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BACKGROUND: In addition to its well-established role in maintaining skeletal health, vitamin D has essential regulatory functions in female reproduc-
tive and pregnancy outcomes. Phthalates and bisphenol A (BPA) are endocrine disruptors, and previous research has suggested that these chemical
agents may disrupt circulating levels of total 25(OH)D in adults.
OBJECTIVES: We investigated the relationships between repeated measures of urinary phthalate metabolites and BPA and circulating total 25(OH)D
in a prospective cohort of pregnant women.
METHODS: The present study population includes participants (n=477) in a nested case–control study of preterm birth drawn from a prospective birth
cohort of pregnant women at Brigham and Women’s Hospital in Boston, Massachusetts. Urine and blood samples were collected for biomarker mea-
surements at median 10 wk and 26 wk of gestation.

RESULTS: In repeated measures analysis, we observed that an interquartile range (IQR) increase in urinary mono-3-carboxypropyl phthalate (MCPP)
was associated with a 4.48% decrease [95% confidence interval (CI): −7:37, −1:58] in total 25(OH)D. We also detected inverse associations for
metabolites of di(2-ethylhexyl) phthalate (DEHP) [percent difference ð%DÞ= − 2:83 to −2:16]. For BPA, we observed a nonsignificant inverse asso-
ciation with total 25(OH)D in the overall population. Our sensitivity analysis revealed that the associations for some metabolites (e.g., MEHP) varied
by race/ethnicity, which may reflect potential differences in susceptibility. In agreement with findings from repeated measures analysis, we reported
that DEHP metabolites and BPA were significantly associated with an approximate 20% increase in the odds of vitamin D deficiency (≤20 ng=mL)
[odds ratio ð95%CIÞ: 1:19 (1.06, 1.35) for molar sum of DEHP metabolites and 1.22 (1.01, 1.47) for BPA] at median 10 wk and 26 wk, respectively.

CONCLUSIONS: Our results provide suggestive evidence of the potential for environmental exposure to phthalates and/or BPA to disrupt circulating
vitamin D levels in pregnancy. https://doi.org/10.1289/EHP1178

Introduction
Vitamin D is a prohormone that plays an integral role in the regu-
lation of bone metabolism and calcium and phosphorous absorp-
tion (Holick 2007; Norman 2008). The major source of vitamin
D in humans is exposure to ultraviolet B (UVB) radiation from
sunlight, although it can also be obtained through dietary food
sources or supplements (Thacher and Clarke 2011). Vitamin D
from the skin and diet (vitamin D2 and D3) is biologically inac-
tive and is transported to the liver where it is converted to 25-
hydroxyvitamin D [25(OH)D], the circulating biomarker of vita-
min D nutritional status (Norman 2008; Thacher and Clarke
2011). Further metabolism occurs in the kidneys, wherein 25
(OH)D is hydroxylated to its biologically active metabolite, 1-25-
dihydroxyvitamin D ½1,25ðOHÞ2D� (Norman 2008; Thacher and
Clarke 2011); 1,25ðOHÞ2D is a secosteroid hormone that initiates
biological actions by interacting with its nuclear receptor at tar-
get tissues (Bikle 2014; Carlberg 2014; Haussler et al. 2013).
Although it is well established that vitamin D plays an essential

role in the development and maintenance of skeletal health, the
presence of its nuclear receptor and metabolic enzymes in
reproductive tissues, such as the placenta, uterus, and ovaries,
indicates that vitamin D may also have regulatory functions in
female reproductive and pregnancy outcomes (Grundmann and
von Versen 2011; Luk et al. 2012; Ma et al. 2012; Pérez-López
2007).

Maintaining maternal vitamin D homeostasis in pregnancy is
necessary for placentation and the maintenance of the pregnancy
state as well as for normal fetal growth and development (Luk
et al. 2012; Murthi et al. 2016; Ponsonby et al. 2010). Human
health studies have shown that reduced levels of 25(OH)D in
pregnancy are associated with various maternal and fetal compli-
cations, such as preeclampsia, spontaneous preterm birth, and re-
stricted fetal growth (Bodnar and Simhan 2010; Bodnar et al.
2015; Murthi et al. 2016; Robinson et al. 2011). Because preg-
nancy represents a period of susceptibility during which slight
deviations in maternal hormone levels may have detrimental
maternal and fetal health consequences, pregnant women are
particularly vulnerable to the effects of endocrine-disrupting
chemicals.

Phthalates and bisphenol A (BPA) are industrial chemicals
found in a wide range of consumer products (Meeker et al.
2009b). Exposure to these agents has been reported in pregnant
women worldwide (Cantonwine et al. 2014; Casas et al. 2011;
Mortensen et al. 2014; Mu et al. 2015). Both phthalates and BPA
may disrupt endocrine systems, and results from epidemiological
studies suggest these environmental chemicals may alter sex and
thyroid hormone levels in pregnant women (Huang et al. 2007;
Johns et al. 2015, 2016a; Sathyanarayana et al. 2014). Given that
the active vitamin D metabolite is similar in structure to that of
classic sex steroid hormones (Norman 2008), and its nuclear re-
ceptor is in the same superfamily of sex steroid and thyroid hor-
mone receptors (Pike and Meyer 2010), it is also plausible that

Address correspondence to J.D. Meeker, Dept. of Environmental Health
Sciences, University of Michigan School of Public Health, 1835 SPH I, 1415
Washington Heights, Ann Arbor, Michigan 48109-2029 USA. Telephone:
(734) 764-7184. Email: meekerj@umich.edu
Supplemental Material is available online (https://doi.org/10.1289/EHP1178).
The authors declare they have no actual or potential competing financial

interests.
Received 3 October 2016; Revised 10 May 2017; Accepted 12 May 2017;

Published 31 August 2017.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within
3 working days.

Environmental Health Perspectives 087026-1

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP1178.Research

https://doi.org/10.1289/EHP1178
mailto:meekerj@umich.edu
https://doi.org/10.1289/EHP1178
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP1178


phthalates and/or BPA might disrupt the vitamin D endocrine
axis. In our recent investigation conducted among a representa-
tive sample of U.S. adults, we reported inverse associations
between urinary metabolites of di(2-ethylhexyl) phthalate
(DEHP) and total 25(OH)D (Johns et al. 2016b). Urinary BPA
was inversely associated with total 25(OH)D among women in
our sex-stratified analyses (Johns et al. 2016b). Although our pre-
vious study showed the potential for phthalates and BPA to alter
circulating levels of total 25(OH)D in adult populations, it was
limited by its cross-sectional design with single biomarker mea-
surements collected at one time point. Moreover, we are not
aware of any studies that have investigated these associations in
pregnant women. In the present study, we assessed the associa-
tions between environmental exposure to phthalates and BPA
and plasma total 25(OH)D levels in a large, prospective cohort of
pregnant women.

Methods

Study Population
The present study population includes participants in a nested
case–control study of preterm birth drawn from a prospective
cohort (LifeCodes) of pregnant women 18 y and older who were
recruited early in gestation (<15weeks) at Brigham and Women’s
Hospital in Boston, Massachusetts. The only exclusion criterion
was higher-order multiple gestations (e.g., triplets or greater).
Additional details regarding recruitment and eligibility criteria are
described in detail elsewhere (Ferguson et al. 2014a, 2014b;
McElrath et al. 2012). In brief, participants completed a question-
naire at the initial study visit (median: 9.7 wk of gestation; range:
4.7–19.1 wk) to collect demographic characteristics (e.g., race/
ethnicity, health insurance provider, educational attainment, etc.)
and relevant health information (e.g., family health history,
tobacco and alcohol use). Participants were followed until delivery
and provided health information [e.g., body mass index (BMI)] as
well as blood and urine samples for biomarker measurements at
three additional study visits: visit 2 (median: 17.9 wk of gestation;
range: 14.9–32.1 wk), visit 3 (median: 26.0 wk of gestation; range:
22.9–36.2 wk), and visit 4 (median: 35.1 wk of gestation; range:
33.1–38.3 wk). The present analyses were restricted to visits 1 and
3 because plasma samples collected at only these time points were
assayed for total 25(OH)D.

Of the 1,181 pregnant women included in the original birth
cohort who were followed until delivery and had a singleton
birth, 130 women who delivered a preterm infant (<37weeks of
gestation), and 352 who delivered at or after 37 wk of gestation
were included in the nested case–control population. The selec-
tion probabilities from the parent cohort population were 90.1%
for cases and 33.9% for controls (Ferguson et al. 2015). In the
current study, we excluded participants from this population who
did not have measurements for urinary phthalate metabolites or
BPA (n=1) or 25(OH)D (n=4) at either of the two study visits.
The final study population (n=477) included 128 cases of pre-
term birth and 349 controls. The study protocols were approved
by the ethics and research committees of the participating institu-
tions, and all study participants gave written informed consent
prior to participation.

Urinary Exposure Measurements
All available urine samples collected at up to two study visits
during pregnancy were assayed for nine phthalate metabolites
and total (free plus glucuronidated) BPA using isotope dilution-
liquid chromatography-tandem mass spectrometry (ID–LC–MS/
MS) at NSF International in Ann Arbor, Michigan. Additional

details regarding this analytical method are described elsewhere
(Lewis et al. 2013). The nine phthalate metabolites included:
mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP),
mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), monoben-
zyl phthalate (MBzP), mono-n-butyl phthalate (MBP), mono-
isobutyl phthalate (MiBP), monoethyl phthalate (MEP), and
mono (3-carboxypropyl) phthalate (MCPP). In addition to ana-
lyzing individual phthalate metabolites in our statistical analy-
ses, we created a molar sum (lmol=L) measure of the four
metabolites of DEHP (MEHP, MEHHP, MEOHP, and MECPP;
RDEHP). Specifically, we divided each phthalate metabolite
concentration by its molecular weight and took the sum of the
individual concentrations. Urinary biomarker concentrations
less than the limit of detection (LOD) were assigned a value of
LOD divided by the square root of 2 (Hornung et al. 1990).

To adjust for urinary dilution in descriptive analyses, phthal-
ate metabolites and BPA were standardized using specific gravity
(SG) by the following equation (Meeker et al. 2009a): PSG=
P ½ð1:015− 1Þ=ðSG−1Þ�, where PSG is the specific gravity-
adjusted exposure biomarker concentration (lg=L), P is the
observed exposure biomarker concentration, 1.015 is the specific
gravity population median, and SG is the specific gravity of the
urine sample. In multivariable analyses, we used unadjusted uri-
nary biomarker concentrations with SG added as a separate cova-
riate because modeling corrected metabolite levels may introduce
bias (Barr et al. 2005).

Plasma Vitamin DMeasurements
All available plasma samples were assayed for total 25(OH)D,
including 25ðOHÞD2 plus 25ðOHÞD3, using a DiaSorin LIAISON®

chemiluminescence immunoassay (DiaSorin Inc.) at the Laboratory
for Molecular Medicine (Partners Healthcare, Boston, MA)
(Ersfeld et al. 2004). The detection range of the assay is
4:0–150 ng=mL, and total coefficients of variation ranged from
9.5% to 12.6%. For quality control, the laboratory uses the U.S.
National Institute of Standards and Technology (NIST) level 1
protocol (Burris et al. 2014).

Statistical Analyses
All analyses were performed using R (version 3.3.1; R
Development Core Team). We conducted the present study using
secondary variables measured under case–control sampling. To
make our study population more representative of the original
cohort from which the case–control sample arose (i.e., to correct
for the over-representation of preterm-birth cases), we applied to
all analyses inverse probability weights that represented the
inverse sampling fractions for inclusion of controls (Richardson
et al. 2007). The distributions of all urinary analytes were right-
skewed so we transformed these data in statistical analyses using
the natural logarithm (ln). The empirical histogram of total
25(OH)D approximated a normal distribution.

In descriptive analyses, we tabulated weighted means and
standard deviations of total 25(OH)D by selected population
characteristics. We used the R nlme package to fit unadjusted lin-
ear mixed models (LMMs) with a subject-specific random inter-
cept, chosen based on Akaike’s information criterion (AIC), to
account for intra-individual correlation of repeated measures over
time. We used unadjusted LMMs to test the differences in mean
25(OH)D concentrations across categorical variables. To investi-
gate the potential effects of gestational weight gain on total
25(OH)D concentrations, we calculated the absolute difference
between maternal weight measured at visit 3 (median 26 wk) and
prepregnancy, excluding those who lost weight between these
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two time points (n=16). We regressed repeated measures of total
25(OH)D on gestational weight gain using LMMs with subject-
specific random intercepts, adjusting for gestational age at time
of sample collection. We tabulated weighted selected percentiles
of all urinary analytes and tested the differences in mean levels
between the two study visits of sample collection (visits 1 and 3)
using paired t-tests of ln-transformed concentrations. To evaluate
the pairwise correlations among urinary phthalate metabolites
and BPA, we calculated the Spearman correlation coefficients
(rs) of specific-gravity standardized concentrations by study visit
of sample collection.

In repeated measures analyses, we explored the associations
between urinary biomarkers and plasma total 25(OH)D using
LMMs that included subject-specific random intercepts, with
25(OH)D regressed on one analyte per model. We chose covari-
ates based on biological and statistical considerations. We
included maternal age, race/ethnicity (women who identified as
white, black, or other regardless of Hispanic origin), and BMI
a priori. Additional covariates—such as health insurance pro-
vider, educational attainment, season at time of sample collec-
tion, multivitamin supplement use in pregnancy, parity, fetal sex,
and smoking and alcohol use in pregnancy—were added using a
forward stepwise selection procedure and were retained in the
final models if their inclusion resulted in ≥10% change in the
main effect estimates.

Crude models included fixed effects terms for gestational age
at time of sample collection (continuous) and urinary SG (contin-
uous). Full models were additionally adjusted for maternal age
(continuous), BMI at time of enrollment (continuous), race/eth-
nicity (white, black, other/mixed race), health-insurance provider
(private, public), season at time of sample collection (winter,
spring, summer, fall), and multivitamin supplement use in preg-
nancy (yes, no). Participants missing data on key covariates were
not included in the final multivariable regression analyses. Final
regression models included n=459 women (n=837 samples).
All final LMMs were repeated with an interaction term to test
whether the effects of phthalates and/or BPA on circulating
25(OH)D levels varied by study visit of sample collection.

Because skin pigmentation is associated with circulating
25(OH)D concentrations (Hall et al. 2010), we performed a sensi-
tivity analysis by stratifying LMMs by race/ethnicity to investigate
whether the associations between urinary exposure biomarkers
and total 25(OH)D concentrations varied by race/ethnicity. We
also assessed whether these effects were modified by race/ethnicity
by adding an interaction term in the LMMs for the overall study
population. To improve the interpretability of results yielded from
models with ln-transformed predictor variables, we presented all
regression results as the percent difference (%D) in 25(OH)D asso-
ciated with an IQR (population-level) increase in urinary bio-
marker concentrations.

In addition to exploring associations with continuous mea-
sures of 25(OH)D, we assessed the relationships between urinary
biomarkers and the odds of vitamin D deficiency, defined as total
25(OH)D concentrations ≤20 ng=mL (Holick et al. 2011). In this
cross-sectional analysis, we stratified logistic regression models
by time of sample collection in pregnancy and adjusted all mod-
els for the same covariates as those included in repeated measures
analysis.

To explore potential nonlinear associations, we fitted general-
ized additive mixed effects models (GAMM) using the R mgcv
package. For each model, we regressed repeated measures of total
25(OH)D on a penalized spline of urinary DEHP metabolites and
BPA, with one urinary biomarker included per model. These
multivariable GAMMs were adjusted for the same covariates as
those included in LMMs, and included a random intercept for

each subject. All associations were considered statistically signif-
icant at the 5% level.

Results
The population demographic characteristics of the nested case–
control study population have been described in detail previously
(Ferguson et al. 2014b). Briefly, the present study participants
were predominately white and highly educated, and half of the
women had a normal BMI (<25 kg=m2). The distributions of
total 25(OH)D by population demographic characteristics are
presented in Table 1. Mean 25(OH)D concentrations were signifi-
cantly higher in all older age groups in comparison with women
18 to 24 y old and in participants who reported multivitamin sup-
plement use during pregnancy in comparison with those who
reported no supplement use. Women who identified as black or
other race/ethnicity had significantly lower concentrations of
25(OH)D in comparison with concentrations in white women.
Significantly lower concentrations were also reported in women
who had public health insurance in comparison with private, in
those who were overweight (BMI: 25–30 kg=m2) and obese
(BMI: >30 kg=m2) in comparison with women who had a normal
BMI, and in all lower educational levels in comparison with col-
lege graduates. Absolute weight gain (median= 20:0 lbs) between
measurements collected prepregnancy and at visit 3 (median 26
wk of gestation) was not associated with total 25(OH)D concen-
trations {b ½the difference in total 25ðOHÞDconcentrationwith
a 1-lb increase inweight gain�=0:002; 95%CI: −0:08, 0.09} in
our study population.

All urinary biomarkers were highly detected in the study
population, with urinary phthalate metabolites detected in at least
96% of the samples and BPA detected in 82% of the samples
(Table 2). Urinary phthalate metabolites from the same parent
compound were strongly correlated at both visits (rs = 0:70− 0:98
for DEHP metabolites) and were weaker among other metabo-
lites (see Tables S1 and S2). Spearmen correlations were weak to
moderate between BPA and phthalate metabolites (rs ≤ 0:28).
Concentrations of urinary MCPP as well as DEHP metabolites,
including RDEHP, were significantly lower in samples collected
at visit 3 (median 26 wk of gestation) in comparison with sam-
ples collected at visit 1 (median 10 wk of gestation) (Table 2).
Urinary BPA did not significantly differ by study visit of sample
collection. Total 25(OH)D concentrations were significantly
greater in samples collected at 26 wk of gestation in comparison
with those collected at 10 wk (median= 25:6 ng=mL vs.
23:8 ng=mL, respectively) (Table 2).

Results from repeated measures analysis using multivariable
LMMs are reported in Table 3. Similar associations were
observed between weighted and unweighted analyses (see Table
S3). We detected inverse associations between DEHP metabolites
and total 25(OH)D, with the strongest associations observed for
MEHP (%D= − 2:76; 95% CI: −5:50, −0:01), MEHHP (%D=
− 2:83; 95% CI: −5:60, −0:06), and MEOHP (%D= − 2:64;
95% CI: −5:28, −0:01). We also found a significant inverse asso-
ciation between MCPP and 25(OH)D, where an IQR increase in
urinary MCPP was associated with a 4.48% decrease in total 25
(OH)D (95% CI: −7:37, −1:58). For BPA, we observed a non-
significant inverse association (%D= − 2:16; 95%CI: −5:78,
1.45). Our interaction analysis using multivariable LMMs revealed
no statistically significant interactions between any of the urinary
biomarkers measured and study visit of sample collection (p-
value for interaction terms= for BPA, 0.17; and for phthalates,
ranged from 0.36 for MiBP to 0.98 for MEHP) (data not shown).

In our sensitivity analysis, associations from race/ethnicity-
stratified models were largely inverse (Table 4). An IQR increase
in BPA was inversely associated with total 25(OH)D in white
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women (%D= − 4:79; 95%CI: −9:78, 0.20; based on data for
274 women and 506 samples) but did not appear to be associated
with total 25(OH)D among women who identified as black
(%D= − 0:60; 95%CI: −8:72, 7.51; 71 women and 121 sam-
ples) or other race/ethnicity (%D=0:99; 95%CI: −5:62, 7.59;
114 women and 210 samples). There were no significant differen-
ces in the associations for BPA by race/ethnicity, based on p-
values for interaction terms (Table 4). Among women who iden-
tified as other race/ethnicity, DEHP metabolites were inversely
associated with total 25(OH)D, with a significant association
observed for MEHP (%D= − 8:16; 95%CI: −13:4, −2:88) in
comparison with a null association for white women (%D=
− 0:18; 95%CI: −3:67, 3.31; p-interaction other race/ethnicity
vs. white= < 0:01). A weak inverse association for MEHP was
observed among black women (%D= − 1:39; 95%CI: −9:38,

6.60; p-interaction black vs. white = 0:06). IQR increases in
MCPP were associated with a ∼ 8 percent decrease in total 25
(OH)D in women of other race/ethnicity (%D= − 8:33; 95%CI:
−15:4, −1:26) and in black women (%D= − 8:11; 95%CI:
−20:1, 3.86), in comparison with a weaker inverse association
estimated for white women (%D= − 3:47; 95%CI: −8:94, 2.01;
p-interaction other race/ethnicity vs. white = 0:08; p-interaction
black vs. white = 0:06).

In our analysis of vitamin D deficiency by study visit of sam-
ple collection, we estimated that approximately 35% (n=160) of
women were vitamin D deficient at visit 1 (median 10 wk of ges-
tation) and 30% (n=117) at visit 3 (median 26 wk of gestation)
(Table 5). We reported from our stratified logistic regression
models that a unit increase in urinary DEHP metabolites was
associated with a 12% to 19% increase in the odds of vitamin D
deficiency at visit 1 [odds ratios ðORÞ=1:12; 95%CI: 1:00, 1.25
for MEHP to OR=1:19; 95%CI: 1:07, 1.34 for MEOHP]. The
direction of these relationships remained at visit 3, although none
of the estimates were statistically significant. We also found a
significant positive association for MiBP at visit 1 (OR=1:25;
95%CI: 1:04, 1.52). For BPA, we observed a significant increase
in the odds of vitamin D deficiency only at visit 3 (OR=1:22;
95%CI: 1:01, 1.47). Also at visit 3, we reported statistically signif-
icant elevated odds ratios for MBzP (OR=1:27; 95%CI: 1:08,
1.50) and MBP (OR=1:22; 95%CI: 1:03, 1.45).

Results from our analysis in which we evaluated nonlinear
associations using penalized splines for urinary biomarkers in
GAMM models are presented in Figure 1. All multivariable asso-
ciations were found to be linear.

Discussion
In a secondary analysis of 477 pregnant women drawn from a
nested case–control study of preterm birth, we found that
repeated measures of certain urinary phthalate metabolites, spe-
cifically DEHP metabolites and MCPP, were inversely associated
with circulating total 25(OH)D levels. A nonsignificant inverse
association between urinary BPA and total 25(OH)D was
observed in the overall population analysis. Associations varied
by race/ethnicity and estimates for white women were more pre-
cise than those for black or for women identifying as other race/
ethnicity due to differences in the numbers of women in each
group. In agreement with findings from repeated measures analy-
sis, we reported that DEHP metabolites and BPA were signifi-
cantly associated with an approximate 20% increase in the odds of
vitamin D deficiency at median 10 wk (RDEHP: OR=1:19;
95%CI:1:06, 1.35) and 26 wk (BPA: OR=1:22; 95%CI:1:01,
1.47), respectively.

We are aware of one previous analysis that has investigated
the associations of exposure to phthalates and/or BPA on the vita-
min D endocrine system in humans (Johns et al. 2016b). Our
results for DEHP metabolites in the current analysis are consis-
tent with those previously reported in a representative sample of
U.S. adults 20 y and older (Johns et al. 2016b). In our earlier
study utilizing data from participants in the National Health and
Nutrition Examination Survey (NHANES) 2005–2010, we found
significant inverse associations between urinary DEHP metabo-
lites, including RDEHP and circulating total 25(OH)D in adult
men and women (Johns et al. 2016b). Furthermore, our expo-
sure–response analysis in that previous NHANES study revealed
inverse trends between quintiles of individual DEHP metabolites
and total 25(OH)D (Johns et al. 2016b). GAMM model estimates
for the present study population also supported linear associations
between increasing exposure to DEHP metabolites and decreas-
ing total 25(OH)D concentrations.

Table 1. Plasma 25(OH)D levels (weighted mean ± SD) by population de-
mographic characteristics (n=477 pregnant women).

Population characteristics n (%)a
Total 25(OH)D

(ng/mL) p-valued

Age (years)
18–24 52 (12) 20.2 (14.9) Ref
25–29 95 (20) 23.7 (15.0) 0.01
30–34 188 (39) 25.2 (13.7) <0:001
≥35 142 (29) 26.8 (13.7) <0:001

Race/ethnicity
White 280 (59) 27.6 (12.6) Ref
Black 76 (16) 19.0 (15.3) <0:001
Other 121 (25) 21.9 (13.9) <0:001
Education levelc

College graduate 186 (41) 26.8 (12.9) Ref
Junior college or some college 139 (30) 25.6 (13.7) 0.03
Technical school 76 (16) 23.0 (16.0) <0:001
High school 66 (13) 20.0 (14.9) <0:001
Health insurance providerc

Private (ref) 381 (81) 25.9 (13.7) Ref
Public 84 (19) 20.0 (15.3) <0:001
BMI at initial visitc

<25 kg=m2 249 (53) 26.8 (14.0) Ref
25–30 kg=m2 125 (27) 24.0 (14.0) <0:001
>30 kg=m2 100 (20) 20.5 (13.7) <0:001

Fetal sex
Male 212 (45) 24.9 (15.5) Ref
Female 265 (55) 24.7 (13.6) 0.61
Parity
No previous pregnancies 214 (45) 25.2 (13.9) Ref
One previous pregnancy 155 (34) 25.4 (15.2) 0.84
More than one previous pregnancy 108 (21) 23.1 (14.0) 0.12
Tobacco usec

Smoked in pregnancy 31 (6) 22.1 (15.3) Ref
No smoking in pregnancy 440 (94) 25.0 (14.3) 0.20
Alcohol usec

Alcohol use in pregnancy 19 (5) 25.9 (16.1) Ref
No alcohol use in pregnancy 448 (95) 24.7 (14.3) 0.60
Multivitamin supplement usec

Supplement use in pregnancy 324 (70) 25.9 (13.6) Ref
No supplement use in pregnancy 147 (30) 22.2 (15.4) <0:001
Season of sample collection
Winter (ref) 224 (27)b 22.6 (14.2) Ref
Spring 231 (28) 24.5 (13.9) <0:001
Summer 185 (22) 27.8 (14.6) <0:001
Fall 197 (24) 25.1 (14.1) <0:001

Note: BMI, body mass index; SD, standard deviation; ref, reference category.
aProportions weighted by preterm birth case-control sampling probabilities to represent
the general sampling population.
bSample size and weighted proportions refer to number of samples (not participants).
cMissing observations: n=10 for education level; n=12 for insurance provider; n=3
for BMI at initial visit; n=6 for tobacco use; n=10 for alcohol use; n=6 for multivita-
min supplement use.
dp-Value for the difference in mean plasma total 25(OH)D concentrations in the cate-
gory compared to reference (first category listed) using unadjusted linear mixed models
with a random intercept for each subject.
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For BPA, we previously reported a statistically significant
inverse association with total 25(OH)D when analyses were re-
stricted to women alone (Johns et al. 2016b). The direction of
this relationship is similar to those presented in the repeated
measures analysis among the overall population of pregnant
women in our current study. In race/ethnicity-stratified models,
the magnitude of association was larger among white (%D=
− 4:79; 95%CI: −9:78, 0.20) than among women identifying as
black (%D= − 0:60; 95%CI: −8:72, 7.51) or other race/ethnicity
(%D=0:99; 95%CI: −5:62, 7.59). These results may reflect
racial differences in behaviors, lifestyle factors, and/or metabolic
processes that were not captured in the present analyses, thereby
potentially leading to residual confounding.

In pregnancy, the fetus relies solely on maternal levels of
25(OH)D, which in turn is converted to 1,25ðOHÞ2D by a series
of hydroxylation steps initiated by cytochrome P450 enzymes
found in the fetal-placental unit (Bikle 2014; Rosen et al. 2012).
Currently, there is a lack of a consensus on the threshold used to
define optimal (or sufficient) serum 25(OH)D concentrations in
pregnancy (Thorne-Lyman and Fawzi 2012; Urrutia and Thorp
2012). Furthermore, the optimal threshold may vary by gesta-
tional age as the clinical outcomes associated with reduced
25(OH)D likely differ across pregnancy (Aghajafari et al. 2013;

Lucas et al. 2013). Although the data are somewhat conflicting
due to the heterogeneity across human health studies, results
from meta-analyses suggest that vitamin D insufficiency in preg-
nancy may be associated with various adverse maternal and
neonatal outcomes (e.g., gestational diabetes, preeclampsia,
infection, and restricted fetal growth) (Aghajafari et al. 2013;
Wei 2014). Some of these effects may be explained by the regula-
tory role of 1,25ðOHÞ2D in trophoblast function (Nguyen et al.
2015) and in responding to inflammation and infection in the pla-
centa (Liu et al. 2011). Although the magnitude of estimated dif-
ferences in 25(OH)D and odds ratios for vitamin D deficiency
were relatively small in our analyses, on a population-level these
decrements may have significant public health implications, espe-
cially if there is a causal association between vitamin D defi-
ciency and adverse maternal and neonatal outcomes. Future
research is required to determine the public health impact of sub-
clinical changes in circulating 25(OH)D across diverse popula-
tions of pregnant women.

Although mechanistic studies are lacking, it is plausible that
phthalates and BPA may directly and/or indirectly influence the
vitamin D endocrine system at multiple points along its axis. The
vitamin D endocrine system is principally regulated by: a)
1,25ðOHÞ2D, which down-regulates its own production; b) para-
thyroid hormone, which in response to low serum calcium levels
stimulates hydroxylation enzymes in the kidney to convert
25(OH)D to its active metabolite; c) serum calcium and phos-
phate levels; and d) fibroblast growth factor 23 (Henry 2011;
Norman 2008). Several animal studies have shown that BPA may
disturb calcium metabolism by inducing or inhibiting the renal
expression of a vitamin D–dependent calcium-binding protein,
calbindin-D9k (CaBP-9k) (Kim et al. 2013; Otsuka et al. 2012)
as well as decreasing serum calcium levels (Otsuka et al. 2012)
in pregnant mice. However, similar effects have not been reported
for phthalates (Hong et al. 2005). These agents may also
indirectly influence the vitamin D endocrine system through their
effects on the metabolic enzymes involved in the conversion of
cutaneous vitamin D to its active metabolite. Animal and in vitro
studies have demonstrated that phthalates and BPA can alter
the expression of cytochrome P450 enzymes involved in steroid
and/or thyroid hormone metabolism (Liu et al. 2015; Mathieu-
Denoncourt et al. 2015; Quesnot et al. 2014; Sekaran and
Jagadeesan 2015). Moreover, increased messenger RNA (mRNA)
expression of CYP27B1, the enzyme involved in converting

Table 2.Weighted median [interquartile range (IQR; 25th–75th percentiles)] of urinary and plasma biomarkers by study visit of sample collection in
pregnancy.

Biomarker LOD % Detectc
Visit 1 (median 10 wk) Visit 3 (median 26 wk)

p-Valued# Samplesb Median (IQR) # Samplesb Median (IQR)

Urinary Exposure Biomarkersa

BPA (lg=L) 0.4 82.0 476 1.28 (0.75, 2.08) 409 1.28 (0.84, 2.08) 0.47
MEHP (lg=L) 1.0 96.6 474 10.1 (5.17, 24.7) 409 8.10 (4.65, 16.7) <0:01
MEHHP (lg=L) 0.1 99.1 474 33.6 (17.4, 80.2) 409 23.9 (12.3, 50.0) <0:001
MEOHP (lg=L) 0.1 99.2 474 16.9 (8.60, 40.3) 409 14.0 (7.23, 28.7) <0:01
MECPP (lg=L) 0.2 99.3 474 40.6 (18.9, 107) 409 30.6 (15.0, 72.8) <0:001
RDEHP (lmol=L) – – 474 0.37 (0.18, 0.81) 409 0.28 (0.14, 0.58) <0:001
MBzP (lg=L) 0.2 99.4 474 6.22 (3.36, 13.4) 409 5.87 (3.34, 11.8) 0.83
MBP (lg=L) 0.5 99.3 474 16.1 (10.8, 26.7) 409 16.1 (10.4, 25.5) 0.37
MiBP (lg=L) 0.1 99.2 474 7.14 (4.51, 11.1) 409 7.53 (4.61, 11.6) 0.84
MEP (lg=L) 1.0 99.4 474 124 (49.0, 362) 409 123 (47.2, 363) 0.96
MCPP (lg=L) 0.2 97.7 474 1.68 (1.06, 3.38) 409 1.57 (0.98, 3.13) 0.01
Vitamin D
25(OH)D (ng/mL) 4.0 100 469 23.8 (17.7, 30.0) 429 25.6 (18.1, 31.5) <0:001

Note: Analyses were weighted by preterm birth case–control sampling probabilities. LOD, limit of detection.
aUrinary analyte concentrations corrected for specific gravity.
bNumber of plasma samples per analyte varied due to limitations in sample volume.
cPercent of analyte concentrations above the detection limits.
dp-Value for difference between urinary phthalate metabolite or 25(OH)D concentrations between study visits based on a paired t-test.

Table 3. Repeated measures analysis: Percent difference in plasma 25(OH)D
associated with an interquartile range (IQR) increase in urinary exposure
biomarker concentrations.

Urinary biomarker IQR %D (95% CI) p-Value

BPA (lg=L) 1.94 −2:16 (−5:78, 1.45) 0.24
MEHP (lg=L) 17.6 −2:76 (−5:50, −0:01) 0.049
MEHHP (lg=L) 60.2 −2:83 (−5:60, −0:06) 0.046
MEOHP (lg=L) 30.0 −2:64 (−5:28, −0:01) 0.049
MECPP (lg=L) 84.1 −2:25 (−5:31, 0.80) 0.15
RDEHP (lmol=L) 0.67 −2:54 (−5:42, 0.34) 0.08
MBzP (lg=L) 13.6 0.88 (−3:29, 5.05) 0.68
MBP (lg=L) 25.4 −2:37 (−5:99, 1.26) 0.20
MiBP (lg=L) 11.0 −0:16 (−4:18, 3.86) 0.94
MEP (lg=L) 336 −0:12 (−3:61, 3.36) 0.94
MCPP (lg=L) 3.02 −4:48 (−7:37, −1:58) <0:01

Note: Analyses weighted by preterm birth case–control sampling probabilities. Linear
mixed models include a random intercept for each subject and are adjusted for specific
gravity (continuous), maternal age (continuous), BMI at enrollment (continuous), gesta-
tional age at time of sample collection (continuous), race (black, white, other/mixed
race), insurance provider (private, public), season at time of sample collection (winter,
spring, summer, fall), multivitamin supplement use in pregnancy (yes, no).
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25(OH)D to its active metabolite, was observed in mice treated
with BPA (Otsuka et al. 2012). Similar studies assessing the
effects of phthalates on enzymes involved in the metabolism of
vitamin D have not been conducted to date, and future research is
required to elucidate the potential actions of these chemicals on
additional components of the vitamin D endocrine system (e.g.,
vitamin D–binding protein, metabolic enzymes, parathyroid hor-
mone regulation, etc.).

It is also possible that certain lifestyle or physiological factors
may partially mediate the associations observed in our study. For
example, although studies investigating the relationships between
phthalate and BPA exposure and physical activity are lacking,
recent animal studies suggest that exposure to endocrine-
disrupting chemicals such as phthalates and BPA may reduce or
alter voluntary physical activity in mice (Johnson et al. 2015;
Schmitt et al. 2016). Because physical activity has been posi-
tively associated with 25(OH)D concentrations in pregnant
women (Moon et al. 2015; Woolcott et al. 2016), physical activ-
ity may be one possible mechanism through which maternal
phthalate and/or BPA exposure might contribute to decreased
concentrations of 25(OH)D. In the current study, we did not col-
lect data on physical activity from our participants. Additional
analyses are required to confirm the role (if any) that physical ac-
tivity plays in these relationships. It is also possible that phthalate
and/or BPA exposure may influence circulating 25(OH)D levels
through maternal weight gain in pregnancy. Previous research
suggests that exposure to phthalates and BPA may be associated
with increased weight gain in women (Song et al. 2014) and that
a greater gestational weight gain may lead to a decline in 25(OH)D
concentrations in pregnancy (Moon et al. 2015). However, in our
study population, absolute weight gain, defined as the difference
in measurements collected at visit 3 (median 26 wk of gestation)
and prepregnancy, was not associated with repeated measures of
25(OH)D. Further animal and human health studies are needed
to characterize the potential vitamin D–disruptive properties ofT
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Table 5. Adjusted odds ratios (95% CI) of vitamin D deficiency
(≤20 ng=mL) associated with a unit increase in urinary biomarkers.

Urinary biomarkers Odds ratio (95% CI) p-Value

Visit 1: Median 10 weeks (n=160 vitamin D deficient women, 292 controls)
BPA 1.04 (0.87, 1.25) 0.65
MEHP 1.12 (1.00, 1.25) 0.06
MEHHP 1.19 (1.06, 1.33) <0:01
MEOHP 1.19 (1.07, 1.34) <0:01
MECPP 1.16 (1.03, 1.30) 0.01
RDEHP 1.19 (1.06, 1.35) <0:01
MBZP 0.95 (0.83, 1.09) 0.49
MBP 0.96 (0.81, 1.14) 0.62
MIBP 1.25 (1.04, 1.52) 0.02
MEP 0.94 (0.84, 1.04) 0.21
MCPP 1.01 (0.89, 1.14) 0.88

Visit 3: Median 26 weeks (n=117 vitamin D deficient women, 268 controls)
BPA 1.22 (1.01, 1.47) 0.04
MEHP 1.12 (0.97, 1.28) 0.11
MEHHP 1.14 (1.00, 1.30) 0.05
MEOHP 1.13 (1.00, 1.29) 0.06
MECPP 1.05 (0.92, 1.18) 0.48
RDEHP 1.10 (0.96, 1.26) 0.18
MBZP 1.27 (1.08, 1.50) <0:01
MBP 1.22 (1.03, 1.45) 0.02
MIBP 1.10 (0.91, 1.32) 0.33
MEP 0.92 (0.83, 1.02) 0.10
MCPP 1.05 (0.90, 1.21) 0.54

Note: Analyses weighted by preterm birth case-control sampling probabilities. Logistic
regression models are adjusted for specific gravity (continuous), maternal age (continu-
ous), BMI at enrollment (continuous), gestational age at time of sample collection (con-
tinuous), insurance provider (private, public), season at time of sample collection
(winter, spring, summer, fall), multivitamin supplement use in pregnancy (yes, no).
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phthalates and BPA and to identify their specific mechanisms of
action in pregnancy.

One of the main strengths of our study included repeated
measures of both the exposures and outcome of interest, which
allowed for the use of statistical modeling techniques to more
precisely detect the subtle associations of exposure. Nevertheless,
our study has several potential limitations. Although the refer-
ence assay for measuring 25(OH)D is liquid chromatography tan-
dem mass spectrometry (LC-MS/MS), its time-consuming and
laborious procedures limit the efficiency of this method in clinical
settings, in comparison with automated immunoassays (Hollis
2010; Wagner et al. 2009). The DiaSorin LIAISON® immunoas-
say, the assay utilized in the present study, is a widely used
method in both clinical and research settings (Burris et al. 2015;
Hollis 2010) and has shown excellent agreement with LC-MS/
MS methods [concordance correlation coefficient ðCCCÞ=0:95]
(Farrell et al. 2012). Additionally, although we adjusted our sta-
tistical analyses for key confounding variables (e.g., season of

sample collection, multivitamin supplement use, and race/ethnic-
ity), we lacked data on dietary food intake and the frequency of
use of vitamin D supplements and sunscreen. Concerning the die-
tary food intake, the dominant exposure pathway for phthalates
such as DEHP is ingestion of contaminated food (Wormuth et al.
2006), whereas the major source of vitamin D in humans is expo-
sure to sunlight (Hall et al. 2010; Holick 2004, 2007). Dietary
sources of vitamin D are limited but necessary to maintain
adequate vitamin D concentrations when sunlight-induced vita-
min D synthesis is impaired or in times of insufficient sunlight
(Calvo et al. 2004). Few foods naturally contain vitamin D
(e.g., oily fish), although in the U.S., some dairy (e.g., milk, yo-
gurt, and cheese), cereal, and juices are fortified with vitamin D
(Holick and Chen 2008). Among these foods, dairy consumption
has been associated with increased concentrations of urinary
DEHP metabolites (Serrano et al. 2014). Unfortunately, we do
not have dietary intake data from the women included in our
study. Therefore, it is possible that our results may be affected by

Figure 1. GAMM results for urinary DEHP metabolites and BPA (lg=L) and total 25(OH)D (ng/mL), adjusted for specific gravity, maternal age, BMI at
enrollment, gestational age at time of sample collection, race, insurance provider, season at time of sample collection, multivitamin supplement use in preg-
nancy. Analyses weighted by preterm birth case–control sampling probabilities.
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unmeasured confounding, particularly if specific dietary sources
contributed to phthalate and BPA exposure as well as total
25(OH)D concentrations in our study population. Additionally,
although sunscreen use was associated with increased concentra-
tions of urinary phthalate metabolites, particularly MBP, in chil-
dren who participated in a study of 90 adult–child pairs in
California from 2007 to 2009 (Philippat et al. 2015), results from
a recent NHANES analysis utilizing data from 2009 to 2012
revealed that sunscreen use was not significantly associated with
urinary phthalate metabolite concentrations in adults (Ferguson
et al. 2016). We did not collect data on personal care product use
for the present study; therefore, we cannot determine whether
sunscreen use was associated with urinary phthalate metabolite
concentrations in our study participants. Our study may also be
limited by our exposure assessment methods. Although we ana-
lyzed up to two repeated measures of urinary phthalate metabolite
and BPA concentrations per subject, a potential for nondifferen-
tial exposure misclassification exists. Additional repeated mea-
surements of exposure may be required to sufficiently reduce bias
in our analyses involving short-lived chemicals such as BPA and
phthalates (Perrier et al. 2016). Finally, we performed multiple
statistical comparisons, and there is the potential that some of the
detected associations may have been due to chance.

Conclusions
In conclusion, biomarkers of environmental exposure to phtha-
lates and BPA were associated with reduced circulating total
25(OH)D levels in our study population of pregnant women.
Given previous research showing the adverse effects of reduced
total 25(OH)D levels in pregnancy on the mother and fetus,
future studies are required to confirm these findings in additional
cohorts of pregnant women and to determine the potential biolog-
ical mechanisms through which these agents might influence the
vitamin D endocrine system.
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