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Abstract

Most OR academics and practitioners are familiar with linear pro-
gramming (LP) and its applications. Many are however unaware of
conic optimisation, which is a powerful generalisation of LP, with a
prodigious array of important real-life applications. In this invited pa-
per, we give a gentle introduction to conic optimisation, followed by a
survey of applications in OR and related areas. Along the way, we try
to help the reader develop insight into the strengths and limitations of
conic optimisation as a tool for solving real-life problems.

Key Words: conic optimisation, second-order cone programming,
semidefinite programming.

1 Introduction

Most OR students, academics and practitioners are familiar with linear pro-
gramming (LP). For many problems arising in industry and elsewhere, LP is
an attractive option, due to its simplicity, the ease of doing sensitivity anal-
ysis, the existence of effective algorithms, and, perhaps most importantly,
the availability of good software. With modern software packages such as
CPLEX, Gurobi or Xpress, it is now possible to routinely solve LP instances
with thousands of variables and/or constraints to proven optimality. These
software packages can also cope with integer-constrained variables.

Of course, in real-world applications, one often encounters problems that
have non-linear aspects. Sometimes, one can construct good linear approx-
imations to such problems, perhaps with the help of binary variables, and
thereby make them amenable to solution with the above-mentioned pack-
ages. In other cases, however, the nonlinearity is significant and must be
faced head-on. For such cases, various non-linear programming (NLP) algo-
rithms have been developed (see, e.g., [13, 14]).
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The purpose of this paper is to introduce a very important special case
of NLP called conic optimisation (CO). Despite having a very special struc-
ture, CO is remarkably powerful. It has a prodigious array of important
real-life applications, not only in OR, but also in related areas, such as
statistics, computer science, engineering and finance. Moreover, CO in-
herits some of the nice features enjoyed by LP, such as the existence of
efficient (polynomial-time) algorithms, a well-developed duality theory, and
the availability of good software.

Apart from LP, the most important special cases of CO are second order
cone programming (SOCP) and semidefinite programming (SDP). There al-
ready exist several good surveys on both SOCP (e.g., [2, 53, 62]) and SDP
(e.g., [43, 93, 94, 96]). There also exists an excellent monograph on CO in
general (Nesterov & Nemirovsky [73]). It is fair to say, however, that most
of these works assume that the reader is a nonlinear programming expert.
This can make them rather inaccessible to the OR generalist.

In this work, we assume only minimal knowledge of LP, geometry and
linear algebra. Moreover, we place an emphasis on applications in OR and
related areas, covering, e.g., inventory control, facility location, portfolio
optimisation, problems involving binary variables, and various methods for
optimising under uncertainty, such as mean-variance, chance-constrained
and robust optimisation. Along the way, we try to help the reader develop
insight into the strengths and limitations of CO as a tool for modelling and
solving real-life problems.

The paper is structured as follows. In Sect. 2, we define CO and present
some basic theory. In Sect. 3, we cover algorithms and complexity. In
Sect. 4, we review the main applications of SOCP in OR and related fields.
In Sect. 5, we do the same for SDP. In Sect. 6, we list some of the available
software packages, and in Sect. 7, we make some concluding remarks.

Throughout the paper, R+, Rn+ and Sn denote the non-negative reals,
the real vectors with n non-negative components, and the real symmetric
matrices of order n, respectively. Moreover, given a vector x ∈ Rn, we let

||x||1 and ||x||2 denote
∑n

i=1 |xi| and
√∑n

i=1 x
2
i , respectively.

2 Definitions and Basic Theory

In this section, we define CO formally and present the minimal amount
of theory and notation needed to understand how it works. We start by
defining cones in Subsect. 2.1. We define CO itself in Subsect. 2.2. We then
present elementary duality theory in Subsect. 2.3.
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Figure 1: An idealised ice-cream cone.

2.1 Cones

If a non-mathematician hears the word cone, the thing most likely to come
to mind is either an ice-cream cone or a traffic cone. An idealised version of
an ice-cream cone is displayed in Fig. 1. The idealised version is supposed to
extend upward forever. One can check that it corresponds to the following
set: {

x ∈ R3 : x3 ≥
√
x21 + x22

}
.

The ancient Greek astronomer Apollonius of Perga (c. 262 BC – c. 190
BC) discovered that, if one “slices” the idealised ice-cream cone at various
angles, one can obtain interesting convex shapes; see Fig. 2. This already
gives a hint as to why cones could be of relevance to optimisation: whereas
LP forces us to optimise over polyhedra, we can optimise over various non-
polyhedral convex sets by “slicing” cones in various ways. This enables us
to model and solve a variety of important nonlinear problems, as we will see
in Sections 4 and 5.

Mathematically speaking, a cone is a set of points (in some underlying
space, such as Euclidean space) with the following property: if a point x
belongs to the cone, then so does the point λx for any λ ∈ R+. Note
that cones can be extremely complicated. Indeed, consider an arbitrary set
S ⊂ Rn. The set

C(S) =
{

(x, λ) ∈ Rn × R+ : x = λx′ for some x′ ∈ S
}

is a cone, and it is “just as complicated” as S itself. Indeed, if we intersect
C(S) with the hyperplane defined by the equation λ = 1, the resulting
“slice” is S (or, more precisely, an embedding of S into a space of higher
dimension).

If one wishes to say anything useful about cones, then, one must restrict
attention to cones with a special structure. In the optimisation context, one
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Figure 2: The conic sections (taken from Seligman [88]).

is typically interested in so-called proper cones. A cone C is called proper
if it is:

• convex: if x1, x2 ∈ C, then µx1 + (1− µ)x2 ∈ C for all µ ∈ [0, 1];

• closed: C contains all of its limit points;

• full-dimensional: there is no hyperplane containing C;

• pointed: if x ∈ C, then −x /∈ C.

One can check that the idealised ice-cream cone is proper. The following
five proper cones arise frequently in various contexts:

• the non-negative cone, which is simply R+;

• the second-order cone of order n, which is{
(x, t) ∈ Rn × R+ : t ≥ ||x||2

}
;

• the positive semidefinite (psd) cone of order n, which is{
X ∈ Sn : vTXv ≥ 0 (∀v ∈ Rn)

}
; (1)

the copositive cone of order n (first defined by Motzkin [71]), which is{
X ∈ Sn : vTXv ≥ 0 (∀v ∈ Rn+)

}
;

• the completely positive cone of order n (first defined by Hall [39]),
which is{

X ∈ Sn : X = ATA for some real non-negative matrix A
}
.
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(There are several other cones of interest to optimisation, such as the corre-
lation cone [26], the pth-order cone [32], the exponential cone [31] and the
relative entropy cone [21], but we do not give details, for the sake of brevity.)

The second-order cone is a natural generalisation of the ice-cream cone
to higher dimensions. It is sometimes called the Lorentz cone, after the
Dutch physicist Hendrik Lorentz (1853–1928). (Indeed, for those familiar
with special relativity, the second-order cone with n = 3 is the forward light
cone of the origin, where x represents space and t represents time.)

The psd cone of order n is usually denoted by Sn+. It can be defined in
many different ways. It is known (see, e.g., Horn [47]) that a matrix X ∈ Sn
belongs to Sn+ if and only if any of the following (equivalent) conditions hold:

• the quadratic function f(v) = vTXv is non-negative for all v ∈ Rn(
this is just definition (1)

)
;

• the same function f(v) is convex;

• the region {v ∈ Rn : vTXv ≤ 1} is an ellipsoid;

• all eigenvalues of X are non-negative;

• all principal submatrices of X have non-negative determinants;

• there exists a lower-triangular matrix A ∈ Rn×n such that X = ATA
(Cholesky factorisation);

• there exist vectors u1, . . . un ∈ Rn such that Xij = ui · uj for all i, j
(Gram representation);

• X can be written as a non-negative linear combination of symmetric
rank-1 real matrices of the form vvT .

From these definitions, one can see that, for a given value of n, the completely
positive cone is contained in Sn+, which in turn is contained in the copositive
cone.

To make the above ideas more concrete, we give some examples. The

matrix

(
5 1
1 1

)
is completely positive, since it has the factorisation

(
2 1
0 1

)(
2 0
1 1

)
.

The matrix

(
5 −1
−1 1

)
is psd, since it has the factorisation:

(
2 −1
0 1

)(
2 0
−1 1

)
.
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It is not however completely positive, since it contains negative entries.

Finally, the matrix X =

(
0 1
1 0

)
is copositive, since vTXv = 2v1v2 ≥ 0 for

all v ∈ R2
+. It is however not psd, since(

0 1
1 0

)(
1
−1

)
=

(
−1
1

)
,

and therefore it has −1 as an eigenvalue.

2.2 Conic optimisation

A conic programme or conic optimisation problem is a problem that can be
modelled as the problem of optimising a linear function over the intersection
of a hyperplane and a proper cone. That is, a CO problem can be written
in the form

sup
{
cTx : Ax = b, x ∈ C

}
, (2)

where c ∈ Zn, b ∈ Zm, A ∈ Zm×n and C ⊂ Rn is a proper cone. (We have
to use supremum rather than maximum here, for technical reasons. See the
last example in this subsection.)

Actually, as it stands, the definition (2) is too general, since it includes
NP-hard problems as special cases (see the next section). Nesterov & Ne-
mirovsky [73] showed that particularly effective solution methods could be
devised for CO when the proper cones in question are symmetric. For
brevity, we do not define symmetric cones here. Instead, we just remark
that most symmetric cones of interest can be constructed using three ba-
sic building blocks; namely, the non-negative, second order and psd cones
mentioned in the previous subsection. More specifically:

• The product of n non-negatives cones is Rn+. This is a symmetric cone,
and it is the cone used in LP.

• The product of a finite number of second-order cones is symmetric.
Cones of this type are used in second-order cone programming or SOCP
(sometimes also called conic quadratic programming or CQP).

• The product of a finite number of psd cones is also symmetric. Cones
of this type are used in semidefinite programming (SDP).

It might seem at first that restricting attention to products of cones is a
big limitation, since it implies that each cone must involve a different set of
variables. However, this apparent limitation can be overcome by “splitting”
variables into two or more copies. For example, if we wish to impose the
second-order conic constraints t ≥ ||

(
x
y

)
||2 and s ≥ ||

(
x
z

)
||2 simultaneously,

where the vector x is involved in both constraints, we replace the vector
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x with two vectors, say x′ and x′′, add the constraints t ≥ ||
(
x′

y

)
||2 and

s ≥ ||
(
x′′

z

)
||2, and add the (linear) constraint x′ = x′′.

It turns out that SDP generalises SOCP, which in turn generalises LP.
Indeed, the second-order conic constraint t ≥ ||x||2 is equivalent to(

t xT

x tIn

)
∈ Sn+1

+ ,

where In is the identity matrix of order n; and the non-negativity constraint
t ≥ 0 is implied by t ≥ ||x||2 together with xi = 0 for i = 1, . . . n. (Geomet-
rically speaking, the non-negative cone is a “slice” of the second-order cone,
which is in turn a “slice” of the psd cone.)

In the case of LP and SOCP, it is usual to view the variables as being
arranged in a vector, which is usually denoted by x. In the case of SDP,
however, it is usual to view them as being arranged in a square symmetric
matrix, which is usually denoted by X. Accordingly, people sometimes refer
to vector variables and matrix variables. When X is a matrix variable, the
cone C is to be thought of as a subset of Sn rather than Rn.

To help the reader, we now give a couple of examples.

Example 1: Consider the following SOCP:

sup

{
x1 : x1 − x2 = 0, x3 + x4 = 2, x3 ≥

√
x21 + x22, x4 ≥ 0

}
.

The largest value that x3 can take is 2, which means that x21 + x22 cannot
exceed 2. The optimal solution is therefore x∗1 = x∗2 =

√
2, x∗3 = 2 and

x∗4 = 0, with a profit of
√

2. �

Example 2: Consider the following SDP:

sup

{
X12 +X21 : X11 = 1, X22 = 3, X =

(
X11 X12

X21 X22

)
∈ S2+

}
.

Note that the determinant of X is X11X22−X12X21, and this must be non-
negative. Since X11X22 must equal 3, and X12 must equal X21, the profit is
maximised by setting X12 and X21 to

√
3. This yields a profit of 2

√
3. �

The above examples show that an SOCP or SDP can have a unique
optimal solution in which one or more variables take irrational values. The
following example shows that it is also possible for the supremum not to be
attainable in an SOCP:

Example 3: Consider the following SOCP:

sup

{
x1 − x3 : x2 = 1, x3 ≥

√
x21 + x22

}
.
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This is equivalent to:

sup

{
x1 −

√
x21 + 1 : x1 ∈ R

}
.

We can bring the profit arbitrarily close to 0 (by making x1 arbitrarily large),
but we cannot actually reach 0. �

In a similar way, it can be shown that the supremum may not be attainable
in an SDP.

2.3 Duality

There is an elegant duality theory for CO, which can be viewed as a gen-
eralisation of LP duality. First, assume that we are working with a vector
variable x ∈ Rn. Associated with any cone C ⊂ Rn we can define the dual
(a.k.a. polar) cone

C∗ :=
{
x ∈ Rn : yTx ≥ 0 (∀y ∈ C)

}
.

If we are dealing with a matrix variable X ∈ Sn instead, and a cone C ⊂ Sn,
then the definition of the polar cone must be modified slightly to:

C∗ := {X ∈ Sn : X • Y ≥ 0 (∀Y ∈ C)} ,

where X • Y denotes the matrix inner product
∑n

i=1

∑n
j=1XijYij , which is

also equal to tr(Y TX).
It is easy to show that (a) the dual of a proper cone is proper, (b) if

a cone is proper, then it is the dual of its dual, (c) the dual of the com-
pletely positive cone is the copositive cone (and vice-versa), and (d) the
non-negative, second-order and psd cones are self-dual. (This is a property
shared by all symmetric cones.)

The following fact can be shown, e.g., by an application of Lagrangian
relaxation:

Theorem 1 (Weak Duality for CO) For any proper cone C ⊂ Rn, and
any c ∈ Rn, b ∈ Rm and A ∈ Rm×n, we have:

sup
{
cTx : Ax = b, x ∈ C

}
≤ inf

{
bT y : AT y − c ∈ C∗, y ∈ Rm

}
.

Specialised to the case of LP, Theorem 1 reduces to the well-known fact that

max
{
cTx : Ax = b, x ∈ Rn+

}
≤ min

{
bT y : AT y ≥ c, y ∈ Rm

}
.

In that case, we have strong duality, i.e., the inequality can be changed to
an equation. For CO in general, however, strong duality is not guaranteed.
Fortunately, it is guaranteed to hold under certain conditions that commonly
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occur in practice. For example, it holds if the Slater condition is satisfied,
i.e., if there is a feasible x that lies in the interior of C (see, e.g., [14, 73]).

Even when duality is strong, however, some care must be taken when
interpreting the dual. For example, although the optimal dual solution y∗

provides meaningful dual prices, the components of the vector AT y∗− c are
not always meaningful “reduced costs” (see, e.g., Helmberg [42]). Moreover,
concepts such as degeneracy, dual degeneracy and complementary slackness
must be handled carefully (e.g., Alizadeh et al. [3]).

3 Algorithms and Complexity

Now we turn our attention to algorithms for solving CO problems. To begin,
it is helpful to recall the following facts about LP:

1. The simplex method (Dantzig [22, 23]) is typically very fast in practice,
but takes exponential time in the worst case.

2. The ellipsoid method (Khachiyan [50]) runs in polynomial time in the
worst case, but is too slow to be of practical use.

3. There exist various interior-point methods (IPMs) that run in polyno-
mial time in the worst case, and tend to be reasonably fast in practice
(see, e.g., Gondzio [36]).

The situation for CO is a bit more complicated:

1. There is no known effective analogue of the simplex method for general
CO, nor indeed for SOCP or SDP in particular.

2. The ellipsoid method can solve CO in polynomial time (Grötschel et
al. [38]), but only to fixed precision, and only when two technical
conditions are met: (i) it must be possible to test in polynomial time
whether a given rational point lies in the given cone, and (ii) the
feasible region must be explicitly bounded (e.g., by the addition of a
constraint which forces the solution to lie inside a ball of known centre
and radius). Unfortunately, as in the case of LP, this result is of little
use in practice.

3. There exist IPMs that can solve SOCPs and SDPs in polynomial time,
but again, only to fixed precision and only when the feasible region is
bounded (Nesterov & Nemirovsky [73]). The best of these IPMs are
now fast enough to be of practical use.

To see why COs can only be solved to fixed precision, recall from Subsect.
2.2 that even SOCPs and SDPs can have irrational solutions. Such solutions
cannot be represented exactly with a finite number of bits. (For a discussion
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on how one might represent solutions exactly as algebraic numbers, see Nie
et al. [75].) One consequence of this limited precision is that even testing
feasibility of an SOCP or SDP is a non-trivial problem, if one wants a precise
answer. In fact, it is not known whether it can be done in polynomial time;
see Ramana [84] for a discussion.

The other technical condition mentioned above is that the feasible region
must be explicitly bounded. To see why, consider the following constraints:

x3 − x2 = 1, x4 − 2x2 = 1, x3 ≥
√
x21 + x22.

These can be shown to imply x4 ≥ x21. Chaining such constraints together,

we can get x7 ≥ x24, x10 ≥ x27, and so on. At the end, we get x3p+1 ≥ x
(2p)
1 .

If we add the constraint x1 = 2, we find that x3p+1 ≥ 2(2
p). So there exist

SOCPs such that it takes an exponential number of bits to represent any
feasible solution. An analogous example for SDPs is given in Alizadeh [1].
Requiring the feasible region to lie inside a ball eliminates such “pathologi-
cal” SOCP and SDP instances.

As for the question of testing membership of a cone, testing whether a
given x∗ ∈ Q lies in the non-negative cone is trivial, and so is testing whether
a given rational point (x∗, t∗) lies in the second-order cone. Less obviously,
one can also check whether a given rational matrix X∗ ∈ Sn belongs to
Sn+ in polynomial time, via a modified form of Gaussian elimination [38].
(In practice, one can just compute the minimum eigenvalue of X∗, to some
desired precision, and check whether it is non-negative.)

On the other hand, testing whether a rational matrix is completely pos-
itive is NP-hard [72]. (By duality, testing copositivity is co-NP-hard.) In
fact, Burer [16] showed that any mixed 0-1 linear or quadratic program can
be transformed into a completely positive program, i.e., a conic optimisation
problem over the completely positive cone. As a result, completely positive
programming is NP-hard in the strong sense. (By duality, copositive pro-
gramming is co-NP-hard in the strong sense.) For a survey of results on
completely positive and copositive programming, see Burer [17].

At the end of the previous subsection, we mentioned that dual infor-
mation for SOCP or SDP, such as reduced costs and dual prices, must be
interpreted with care. The lack of a simplex method leads to some other
issues. For example:

• It can be hard to exploit sparsity in the constraint matrix (e.g., Benson
et al. [10]).

• It is not trivial to re-optimise SOCPs and SDPs efficiently after, e.g.,
adding a constraint or variable (e.g., [69, 92]). In other words, it is
difficult to do ‘warm starts’.

Work on these issues is ongoing within the CO community.

10



We now wish to mention two other remarkable papers. Ben-Tal & Ne-
mirovski [12] proved that one can “simulate” an SOCP with n variables to
arbitrary precision ε using an LP with O(n log(1/ε)) variables. This means
that one can solve an SOCP approximately by solving a single LP of rea-
sonable size. Conversely, Braun et al. [15] proved that one cannot simulate
SDPs by LPs or SOCPs in an analogous way, thereby proving that SDP is,
in some sense, fundamentally more powerful than LP or SOCP.

Finally, we mention that there exist several other algorithms for solving
SDPs, such as the spectral bundle method (Helmberg & Rendl [45]), the
boundary point method (Povh et al. [82]), augmented Lagrangian methods
[67, 98], cutting-plane methods (Krishnan & Mitchell [52]), and a method
that works directly with the Cholesky factorisation (Burer & Monteiro [19]).

4 Applications of SOCP

In this section, we give some examples of the kinds of problems that can be
tackled using SOCP. For additional examples, see, e.g., [2, 53, 62, 73].

4.1 Problems involving convex quadratic functions

SOCP includes as a special case all convex nonlinear programs involving
quadratic functions. For brevity, we give just two examples, one from finance
and one from statistics.

In the famous portfolio selection model of Markowitz [68], there are n
stocks, for which we have a vector r ∈ Rn of expected returns and a psd
matrix Q ∈ Rn×n of covariances. We have a vector x ∈ Rn+ of decision vari-
ables, where xi represents the proportion invested in stock i. The expected
return of a portfolio x is then rTx and the variance (a measure of risk) is
xTQx. Minimising risk subject to a lower bound L on the expected return
is then equivalent to the following convex quadratic program:

min
{
xTQx : rTx ≥ L, ||x||1 = 1, x ∈ Rn+

}
.

If we compute the Cholesky factorisation Q = ATA, then the objective
function is equivalent to ||Ax||22. So we can reformulate the problem as:

min
{
t : t ≥ ||y||2, y = Ax, rTx ≥ L, ||x||1 = 1, x ∈ Rn+, y ∈ Rn, t ∈ R+

}
.

This is an SOCP. Similarly, the problem of maximising expected return
subject to an upper bound U on the variance can be modelled as the SOCP:

max
{
rTx : t ≥ ||y||2, y = Ax, t ≤

√
U, ||x||1 = 1, x ∈ Rn+, y ∈ Rn, t ∈ R+

}
.
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In statistical estimation, one often encounters problems of the form:

min


m∑
j=1

wj ||yj − x||22 : x ∈ S

 ,

where

• y1, . . . , ym are observations of a random n-vector with unknown mean;

• x is an estimate of the mean (to be determined);

• S ⊂ Rn is a convex set representing some prior information on x;

• wj is the weight (importance) given to the jth observation;

• the objective is to minimise a weighted sum of squared residuals.

By introducing a new variable z ∈ R+ and new vectors of variables u ∈ Rm+
and t1, . . . , tm ∈ Rm, we can reformulate the estimation problem as:

min z

s.t. z ≥ ||u||2
uj ≥ ||tj ||2 (j = 1, . . . ,m)

tj =
√
wj(y

j − x) (j = 1, . . . ,m)

x ∈ S
(z, u, t) ∈ R1+m+m×n

+ .

If S is a polyhedron, the reformulated problem is an SOCP. If S is defined
by a mixture of linear and convex quadratic constraints, the problem can be
easily converted into an SOCP.

4.2 Problems involving hyperbolic functions

Now recall from Subsect. 2.1 that the hyperbola is a cross-section of the
ice-cream cone. More precisely, the convex set{

(x, t) ∈ R2
+ × R : t ≥ ||x||2, x2 = 1

}
is easily shown to be an affine image of the convex set{

(x, y) ∈ R2
+ : y ≥ 1/x

}
,

the boundary of which is a hyperbola. For this reason, one can easily force
the feasible region to be a hyperbola via SOCP.

Note that the function y ≥ 1/x is equivalent to xy ≥ 1. More generally, a
hyperbolic function is any function of the form t1t2 ≥ ||Ax||2, where t1, t2 ∈

12



R+ and x ∈ Rn are variables, and A is a real matrix with n columns. It is
shown in [62] that any convex nonlinear program involving a combination
of linear, convex quadratic and hyperbolic functions can be converted to an
SOCP. (The feasible region of a constraint involving a hyperbolic function
is sometimes called a hyperboloid.)

Here is a simple example of an OR problem that involves hyperbolic
functions. The classic inventory control model of Harris [40] is

min
{
hx/2 + cd/x : x ∈ R+

}
,

where x is the order quantity (to be determined), h is the annual cost of
holding one unit in stock, c is the charge for a delivery, and d is the annual
demand. Harris solved this problem by calculus, and the optimal value of x
is the well-known economic order quantity or EOQ. Ziegler [99] considered
the following multi-item extension of this model:

min
∑n

i=1(hixi/2 + cidi/xi)

s.t.
∑n

i=1 bixi ≤ b0
`i ≤ xi ≤ ui (i = 1, . . . , n).

Here, for a given product i, xi represent the order quantity, hi is the annual
holding cost, ci is the delivery charge, di is the annual demand, bi is the
space occupied by one unit, and `i and ui are lower and upper bounds on
the order quantity. The constant b0 represents the storage space available.

Kuo & Mittelmann [53] showed that this problem can be transformed
into an SOCP as follows. Define new variables si and ti satisfying:

xi = (si − ti)/2
1/xi = (si + ti)/2.

Then model the problem as:

min
∑n

i=1 ((hi/2 + cidi)si + (hi/2− cidi)ti)
s.t.

∑n
i=1 bi(si − ti) ≤ 2b0

2`i ≤ si − ti ≤ 2ui (i = 1, . . . , n)

si ≥
√
t2i + 2 (i = 1, . . . , n)

s, t ∈ Rn.

4.3 Problems involving norms

SOCP can also be used to model problems involving Euclidean or other
norms. For brevity, we give three examples.
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The first example concerns facility location. Suppose we have n facilities
in the plane and wish to locate a new facility so as to minimise the sum of
the weighted distances from the existing facilities. This can be modelled as:

min
∑n

i=1wi
√

(xi − x̃)2 + (yi − ỹ)2

s.t. (x̃, ỹ) ∈ R2,

where (xi, yi) are the co-ordinates of the ith existing facility, and (x̃, ỹ) are
the co-ordinates of the new facility. (This problem is sometimes called the
Fermat-Weber problem.) Defining new variables d1, . . . , dn, representing the
Euclidean distance from the new facility to each of the existing facilities, the
problem can be converted into the following SOCP:

min
∑n

i=1widi

s.t. di ≥
√
u2i + v2i (i = 1, . . . , n)

ui = xi − x̃ (i = 1, . . . , n)

vi = yi − ỹ (i = 1, . . . , n)

(x̃, ỹ) ∈ R2

u, v, d ∈ Rn.

Moreover, SOCP can also easily handle extensions of this problem in which
there are linear, convex quadratic and/or hyperbolic constraints on the co-
ordinates x̃ and ỹ and/or the distances di.

Our second example is a modified version of the Markowitz portfolio
selection model (see Subsect. 4.1). Suppose we wish to maximise expected
return subject to a chance constraint, which states that the probability of
the return not exceeding some quantity α ∈ R must be less than some small
quantity β > 0. (For example, we may require that there is only a 0.1%
chance of losing one million euros or more.) The chance constraint can be
written as:

rTx+ Φ−1(β)
√
xTQx ≥ α,

where Φ is the Cumulative Distribution Function of the Normal distribution.
Using again the Cholesky factorisation Q = AAT , the constraint can be
written as:

rTx+ Φ−1(β)||Ax||2 ≥ α.

To handle this with SOCP, we just add new variables y ∈ Rn and z ∈ R,
and add the constraints:

y = Ax

z ≥ ||y||2
rTx+ Φ−1(β)z ≥ α.
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(Actually, this transformation only works when Φ−1(β) < 0. Fortunately,
this is always the case in practice, since β is always less than 1/2.)

Our third and final example comes from robust optimisation. Consider
the LP

min
{
cTx : Ax ≤ b, x ∈ Rn+

}
,

and suppose that the precise values of the components of the matrix A are
uncertain. Ben-Tal & Nemirovski [11] suggest writing the LP as:

min
{
cTx : aTi x ≤ bi (i = 1, . . . ,m), x ∈ Rn+

}
,

and then considering the case in which, for i = 1, . . . ,m, the vector ai is
known to lie inside the ellipsoid{

âi +Qiu : ||u||2 ≤ 1
}
,

where the vectors âi and the matrices Qi are known. They then show that
the problem of minimising the worst-case cost, the so-called robust counter-
part of the LP, can be formulated as:

min
{
cTx : âTi x+ ||Qix||2 ≤ bi (i = 1, . . . ,m), x ∈ Rn+

}
.

This is again easy to handle via SOCP.

5 Applications of SDP

Although SOCP is a useful modelling tool, SDP is much more powerful. In
this section, we give just a few examples of the kinds of problems that can
be tackled using SDP. For additional examples, see, e.g., [4, 43, 73, 93, 94,
96, 97].

5.1 Problems involving special types of matrices

Covariance and correlation matrices play a fundamental role in statistics,
probability and (as we saw in Subsect. 4.1 and 4.3) finance. It is well known
that a real symmetric matrix is a covariance matrix if and only if it is psd,
and a correlation matrix if and only if, in addition, it has 1s on the main
diagonal. This means that one can use SDP to solve various optimisation
problems involving such matrices, such as:

• The positive semidefinite matrix completion problem: given a matrix
with missing entries, check if it can be completed to a covariance (or
corrrelation) matrix (see, e.g., Johnson [49]).

• The nearest correlation matrix problem: given a matrix that is not a
correlation matrix, find a correlation matrix that is as close as possible,
where “close” is measured according to, e.g., an L1, L2 or L∞ norm
(see, e.g., Higham [46]).
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Somewhat less well known are Euclidean distance (ED) matrices. A
matrix M ∈ Sn is an ED matrix if and only if there exist points x1, . . . , xn ∈
Rn such that, for i, j = 1, . . . , n, Mij = ||xi − xj ||22, i.e., the square of the
Euclidean distance between xi and xj . A classic result of Schoenberg [87]
states that a given matrix M ∈ Sn is an ED matrix if and only if the
symmetric matrix M ′ belongs to Sn−1+ , where:

M ′ii = Mi,n (i = 1, . . . , n− 1)

M ′ij = 1
2(Min +Mjn −Mij) (1 ≤ i < j ≤ n− 1)

Laurent [55] observes that one can therefore also use SDP to solve vari-
ous optimisation problems involving ED matrices. This includes problems
in, e.g., computational biology (such as molecular conformation problems)
and engineering (such as wireless sensor network localisation problems); see
Liberti et al. [61] for a survey.

5.2 Combinatorial optimisation

SDP has proven to be a remarkably useful tool for constructing strong
bounds for various combinatorial optimisation problems. For brevity, we
consider just two examples: the stable set and max-cut problems. For other
examples, see, e.g., [1, 33, 34, 60, 64, 86, 96].

Let G = (V,E) be an undirected graph. A set S ⊂ V is called stable if no
two nodes in S are adjacent in G. The stability number, denoted by α(G),
is the maximum cardinality of a stable set in G. The stable set problem
calls for a stable set of maximum cardinality. It is not only NP-hard in the
strong sense, but hard to approximate [41].

A simple 0-1 LP formulation of the stable set problem is:

max
∑

i∈V xi

s.t. xi + xj ≤ 1 ({i, j} ∈ E) (3)

x ∈ {0, 1}n.

Unfortunately, the LP relaxation of this formulation yields an extremely
weak upper bound, since one can just set every variable to 1/2. Padberg [77]
noted that one can strengthen the LP relaxation by replacing the constraints
(3) with clique inequalities of the form

∑
i∈C xi ≤ 1, where C is a maximal

clique (set of pairwise-adjacent nodes) in G. Unfortunately, the number of
cliques is in general exponential in |V |. Even worse, the separation problem
for the clique inequalities (i.e., the problem of detecting when an LP solution
violates a clique inequality) is NP-hard (e.g., Grötschel et al. [38]).

In his seminal paper, Lovász [63] defined a new upper bound for the
stable set problem, which he called θ(G). Grötschel et al. [37, 38] showed
that θ(G) can be computed by solving an SDP. One way to do it is as follows.
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We begin by formulating the stable set problem as the following continuous
quadratic optimisation problem:

max
∑

i∈V xi

s.t. x2i − xi = 0 (i ∈ V ) (4)

xixj = 0 ({i, j} ∈ E) (5)

x ∈ R|V |.

Now we introduce the matrix

Y =

(
1
x

)(
1
x

)T
=

(
1 xT

x xxT

)
,

and note that Y should be psd and have rank 1. We then replace xxT with
a matrix variable X, and replace the quadratic terms in (4) and (5) with the
corresponding entries in X. This yields the following alternative formulation
of the stable set problem:

max
∑

i∈V xi

s.t. Xii − xi = 0 (i ∈ V ) (6)

Xij = 0 ({i, j} ∈ E) (7)

Y =

(
1 xT

x X

)
∈ Sn+1

+ (8)

rank(Y ) = 1.

Dropping the rank constraint, which is non-convex, we obtain the desired
SDP relaxation. The corresponding upper bound is θ(G).

The following result is due to Grötschel et al. [38]. To help the reader,
we give a short proof here.

Proposition 1 If (x,X) ∈ Rn × Sn satisfies (6)–(8), then x satisfies all
clique inequalities.

Proof. Given any clique C ⊆ V , let v(C) ∈ {0, 1}n be a vector with a “1”
in position i if and only if node i belongs to C. From constraint (8) and the
first definition of psd-ness in Subsect. 2.1, we have(

−1
v(C)

)T (
1 xT

x X

)(
−1
v(C)

)
≥ 0,

or, equivalently,

2
∑
i∈C

xi −
∑
i∈C

∑
j∈C

Xij ≤ 1. (9)

Now, due to constraints (6) and (7), we have Xii = xi for all i ∈ C and
Xij = 0 for all {i, j} ⊆ C. Thus, (9) reduces to 2

∑
i∈C xi −

∑
i∈C xi ≤ 1,

which is equivalent to the clique inequality on C. �
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Although easy to prove, this result is remarkable, given the above-mentioned
fact that clique separation is NP-hard. Indeed, it is a good illustration of
the power of SDP relative to LP. Intuitively, the extra power comes from
the fact that imposing psd-ness is equivalent to imposing an infinite number
of linear inequalities.

Now we move on to max-cut. Given a graph G = (V,E) and an arbitrary
set S ⊆ V , the set {

{i, j} ∈ E : i ∈ S, j ∈ V \ S
}

is called an edge cutset or simply cut. Suppose we are also given a vector
w ∈ R|E| of edge weights. The max-cut problem calls for a cut of maximum
total weight. The problem is NP-hard in the strong sense (Garey et al.
[30]).

A simple 0-1 LP formulation of max-cut is:

max
∑

e∈E wexe

s.t. xij + xik + xjk ≤ 2 ({i, j, k} ⊂ V ) (10)

xik + xjk ≥ xij ({i, j} ⊂ V, k ∈ V \ {i, j}) (11)

xij ∈ {0, 1} ({i, j} ⊂ V ).

Unfortunately, the LP relaxation can be rather weak. Poljak & Tuza [81]
showed that, even when w ≥ 0, the upper bound from the relaxation can
approach twice the weight of the optimal cut.

An SDP relaxation of the max-cut problem was proposed by Schrijver
(unpublished), and then studied in, e.g., [25, 35, 57, 79]. For each i ∈ V ,
let zi be a variable taking the value 1 if i ∈ S, and −1 otherwise. Then the
max-cut problem can be formulated as:

max 1
2

∑
{i,j}∈E(1− zizj)

s.t. z2i = 1 (i ∈ V )

z ∈ R|V |.

The corresponding SDP relaxation is:

max 1
2

∑
{i,j}∈E(1− Zij)

s.t. Zii = 1 (i ∈ V )

Z ∈ Sn+.

In a major breakthrough, Goemans & Williamson [35] proved that, when
w ≥ 0, the upper bound from the SDP is no more than 1.131 times the weight
of the optimal cut. (They did this by showing how to compute a cut whose
weight is at least 0.878 times the SDP bound.)
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Observe that the feasible region to the SDP can be projected into x-space
via the identities Zij = 1 − 2xij . It turns out that the projection “wraps”
rather closely around the convex hull of cut vectors. For example, from a
consideration of 3-by-3 principal submatrices of Z, it can be shown that a
point in the projection cannot violate any of the triangle inequalities (10),
(11) by more than 1/4. This provides a partial explanation for the strength
of the SDP bound; see, e.g., [8, 29, 57, 58] for more details.

In a similar way, one can construct SDP relaxations of any problem that
can be formulated as a 0-1 LP. In fact, it is possible to construct entire
hierarchies of SDP relaxations; see, e.g., [56, 59, 65, 85, 89]. Moreover,
SDP has been successfully applied to many 0-1 quadratic programs; see
[44, 60, 80, 91] for early work on the subject, and [51, 95] for some recent
applications.

5.3 Non-convex quadratic (and polynomial) optimisation

Finally, we consider general quadratic optimisation problems, and their nat-
ural generalisation, polynomial optimisation problems.

A quadratically constrained quadratic program (QCQP) is a problem of
the form:

inf xTQ0x+ c0 · x
s.t. xTQkx+ ck · x ≤ bj (k = 1, . . . ,m)

x ∈ Rn,

where Qk ∈ Sn, ck ∈ Rn and bk ∈ R for k = 0, . . . ,m. If Q0, . . . , Qm are
all psd, then the QCQP is convex and can be converted into an SOCP (see
Subsect. 4.1). In general, however, QCQP is NP-hard in the strong sense.
(Indeed, this follows from the fact that the stable set and max-cut problems
can be formulated as QCQPs; see the previous subsection). Moreover, non-
convex QCQPs arise in many contexts besides OR, including economics and
finance (Horst et al. [48]) and signal processing (Luo et al. [66]).

Ramana [83] proposed the following natural SDP relaxation of QCQP:

inf Q0 •X + c0 · x
s.t. Qk •X + ck · x ≤ bk (k = 1, . . . ,m)(

1 xT

x X

)
∈ S+n+1.

The derivation of this relaxation is similar to the one for the stable set
problem described in the previous subsection. (Earlier, Shor [90] derived
essentially the same relaxation, but in dual form.)

A hierarchy of SDP relaxations for QCQP, similar to the one of Lovász &
Schrijver for 0-1 LPs, was proposed by Fujie & Kojima [28]. Some results on

19



the quality of the SDP bound, similar to the result of Goemans & Williamson
[35], are surveyed in Nesterov et al. [74].

In practice, the vector x is usually constrained to be non-negative, or
even to lie in a hypercube. This fact can be exploited to derive stronger
SDP relaxations; see, e.g., [5, 7, 9, 18, 27]. The best such relaxations are
shown by Anstreicher [6] to dominate many other known relaxations. There
is also evidence that SDP-based algorithms for QCQP can be effective in
practice; e.g., [5, 20, 66].

A natural generalisation of QCQP is polynomial optimisation, in which
the objective and constraint functions can be arbitrary polynomials. Poly-
nomial optimisation is a fascinating inter-disciplinary field, with relevance
not only to OR, but also to statistics, computer science, engineering, and
branches of pure mathematics such as algebraic geometry, commutative al-
gebra and moment theory [4, 24]. Interesting and powerful SDP relaxations
and hierarchies for polynomial optimisation have been proposed by, e.g.,
Lasserre [54] and Parrilo [78]. However, the complexity of solving the SDPs
in the hierarchies is still not fully settled; see O’Donnell [76].

6 Software

Finally, we mention some of the available software systems. We cover mod-
elling interfaces in Subsect. 6.1 and solvers in Subsect. 6.2. For brevity,
we do not cover all systems, and refer the reader to Mittelmann [70] for a
more comprehensive survey. (Readers may also find the “Decision Tree for
Optimization Software”1 useful.)

6.1 Modelling interfaces

We are aware of the following five modelling interface systems:

• CVX2 is an influential and long-established system for conic program-
ming based on MatLab. The CVX website states “CVX is a popular
modeling framework for disciplined convex programming that... turns
MatLab into a modeling language, allowing constraints and objectives
to be specified using standard MatLab syntax.”

• CVXOPT3 is similar to CVX but based on Python. It can be used within
the open-source mathematics software system SageMath.

• JuliaOpt4 now contains a modelling language called JuMP.

1http://plato.asu.edu/guide.html
2http://cvxr.com/
3http://cvxopt.org/
4http://www.juliaopt.org
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• YALMIP5 is also based on MatLab, and acts as a convenient front-end
to many solvers.

• PICOS6 provides a front-end to many solvers and is based on Python.
It also does some automatic reformulation (e.g., it has a function that
“replaces quadratic constraints by equivalent second order cone con-
straints”).

We remark that, although using modelling languages makes it much easier
to model and solve problems, there is usually a computational overhead, in
terms of both time and memory.

6.2 CO solvers

Now we list some of the commonly-used solvers. (A more comprehensive list
can be found on the YALMIP site7.)

• CSDP8 is a C library for solving SDPs using an interior-point method.
It is now part of COIN-OR.9

• ECOS10 is an SOCP solver designed for embedded systems. It is written
using less than a thousand lines of C code, and it can also handle
constraints involving the exponential cone.

• MOSEK11 has supported both SOCP and SDP since version 7.0. A
recent blog entry12 reports on the solution of an SOCP with over 0.5
million variables (on a powerful parallel processor).

• PENNON13 is an implementation of a generalized augmented Lagrangian
algorithm for SDPs. It can solve SDPs with general convex objective
and constraint functions.

• SDPA14 is a collection of C++ routines for SDP, based on a primal-
dual interior-point method. It is designed to exploit sparsity in the
constraints.

5http://yalmip.github.io/allsolvers/
6http://picos.zib.de
7https://yalmip.github.io/allsolvers/
8https://projects.coin-or.org/Csdp/wiki/CSDPUsed
9https://projects.coin-or.org/

10https://www.embotech.com/ECOS
11http://www.mosek.com/
12http://blog.mosek.com/2017/05/biggest-conic-quadratic-problem-solved.

html
13http://web.mat.bham.ac.uk/kocvara/pennon/
14http://sdpa.sourceforge.net/
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• SDPLR15 is a C library for SDP, based on the augmented Lagrangian
method.

• SDPT316 is a library of MatLab routines that can solve SOCPs, SDPs,
and various other problems. An infeasible path following algorithm is
used.

• SeDuMi17 is another useful MatLab toolbox, based on the concept of
“self-dual embedding”.

Finally, we mention two MatLab packages that are specifically designed
for solving polynomial optimisation problems: GloptiPoly18 and SOSTOOLS19.

7 Conclusions

In this guide, we hope to have convinced the reader that Conic Optimisation
is an elegant and powerful generalisation of standard linear programming,
which allows one to capture many forms of non-linearity that arise in practi-
cal problems. In particular, both SOCP and SDP enable one to model many
convex non-linearities arising in practice (such as convex quadratic and hy-
perbolic functions, and functions involving norms or eigenvalues); and SDP
also provides good bounds and approximation algorithms for many non-
convex (and NP-hard) problems, including a wide range of combinatorial
and global optimisation problems.

Moreover, software for SOCP and SDP, and CO in general, is develop-
ing rapidly. This includes not only solvers, but also modelling languages
and procedures for automatic reformulation. Hence, although CO is more
difficult to master than LP, we believe that it will soon become a standard
technique for both practitioners and researchers in optimisation, just as LP
is at present.
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