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Abstract—Sparse matrix vector multiplication (SpMV) is
one of the most common operations in scientific and high-
performance applications, and is often responsible for the
application performance bottleneck. While the sparse ma-
trix representation has a significant impact on the resulting
application performance, choosing the right representation
typically relies on expert knowledge and trial and error.
This paper provides the first comprehensive study on the
impact of sparse matrix representations on two emerging
many-core architectures: the Intel’s Knights Landing (KNL)
XeonPhi and the ARM-based FT-2000Plus (FTP) many-cores.
Our study builds upon large-scale experiments involved over
9,500 distinct profiling runs performed on 956 sparse datasets
and five mainstream SpMV representations. We show that the
best sparse matrix representation depends on the underlying
architecture and input. To help developers to choose the
optimum matrix representation, we employ machine learning
to develop a predictive model. Our model is first trained offline
using a set of training examples. The learned model can be be
used to predict the best matrix representation for any unseen
input for a given architecture. We show that our model delivers
on average 91% and 95% of the best available performance
on FTP and KNL respectively, and it achieves this with no
runtime profiling overhead.

Keywords-Sparse matrix vector multiplication; Performance
optimization; Many-Cores; Performance analysis

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is commonly
seen in scientific and high-performance applications [18].
It is often responsible for the performance bottleneck and
notoriously difficult to optimize [9, 10]. Achieving a good
SpMV performance is challenging because its performance
is heavily affected by the density of nonzero entries or their
sparsity pattern. As the processor is getting increasingly
diverse and complex, optimizing SpMV becomes harder.

Prior research has shown that the sparse matrix storage
format (or representation) can have a significant impact on
the resulting performance, and the optimum representation
depends on the underlying architecture as well as the size
and the content of the matrices [1, 7, 22]. While there is
already an extensive body of study on optimizing SpMV on
SMP and multi-core architectures [9, 10], it remains unclear
how different sparse matrix representations affect the SpMV
performance on emerging many-core architectures.

This work investigates techniques to optimize SpMV on
two emerging many-core architectures: the Intel Knights
Landing (KNL) and the Pythium FT-2000Plus (FTP) [15,
25]. Both processor architectures integrate over 60 processor
cores which are highly attractive for the next-generation
HPC systems. We conduct a large-scale evaluation involved
over 9,500 profiling measurements performed on 956 rep-
resentative sparse datasets by considering five widely-used
sparse matrix representations: CSR [22], CSR5 [9], ELL [6],
SELL [7, 13], and HYB [1].

We show that while there is significant performance gain
for choosing the right sparse matrix representation, mistakes
can seriously hurt the performance. To choose the right
matrix presentation, we develop a predictive model based
on machine learning techniques. The model takes in a set
of quantifiable properties, or features, from the input sparse
matrix, and predicts the best representation to use on a given
many-core architecture. Our model is first trained offline
using a set of training examples. The trained model can
then be used to choose the optimum representation for any
unseen sparse matrix. Our experimental results show that our
approach is highly effective in choosing the sparse matrix
representation, delivering on average 91% and 95% of the
best available performance on FTP and KNL, respectively.

This work makes the following two contributions:

• It presents an extensible framework to evaluate SpMV
performance on KNL and FTP, two emerging many-
core architectures for HPC;

• It is the first comprehensive study on the impact of
sparse matrix representations on KNL and FTP;

• It develops a novel machine learning based approach
choose the right representation for a given architecture,
delivering significantly good performance across many-
core architectures;

• Our work is immediately deployable as it requires no
modification to the program source code.

II. BACKGROUND

In this section, we first introduce SpMV and sparse
matrix storage formats, before describing the two many-core
architectures targeted in the work.
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A. Sparse Matrix-Vector Multiplication

SpMV can be formally defined as y = Ax, where the
input matrix, A (M×N ), is sparse, and the input, x (N×1),
and the output, y (M ×1), vectors are dense. Figure 1 gives
a simple example of SpMV with M and N equal to 4, where
the number of nonzeros (nnz) of the input matrix is 8.

Figure 1. A simple example of SpMV with a 4× 4 matrix and a vector.
The product of the SpMV is a one-dimensional vector.

B. Sparse Matrix Representation

Since most of the elements of a sparse matrix are zeros,
it would be a waste of space and time to store these entries
and perform arithmetic operations on them. To this end,
researcher have designed a number of compressed storage
representations to store only the nonzeros. We describe
the sparse matrix representations targeted in this work.
Note that different representations require different SpMV
implementations, and thus have different performance on
distinct architecture and inputs.

COO. The coordinate (COO) format (a.k.a. IJV format) is
a particularly simple storage scheme. The arrays row, col,
and data are used to store the row indices, column indices,
and values of the nonzeros. This format is a general sparse
matrix representation, because the required storage is always
proportional to the number of nonzeros for any sparsity
pattern. Different from other formats, COO stores explicitly
both row indices and column indices. Table I shows an
example matrix in the COO format.

CSR. The compressed sparse row (CSR) format is the most
popular, general-purpose sparse matrix representation. This
format explicitly stores column indices and nonzeros in array
indices and data, and uses a third array ptr to store
the starting nonzero index of each row in the sparse matrix
(i.e., row pointers). For an M ×N matrix, ptr is sized of
M + 1 and stores the offset into the ith row in ptr[i].
Thus, the last entry of ptr is the total number of nonzeros.
Table I illustrates an example matrix represented in CSR. We
see that the CSR format is a natural extension of the COO
format by using a compressed scheme. In this way, CSR
can reduce the storage requirement. More importantly, the
introduced ptr facilitates a fast query of matrix values and
other interesting quantities such as the number of nonzeros
in a particular row.

CSR5. To achieve near-optimal load balance for matrices
with any sparsity structures, CSR5 first evenly partitions all
nonzero entries to multiple 2D tiles of the same size. Thus

Table I
MATRIX STORAGE FORMATS AND THEIR DATA STRUCTURES FOR THE

SPARSE MATRIX SHOWN IN FIGURE 1.

Representation Specific Values

COO
row = [0, 0, 1, 1, 1, 2, 3, 3]
col = [1, 2, 0, 2, 3, 2, 1, 2]

data = [6, 1, 2, 8, 3, 4, 7, 5]

CSR
ptr = [0, 2, 5, 6, 8]

indices = [1, 2, 0, 2, 3, 2, 1, 2]
data = [6, 1, 2, 8, 3, 4, 7, 5]

CSR51

ptr = [0, 2, 5, 6, 8] tile ptr = [0, 1, 4]
tile des : bit flag = [T, T, F, F |T, T, T, F ],

y off = [0, 1|0, 2], seg off = [0, 0|0, 0]
indices = [1, 0, 2, 2|3, 1, 2, 2]
data = [6, 2, 1, 8|3, 7, 4, 5]

ELL data =


6 1 ∗
2 8 3
4 ∗ ∗
7 5 ∗

 indices =


1 2 ∗
0 2 3
2 ∗ ∗
1 2 ∗



SELL data =


6 1 ∗
2 8 3
4 ∗
7 5

 indices =


1 2 ∗
0 2 3
2 ∗
1 2


slices = [3, 2]

SELL-C-σ data =


2 8 3
6 1 ∗
7 5
4 ∗

 indices =


0 2 3
1 2 ∗
1 2
2 ∗


slices = [3, 2]

HYB ELL: data =


6 1
2 8
4 ∗
7 5

 indices =


1 2
0 2
2 ∗
1 2


COO: row = [1], col = [3], data = [3]

when executing parallel SpMV operation, a compute core
can consume one or more 2D tiles, and each SIMD lane of
the core can deal with one column of a tile. Then the main
skeleton of the CSR5 format is simply a group of 2D tiles.
The CSR5 format has two tuning parameters: ω and σ, where
ω is a tile’s width and σ is its height. CSR5 is an extension
to the CSR format [9]. Apart from the three data structures
from CSR, CSR5 introduces another two data structures: a
tile pointer tile_ptr and a tile descriptor tile_des.
Table I illustrates an example matrix represented in CSR5,
where ω=σ=2.

ELL. The ELLPACK (ELL) format is suitable for the vector
architectures. For an M ×N matrix with a maximum of K
nonzeros per row, ELL stores the sparse matrix in a dense
M × K array (data), where the rows having fewer than
K are padded. Another data structure indices stores the
column indices and is zero-padded in the same way with
that of data. Table I shows the ELL representation of the
example sparse matrix, where K = 3 and the data structures
are padded with *. The ELL format would waste a decent



Figure 2. A high-level view of the FT-2000Plus architecture. Processor
cores are groups into panels (left) where each panel contains eight ARMv8
based Xiaomi cores (right).

amount of storage. To mitigate this issue, we can combine
ELL with another general-purpose format such as CSR or
COO (see Section II-B).

SELL and SELL-C-σ. Sliced ELL (SELL) is an extension
to the ELL format by partitioning the input matrix into strips
of C adjacent rows [13]. Each strip is stored in the ELL
format, and the number of nonzeros stored in ELL may differ
over strips. Thus, a data structure slice is used to keep the
strip information. Table I demonstrates a matrix represented
in the SELL format when C = 2. A variant to SELL is the
SELL-C-σ format which introduces sorting to save storage
overhead [7]. That is, they choose to sort the matrix rows
not globally but within σ consecutive rows. Typically, the
sorting scope σ is selected to be a multiple of C. The effect
of local sorting is shown in Table I with C = 2 and σ = 4.

HYB. The HYB format is a combination of ELL and COO,
and it stores the majority of matrix nonzeros in ELL while
the remaining entries in COO [1]. Typically, HYB stores
the typical number of nonzeros per row in the ELL format
and the exceptionally long rows in the COO format. In the
general case, this typical number (K) can be calculated
directly from the input matrix. Table I shows an example
matrix in this hybrid format, with K = 2.

III. EVALUATION SETUP

A. Hardware Platforms

Our work targets two many-core architectures designed
for HPC, described as follows.

FT-2000Plus. Figure 2 gives a high-level view of the FT-
2000Plus architecture. This architecture [15] integrates 64
ARMv8 based Xiaomi cores, offering a peak performance of
512 Gflops for double-precision operations, with a maximum
power consumption of 100 watts. The cores can run up to
2.4 GHz, and are groups into eight panels with eight cores
per panel. Each core has a private L1 cache of 32KB for
data and instructions, and a dedicated 512KB L2 cache for
data and instructions. The panels are connected through two

Figure 3. A high-level overview of the Intel KNL architecture. Cores are
grouped into tiles (left) with two cores per title (right).

directory control units (DCU) and a routing cell [25], where
cores and caches are linked via a 2D mesh network. External
I/O are managed by the DDR4 memory controllers (MC), and
the routing cells at each panel link the MCs to the DCUs.

Intel KNL. A KNL processor has a peak performance of 6
Tflops/s and 3Tflops/s respectively for single- and double-
precision operations [17]. A KNL socket can have up to
72 cores where each core has four threads running at 1.3
GHz. Each KNL core has a private L1 data and a private L1
instruction caches of 32KB, as well as two vector processor
units (VPU).

As shown in Figure 3, KNL cores are organized around
36 tiles where each title has two cores. Each title also
has a private, coherent 1MB L2 data cache shared among
cores, which is managed by the cache/home agent (CHA).
Tiles are connected into a 2D mesh to facilitate coherence
among the distributed L2 caches. Furthermore, a KNL chip
has a ‘near’ and a ‘far’ memory components. The near
memory components are multi-channel DRAM (MCDRAM)
which are connected to the tiles through the MCDRAM
Controllers (EDC). The ‘far’ memory components are DDR4
RAM connected to the chip via the DDR memory controllers
(DDR MC). While the ‘near’ memory is smaller than the
‘far’ memory, it provides 5x more bandwidth over traditional
DDRs. Depending how the chip is configured, some parts
or the entire near memory can share a global memory space
with the far memory, or be used as a cache. In this context,
MCDRAM is used in the cache mode and the dataset can
be hold in the high-speed memory.

B. Systems Software

Both platforms run a customized Linux operating system
with Kernel v4.4.0 on FTP and v3.10.0 on KNL. For
compilation, we use gcc v6.4.0 on FTP and Intel icc v17.0.4
on KNL with the default “-O3” compiler option. We use the
OpenMP threading model on both platforms with 64 threads
on FTP and 272 threads on KNL.



Algorithm 1 The SpMV Bench based on CSR5
1: procedure BENCHSPMV(A, x; y)
2: COOFMT* ctx ← ReadMatrix(mtx file)
3: CSR5FMT* ntx ← ConvertToCSR5(ctx)
4: for t← 1, 2, . . . , FRQ do
5: #pragma omp for
6: for each tile dt in ntx do
7: y′ ← CalculateSpMV(dt)
8: end for
9: UpdateProduct(y, y′)

10: end for
11: DumpInfo(runT , gflops, bw)
12: DeleteMTX(ctx, ntx)
13: end procedure

C. Datasets

Our experiments use a set of 956 square matrices (with
a total size of 90 GB) from the SuiteSparse matrix collec-
tion [3]. The number of nonzeros of these matrices ranges
from 100K to 20M. The dataset includes both regular and
irregular matrices, covering application domains ranging
from scientific computing to social networks.

D. SpMV Implementation

Algorithm 1 illustrates our library-based SpMV imple-
mentation using the CSR5 format as an example. Our library
takes in the raw data of the Matrix Market format into
memory of the COO format. Then we convert the COO-
based data into our target storage format (CSR, CSR5,
ELL, SELL, or HYB). When calculating SpMV, we use the
OpenMP threading model for parallelization. This process
is format dependent, i.e., the basic task can be a row,
a block row, or a data tile. When calculating a single
element of y falls into different tasks, we will have to
gather the partial results. This efficient data gathering can
be achieved by manually vectorize the SpMV code with
intrinsics. Due to the lack of the gather/scatter
function, we do not use the neon intrinsics on FTP. This is
because our experimental results show that explicitly using
the intrinsics results in a loss in performance, compared with
the C version. When measuring the performance, we run the
experiments for FRQ times and calculate the mean results.

IV. MEMORY ALLOCATION AND CODE VECTORIZATION

SpMV performance depends on a number of factors on
a many-core architecture. These include memory allocation
and code optimization strategies, and the sparse matrix rep-
resentation. The focus of this work is to identify the optimum
sparse matrix representation. To isolate the problem, we
need to ensure that performance comparisons of different
representations are conducted on the best possible memory
allocation and code optimization strategies. To this end, we
investigate how Non-Uniform Memory Access (NUMA) and
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Figure 4. The violin diagram shows the speedup distribution of NUMA-
aware memory allocation over NUMA-unaware memory allocation on FTP.
The thick black line shows where 50% of the data lie. NUMA-aware
memory allocation can significantly improve the SpMV performance.

code vectorization affect the SpMV performance on FTP and
KNL. We then conduct our experiments on the best-found
strategy of NUMA memory allocation and vectorization.

A. The Impact of NUMA Bindings

Unlike the default setting of KNL, the FTP architecture
exposes multiple NUMA nodes where a group of eight cores
are directly connected to a local memory module. Indirect
access to remote memory modules is possible but slow.
This experiment evaluates the impact of NUMA on SpMV
performance on FTP. We use the Linux NUMA utility,
numactl, to allocate the required data buffers from the
local memory module of a running processor.

Figure 4 show the performance improvement when using
NUMA-aware over non-NUMA-aware memory allocation
across five sparse matrix representation. We see that static
NUMA bindings enables significant performance gains for
all the five storage formats on FTP. Compared with the
case without tuning, using the NUMA tunings can yield
an average speedup of 1.5x, 1.9x, 6.0x, 2.0x, and 1.9x for
CSR, CSR5, ELL, SELL, and HYB, respectively. Note that
we have achieved the maximum speedup for the ELL-based
SPMV. This is due to the fact that using ELL allocates the
largest amount of memory buffers, and the manual NUMA
tunings can ensure that each NUMA node accesses its local
memory as much as possible.

B. The Impact of Vectorization on KNL

The two many-core architectures considered in the work
support SIMD vectorization. KNL and FTP have a vector
unit of 512 and 128 bits respectively. Figure 5 shows
that vectorization performance of CSR5 and SELL-based
SpMV on KNL. Overall, we see that manually vectorize
the code using vectorization intrinsics can significantly
improve the SpMV performance on KNL. Compared with
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Figure 5. The SpMV performance with and without explicit vectorization
on KNL.

the code without manual vectorization, the vectorized code
yields a speedup of 1.6x for CSR5 and 1.5x for SELL.
However, we observe no speedup for vectorized code on
FTP. This is that because FTP has no support of the gather
operation which is essential for accessing elements from
different locations of a vector. By contrast, KNL supports
_mm512_i32logather_pd, which improves the speed
of the data loading process. Therefore, for the remaining
experiments conducted in this work, we manually vectorize
the code on KNL but not on FTP.

C. FTP versus KNL

Figure 6 shows the performance comparison between
KNL and FTP. In general, we observe that SpMV on KNL
runs faster than it on FTP for each format. The average
speedup of KNL over FTP is 1.9x for CSR, 2.3x for CSR5,
1.3x for ELL, 1.5x for SELL, and 1.4x for HYB. The
performance disparity comes from the difference in the
memory hierarchy of the architectures. KNL differs from
FTP in that it has a high-speed memory, a.k.a., MCDRAM,
between the L2 cache and the DDR4 memory. MCDRAM
can provide 5x more memory bandwidth over the traditional
DDR memory. Once the working are loaded into this high-
speed memory, the application can then access the data with
a higher memory bandwidth which leads to a better overall
performance. SpMV on KNL also benefits from the support
of gather/scatter operations (see Section IV-B). This
is key for the overall SpMV performance, which is limited
by the scattered assess of the input vector. To sum up, we
would have a significant performance increase when the
aforementioned memory features are enabled.

From Figure 6, we also observe FTP outperforms KNL on
some matrices, specially when the size of the input matrices
is small. The performance disparity is due to the fact that
KNL and FTP differ in L2 cache in terms of both capacity
and coherence protocol.
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Figure 6. Comparing the SpMV performance between KNL and FTP. The
x-axis labels different sparse matrix representation, and the y-axis denotes
the achieved speedup of KNL over FTP.

Table II
THE BEST FORMAT DISTRIBUTION ON FTP AND KNL.

CSR CSR5 ELL SELL HYB

FTP 127(14.1%) 149(16.5%) 22(2.4%) 443(49.2%) 160(17.6%)
KNL 493(51.8%) 273(28.7%) 39(4.1%) 121(12.7%) 25(2.6%)

Table III
THE AVERAGE SLOWDOWNS OVER ALL THE MATRICES WHEN USING A

SINGLE FORMAT INSTEAD OF THE INDIVIDUAL BEST.

CSR CSR5 ELL SELL HYB

FTP 1.4x 1.8x 6.4x 1.3x 1.3x
KNL 1.3x 1.4x 8.7x 1.5x 1.6x

D. Optimum Sparse Matrix Formats

Figure 7 shows the overall performance of SpMV on FTP
and KNL . We see that there is no “one-size-fits-all” format
across inputs and architectures. On the FTP platform, SELL
is the optimum format for around 50% of the sparse matrices
and ELL gives the worse performance on most of the cases.
On the KNL platform, CSR gives the best performance for
most of the cases, which is followed by CSR5 and SELL.
On KNL, ELL and HYB give the best performance for just
a total of 64 sparse matrices (Table II).

Table III shows the average slowdowns when using a
fixed format across test cases over the optimum one. The
slowdown has a negative correlation with how often a given
format being optimal. For example, CSR gives the best
overall performance on KNL and as such it has the lowest
overall slowdown. Furthermore, SELL and HYB have a
similar average slowdown on FTP because they often deliver
similar performance (see Figure 7(a)).

Given that the optimum sparse matrix storage format
varies across architectures and inputs, finding the optimum
format is a non-trivial task. What we like to have is an
adaptive scheme that can automatically choose the right
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Figure 7. The overall performance of SpMV on FTP and KNL. The x-axis
labels different sparse matrices ordered by the number of nonzeros, and the
y-axis denotes the achieved SpMV performance in GFlops.
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format for a given input and architecture. In the next section,
we describe how to develop such as scheme using machine
learning.

V. ADAPTIVE REPRESENTATION SELECTION

A. Overall Methodology

Our approach takes a new, unseen sparse matrix and is
able to predict the optimum or near optimum sparse matrix
representation for a given architecture. An overview of our
approach can be seen in Figure 8, and is described in more
details in Section V-B. Our predictive model is built upon
the scikit-learn machine learning package [14].

For a given sparse matrix, our approach will collect a set
of information, or features, to capture the characteristics of
the matrix. The set of feature values can be collected at
compile time or during runtime. Table IV presents a full list
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Figure 9. The training process.

of all our considered features. After collecting the feature
values, a machine learning based predictor (that is trained
offline) takes in the feature values and predicts which matrix
representation should be used for the target architecture.
We then transform the matrix to the predicted format and
generate the computation code for that format.

B. Predictive Modeling

Our model for predicting the best sparse matrix rep-
resentation is a decision tree model. We have evaluated
a number of alternate modelling techniques, including re-
gression, Naive Bayes and K-Nearest neighbour (see also
Section V-D). We chose the decision tree model because
it gives the best performance and can be easily interpreted
compared to other black-box models. The input to our model
is a set of features extracted from the input matrix. The
output of our model is a label that indicates which sparse
matrix representation to use.

Building and using such a model follows the 3-step pro-
cess for supervised machine learning: (i) generate training
data (ii) train a predictive model (iii) use the predictor,
described as follows.

1) Training the Predictor: Our method for training the
predictive model is shown in Figure 9. We use the same
approach to train a model for each targeting architecture. To
train a predictor we first need to find the best sparse matrix
representation for each of our training matrix examples,
and extract features. We then use this set of data and
classification labels to train our predictor model.

Generating Training Data. We use five-fold-cross valida-
tion for training. This standard machine learning technique
works by selecting 20% samples for testing and using 80%
samples for training. To generate the training data for our
model we used 756 sparse matrices from the SuiteSparse
matrix collection. We execute SpMV using each sparse
matrix representation a number of times until the gap of
the upper and lower confidence bounds is smaller than 5%
under a 95% confidence interval setting. We then record
the best-performing matrix representation for each training
sample on both KNL and FTP. Finally, we extract the values
of our selected set of features from each matrix.

Building The Model. The optimal matrix representation
labels, along with their corresponding feature set, are passed
to our supervised learning algorithm. The learning algorithm



Table IV
THE FEATURES USED IN OUR MODEL.

Features Description

n rows number of rows
n cols number of columns
nnz frac percentage of nonzeros
nnz min minimum number of nonzeros per row
nnz max maximum number of nonzeros per row
nnz avg average number of nonzeros per row
nnz std standard derivation of nonzeros per row
variation matrix regularity

tries to find a correlation between the feature values and
optimal representation labels. The output of our learning
algorithm is a version of our decision-tree based model.
Because we target two platforms in this paper, we have
constructed two predictive models, one model per platform.
Since training is performed off-line and only need to be
carried out once for a given architecture, this is a one-off
cost.

Total Training Time. The total training time of our model is
comprised of two parts: gathering the training data, and then
building the model. Gathering the training data consumes
most of the total training time, in this paper it took around
3 days for the two platforms. In comparison actually building
the model took a negligible amount of time, less than 10 ms.

2) Features: One of the key aspects in building a suc-
cessful predictor is developing the right features in order
to characterize the input. Our predictive model is based
exclusively on static features of the target matrix and no
dynamic profiling is required. Therefore, it can be applied
to any hardware platform. The features are extracted using
our own Python script. Since our goal is to develop a
portable, architecture-independent approach, we do not use
any hardware-specific features.

Feature Selection. We considered a total of seven candidate
raw features (Table IV) in this work. Some features were
chosen from our intuition based on factors that can affect
SpMV performance e.g. nnz frac and variation, other fea-
tures were chosen based on previous work [18]. Altogether,
our candidate features should be able to represent the
intrinsic parts of a SpMV kernel.

Feature Scaling. The final step before passing our features
to a machine learning model is scaling each scalar value of
the feature vector to a common range (between 0 and 1)
in order to prevent the range of any single feature being a
factor in its importance. Scaling features does not affect the
distribution or variance of their values. To scale the features
of a new image during deployment we record the minimum
and maximum values of each feature in the training dataset,
and use these to scale the corresponding features.
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Figure 10. The predicted performance of SpMV on FTP and KNL. We
show the achieved SpMV performance with respect to the best available
performance across sparse matrix format.

3) Runtime Deployment: Deployment of our predictive
model is designed to be simple and easy to use. To this end,
our approach is implemented as an API. The API has encap-
sulated all of the inner workings, such as feature extraction
and matrix format translation. We also provide a source to
source translation tool to transform the computation of a
given SpMV kernel to each of target representations. Using
the prediction label, a runtime can choose which SpMV
kernel to use.

C. Predictive Model Evaluation

We use cross-validation to evaluate our approach. Spe-
cially, we split the 965 matrices into two parts: 756 training
matrices and 200 testing matrices. We learn a model with
the 756 matrices and five representations. The model is then
used to make prediction on the 200 testing matrices. We then
repeat this process multiple times to ensure each matrix is
tested at least once.

Figure 10 shows that our predictor achieves, on average,
91% and 95% of the best available SpMV performance
(found through exhaustive search) on FTP and KNL re-
spectively. It outperforms a strategy that uses only a single
format. As we have analyzed in Table III, SELL and HYB
can achieve a better performance than the other three formats
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Figure 11. Compare to alternative modeling techniques

on FTP. But they are still overtaken by our predictor. On
KNL, however, the performance of our predictor is followed
by using the CSR representation. Also, we note that using
the ELL representation yields poor performance on both FTP
and KNL. This shows that our predictor is highly effective
in choosing the right sparse matrix representation.

D. Alternative Modeling Techniques

Figure 11 shows resulting performance with respect to the
best available performance when using different techniques
to construct the predictive model. In addition to our decision
tree based model (DTC), we also consider Gaussian naı̈ve
bayes (GNB), multilayer perception (MLP), soft voting/ma-
jority rule Classification (VC), k-Nearest Neighbor (KNC,
k=1), logistic regression (LR), random forests classification
(RFC). Thanks to the high-quality features, all classifiers
are highly accurate in choosing sparse matrix representation.
We choose DTC because its accuracy is comparable to
alternative techniques and can be easily visualized and
interpreted.

VI. RELATED WORK

SpMV has been extensively studied on various platforms
over the past few decades [12, 16, 22]. A large body of
work has been dedicated to efficient and scalable SpMV on
multi-core and many-core processors. However, our work is
the first to conduct a comprehensive study on KNL and FTP.

On the SIMD processors, some researchers have de-
signed new compressed formats to enable efficient SpMV [1,
4, 5, 22, 23]. Liu et al. propose a storage format CSR5 [9],
which is a tile-based format. CSR5 offers high-throughput
SpMV on various platforms and shows good performance
for both regular and irregular matrices. And the format
conversion from CSR to CSR5 can be as low as the cost of
a few SpMV operations. On KNC, Liu et al. have identified

and addressed several bottlenecks [10]. They exploit the
salient architecture features of KNC, use specialized data
structures with careful load balancing to obtain satisfactory
performance. Wai Teng Tang et al. propose a SpMV format
called vectorized hybrid COO+CSR (VHCC) [20], which
employs a 2D jagged partitioning, tiling and vectorized pre-
fix sum computations to improve hardware resource. Their
SpMV implementation achieves an average 3x speedup over
Intel MKL for a range of scale-free matrices.

In recent years, ELLPACK is the most successful format
on the wide SIMD processors. Bell and Garland propose
the first ELLPACK-based format HYB, combining ELL-
PACK with COO formats [1]. The HYB can improve the
SpMV performance especially for matrix which are “wide”.
Sliced ELLPACK format has been proposed by Monakov
et al., where slices of the matrix are packed in ELLPACK
format separately [13]. BELLPACK is a format derived
from ELLPACK, which sorts rows of the matrix by the
number of nonzeros per row [2]. Monritz Kreutzer et al.
have designed a variant of Sliced ELLPACK SELL-C-sigma
based on Sliced ELLPACK as a SIMD-friendly data format,
in which slices are sorted [7].

There have also been studies on optimizing SpMV ded-
icated for SIMT GPUs [1, 11, 20, 21]. Wai Teng Tang
et al. introduce a series of bit-representation-optimized
compression schemes for representing sparse matrices on
GPUs including BRO-ELL, BRO-COO, BRO-HYB, which
perform compression on index data and help to speed up
SpMV on GPUs through reduction of memory traffic [19].
Jee W. Choi et al. propose a classical blocked compressed
sparse row (BCSR) and blocked ELLPACK (BELLPACK)
storage formats [2], which can match or exceed state-of-
the-art implementations. They also develop a performance
model that can guide matrix-dependent parameter tuning
which requires offline measurements and run-time estima-
tion modelling the architecture of GPUs. Yang et al. present
a novel non-parametric and self-tunable approach [24] to
data presentation for computing this kernel, particularly
targeting sparse matrices representing power-low graphs.
They take into account the skew of the non-zero distribution
present in matrices presenting power-law graphs.

Sparse matrix storage format selection is required
because various formats have been proposed for diverse ap-
plication scenarios and computer architectures [26]. In [18],
Sedaghat et al. study the inter-relation between GPU ar-
chitectures, sparse matrix representation, and the sparse
dataset. Further, they build a model based on decision tree to
automatically select the best representation for a given sparse
matrix on a given GPU platform. The decision-tree technique
is also used in [8], where Li et al. develop a sparse matrix-
vector multiplication auto-tuning system to bridge the gap
between specific optimizations and general-purpose usage.
This framework provides users with a unified programming
interface in the CSR format and automatically determines



the optimal format and implementation for any input sparse
matrix at runtime. In [26], Zhao et al. propose to use the deep
learning technique to select a right storage format. Compared
to the traditional machine learning techniques, using deep
learning can avoid the difficulties in coming up with the
right features of matrices for the purpose of learning. The
results have shown that the CNN-based technique can cut
format selection errors by two thirds.

Although the SpMV kernel has been extensively studied,
how well the widely-used sparse matrix representations
perform on the emerging many-core architectures remains
unknown. It is also unclear how to select a best performing
representation for a given dataset on KNL or FTP. Our work
aims to fill this gap by running an in-depth performance
evaluation on two emerging many-core architectures (KNL
and FTP), with a large number of sparse matrices and
five well-recognized storage formats. We have also learnt a
predictor to select the best representations on each platform.

VII. CONCLUSION

This paper has presented a comprehensive study of SpMV
performance on two emerging many-core architectures using
five mainstream matrix representations. The evaluation is
performed to measure the performance impact of the NUMA
binding, the vectorization, and the storage representation.
Our experimental results show that the best sparse matrix
representation depends to the underlying architectures and
the sparsity patterns of the input datasets. To facilitate the
selection of the best representation, we use machine learning
to automatically learn a model to predict the right matrix
representation for a given architecture and input. Our model
is first trained offline and the learned model can be used
for any unseen input matrix. Experimental results shows
that our model is highly effective in selecting the matrix
representation, delivering over 90% of the best available
performance on our evaluation platforms.
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