

c=0; 

end 

end 



 

Page | 273  

 

N7 Engine Notch Command Neural Network Model Training Source Code 

%Engine Notch Command Training Algorithm 

x = input'; 

t = target'; 

while (n<31) 

trainFcn = 'traingdx'; % Gradient Descent with adaptive learning rate and 

% momentum backpropagation. 

% Create a Feedforward Network 

hiddenLayerSize = 2; 

net = fitnet(hiddenLayerSize,trainFcn); 

% Input and Output Pre/Post-Processing Functions 

net.input.processFcns = {'mapstd'}; 

net.output.processFcns = {'mapstd'}; 

% Setup Division of Data for Training, Validation, Testing 

net.divideFcn = 'dividerand'; % Divide data randomly 

net.divideMode = 'sample'; % Divide up every sample 

net.trainParam.epochs = 500000; 

net.trainParam.lr = 0.0001; 

net.trainParam.lr_inc = 1.0005; 

net.trainParam.lr_dec = 0.007; 

net.trainParam.mc = 0.9; 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% Performance Function 

net.performFcn = 'mae'; % Mean Squared Error 

% Plot Functions 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,x,t); 

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y); 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y); 

valPerformance = perform(net,valTargets,y); 

testPerformance = perform(net,testTargets,y); 

result(n,1) = [trainPerformance]; 

result(n,2) = [valPerformance]; 

result(n,3) = [testPerformance]; 

if n>1 

for e = 1:n-1 

if (result(n,3) < result(e,3)) 

c = c +1; 

end 

end 

end 

if (c == (n-1)) 

genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

y = myNeuralNetworkFunction(x); 

%figure, plotperform(tr), grid on, title('Best Generalization Result') 

end 

c=0; 
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Appendix O 

O1 Component Residual Generation and Evaluation Source Code 

%Component Residual Generation and Evaluation Source Code 

r=140; 

count =zeros(6,3); 

%Read In Locomotives recorded Data from Data.txt file 

filename = 'C:\Decoder\DATA.txt'; 

M = dlmread(filename,',',6,2); 

%Deleting Unused Inputs 

M(:,5:9) = []; 

M(:,6:12) = []; 

M(:,8:16) = []; 

M(:,9:71) = []; 

x = M(:,3:5); 

M(:,3:4) = []; 

%Sorted .txt file for target arrangement for the NN function 

a = M; 

a = abs(a); %Target 

%sorting x for input configuration for the NN function 

x(:,3) = x(:,2); 

x(:,2) = x(:,1); 

x(:,1) = x(:,3); 

x(:,3)=[]; 

x = abs(x); %Input 

y1=0; 

stdd = zeros(6,1); 

meann = zeros(6,1); 

error2 = zeros(r,6); 

error4 = zeros(r,6); 

error5 = zeros(6,1); 

per = zeros(6,1); 

%T = zeros(6,2); 

T = 

[0.00378275971487120;0.45;0.702682576988365;0.789902292644835;0.20386973857

8888; 

0.201130210593137]; 

error1 = zeros(r+5,6); 

y = NNFunc(x'); %Neural Network Model 

l = [1;1;1.5;1.5;1.5;1]; 

error =(((a'-y))').^2; %Unfiltered Residual 

%Scale data between 0 and 1 using Tan-Sig Function 

for o=1:6 

for j = 1:r+5 

error1(j,o) = (2/(1+exp(-error(j,o))))-1; 

end 

end 

%Residual Filter*********************************************************** 

for o=1:6 

for j = 1:r 

for g = 0:4 

error2(j,o) = error2(j,o)+(1/5)*(error1(j+g,o)); 

end 

end 

end 

%************************************************************************* 

% Threshold Calculation 

for t=1:6 

meann(t,1) = mean(error2(:,t)); %Mean 



 

Page | 275  

 

stdd(t,1) = std(error2(:,t)); %Standard Deviation 

%T(t,1) = meann(t,1) + l(t,1)*stdd(t,1); %Upper Threshold Calculation where 

l is 

lamda 

%T(t,2) = meann(t,1) - l(t,1)*stdd(t,1); 

end 

d = 1:r; 

% Count Number of Faulty Conditions 

for e = 1:6 

for q = 1:r 

if error2(q,e) > T(e,1) 

per(e,1) = (error2(q,e) - T(e,1))/(1-T(e,1)); 

count(e,1) = count(e,1) + 1*per(e,1); 

end 

end 

count(e,1) = (count(e,1)/140).*100; 

end 

% Check for Multiple Faults 

for j = 1:6 

count(j,2) = count(j,1)/100; 

count(j,2) = 0.1*round(count(j,2)/0.1); 

if count(j,2) == 1 

count(1,3) = count(1,3) + 1; 

end 

end 

% Save count values in count.txt 

fileID = fopen('count.txt','w'); 

fprintf(fileID,'%f,%f,%f,%f,%f,%f',count(:,1)); 

fclose(fileID); 

fileID = fopen('count1.txt','w'); 

fprintf(fileID,'%f',count(:,3)); 

fclose(fileID); 

if count(1,3) > 1 

error3 =(((a'-y))'); %Unfiltered Residual 

%Scale data between -1 and 1 

for o=1:6 

for j = 1:r 

error4(j,o) = (2/(1+exp(-error3(j,o))))-1; 

end 

for j=1:r 

error5(o,1) = error5(o,1) + (error4(j,o))/140; 

end 

error5(o,1) = 0.1*round(error5(o,1)/0.1); 

end 

y1 = Classifier(error5); %Neural Network Model 

 

y1 = round(y1,1); 

fileID = fopen('class.txt','w'); 

fprintf(fileID,'%f',y1); 

fclose(fileID); 

else 

end 

figure 

plot(d,error2(d,1), [0 r], [T(1,1) T(1,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Engine Notch: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Engine Notch Command Residual Evaluation') 

%ylim([-0.1 0.1]); 

grid on; 

figure 

plot(d,error2(d,2), [0 r], [T(2,1) T(2,1)], 'r'); 



 

Page | 276  

 

xlabel('Timesteps'); 

ylabel('Power Notch Command: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Power Notch Command Residual Evaluation') 

%ylim([-0.1 0.1]); 

grid on; 

figure 

plot(d,error2(d,3), [0 r], [T(3,1) T(3,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Main Generator Volts: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Main Generator Volts Residual Evaluation') 

%ylim([-0.1 0.1]); 

grid on; 

figure 

plot(d,error2(d,4),[0 r], [T(4,1) T(4,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Exciter Armature Output: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Exciter Armature Output Residual Evaluation') 

%ylim([0 0.005]); 

grid on; 

figure 

plot(d,error2(d,5), [0 r], [T(5,1) T(5,1)], 'r'); 

xlabel('Timesteps'); 

 

ylabel('Exciter Field Amps: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Exciter Field Amps Residual Evaluation') 

%ylim([-0.1 0.1]); 

grid on; 

figure 

plot(d,error2(d,6), [0 r], [T(6,1) T(6,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Load Control Pot: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('LCP Residual Evaluation') 

%ylim([-0.1 0.1]); 

grid on; 
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O2 SCM8 Residual Generation and Evaluation Source Code 

%SCM8 Sensor Residual Generation and Evaluation Source Code 

r=140; 

count =zeros(6,2); 

%Read In Locomotives recorded Data from Data.txt file 

filename = 'C:\Decoder\DATA.txt'; 

M = dlmread(filename,',',6,2); 

%Deleting Unused Inputs 

M(:,5:9) = []; 

M(:,6:12) = []; 

M(:,8:16) = []; 

M(:,9:71) = []; 

x = M; 

%sorting x for input configuration for the NN function 

x(:,1) = M(:,7); 

x(:,2) = M(:,3); 

x(:,3) = M(:,2); 

x(:,4) = M(:,1); 

x(:,5) = M(:,8); 

x(:,6) = M(:,6); 

x(:,7) = M(:,4); 

x(:,8) = []; 

%Sorted .txt file for target arrangement for the NN function 

a = M(:,5); 

% Get absolute value of the input and target values 

a = abs(a); %Target 

x = abs(x); %Input 

stdd = zeros(1,1); 

meann = zeros(1,1); 

error2 = zeros(r,1); 

per = zeros(6,1); 

T = [0.614165657480314]; 

%T = zeros(1,1); 

error1 = zeros(r+5,6); 

y = SCM8Func(x'); %Neural Network Model 

l = [1.1;1;1;1;1;1]; 

error =(((a'-y))').^2; %Unfiltered Residual 

%Scale data between 0 and 1 using Sigmoid Function 

for o=1:1 

for j = 1:r+5 

error1(j,o) = (2/(1+exp(-error(j,o))))-1; 

end 

end 

%Residual Filter*********************************************************** 

for o=1:1 

for j = 1:r 

for g = 0:4 

error2(j,o) = error2(j,o)+(1/5)*(error1(j+g,o)); 

end 

end 

end 

%************************************************************************* 

% Threshold Calculation 

for t=1:1 

meann(t,1) = mean(error2(:,t)); %Mean 

stdd(t,1) = std(error2(:,t)); %Standard Deviation 

%T(t,1) = meann(t,1) + l(t,1)*stdd(t,1); %Upper Threshold Calculation where 

l is 

lamda 

%T(t,2) = meann(t,1) - l(t,1)*stdd(t,1); 

end 
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d = 1:r; 

% Count Number of Faulty Conditions 

for e = 1:1 

for q = 1:r 

if error2(q,e) > T(e,1) 

per(e,1) = (error2(q,e) - T(e,1))/(1-T(e,1)); 

count(e,1) = count(e,1) + 1*per(e,1); 

end 

end 

count(e)=(count(e)/140)*100; 

end 

% Save count values in count.txt 

fileID = fopen('temp.txt','w'); 

fprintf(fileID,'%f',count(1,1)); 

fclose(fileID); 

figure 

plot(d,error2(d,1),[0 r], [T(1,1) T(1,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Rectified Alternator Volts: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Rectified Alternator Volts Residual Evaluation') 

%ylim([0 0.005]); 

grid on; 
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O3 Power Notch Command Residual Generation and Evaluation Source Code 

%Power Notch Command Sensor Residual Generation and Evaluation Source Code 

r=140; 

count =zeros(6,2); 

%Read In Locomotives recorded Data from Data.txt file 

filename = 'C:\Decoder\DATA.txt'; 

M = dlmread(filename,',',6,2); 

%Deleting Unused Inputs 

M(:,5:9) = []; 

M(:,6:12) = []; 

M(:,8:16) = []; 

M(:,9:71) = []; 

x = M; 

%sorting x for input configuration for the NN function 

x(:,1) = M(:,6); 

x(:,2) = M(:,8); 

x(:,3) = M(:,4); 

x(:,4) = M(:,1); 

x(:,5) = M(:,7); 

x(:,6) = M(:,5); 

x(:,7) = M(:,3); 

x(:,8) = []; 

%Sorted .txt file for target arrangement for the NN function 

a = M(:,2); 

% Get absolute value of the input and target values 

a = abs(a); %Target 

x = abs(x); %Input 

stdd = zeros(1,1); 

meann = zeros(1,1); 

error2 = zeros(r,1); 

per = zeros(6,1); 

%T = [0.506891303177012]; 

T = [9.97187996335642e-07]; 

error1 = zeros(r+5,6); 

y = PNCFunc(x'); %Neural Network Model 

l = [2;1;1;1;1;1]; 

error =(((a'-y))').^2; %Unfiltered Residual 

%Scale data between 0 and 1 using Sigmoid Function 

for o=1:1 

for j = 1:r+5 

error1(j,o) = (2/(1+exp(-error(j,o))))-1; 

end 

end 

%Residual Filter*********************************************************** 

for o=1:1 

for j = 1:r 

for g = 0:4 

error2(j,o) = error2(j,o)+(1/5)*(error1(j+g,o)); 

end 

end 

end 

%************************************************************************* 

% Threshold Calculation 

for t=1:1 

meann(t,1) = mean(error2(:,t)); %Mean 

stdd(t,1) = std(error2(:,t)); %Standard Deviation 

%T(t,1) = meann(t,1) + l(t,1)*stdd(t,1); %Upper Threshold Calculation where 

l is 

lamda 

%T(t,2) = meann(t,1) - l(t,1)*stdd(t,1); 

end 
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d = 1:r; 

% Count Number of Faulty Conditions 

for e = 1:1 

for q = 1:r 

if error2(q,e) > T(e,1) 

per(e,1) = (error2(q,e) - T(e,1))/(1-T(e,1)); 

count(e,1) = count(e,1) + 1*per(e,1); 

end 

end 

count(e) = (count(e)/140)*100; 

end 

% Save count values in count.txt 

fileID = fopen('temp.txt','w'); 

fprintf(fileID,'%f',count(1,1)); 

fclose(fileID); 

figure 

plot(d,error2(d,1),[0 r], [T(1,1) T(1,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Power Notch Command: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Power Notch Command Residual Evaluation') 

%ylim([0 0.005]); 

grid on; 
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O4 LCP Residual Generation and Evaluation Source Code 

%LCP Sensor Residual Generation and Evaluation Source Code 

r=140; 

count =zeros(6,2); 

%Read In Locomotives recorded Data from Data.txt file 

filename = 'C:\Decoder\DATA.txt'; 

M = dlmread(filename,',',6,2); 

%Deleting Unused Inputs 

M(:,5:9) = []; 

M(:,6:12) = []; 

M(:,8:16) = []; 

M(:,9:71) = []; 

x = M; 

%sorting x for input configuration for the NN function 

x(:,8) = x(:,1); 

x(:,1) = x(:,6); 

x(:,6) = x(:,2); 

x(:,2) = x(:,3); 

x(:,3) = x(:,6); 

x(:,6) = x(:,4); 

x(:,4) = x(:,8); 

x(:,8) = x(:,5); 

x(:,5) = x(:,7); 

x(:,7) = x(:,6); 

x(:,6) = x(:,8); 

x(:,8) = []; 

%Sorted .txt file for target arrangement for the NN function 

a = M(:,8); 

% Get absolute value of the input and target values 

a = abs(a); %Target 

x = abs(x); %Input 

stdd = zeros(1,1); 

meann = zeros(1,1); 

error2 = zeros(r,1); 

per = zeros(6,1); 

T = [0.424699204643921]; 

error1 = zeros(r+5,6); 

y = LCPFunc(x'); %Neural Network Model 

l = [1.5;1;1;1;1;1]; 

error =(((a'-y))').^2; %Unfiltered Residual 

%Scale data between 0 and 1 

for o=1:1 

for j = 1:r+5 

error1(j,o) = (2/(1+exp(-error(j,o))))-1; 

end 

end 

%Residual Filter*********************************************************** 

for o=1:1 

for j = 1:r 

for g = 0:4 

error2(j,o) = error2(j,o)+(1/5)*(error1(j+g,o)); 

end 

end 

end 

%************************************************************************* 

% Threshold Calculation 

for t=1:1 

meann(t,1) = mean(error2(:,t)); %Mean 

stdd(t,1) = std(error2(:,t)); %Standard Deviation 

%T(t,1) = meann(t,1) + l(t,1)*stdd(t,1); %Upper Threshold Calculation where 

l is 
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lamda 

%T(t,2) = meann(t,1) - l(t,1)*stdd(t,1); 

end 

d = 1:r; 

% Count Number of Faulty Conditions 

for e = 1:1 

for q = 1:r 

if error2(q,e) > T(e,1) 

per(e,1) = (error2(q,e) - T(e,1))/(1-T(e,1)); 

count(e,1) = count(e,1) + 1*per(e,1); 

end 

end 

count(e) = (count(e)/140)*100; 

end 

% Save count values in count.txt 

fileID = fopen('temp.txt','w'); 

fprintf(fileID,'%f',count(1,1)); 

fclose(fileID); 

figure 

plot(d,error2(d,1),[0 r], [T(1,1) T(1,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Load Control Pot: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Load Control Pot Residual Evaluation') 

%ylim([0 0.005]); 

grid on; 
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O5 EXFM Residual Generation and Evaluation Source Code 

%EXFM Sensor Residual Generation and Evaluation Source Code 

r=140; 

count =zeros(6,2); 

%Read In Locomotives recorded Data from Data.txt file 

filename = 'C:\Decoder\DATA.txt'; 

M = dlmread(filename,',',6,2); 

%Deleting Unused Inputs 

M(:,5:9) = []; 

M(:,6:12) = []; 

M(:,8:16) = []; 

M(:,9:71) = []; 

x = M; 

%sorting x for input configuration for the NN function 

x(:,1) = M(:,6); 

x(:,2) = M(:,3); 

x(:,3) = M(:,2); 

x(:,4) = M(:,1); 

x(:,5) = M(:,8); 

x(:,6) = M(:,5); 

x(:,7) = M(:,4); 

x(:,8) = []; 

%Sorted .txt file for target arrangement for the NN function 

a = M(:,7); 

% Get absolute value of the input and target values 

a = abs(a); %Target 

x = abs(x); %Input 

stdd = zeros(1,1); 

meann = zeros(1,1); 

error2 = zeros(r,1); 

per = zeros(6,1); 

%T = 0; 

T = 0.139353725477192; 

error1 = zeros(r+5,6); 

y = EXFMFunc(x'); %Neural Network Model 

l = [1.5;1;1;1;1;1]; 

error =(((a'-y))').^2; %Unfiltered Residual 

%Scale data between 0 and 1 using Sigmoid Function 

for o=1:1 

for j = 1:r+5 

error1(j,o) = (2/(1+exp(-error(j,o))))-1; 

end 

end 

%Residual Filter*********************************************************** 

for o=1:1 

for j = 1:r 

for g = 0:4 

error2(j,o) = error2(j,o)+(1/5)*(error1(j+g,o)); 

end 

end 

end 

%************************************************************************* 

% Threshold Calculation 

for t=1:1 

meann(t,1) = mean(error2(:,t)); %Mean 

stdd(t,1) = std(error2(:,t)); %Standard Deviation 

%T(t,1) = meann(t,1) + l(t,1)*stdd(t,1); %Upper Threshold Calculation where 

l is 

lamda 

%T(t,2) = meann(t,1) - l(t,1)*stdd(t,1); 

end 
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d = 1:r; 

% Count Number of Faulty Conditions 

for e = 1:1 

for q = 1:r 

if error2(q,e) > T(e,1) 

per(e,1) = (error2(q,e) - T(e,1))/(1-T(e,1)); 

count(e,1) = count(e,1) + 1*per(e,1); 

end 

end 

count(e)=(count(e)/140)*100; 

end 

% Save count values in count.txt 

fileID = fopen('temp.txt','w'); 

fprintf(fileID,'%f',count(1,1)); 

fclose(fileID); 

figure 

plot(d,error2(d,1),[0 r], [T(1,1) T(1,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Exciter field Current: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Exciter field Current Residual Evaluation') 

%ylim([0 0.005]); 

grid on; 
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O6 EXACT Residual Generation and Evaluation Source Code 

%EXACT Sensor Residual Generation and Evaluation Source Code 

r=140; 

count =zeros(6,2); 

%Read In Locomotives recorded Data from Data.txt file 

filename = 'C:\Decoder\DATA.txt'; 

M = dlmread(filename,',',6,2); 

%Deleting Unused Inputs 

M(:,5:9) = []; 

M(:,6:12) = []; 

M(:,8:16) = []; 

M(:,9:71) = []; 

x = M; 

%sorting x for input configuration for the NN function 

x(:,1) = M(:,7); 

x(:,2) = M(:,3); 

x(:,3) = M(:,2); 

x(:,4) = M(:,1); 

x(:,5) = M(:,8); 

x(:,6) = M(:,5); 

x(:,7) = M(:,4); 

x(:,8) = []; 

%Sorted .txt file for target arrangement for the NN function 

a = M(:,6); 

% Get absolute value of the input and target values 

a = abs(a); %Target 

x = abs(x); %Input 

stdd = zeros(1,1); 

meann = zeros(1,1); 

error2 = zeros(r,1); 

per = zeros(6,1); 

T = 0.940231031675765; 

error1 = zeros(r+5,6); 

y = EXACTFunc(x'); %Neural Network Model 

l = [1.2;1;1;1;1;1]; 

error =(((a'-y))').^2; %Unfiltered Residual 

%Scale data between 0 and 1 

for o=1:1 

for j = 1:r+5 

error1(j,o) = (2/(1+exp(-error(j,o))))-1; 

end 

end 

%Residual Filter*********************************************************** 

for o=1:1 

for j = 1:r 

for g = 0:4 

error2(j,o) = error2(j,o)+(1/5)*(error1(j+g,o)); 

end 

end 

end 

%************************************************************************* 

% Threshold Calculation 

for t=1:1 

meann(t,1) = mean(error2(:,t)); %Mean 

stdd(t,1) = std(error2(:,t)); %Standard Deviation 

%T(t,1) = meann(t,1) + l(t,1)*stdd(t,1); %Upper Threshold Calculation where 

l is 

lamda 

%T(t,2) = meann(t,1) - l(t,1)*stdd(t,1); 

end 

d = 1:r; 
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% Count Number of Faulty Conditions 

for e = 1:1 

for q = 1:r 

if error2(q,e) > T(e,1) 

per(e,1) = (error2(q,e) - T(e,1))/(1-T(e,1)); 

count(e,1) = count(e,1) + 1*per(e,1); 

end 

end 

count(e) = (count(e)/140)*100; 

end 

% Save count values in count.txt 

fileID = fopen('temp.txt','w'); 

fprintf(fileID,'%f',count(1,1)); 

fclose(fileID); 

figure 

plot(d,error2(d,1),[0 r], [T(1,1) T(1,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Exciter Armature Output: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Exciter Armature Output Residual Evaluation') 

%ylim([0 0.005]); 

grid on; 
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O7 Engine Notch Command Residual Generation and Evaluation Source Code 

%Engine Notch Command Sensor Residual Generation and Evaluation Source Code 

r=140; 

count =zeros(6,2); 

%Read In Locomotives recorded Data from Data.txt file 

filename = 'C:\Decoder\DATA.txt'; 

M = dlmread(filename,',',6,2); 

%Deleting Unused Inputs 

M(:,5:9) = []; 

M(:,6:12) = []; 

M(:,8:16) = []; 

M(:,9:71) = []; 

x = M; 

%sorting x for input configuration for the NN function 

x(:,1) = M(:,6); 

x(:,2) = M(:,8); 

x(:,3) = M(:,4); 

x(:,4) = M(:,7); 

x(:,5) = M(:,5); 

x(:,6) = M(:,3); 

x(:,7) = M(:,2); 

x(:,8) = []; 

%Sorted .txt file for target arrangement for the NN function 

a = M(:,1); 

% Get absolute value of the input and target values 

a = abs(a); %Target 

x = abs(x); %Input 

stdd = zeros(1,1); 

meann = zeros(1,1); 

error2 = zeros(r,1); 

per = zeros(6,1); 

T = [4.12642051435862e-08]; 

%T = [0.940231031675765]; 

error1 = zeros(r+5,6); 

y = ENCFunc(x'); %Neural Network Model 

l = [3.2;1;1;1;1;1]; 

error =(((a'-y))').^2; %Unfiltered Residual 

%Scale data between 0 and 1 using Sigmoid Function 

for o=1:1 

for j = 1:r+5 

error1(j,o) = (2/(1+exp(-error(j,o))))-1; 

end 

end 

%Residual Filter*********************************************************** 

for o=1:1 

for j = 1:r 

for g = 0:4 

error2(j,o) = error2(j,o)+(1/5)*(error1(j+g,o)); 

end 

end 

end 

%************************************************************************* 

% Threshold Calculation 

for t=1:1 

meann(t,1) = mean(error2(:,t)); %Mean 

stdd(t,1) = std(error2(:,t)); %Standard Deviation 

%T(t,1) = meann(t,1) + l(t,1)*stdd(t,1); %Upper Threshold Calculation where 

l is 

lamda 

%T(t,2) = meann(t,1) - l(t,1)*stdd(t,1); 

end 
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d = 1:r; 

% Count Number of Faulty Conditions 

for e = 1:1 

for q = 1:r 

if error2(q,e) > T(e,1) 

per(e,1) = (error2(q,e) - T(e,1))/(1-T(e,1)); 

count(e,1) = count(e,1) + 1*per(e,1); 

end 

end 

count(e) = ((count(e))/140)*100; 

end 

% Save count values in count.txt 

fileID = fopen('temp.txt','w'); 

fprintf(fileID,'%f',count(1,1)); 

fclose(fileID); 

figure 

plot(d,error2(d,1),[0 r], [T(1,1) T(1,1)], 'r'); 

xlabel('Timesteps'); 

ylabel('Engine Notch Command: Error per Pattern'); 

legend('Residual', 'Threshold Limit'); 

title('Engine Notch Command Residual Evaluation') 

%ylim([0 0.005]); 

grid on; 
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Appendix P: GUI Application Source Code 

function varargout = untitled(varargin) 

gui_Singleton = 1; 

gui_State = struct('gui_Name', mfilename, ... 

'gui_Singleton', gui_Singleton, ... 

'gui_OpeningFcn', @untitled_OpeningFcn, ... 

'gui_OutputFcn', @untitled_OutputFcn, ... 

'gui_LayoutFcn', [] , ... 

'gui_Callback', []); 

if nargin && ischar(varargin{1}) 

gui_State.gui_Callback = str2func(varargin{1}); 

end 

if nargout 

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

gui_mainfcn(gui_State, varargin{:}); 

end 

end 

% --- Executes just before untitled is made visible. 

function untitled_OpeningFcn(hObject, eventdata, handles, varargin) 

% Choose default command line output for untitled 

handles.output = hObject; 

% Update handles structure 

guidata(hObject, handles); 

end 

% --- Outputs from this function are returned to the command line. 

function varargout = untitled_OutputFcn(hObject, eventdata, handles) 

varargout{1} = handles.output; 

end 

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

%Check if locomotive number is inserted into the textbox if not Display 

%windows pop-up 

loco = get(handles.edit1,'string'); 

if isempty(loco) 

msgbox('Enter Locomotive Number First', 'Error','error'); 

else 

% Display Count Down to start with the FDI Process 

set(handles.text33,'string','Test will start in 10 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 9 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 8 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 7 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 6 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 5 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 4 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 3 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 2 sec') 

pause(1) 

set(handles.text33,'string','Test will start in 1 sec') 

pause(1) 

set(handles.text33,'string','Test Running') 
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NET.addAssembly('System.Windows.Forms') 

%Open Locomotive Interfacing Program 

system('C:\Users\Chantel\Desktop\Werk\BSS\Hyperterminal\Hyperterminal\hyper

trm.exe 

C:\Users\Chantel\Desktop\Werk\BSS\Hyperterminal\Hyperterminal\Morne.ht &') 

pause(1); 

System.Windows.Forms.SendKeys.SendWait('{ENTER}'); 

pause(1); 

%Username and Password Login to enable Recording 

System.Windows.Forms.SendKeys.SendWait('root{Enter}'); 

pause(1); 

System.Windows.Forms.SendKeys.SendWait('d7erie{Enter}'); 

pause(2); 

%Call Record Function 

System.Windows.Forms.SendKeys.SendWait('tbdis{Enter}{d}y{Enter}200{Enter}n{

Enter} 

exc.ds{Enter}'); 

pause(30); 

%Create DATA.REC File 

System.Windows.Forms.SendKeys.SendWait('{e}{e}cd work{Enter}sz 

data.rec{Enter}'); 

pause(20); 

%Exit Recording Mode 

System.Windows.Forms.SendKeys.SendWait('exit{Enter}'); 

pause(1); 

%Close Hyperterminal 

System.Windows.Forms.SendKeys.SendWait('%{F4}{Enter}'); 

%Cut And Paste .rec File 

if exist('C:\Users\Chantel\Desktop\Werk\BSS\Hyperterminal\DATA.rec', 

'file') 

movefile('C:\Users\Chantel\Desktop\Werk\BSS\Hyperterminal\DATA.rec', 'C: 

\Decoder\DATA.rec'); 

%Open DOS Box to decode the .rec file to a .txt file 

system('C:\Program Files (x86)\DOSBox-0.74\DOSBox.exe &') 

%Using DOSBox to run the Decoder program 

pause(4); 

System.Windows.Forms.SendKeys.SendWait(' mount c c:\'); 

pause(1); 

%Code for mounting the Decoder directory ************************* 

System.Windows.Forms.SendKeys.SendWait('Decoder {Enter}'); 

pause(1); 

System.Windows.Forms.SendKeys.SendWait(' c: {Enter}'); 

pause(1); 

System.Windows.Forms.SendKeys.SendWait(' Program {Enter}'); 

pause(1); 

%'Running the Coding software and procdure************************** 

System.Windows.Forms.SendKeys.SendWait(' Data.rec {Enter}'); 

pause(1); 

System.Windows.Forms.SendKeys.SendWait(' Data.txt {Enter}'); 

pause(10); 

System.Windows.Forms.SendKeys.SendWait(' Exit {Enter}'); 

%Delete .rec file 

if exist('C:\Decoder\DATA.rec', 'file') 

delete 'C:\Decoder\DATA.rec'; 

end 

% Cut and Paste decoded .txt file 

if exist('C:\Decoder\DATA.txt', 'file') 

movefile('C:\Decoder\DATA.txt', 'C:\Decoder\txt Data files\DATA.txt') 

end 

%Remove Unwanted Text from .txt file 

if exist('C:\Decoder\DATA.txt', 'file') 

Filter; 
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end 

end 

%Read In Locomotives recorded Data from Data.txt file 

filename = 'count.txt'; 

count = dlmread(filename,',',0,0); 

set(handles.edit3,'string',num2str(count(1,1))); 

set(handles.edit4,'string',num2str(count(1,2))); 

set(handles.edit5,'string',num2str(count(1,3))); 

set(handles.edit6,'string',num2str(count(1,4))); 

set(handles.edit7,'string',num2str(count(1,5))); 

set(handles.edit8,'string',num2str(count(1,6))); 

filename2 = 'count1.txt'; 

count1 = dlmread(filename2,',',0,0); 

n=0; 

%Highlight the Highest Probability for the failing Section 

for i = 1:6 

if max(count(:)) == (count(1,i)) 

n=i; 

switch n 

case 1 

set(handles.edit3,'BackgroundColor','red'); 

case 2 

set(handles.edit4,'BackgroundColor','red'); 

case 3 

set(handles.edit5,'BackgroundColor','red'); 

case 4 

set(handles.edit6,'BackgroundColor','red'); 

case 5 

set(handles.edit7,'BackgroundColor','red'); 

case 6 

set(handles.edit8,'BackgroundColor','red'); 

end 

end 

end 

%Check to see if there are more than one highest failing sections 

if count1 < 2 

n=0; 

%Find the highest Probability of failing Component and Perform Sensor 

%Validation 

for i = 1:6 

if max(count(:)) == (count(1,i)) 

n = i; 

end 

end 

%Set GUI to indicate faulty sections and display faut in Textbox 

switch n 

case 1 

ENC; %Engine Notch Command Function 

filename1 = 'temp.txt'; 

ENC1 = dlmread(filename1,',',0,0); 

set(handles.edit10,'string','N/A'); 

set(handles.edit11,'string','N/A'); 

set(handles.edit12,'string','N/A'); 

set(handles.edit13,'string','N/A'); 

set(handles.edit14,'string','N/A'); 

set(handles.edit9,'string',num2str(ENC1)); 

set(handles.edit21,'string','N/A'); 

set(handles.edit22,'string','N/A'); 

set(handles.edit23,'string','N/A'); 

set(handles.edit24,'string','N/A'); 

set(handles.edit25,'string','N/A'); 

set(handles.edit26,'string','N/A'); 
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if ENC1 > 90 

set(handles.edit9,'BackgroundColor','red'); 

set(handles.text33,'string','Engine Notch Command Card Faulty') 

else 

set(handles.text33,'string','Master Controller Contact Tips Faulty') 

end 

case 2 

PNC; %Power Notch Command Function 

filename1 = 'temp.txt'; 

PNC1 = dlmread(filename1,',',0,0); 

set(handles.edit9,'string','N/A'); 

set(handles.edit11,'string','N/A'); 

set(handles.edit12,'string','N/A'); 

set(handles.edit13,'string','N/A'); 

set(handles.edit14,'string','N/A'); 

set(handles.edit10,'string',num2str(PNC1)); 

set(handles.edit21,'string','N/A'); 

set(handles.edit22,'string','N/A'); 

set(handles.edit23,'string','N/A'); 

set(handles.edit24,'string','N/A'); 

set(handles.edit25,'string','N/A'); 

set(handles.edit26,'string','N/A'); 

if PNC1 > 90 

set(handles.edit10,'BackgroundColor','red'); 

set(handles.text33,'string','Power Notch Command Card Faulty') 

else 

set(handles.text33,'string','Master Controller Contact Tips Faulty') 

end 

case 3 

SCM8; %Main Alternator Generator Function 

filename1 = 'temp.txt'; 

SCM81 = dlmread(filename1,',',0,0); 

set(handles.edit9,'string','N/A'); 

set(handles.edit10,'string','N/A'); 

set(handles.edit12,'string','N/A'); 

set(handles.edit13,'string','N/A'); 

set(handles.edit14,'string','N/A'); 

set(handles.edit11,'string',num2str(SCM81)); 

set(handles.edit21,'string','N/A'); 

set(handles.edit22,'string','N/A'); 

set(handles.edit23,'string','N/A'); 

set(handles.edit24,'string','N/A'); 

set(handles.edit25,'string','N/A'); 

set(handles.edit26,'string','N/A'); 

if SCM81 > 90 

set(handles.edit11,'BackgroundColor','red'); 

set(handles.text33,'string','SCM8 Sensor Faulty') 

else 

set(handles.text33,'string','Alternator Causing Oscilation') 

end 

case 4 

EXACT; %Exciter Armature Current Function 

filename1 = 'temp.txt'; 

EXACT1 = dlmread(filename1,',',0,0); 

set(handles.edit9,'string','N/A'); 

set(handles.edit10,'string','N/A'); 

set(handles.edit11,'string','N/A'); 

set(handles.edit13,'string','N/A'); 

set(handles.edit14,'string','N/A'); 

set(handles.edit12,'string',num2str(EXACT1)); 

set(handles.edit21,'string','N/A'); 

set(handles.edit22,'string','N/A'); 
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set(handles.edit23,'string','N/A'); 

set(handles.edit24,'string','N/A'); 

set(handles.edit25,'string','N/A'); 

set(handles.edit26,'string','N/A'); 

if EXACT1 > 90 

set(handles.edit12,'BackgroundColor','red'); 

set(handles.text33,'string','EXACT Sensor Faulty') 

else 

set(handles.text33,'string','Exciter Armature causing oscillation') 

end 

case 5 

EXFM; %Exciter Field Current Function 

filename1 = 'temp.txt'; 

EXFM1 = dlmread(filename1,',',0,0); 

set(handles.edit9,'string','N/A'); 

set(handles.edit10,'string','N/A'); 

set(handles.edit11,'string','N/A'); 

set(handles.edit12,'string','N/A'); 

set(handles.edit14,'string','N/A'); 

set(handles.edit13,'string',num2str(EXFM1)); 

set(handles.edit21,'string','N/A'); 

set(handles.edit22,'string','N/A'); 

set(handles.edit23,'string','N/A'); 

set(handles.edit24,'string','N/A'); 

set(handles.edit25,'string','N/A'); 

set(handles.edit26,'string','N/A'); 

if EXFM1 > 90 

set(handles.edit13,'BackgroundColor','red'); 

set(handles.text33,'string','EXFM Module Faulty') 

else 

set(handles.text33,'string','BSS Box/Loose wires on circuit') 

end 

case 6 

LCP; %Load Control Potensiometer Function 

filename1 = 'temp.txt'; 

LCP1 = dlmread(filename1,',',0,0); 

set(handles.edit9,'string','N/A'); 

set(handles.edit10,'string','N/A'); 

set(handles.edit11,'string','N/A'); 

set(handles.edit12,'string','N/A'); 

set(handles.edit13,'string','N/A'); 

set(handles.edit14,'string',num2str(LCP1)); 

set(handles.edit21,'string','N/A'); 

set(handles.edit22,'string','N/A'); 

set(handles.edit23,'string','N/A'); 

set(handles.edit24,'string','N/A'); 

set(handles.edit25,'string','N/A'); 

set(handles.edit26,'string','N/A'); 

if LCP1 > 90 

set(handles.edit14,'BackgroundColor','red'); 

set(handles.text33,'string','LCP Sensing Device Faulty') 

else 

set(handles.text33,'string','Governor Defective') 

end 

end 

%If more than one section is faulty perform Total failure Component FDI 

elseif count1 > 1 

set(handles.edit9,'string','N/A'); 

set(handles.edit10,'string','N/A'); 

set(handles.edit11,'string','N/A'); 

set(handles.edit12,'string','N/A'); 

set(handles.edit13,'string','N/A'); 
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set(handles.edit14,'string','N/A'); 

filename1 = 'class.txt'; 

c = dlmread(filename1,',',0,0); 

switch c 

case 1 %Governor Faulty 

set(handles.edit21,'string','OK'); 

set(handles.edit22,'string','OK'); 

set(handles.edit23,'string','OK'); 

set(handles.edit24,'string','OK'); 

set(handles.edit25,'string','OK'); 

set(handles.edit26,'string','Fault'); 

set(handles.edit26,'BackgroundColor','red'); 

set(handles.text33,'string','Governor Faulty') 

case 2 %Exciter Field Winding or Circuit Faulty 

set(handles.edit21,'string','OK'); 

set(handles.edit22,'string','OK'); 

set(handles.edit23,'string','OK'); 

set(handles.edit24,'string','OK'); 

set(handles.edit25,'string','Fault'); 

set(handles.edit25,'BackgroundColor','red'); 

set(handles.text33,'string','Exciter Field Winding or Circuit Faulty') 

set(handles.edit26,'string','OK'); 

case 3 %Exciter Armature/Alternator Rotor Open 

set(handles.edit21,'string','OK'); 

set(handles.edit22,'string','OK'); 

set(handles.edit23,'string','OK'); 

set(handles.edit24,'string','Fault'); 

set(handles.edit24,'BackgroundColor','red'); 

set(handles.text33,'string','Exciter Armature/Alternator Rotor Open') 

set(handles.edit25,'string','OK'); 

set(handles.edit26,'string','OK'); 

case 4 %Alternator Stator Winding Open 

set(handles.edit21,'string','OK'); 

set(handles.edit22,'string','OK'); 

set(handles.edit23,'string','Fault'); 

set(handles.edit23,'BackgroundColor','red'); 

set(handles.text33,'Alternator Stator Winding Open') 

set(handles.edit24,'string','OK'); 

set(handles.edit25,'string','OK'); 

set(handles.edit26,'string','OK'); 

end 

end 

end 

end 

function edit1_Callback(hObject, eventdata, handles) 

set(handles.edit2,'string',date) 

set(handles.text33,'string','Notch Locomotive to Notch 1 and Press Start 

Button') 

end 

% --- Executes during object creation, after setting all properties. 

function edit1_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit2_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 
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end 

% --- Executes during object creation, after setting all properties. 

function edit7_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit8_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit3_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit4_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit5_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

function edit6_Callback(hObject, eventdata, handles) 

set(hObject,'BackgroundColor','red'); 

end 

% --- Executes during object creation, after setting all properties. 

function edit6_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit9_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit10_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit11_CreateFcn(hObject, eventdata, handles) 
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if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit12_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit13_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit14_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit21_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit22_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit23_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit24_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 

function edit25_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 

% --- Executes during object creation, after setting all properties. 
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function edit26_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get 

(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

end 
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Appendix Q: Total Component Failure Neural Network 
Training 

Q1 Training Data 

Table Q1: Training Data Setup Configuration 

 

 

 

 

 

 

 

Outputs Description

ENC PNC SCM8 EXACT EXFM LCP

0 0 -1 -1 1 0 3 Exciter Fault

0.5 0.5 -1 -1 1 0.4 3 Exciter Fault

-0.5 0.4 -1 -1 1 0.3 3 Exciter Fault

0.4 0.5 -1 1 1 0.1 4 SCM8

0.2 -0.5 -1 1 1 0.5 4 SCM8

-0.2 0.3 -1 1 1 0.2 4 SCM8

0 0 -1 -1 -1 -1 1 LCP

0.5 0.3 -1 -1 -1 -1 1 LCP

-0.2 -0.4 -1 -1 -1 -1 1 LCP

0 0 -1 -1 -1 0 2 Exciter Field Fault

0.1 0.5 -1 -1 -1 0.4 2 Exciter Field Fault

-0.2 0.4 -1 -1 -1 0.2 2 Exciter Field Fault

0.2 0 -1 -1 1 0.4 3 Exciter Fault

0.1 0.4 -1 -1 1 0.6 3 Exciter Fault

-0.6 0.1 -1 -1 1 0.1 3 Exciter Fault

-0.1 -0.1 -1 1 1 0.3 4 SCM8

0.3 0.4 -1 1 1 0.2 4 SCM8

-0.4 -0.3 -1 1 1 0.1 4 SCM8

0.1 0.2 -1 -1 -1 -1 1 LCP

-0.2 -0.3 -1 -1 -1 -1 1 LCP

0.4 0.1 -1 -1 -1 -1 1 LCP

0.1 0.4 -1 -1 -1 0.2 2 Exciter Field Fault

-0.2 0.3 -1 -1 -1 -0.1 2 Exciter Field Fault

0.3 -0.5 -1 -1 -1 0.3 2 Exciter Field Fault

-0.5 0.1 -1 -1 1 -0.2 3 Exciter Fault

Inputs
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Q2 Neural Network Training Results 

  Table Q2: Training Results 

 

 

Simulation Training Set Error (MAE) Validation Set Error (MAE) Test Set Error (MAE)

1 0.00068589 1.058377625 0.042328098

2 2.98E-05 0.00185801 0.000799082

3 4.25E-15 0.003090358 0.008383483

4 0.001585 0.028975578 0.1222421

5 2.35E-05 0.012849337 0.024484411

6 1.40E-08 0.040633866 0.007681244

7 0.000177991 0.000813129 0.002730875

8 3.24E-05 0.04595278 0.262538907

9 0.000214427 0.144206087 0.071278713

10 0.1143902 0.020502828 0.245571781

11 0.017006559 0.196096484 0.155852689

12 5.30E-19 0.059741526 0.123838874

13 1.03E-05 0.001615204 0.003031861

14 0.001070175 0.004503877 0.001888122

15 5.48E-05 0.035887614 0.008609193

16 1.29E-06 0.011660207 0.0926219

17 1.25E-06 0.054353636 0.009202409

18 0.009424607 0.019996632 0.025580056

19 1.99E-05 0.007391007 0.068345232

20 5.32E-09 0.121071965 0.539757006

21 3.99E-20 0.00611468 0.024412182

22 2.08E-12 0.211557765 0.122602661

23 0.02478263 0.052287692 0.067237094

24 0.000185002 0.002960259 0.003659416

25 0.001070704 0.024869734 0.114168337

26 1.11E-07 0.000844669 0.000310895

27 9.48E-07 0.019574906 0.077848734

28 9.61E-25 0.009218039 0.104062425

29 0.003246482 0.241741671 0.023790243

30 4.08E-17 0.040471839 0.097242118
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Figure Q1: Best Training Performance  
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Q3 Total Component Failure Neural Classifier Training Source Code  

result = zeros(30,3); 
n=1; 
while (n<31) 
x = a'; 
t = b'; 

  
% Training Function 

  
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
%Input and Output Pre/Post-Processing Functions 

  
net.input.processFcns = {'mapstd'}; 
net.output.processFcns = {'mapstd'}; 

  
% Setup Division of Data for Training, Validation, Testing 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 

  
% Performance Function 
net.performFcn = 'mae';  % Mean Squared Error 

  
% Plot Functions 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression', 'plotfit'}; 

  
% Train the Network 
[net,tr] = train(net,x,t); 

  
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 

  
% Recalculate Training, Validation and Test Performance 
trainTargets = t .* tr.trainMask{1}; 
valTargets = t .* tr.valMask{1}; 
testTargets = t .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,y) 
valPerformance = perform(net,valTargets,y) 
testPerformance = perform(net,testTargets,y) 

  

  
result(n,1) = [trainPerformance]; 
result(n,2) = [valPerformance]; 
result(n,3) = [testPerformance]; 

  
if n>1 
    for e = 1:n-1 
if (result(n,3) < result(e,3)) 
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    c = c +1; 
end 
    end 
end 

  
%Create Function + Plot for best generalization results 
    if (c == (n-1)) 
    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
    y = myNeuralNetworkFunction(x); 
    figure, plotperform(tr), grid on, title('Best Generalization Result')  
    end 
c=0;  
n=n+1 

  
end 

 

 


