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Photoreflectance is used for the characterisation of semiconductor samples, usually by sweeping the monochromatized probe beam
within the energy range comprised between the highest value set up by the pump beam and the lowest absorption threshold of the
sample. There is, however, no fundamental upper limit for the probe beam other than the limited spectral content of the source and
the responsivity of the detector. As long as the modulation mechanism behind photoreflectance does affect the complete electronic
structure of the material under study, sweeping the probe beam towards higher energies from that of the pump source is equally
effective in order to probe high-energy critical points. This fact, up to now largely overseen, is shown experimentally in this
work. E1 and E0+Δ0 critical points of bulk GaAs are unambiguously resolved using pump light of lower energy. This type of
upstream modulation may widen further applications of the technique.

1. Introduction

Photoreflectance (PR) is a pump and probe spectroscopy well
known in the characterisation of semiconductor materials
and devices [1, 2]. It relies on the diffusion of charge carriers
photogenerated with the pump beam and the subsequent
screening of electric fields already present in the sample at
space-charge regions, typically located at interfaces and free
surfaces. The dielectric constant of the specimen and thus
its reflectance R are slightly perturbed upon the field
modulation. Such small changes in reflectance, ΔR, are
detected using phase-sensitive techniques with a probe light
beam swept in wavelength and typically expressed as relative
ΔR/R ratios. The technique contributed significantly to the
present understanding of the electronic structure of most
typical semiconductors [3] and has found continuity as a
valuable characterisation tool of novel materials, like dilute
nitrides [4], low-dimensional structures [5, 6], and their
potential applications [7]. The detection stage in PR largely
relies on the rejection of any pump light scattered upon inter-
action with the sample that may eventually end up at the
detector. Scattered pump light is typically the main source
of background noise, together with sample luminescence, in
the resulting spectra [8], as it enters right at the chopping
frequency tracked by phase-sensitive detection. The use of

long-pass filters (LPF) right in front of the detector is
commonplace in order to avoid such spurious scattering.
PR proceeds thereof by sweeping the monochromatized
probe beam toward lower energies from the uppermost value
set by the filter edge, recording changes in reflectance of the
probe upon the action of the pump beam. Implicitly, the
highest energy accessible to the experiment is therefore set
by the optical edge of the LPF, normally chosen a few
hundreds of meV below the nominal photon energy of the
pump source. This small offset accounts for both the line
broadening of the source (particularly if LEDs are used) as
well as the finite width of the filter optical edge.

In contrast to this sort of standard PR, the so called “first
derivative” modulation spectroscopies [9], like piezoreflec-
tance (PzR) or thermoreflectance (TR), do not appear
bounded at high energies as a result of the perturbing action.
In the case of piezoreflectance [10], stress-strain cycles are
imposed on the sample, usually by means of a piezoelectric
actuator attached to the sample, whereas in thermoreflec-
tance [11], the sample is subjected to thermal cycles induced,
for example, by a Peltier element. The same applies to
electroreflectance (ER), making use of an externally applied
modulated electric field on the sample [12]. Even when each
modulation mechanism is executed at a reference frequency
thereby used for detection, the detection itself is in principle
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not constrained to a certain photon energy range of the probe
beam. The only practical limitations are imposed by the spec-
tral content of the source and the responsivity of the detector
employed. The reason is that the perturbation used as mod-
ulation agent, independently of its origin, does affect the
entire electronic structure of the sample under test. PR is
not different from PzR, TR, or ER in that respect. The gener-
ation of photovoltage upon pump illumination of a semicon-
ductor, on which PR is based, is better illustrated as a change
in band bending at those regions in the sample sustaining
space charge (SCR), typically free surfaces or interfaces, as
schematically shown in Figure 1. Even when photogenera-
tion of free carriers upon appropriate illumination may just
involve the first interband transitions allowed between occu-
pied and empty states, the entire electronic structure of the
material is thereby affected, as long as the modulation of
the electric field associated to the SCR is active. It is thus
expected that electronic transitions at energies higher than
those directly accessible with the pump beam be equally sub-
ject to the modulating action and consequently not PR-silent,
as schematically shown in Figure 1. In other words, upstream
modulation using probe photon energies higher than that of
the pump beam should be equally accessible as in down-
stream PR using LPF, should the photon energy of the pump
beam be sufficient in order to develop a measurable photo-
voltage. The latter can actually happen at the fundamental
absorption edge of the sample or via defect states at subband-
gap energies. In what follows, we show evidence of the

modulation of high-energy critical points showing up in PR
spectra of GaAs when using pump light of lower energy.

2. Methods

For this purpose, we have used a Si-doped GaAs wafer (AXT,
n = 1 × 1018 cm−3). The reason is that n-type-doped GaAs
exhibits intense and broad signatures in PR at room temper-
ature, particularly in the range of E1 transitions, that are
typically better resolved than in intrinsic material. PR was
measured using the light beam of a quartz-tungsten-
halogen lamp (operated at 150W) as probe of intensity
I0(λ). The light is passed through a monochromator (1/8m
Cornerstone-Newport) and focused with optical lenses on
the sample. Light directly reflected with intensity I0(λ)R(λ)
is focused on a solid-state Si-detector. The current signal is
transformed into a dc-voltage and preamplified (Keithley).
The pump beam from a laser source is mechanically chopped
at 777Hz and superimposed onto the light spot of the probe
on the sample, providing the periodic modulation. Three
laser sources have been used as pump in the experiments,
the 325 nm line of a 15mW He-Cd laser, the line at
632.8 nm of a 30mW He-Ne laser, and a solid-state laser
diode operating at 814nm. The signal recorded at the detec-
tor contains therefore two components: the dc average signal
I0(λ)R(λ) and the ac modulated contribution I0(λ)ΔR(λ),
where ΔR(λ) is the modified reflectance resulting from the
modulated perturbation. The complete signal feeds a lock-
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Figure 1: Schematic representation of critical points (CPs) E0, E0+Δ0 (indicated as ESO), and E1 of GaAs represented in ascending energy on
the same energy axis of a typical experimental PR spectrum (left). The band diagram picture (right) illustrates the modulation mechanism at
CPs, namely, periodic SPV generation, upon illumination with a chopped pump beam of energy slightly above Eg, inducing transitions at the
fundamental gap. Notice that, although the E0+Δ0 transition involves a valence state below the valence band edge (reference at zero energy),
the corresponding energy is greater than the fundamental gap Eg.
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in amplifier (Stanford Instruments), which tracks the ac
signal at the chopping frequency. The relative change in
reflectance is obtained thereof by normalizing the ac signal
with respect to the dc component, with typical values in
the range of 10−3 to 10−6.

3. Results

Figure 2 shows recorded spectra as a function of wavelength
between 400 and 1100 nm under different pump beams and
pass filters. Long-pass filters (LPF) and short-pass filters
(SPF) are indicated in the figure together with the nominal
edge. The upper panel shows three measurements performed
under 325 nm pump and different filter combinations: (i)
LPF 395 nm, (ii) LPF 395 nm and LPF 665 nm, and (iii)
LPF 395 nm and SPF 600 nm. LPF 395nm prevents scattered
laser light entering in the detector. Additional LPF 665 nm
and SPF 600nm further restrict the accessible wavelength
range towards higher or lower wavelengths from their nom-
inal edge, respectively. Three PR signatures are readily
observed in the figure, corresponding to E0, E0+Δ0, and E1
transitions, as shown previously in Figure 1. Such interband
transitions are well documented: E0 corresponds to the low-
est direct gap at the Γ point of the Brillouin zone between
Γ8 valence- and Γ6-conduction-band states; E0+Δ0 corre-
sponds to the split-off valence band Γ7 due to spin-orbit cou-
pling, connecting to the same Γ6-conduction-band state;
finally, E1 is the next critical point in order of ascending
energy and takes place along the Λ direction from the center
of the Brillouin zone [13]. The filter edges can be identified in
the spectra with the declining signals deviating from the LPF
395nm spectrum. Perfect overlapping over the respective
wavelength ranges with the measurement using just LPF
395 is observed, confirming the absence of eventual second-
order harmonics in the spectra.

The medium panel shows spectra obtained under
632.8 nm pump illumination. The short wavelength spec-
trum was obtained with SPF 600nm, whereas the long
wavelength one was obtained with LPF 665 nm. The
nominal wavelength of the laser is indicated by the dotted
line. As it can be observed, the spectra collected under
632.8 nm pump keep track of E0 and E1 signatures (E0+Δ0
is affected by the filter edges), very much like the 325 nm
pump does, even when E1 is not directly accessible now
under 632.8 nm illumination. Instead, upstream modulation
of high-energy critical points results from absorption involv-
ing lower energy transitions E0 and E0+Δ0. The modified
built-in potential and the associated field, due to photogener-
ated carrier screening at SCR, is the modulating mechanism
affecting the entire electronic structure, including all high-
energy critical points. They can be probed thereof in a similar
fashion as low-energy critical points in downstream
modulation. Finally, the lower panel of Figure 2 shows a
PR spectrum obtained under 814nm pump illumination
using SPF 800nm. The dotted line indicates the wave-
length of the pump beam. Again, high-energy critical
points E1 and ESO are readily probed when pumped with
light of lower energy.

4. Discussion

Upstream photoreflectance is better understood when
considering the character of modulation spectroscopies as
absorption-based techniques. As such, and contrarily to the
case of luminescence, PR also probes unoccupied states
which are accessible to the energy range of the photons in
the probe beam. However, it is not necessary that the pump
generating the periodic perturbation be absorbed in a process
involving that particular transition to be probed in the
experiment. This result has been recently reported in GaSb
[14] and previously in subbandgap PR on GaAs [15]. The
latter case illustrates the fact that upstream modulation can
also be activated via optically active defect states in the band-
gap. As a matter of fact, the upstream energy range in PR has
largely been overseen in the past, as evidenced by the absence
of related literature, with just a few exceptions mentioned.
Even in such cases, results have oftentimes been presented
in relation to certain specificities of the samples, rather than
as an expected output.

5. Conclusion

In summary, it has been shown that the information range
accessible to PR can be extended to energies above that of
the pump beam. Its practical implementation is simple, either
replacing LPF with SPF or alternatively using notch or
narrow-band filters around the wavelength of the pump
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Figure 2: PR spectra of n-GaAs wafer obtained under different
pump beam energies and pass filters. Dotted lines indicate the
nominal wavelength of the pump beams. Critical points E0, E0+Δ0
(labeled as ESO), and E1 are also indicated. (Upper panel) using
325 nm pump with LPF 395 nm and additional LPF 665 nm or SPF
600 nm. (Middle panel) using 632.8 nm pump with LPF 665 nm or
SPF 600 nm. (Lower panel) using 814 nm pump and SPF 800 nm.
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beam. Probing upstream is a direct consequence of the
absorption-based nature of the technique and the intrinsic
modulation mechanism involved, based on photovoltage
generation upon the action of the pump beam affecting the
entire electronic structure of the material under test.
Accounting for this fact, apparently not much explored yet,
may widen the current applicability of the technique.
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