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Block copolymers are amphiphilic macromolecules, which consist of multiple

incompatible parts. Although block copolymers may differ in their microscopic

interactions, their phase behaviors share many similarities. In equilibrium,

block copolymers self-assemble into various spatially modulated phases with

long-range order whose free energy may differ only a small fraction of thermal

energy per molecule.

This characteristic makes the understanding of the structure formation both in-

teresting and challenging. In this thesis, we investigate the structure formation

of block copolymers on the basis of the free-energy landscape. We develop nu-

merical schemes to investigate two important quantities: One is the thermody-

namic forces that drive the formation of the patterns. The other is the Onsager

coefficient that translates the thermodynamic forces into the flow of the parti-

cles.

The calculation of the thermodynamic forces is indirect and computational de-

manding in particle-based simulations. The most efficient approach is prob-

ably the field-theoretic umbrella sampling method. We propose an equivalent

approach in the framework of the self-consistent field theory (SCFT), which sig-

nificantly improves the computational efficiency and accuracy.

The Onsager coefficient connects the single-chain dynamics with the co-operative

movement of many molecules. An analytical form of the Onsager coefficient is

difficult to obtain. We propose a numerical scheme to directly measure On-

sager coefficients in particle-based simulations. To be specific, we measure the

Onsager coefficient in symmetric homopolymer blends. We find that the single-

polymer dynamics and the kinetics of collective variables are highly correlated.

As a result, on very short time and length scales, the Onsager coefficient is a

time-dependent variable, which differs from the prediction of the Rouse model.

The structure formation of block copolymers is an important and multi-faceted

research topic. We focus on the structure formation process in a quasi-two-

dimensional system of symmetric diblock copolymer melts. When the sys-

tem is quenched far below the order-disorder transition temperature, the re-

laxation of the structure towards long-range order is very protracted because it

involves numerous thermally activated processes that alter the topology of the

microphase-separated morphology. The free-energy landscape of the system is

rugged and it has been likened to that of glass-forming systems.
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Using large-scale particle-based simulations we study the kinetics of structure

formation in symmetric lamella-forming diblock copolymers after a quench

from the disordered state. We characterize the ordering process by the corre-

lation length of the lamellar structure and its Euler characteristics. The latter

integral-geometry morphological measure indicates changes of the structure

topology and allows us to identify defects.

The density fields of snapshots of the particle-based simulations are used as

starting values for SCFT calculations. The latter converge to a local, metastable

minimum of the free-energy landscape. This combination of particle-based sim-

ulation and SCFT calculations allows us to relate an instantaneous configu-

ration of the particle-based model to a corresponding metastable free-energy

minimum of SCFT, and we typically observe that a change of the metastable

state is associated with a change of the Euler characteristics of the particle-based

morphology, i.e., changes of free-energy basins are correlated to changes of the

domain topology.

Additionally, we employ the string method in conjunction with the SCFT to

study the free-energy barriers and minimum free-energy paths (MFEP) involved

in changes of the domain topology.

By a combination study of the free-energy landscape and the Onsager coeffi-

cient that connects the thermodynamic force with the polymer dynamics, we

obtain a complete description of the density evolution dynamics. By a com-

parison to the particle-based simulations, our findings capture essential prop-

erties which allow us to predict the kinetics of structure formation in many

nanostructure-forming systems.
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Chapter 1

Introduction

1.1 Background

The advance of material science has significantly changed the world. The hu-

man history is divided into eras named after the materials that are used; the

Stone Age, the Bronze Age, and the Iron Age. Nowadays polymers are one of

the most important materials. Polymers are large molecules composed of many

repeated subunits which are called monomers [1]. For example, polymers such

as polyethylene (PE), polystyrene (PS), polypropylene (PP) are used in daily life

as plastics.

There are many fascinating properties, which make polymers so popular. One

of the most attractive features of polymers is that block copolymer materials,

which are constructed by two or more different monomers can spontaneously

self-assemble into many spatially modulated, ordered structures below their

critical temperatures (See Fig. 1.1). This feature is especially important for high-

tech industries (e.g., the aviation industry, the pharmaceutical industry, and the

transport industry). Because the fabrication of functional materials with a crys-

tal structure, which has a feature size ranging from nanometer to micrometer

is important for many applications including lithographic templates of high-

density magnetic storage media, quantum dots, catalysis scaffolds and etc [3–

5]. This feature also enabled a diverse and expanding range of practical applica-

tions in, e.g., the drug delivery [6], microelectronic materials [7], and advanced

plastics [8].

1
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FIGURE 1.1: Scheme representation of various spatially modulated, ordered
structures formed by block copolymers, including spherical and cylindrical
micelles, spheres with face-centered cubic (space group: Fm3̄m) and body-
centered cubic packing (Im3̄m), hexagonally packed cylinders (p6m), bicon-
tinuous gyroid (Ia3̄d), F surface (Fd3̄m), P surface (Pm3̄n, Pn3̄m, or Pm3̄m),

and lamella. The figure is obtained with permission from ref. [2].

Various nanoscale structures are accessible by synthesizing special polymer

architectures. Recent investigations demonstrate that the formation of many

novel nonclassical spherical packing phases (e.g., the complex Frank-Kasper

phases) could be attributed to three factors: the conformational asymmetry be-

tween the different blocks, the local segregation of the block copolymers, and

the architecture of the block copolymers [9, 10].

In practical experiments, modern synthetic techniques can access a broad port-

folio of multiblock molecular architectures [11]. As shown in Fig. 1.2, it is pos-

sible to prepare diblock, triblock, multiblock, and starblock copolymers. By us-

ing the technique of living anionic polymerization, it is possible to manufacture

polymers with a narrow distribution of molecular weights [12].

On one hand, the complexity of block copolymer architectures allows us to ac-

cess a huge amount of possible nanoscale patterns. On the other hand, the

exploration of such a large parameter space by experimental methods becomes

formidable. Fortunately, with the development of modern computer techniques,
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FIGURE 1.2: Scheme representation of various types of block copolymers. Up-
per left: AB diblock copolymer. Upper right: ABC triblock copolymer. Lower

left: ABC triblock copolymer. Lower right: AB-type multiblock copolymers.

the effort to explore these complex systems is becoming more and more afford-

able. By establishing different levels of theoretical models, it is possible to sim-

ulate and predict phenomena on different time and length scales. For example,

the typical time constant that captures the properties dominated by the local

vibrations of bond angles is about 10−13s [13]. On a more coarse-grained, mi-

croscopic level, atomistic details are not important. Usually, a self-assembly

process of block copolymers is characterized by the intrinsic width of interfaces

between different domains, which are on the order of nanometers. Meanwhile,

a self-assembly process may take several hundred seconds in experiments [14].

Modern computational technologies provide a profound insight. By modern

computational techniques (e.g., the numerical self-consistent field theory), it is

not difficult to extract equilibrium information of block copolymers. However,

to understand the kinetic processes of structure formation is still challenging.

In this dissertation, we focus on the kinetics of ordering in block copolymers,

especially the ordering process that ensures after a quench of block copolymer

melts from a disordered state to a microphase-separated, ordered structure.

In the following, we will review current approaches to the structure formation

process in block copolymers. Specifically, we focus on the ordering process

in lamellar-forming block copolymers in a thin film. In this thesis, a thin film

is defined as a quasi-two-dimensional system whose thickness is smaller than

the typical extension of lamellar structures (i.e., the lamellar spacing). Apart

from conventional applications such as membranes, lithography, and coatings
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FIGURE 1.3: The phase diagram and equilibrium morphologies of diblock
copolymer melts in the bulk. (a) S and S′ = body-centered-cubic spheres, C
and C ′ = hexagonally packed cylinders, G andG′ = bicontinuous gyroids, and
L= lamellae. Theoretical phase diagram of AB diblock copolymer is predicted
by the self-consistent-field theory, depending on volume fraction fA of the
blocks and the segregation parameter, χN ; CPS and CPS′ = closely packed
spheres. (b) Theoretical phase diagram. (c) Experimental phase diagram of
polyisoprene-block-polystyrene copolymer melts. The figure is obtained with

permission from ref. [18].

[15], polymer thin films are of important interest for device technologies such

as light-emitting diodes, photodiodes and thin film transistors [16].

1.2 Kinetics of structure formation in diblock copoly-

mer melts

In equilibrium, the melt of linear AB diblock copolymers typically exhibits

body-centered-cubic, hexagonally ordered cylinder, lamellar, and several bi-

continuous, e.g, gyroid structures. The phase diagram of diblock copolymer

melts can be obtained by the SCFT method as shown in Fig. 1.3 [17, 18]. fA is

the volume fraction of the A block. χN is the production of the Flory-Huggins

interaction, χ, which is temperature dependent and the total degree of poly-

merization, N .
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FIGURE 1.4: Plan view Scanning Electron Microscopy (SEM) images of block
copolymer, polystyrene-b-polymethylmethacrylate (PS-b-PMMA) films an-
nealed at different temperatures (T = 250, 270, and 290 ◦C.) for different time
periods (from 1 to 600 s). The images were acquired after oxygen plasma-
etching steps for 60 s in order to remove the PMMA phase and enhance the
contrast. The block copolymer PS-b-PMMA with a styrene fraction of fA = 0.5
(symmetric copolymer). This image is obtained with permission from ref. [14].

These ordered structures are expected to be the thermodynamical equilibrium

state. In our study, we quench the symmetric diblock copolymer melts from

a homogeneous, disordered, high-temperature state to a specific temperature

which is below the order-disorder transition temperature characterized by the

incompatibility parameter χN . As shown in the phase diagram in Fig. 1.3, the

critical point of the symmetric AB diblock copolymer melts is at χN ≈ 10.495

[19].

In the absence of external guiding fields, the kinetics of microphase separation

that ensues after a quench from the disordered state below the order-disorder

transition typically does not result in an almost defect-free structure with a few

isolated defects. Instead, a fingerprint-like morphology that is riddled with de-

fects is formed in experiments and computer simulations [20–22] (See Fig. 1.4).
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A fingerprint-like morphology is locally ordered arranged with the lamellar

order, i.e., a parallel arrangement of internal AB interfaces that extends over a

few lamellae. On large scales, the small lamellar grains differ in their orientation

and positional registration. These fingerprint-like morphologies are isotropic

with a small characteristic length scale which depends on the simulation time

and the temperature.

The defect density is so large that the idealized notion of well-defined defects

that weakly interact breaks down, and the changes of morphology are rather

co-operative. Nevertheless, the multitude of metastable fingerprint morpholo-

gies indicates that the free-energy landscape is rugged. Intriguingly, Zhang and

Wang have likened the rugged free-energy functional to that of glass-forming

systems and estimated the location of a glass transition using field-theoretic

techniques [23]. The glass-transition is characterized by a divergence of the re-

laxation time scale [23–25]. The concept of the glass in the structure formation

is different from the polymer glass [26]. In a polymer glass, the viscosity (or

the relaxation time) is divergent below the critical glass transition temperature

Tg. The long relaxation time is due to the slow dynamics of atomistic segments.

Here, the slowness does not refer to the polymer chain motion but to the time

evolution of collective morphology.

The structure formation can be categorized into three, qualitatively different

stages: (i) The initial, homogeneous state is spinodally unstable and thermal

concentration fluctuations grow exponentially in time giving rise to a highly ir-

regular domain morphology, i.e., the fingerprint structure. In the course of this

initial spinodal self-assembly, the concentration inside the microphase-separated

domains reaches its equilibrium value but no long-range order is established

[27]. (ii) In the subsequent stage – local topology changes and grain formation

– the topology of the structure gradually evolves towards local lamellar order

via thermally activated processes that alter the domain connectivity. At the end

of this stage, the merging and separation of domains results in the formation

of multiple lamellar grains. These grains differ in their orientation and are sep-

arated by grain boundaries. Importantly, there is a scale separation between

the size of a grain, in which lamellar order is established, and the width of

a grain boundary. (iii) In the final stage of ordering – grain coarsening – the

grain boundaries move so that larger grains grow and smaller ones shrink. The

growth of the average grain size or correlation length, ξ, is described by a power



7

law in time, ξ ∼ tη. In related systems, a growth exponent with a value η ≈ 0.25

has been observed [28].

Above discussions suggest that without external guiding fields, experiments

and computer simulations usually obtain a defective morphology. For the pur-

poses of industrial applications, much effort has been made to reduce the defect

densities by external chemical or topographical guiding fields (directed self-

assembly, DSA) [29].

There are several different directed self-assembly methods to manufacture large-

scale, defect-free, geometrical, structures. Shear is frequently utilized to align

block copolymer domains in thin films [30–33]. Electric field can also be applied

to develop long-range order [34–36]. These two methods do not manipulate the

structure with an explicit guidance on the nanometer length scale. Thus it is

difficult to fabricate patterns with an extensively low defect density.

On the microscopic level, one can use short-range guiding fields to control the

structure formation. One technique is called graphoepitaxy, which uses topo-

logically sculptured substrates [37]. The other strategy is called chemoepitaxy,

which employs chemically patterned substrates [38]. Both strategies are low

cost and easy to be integrated into the conventional lithographic process.

To efficiently devise strategies for defect removal, one important approach is

to calculate the minimum free-energy path (MFEP) [39]. The MFEP is the most

probable transition path to eliminate defects. With the help of the string method

which is the most efficient method to calculate the MFEP, people are able to

understand how the defects become unstable by various directed self-assembly

methods.

1.3 Theoretical models

The study of polymeric systems can be carried out at different levels of descrip-

tion depending on the length scales and time scales as shown in Fig. 1.5.

At the most fundamental level, people employ a fully atomistic model for a

polymer melt. Every atom is considered and they interact with each other with

a finely tunned parametrization of the interaction force fields. The interactions
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FIGURE 1.5: Phenomena of polymers on different length scales and time scales.
This image is obtained with permission from ref. [13].

between a pair of neutral atoms or molecules can be simplified by the Lennard-

Jones model [40].

Quantum effects account for electronic structures, chemical reactions, and et al.

On the atomistic length scale, quantum effects are usually not considered be-

cause the de Broglie wavelength of a carbon atom is much smaller than the typ-

ical length of a carbon atom. Meanwhile, all quantum simulations are very ex-

pensive and limited, e.g., the Car-Parrinello density functional simulation and

the path-integral quantum Monte Carlo simulations [41, 42].

In a classical description, depending on the chemical complexity of the molecule,

one considers the bonded interactions which determine the chemical structure

of the molecule and non-bonded interactions. The bonded interactions con-

tain terms accounting for specific chemical bonds which may include the bond-

bending, dihedral, and torsion angle potentials. The non-bonded interactions

include Van der Waals forces and other electrostatic interactions [43, 44].

The aim of an atomistic simulation or a molecular simulation is to describe the

local properties of a molecule with great precision. The time scale of an atom-

istic simulation is usually on the order of a few nanoseconds and the length

scale ranges from 1 − 10nm [42]. In the study of the kinetics of structure for-

mation in block copolymers, it is not possible nor necessary to investigate a

fully atomic model which contains all degrees of freedom of the particles. The

length scale of a self-assembly usually ranges from 1nm to 1000nm. The typical

time scale to describe a structure formation process usually takes several hun-

dred seconds. To increase the time scale and the length scale of a simulation, a

coarse-graining procedure is a necessity.
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The basic idea to derive a coarse-grained model is by grouping a number of

atoms in a chemically realistic description of an effective interaction (called

segment). The mapping from an atomic model to a mesoscale model makes

it possible to access the time and length scale that are far beyond atomistic sim-

ulations. A review of mapping electronic to macroscopic degrees of freedom

is presented in [45]. Many collective phenomena (e.g., the structure formation)

can be captured by coarse-grained models.

In a bottom-up construction, one can derive the coarse-grained model from

an underlying microscopic model [46]. The partition function of the coarse-

grained model and the microscopic model are enforced to be identical. One

can derive the coarse-grained model by integrating out all the microscopic de-

grees of freedom. This bottom-up approach resembles renormalization theory

exploiting the fractal Gaussian structure of a polymer in a dense melt [47].

An alternative approach is the physically motivated top-down approach, where

we construct a minimal model with only relevant parameters to bring about

the self-assembly of block copolymers. Although block copolymers may differ

in their microscopic interactions, their physical behaviors share many similari-

ties. For instance, the mean-square end-to-end distance of a polymer chain in

a melt can be expressed as 〈R2
e〉 ∝ N2ν . ν is a dimensionless exponent which

is independent of the specific form of the short-range interactions that connect

the beads and only depends on the dimension of the system. Because of the

self-similar structure of the long, flexible polymer chain, there is a separation

between the atomistic structure of a chemical monomeric repeat unit and the

size of an entire macromolecule. By the renormalization group calculations,

there are few relevant properties to bring about the universal behavior of the

self-assembly [47], e.g., the connectivity along the macromolecular backbone,

the repulsive force between unlike species, and the limited compressibility of

the dense polymer melts. A more detailed description of the top-down, coarse-

grained model is presented in the chapter 2.

On a mesoscopic scale description, the continuum field models achieved suc-

cess in the study of the self-assembly of block copolymer melts or blends. By

integrating out the underlying degrees of freedom of particles’ coordinates, we

can obtain a continuum, field-theoretic model. The system is described en-

tirely by collective variables, e.g., the composition of the two species m in block

copolymers.
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For instance, the starting point of the SCFT is the soft, coarse-grained, particle-

based model. Based on the Hubbard-Stratonovich transformation, the partition

function of the particle-based model is rewritten as a field-theoretic model [48].

This field-theoretic model can be numerically solved by a saddle-point approx-

imation which neglects the thermal fluctuations of collective variables. The

advantage of this method is that it associates coarse-grained parameters with

physically accessible variables. As shown in Fig. 1.3, the SCFT method qual-

itatively predicts the phase diagram of diblock copolymer melts. A detailed

derivation of the SCFT method is presented in the Sec. 2.4.

1.4 Outline

This dissertation is mainly focusing on the non-equilibrium, self-assembly pro-

cess of block copolymers. Especially, we study the kinetics of structure forma-

tion in symmetric diblock copolymer melts after a quench from a disordered,

high-temperature state.

In the second chapter, we introduce a soft, particle-based, coarse-grained model

which captures only relevant physical properties to bring about the self-assembly

of block copolymers. This particle-based model preserves the basic descrip-

tion of block copolymers with a reduced number of degrees of freedom. We

use two numerical approaches to investigate the self-assembly of block copoly-

mers: The first approach is the particle-based simulation based on the Single-

Chain-in-Mean-Field (SCMF) algorithm. The second approach is the numerical

SCFT method. To realize a large-scale simulation or calculation, we implement

both algorithms with the GPU-acceleration technique (i.e., CUDA). For both

approaches, we test the validity of the algorithm by comparing the results with

analytical approaches.

In the third chapter, we develop techniques to derive the thermodynamic force

in diblock copolymer systems. The thermodynamic force is the most impor-

tant driving force in the course of structure formation. Due to the connectivity

of the polymer chain, the thermodynamic force will be transmitted along the

molecular backbone which is quantified by the Onsager coefficient. We devise

a numerical scheme to calculate the Onsager coefficient with our particle-based

simulations. One important application of the thermodynamic force is to derive
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the MFEP which provides the most fundamental information of the free-energy

landscape for predicting the structure formation process.

In the fourth chapter, we start to systematically investigate the pattern forma-

tion process of symmetric diblock copolymers in a quasi-two-dimensional sys-

tem with massive large-scale, particle-based simulations. After quenching the

diblock copolymer melts from a highly disordered, melts, the block copolymer

melts phase separate via a spinodal decomposition process. The ordering pro-

cess is quantified by measuring the correlation length, the defects density, and

the Euler characteristic of the morphology. The latter quantity measures the

change of the topological structure. We find that the topological structures of

the morphology are related to the free-energy basins of the free-energy land-

scape. We generalize three kinds of defects from a direct observation of the

morphologies. We investigate the defect elimination process of these defects by

means of the string method.

At the end of this thesis, we summaries important findings of our research and

discuss future research.



Chapter 2

Model and Computational

Techniques

The aim of this chapter is to introduce the soft, particle-based, coarse-grained

model to study static and dynamic properties of block copolymers. In the first

section, we briefly summarize the physical background of block copolymer self-

assembly. In the second section, we explicitly discuss the particle-based model,

which is a minimal model that only captures relevant parameters to bring about

the block copolymer self-assembly. In the end, we introduce the computational

techniques, i.e., the self-consistent field theory and the single-chain-in-mean-

field algorithm to investigate the minimal model.

2.1 Phase separation and microphase separation

A mixture which consists of more than two different chemical species may sep-

arate into several regions with different compositions. Although entropy al-

ways favors mixing, the weak repulsive force between unlike species can either

promote or inhibit mixing. Whether the equilibrium state of a given mixture

is homogeneous or phase separated is determined by the energy and entropy

changes upon mixing.

For example, the mixture of binary homopolymer blends will separate into

two phases in equilibrium below the critical temperature. This phenomenon

12
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is described by the Flory-Huggins theory. This theory successfully predicts the

phase transition of the polymer mixture [49–52].

In a binary homopolymer blend, there are nA A polymers and nB B polymers

in the melt. The polymerization of A polymer and B polymer is NA and NB, re-

spectively. In a lattice model with an incompressibility constraint, each monomer

can only occupy one lattice site. The total number of lattice sites, Ω equals to

NAnA + NBnB. Each lattice has z neighboring lattices. The interaction between

monomer α = A(B) and monomer α′ = A(B) is εαα′ .

We use the volume fraction of A polymers, φA as the order parameter. The free-

energy difference of mixing of the binary homopolymer blend per lattice site

is,

fF(φA)

kBT
=

1

NA

φA lnφA +
1

NB

(1− φA) ln(1− φA) + χφA(1− φA). (2.1)

χ ≡ z
2kBT

(2εAB − εAA − εBB) is defined as the Flory-Huggins parameter. This

quantity is temperature dependent. Empirically, one often finds the relation,

χ(T ) ≈ A+
B

T
(2.2)

The term A is referred as the "entropic part" of χ and the term B/T is the "en-

thalpic part".

The free energy, fF determines whether the system remains homogeneous or

will phase separate. When χ = 0, the system favors mixing. There is only

one minimum in free energy, fF, the system is homogeneous in equilibrium.

For symmetric homopolymer blends with NA = NB and nA = nB, there are two

minima in the free energy, fF: φA1 and φA2. The critical point is at χNA = 2. If the

volume fraction of the A polymer, φA is in the region where ∂2fF/∂φ
2
A < 0, the

homogeneous mixture is unstable. The homopolymer blend will spontaneously

phase separate into two phases with φA1 and φA2, respectively.

In diblock copolymer melts, due to the chemically bonded forces, the repul-

sive force between unlike segments cannot lead to a macroscopic phase sepa-

ration. Instead one obtains the microphase separation, in which A(B)-rich mi-

crodomains are formed. After the microphase separation, the small domains

are not randomly distributed. These domains form periodical structures in the

thermodynamical equilibrium state.
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To describe the microphase separation for block copolymer melts, theoretical

approaches must take into account the long-range energies from the connec-

tivity of the polymer chain. For a phenomenological approach, the long-range

energies can be described by suitable approximations.

For example, the Ohta-Kawasaki free-energy functional has been successfully

applied to investigate the structure formation of diblock copolymers in a quasi-

two-dimensional system on surface patterns [53]. Suppose the polymerization

of the block copolymer is N which consists of A and B blocks with equal poly-

merization index, i.e., NA = NB. This model takes the difference of local vol-

ume fractions m(~r, t) = ΦA(~r, t) − ΦB(~r, t) as the order parameter. The Ohta-

Kawasaki free-energy functional is given by [54],

FOK[m]

nkBT
=

1

V

{∫
d~r

[
− ε

2
m2 +

µ

4
m4 +

K

2
(∇m)2

]
+
Dc

2

∫
G(~r, ~r′)(m− m̄)(m− m̄)d~rd~r′

}
. (2.3)

ε and µ are phenomenological parameters which are from the phenomenolog-

ical Ginzburg-Landau free energy [27]. V is the volume of the system and n is

the total number polymers in the system. The parameter K sets the square of

the characteristic length scale and it is proportional to R2
e0. m̄ is defined as the

average of m, m̄ = 1
V

∫
d~rm(~r, t). The chain connectivity is captured by adding

the contribution with the Green function G(~r, ~r′) to the phenomenological free-

energy functional. The Green function G(~r, ~r′) satisfies,

−∇2G(~r, ~r′) = δ(~r − ~r′). (2.4)

The coefficientDc depends on the polymerization index and the volume faction.

The biggest advantage of this continuum theory is that it can realize large time

and length scale simulation compared to many particle-based simulations. How-

ever, this method is rather limited. For example, to evolve the order parameter,

m, one usually employs a Cahn-Hilliard type dynamic equation in previous

works [55]. In some occasions, such dynamic equation cannot describe the dy-

namics correctly [56]. Meanwhile, a continuum model which employs the den-

sity field as the order parameter is not appropriate when the polymer chain is

strongly stretched [57].
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In order to explicitly investigate structure formation process in block copolymer

melts, we will introduce a particle-based model and numerical methods to solve

this model in the following section.

2.2 Soft, particle-based, coarse-grained model

We use a coarse-grained model to investigate the self-assembly of block copoly-

mers on a mesoscopic length scale. The advantage of a coarse-grained model

is that it is computationally efficient. A coarse-grained model comprises only a

few coarse-grained parameters that can be obtained by comparisons to experi-

ments. Simultaneously, this model makes a direct connection to a field-theoretic

description.

We adapt to a soft, computationally simple, top-down model [46], which cap-

tures only relevant interactions, i.e., the connectivity along the macromolecular

backbone, the repulsive force between unlike species, and the limited compress-

ibility of the dense polymer melts. We use the bonded interaction to describe the

connectivity of polymer chain and the non-bonded interactions which give rise

to the lateral two effects. This model is not limited to a specific block copoly-

mer system. For simplicity, we only focus on the coarse-grained model that

describes linear diblock copolymers in this section.

2.2.1 Bonded interaction

In a coarse-grained description, a polymer is discretized into N interaction cen-

ters or coarse-grained segments. The position of the sth segment is denoted as

~r(s). We use a bead-spring model to describe the connectivity properties of the

molecular backbone. The distance between neighboring segments is not fixed.

The discretized bead-spring model gives a Gaussian probability distribution

function for the mean-square segment-segment distance,
〈
[~r(s)− ~r(s′)]2

〉
.

The Hamiltonian of the bead-spring model for a single polymer can be written

as,
Ĥb

kBT
=

N−1∑
<s,s′>

3(N − 1)

2Re0
2 [~r(s)− ~r(s′)]2 . (2.5)
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〈s, s′〉 represents the set of interactions between segment s and s′, which de-

termines the contour of the molecule. For example, the linear polymer chain

comprises only the nearest connections between segments. The set 〈s′, s〉 com-

prises N − 1 interactions and the elements satisfy the relation s′ = s + 1. Re0
2

is the mean-square end-to-end distance of the ideal polymer chain, Re0
2 =〈

[~r(N − 1)− ~r(0)]2
〉
, which is only subjected toHb.

2.2.2 Non-bonded interaction

The bonded interactions mentioned in the above section give rise to the long-

range energies, which are necessary to describe the microphase separation. To

bring about the self-assembly of block copolymers, we also need to consider

the non-bonded interactions, which gives rise to a near-incompressibility of the

block copolymer melts and the weak repulsive interaction between different

species.

The non-bonded interactions can be modeled by a minimal free-energy func-

tional [46],

Ĥnb

kBT
√
N̄

=
κN

2

∫
d3~r

R3
e0

[
φ̂A(~r) + φ̂B(~r)− 1

]2

−χN
4

∫
d3~r

R3
e0

[
φ̂A(~r)− φ̂B(~r)

]2

. (2.6)

To convert the coordinates of segments, ~r(s) to a collective density description,

φ̂α(~r) of different species α = A(B), we have the relations,

φ̂α(~r) ≡ 1

ρ

n∑
i=1

∑
s

δ(~r − ~ri(s))γα(s). (2.7)

The expression γα(s) = 1, if the segment s of the block copolymer is the type α,

and γα(s) = 0 otherwise. i labels the ith polymer in the melts and ρ = Nn/V is

the density of all segments.
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The Flory-Huggins parameter χN is the thermodynamic incompatibility be-

tween species A and B. κN is the inverse isothermal compressibility that quan-

tifies the strength of density fluctuations. The typical length scale of the coarse-

grained model is set by a fraction of Re0. In our simulation, we use the value

κN = 50, which is sufficient to restrain the density fluctuations on a small

length scale of a small fraction of Re0.

The invariant degree of polymerization N̄ ≡ ( ρ
N
Re0

3)2 measures the degree of

interdigitation of molecules. We use the value of N̄ = (128)2, which is a typ-

ical value in experiments. The long wavelength fluctuations become less im-

portant when N̄ increases. In the limit of N̄ → ∞, many properties of this

minimal model (e.g., the equilibrium phase behavior and the chain conforma-

tion in spatially modulated phase) can be accurately estimated by mean-field

methods (e.g., SCFT). N̄ is a coarse-grained parameter, which is independent

of the discretization of the chain contour. To quantitatively describe a physical

system, it is important to understand how thermal fluctuations modify physical

properties. For example, the critical point of the symmetric diblock copolymer

melts is shifted in the particle-based simulation due to thermal fluctuations.

The second-order transition of the mean-field prediction is also altered to the

fluctuation-induced first-order transition [58].

In the following thesis, we will introduce the SCFT method and the particle-

based, Single-Chain-in-Mean-Field (SCMF) algorithm. The SCMF algorithm

goes beyond the mean-field approximation. By tuning the coarse-grained pa-

rameter N̄ , we can mimic the SCFT results in the particle-based simulation. We

will discuss the impact of fluctuations and compare the two methods in differ-

ent systems.

2.3 Particle-based simulation

In this section, we will introduce the particle-based, SCMF algorithm. This

method is based on the smart Monte Carlo algorithm which mimics the single-

chain dynamics, e.g., the Rouse dynamics.

The SCMF algorithm retains the computational advantage of a Monte Carlo

method and accurately describes long wavelength fluctuations. Meanwhile,

this method allows an efficient implementation of a parallel computation.
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In the following, we will introduce the SCMF algorithm and discuss some re-

sults from particle-based simulations.

2.3.1 Rouse dynamics

A flexible polymer chain in solution or melts has a large number of degrees of

freedom. The motion of a molecule can be observed by using the fluorescence

microscopy [59]. In a coarse-grained description, the dynamics of a single poly-

mer chain can be described with the Rouse dynamics. The effective segment

along the polymer chain is considered as a spherical object moving in a solvent.

It will experience a viscous force which is proportional to its velocity, and the

direction is opposite to its velocity. The effective segments will also experience

a random or stochastic force.

Besides the random force and the viscous force, the segment of a polymer will

also experience forces by the bonded interactions and the non-bonded interac-

tions which are introduced in section 2.2.

In this section, we only discuss the dynamics of a linear polymer chain in the

melts which only subject to the bonded force. The Hamiltonian of the linear

chain with a short-range nearest neighbor interaction was first proposed by

Prince E. Rouse in 1953 [60] and is described in Eq. 2.5.

In Rouse dynamics, the equation of motion of segments is called the Langevin

equation [61]. Surrounding polymers provide only a fluctuating background,

which produces a viscous friction and a thermal noise.

The Langevin equations of segments along the molecular backbone are,

ξ0
d~ri(s)

dt
= − 3N

Re0
2 [2~ri(s)− ~ri(s− 1)− ~ri(s+ 1)] + ~ηi(s, t)

ξ0
d~ri(0)

dt
= − 3N

Re0
2 [~ri(0)− ~ri(1)] + ~ηi(0, t)

ξ0
d~ri(N − 1)

dt
= − 3N

Re0
2 [~ri(N − 1)− ~ri(N − 2)] + ~ηi(N − 1, t)

(2.8)
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~ηi(s, t) is a random number with zero mean and unit variance which satisfies,

〈~ηi(s, t)〉 = 0 (2.9)

〈ηi(s, t)ηi′(s′, t′)〉 = 2ξ0kBTδss′δtt′δii
′. (2.10)

ξ0 is the segmental friction in the coarse-grained model. In contrast to the

Lennard–Jones bead-spring model, segmental interactions in our minimal model

are very soft can hardly influence the friction. Thus, in our coarse-grained, this

parameter is an input constant. As a consequence, polymers will change their

conformation with a local unconstrained move. An unconstrained move refers

to a kind of movement of segments which may violate the topological constraint

of the molecules.

The self-diffusion constant in a homogeneous melt is DRouse and the center-of-

mass RG of the molecule is defined as,

RG ≡
1

N

∑
s=0...N−1

~r(s). (2.11)

The mean-square center-of-mass displacement g3(t) obeys the linear relation,

g3(t) =
〈
[RG(t)−RG(0)]2

〉
= 6DRouset. (2.12)

Within the Rouse model, the self-diffusion constant DRouse can be calculated as,

DRouse = lim
t→∞

1

6t

〈
(RG(t)−RG(0))2

〉
=
kBT

Nξ0

. (2.13)

The Rouse dynamics correctly describes the long-time diffusion of a polymer

chain in a melt with a short chain length. In the following thesis, we will use the

characteristic time τ which is the longest relaxation time of a polymer chain in

the homogeneous phase as the unit time. τ is the time to completely equilibrate

a chain conformation. It is defined by using the time that the mean-square

center-of-mass displacement of g3(t) diffuses a distance of R2
e0,

τ ≡ R2
e0

DRouse

. (2.14)
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Re0
2 is the mean-square end-to-end distance of the ideal polymer in the melt.

We use the time scale τ to characterize our molecular simulation, because the

conformation of a polymer chain is completely renewed once the chain has dif-

fused its own end-to-end distance.

The advantage of the Rouse model is that it preserves the long-time diffusion

properties of the polymer chain in melts [56].

2.3.2 Smart Monte Carlo algorithm

The SCMF algorithm is based on the Monte Carlo sampling method. Configura-

tions are generated according to the Boltzmann weight of the system’s Hamil-

tonian. The Monte Carlo procedure of Metropolis et al. is widely applied to

estimate the equilibrium properties of a polymer system [62].

Instead of randomly selecting a trial move or a new configuration, one can

improve the Monte Carlo algorithm by enforcing the trial move to mimic the

Rouse dynamics. Based on this idea, the smart Monte Carlo method is pro-

posed by Rossky and et al. [63]. The trial moves of segments are chosen in

accordance with a Rouse dynamics rather than at random.

Compared with the standard Metropolis procedure of the Monte Carlo sam-

pling method, there are two main advantages of this approach: (i) The smart

Monte-Carlo produces more rapid convergences. The acceptance rate is in-

creased by imposing the instantaneous force on the segments. (ii) The smart

Monte Carlo method preserves the single-chain dynamics which mimics a real-

istic dynamics.

In the smart Monte Carlo method, one randomly selects a segment along the

polymer chain with equal possibilities for all segments. The equation of motion

of the selected segment is governed by the Langevin equations 2.8. We use a

simple Euler scheme to mimic the Brownian dynamics of segments,

~r′i(s) = ~ri(s) +
4t
ξ0

Fi(s) +
σ0

ξ0

√
4tηi. (2.15)

σ2
0 = 2ξ0kBT and the new trial position of the segment ~r′i(s) is to be tested by the

Monte Carlo criterion. The force exerted onto the effective segment Fi(s) are the
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bonded interactions which keep the contour connectivity of the polymer chain

and the non-bonded interactions. In our numerical implement, we neglect the

latter contribution to the polymer dynamics. Because the contribution from

the non-bonded interactions is magnitude smaller than the contribution from

the bonded interactions. The more repeated units are lumped into the coarse-

grained segments, the weaker the segmental interactions.

We define ∆A and ∆R to simplify the notation in Eq. 2.15,

∆A = ∆t/ξ0, (2.16)

∆R =
√

2kBT∆Aηi(s, t). (2.17)

The equation of motion of segments is modified as,

~r′i(s) = ~ri(s) + ∆AFi(s) + ∆R (2.18)

The probability to propose the trial move that transfers the segment from the

position ~ri(s) to the new position ~r′i(s) is,

T
[
~ri(s)→ ~r′i(s)

]
=

1

(4π∆A)−3/2
exp

(
∆R2

4kBT∆A

)
. (2.19)

We define A
[
~ri(s)→ ~r′i(s)

]
as the probability of a segment that is accepted in a

trial move from ~ri(s) to ~r′i(s). The detailed balance equation is established as,

1

N
A
[
~ri(s)→ ~r′i(s)

]
T
[
~ri(s)→ ~r′i(s)

]
=

1

N
A
[
~r′i(s)→ ~ri(s)

]
T
[
~r′i(s)→ ~ri(s)

]
.

(2.20)

According to the detailed balance condition and the Metropolis treatment, the

acceptance criteria of this trial movement is,

A
[
~ri(s)→ ~r′i(s)

]
= min

{
1, exp

[
− 1

kBT
[E(~r′i(s))− E(~ri(s)

+ (
F(~r′i(s)) + F(~ri(s))

2
)(~r′i(s)− ~ri(s))

+
∆A

4
(F(~r′i(s))

2 − F(~ri(s))
2)
]}
, (2.21)
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FIGURE 2.1: Mean-square center-of-mass displacement, g3, per SMC step as
a function of the time step length, ∆t. g3 is measured after 105 SMCs in the

particle-based simulation.

where the energy E = Hb + Hnb is the total energy of the system which is

subjected to the bonded and non-bonded interactions.

We define the smart Monte Carlo step (SMC) as the average time that all seg-

ments have the chance to move once.

To implement the smart Monte Carlo method efficiently, one has to determine

a proper time step length, ∆t in the equation of motion of the segments in

Eq. 2.15. In the limit of a very small time step ∆t, all the trial moves will be

accepted. The particle system automatically mimics the Rouse dynamics. If we

increase the value of ∆t, the acceptance rate of the trial move will decrease and

also the dynamics will deviate from the Rouse dynamics.

The proper time step length, ∆t is obtained by measuring the mean-square

center-of-mass displacement, g3(t). As shown in the Fig. 2.1, g3(t) is plotted
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as a function of ∆t in one SMC. It has a maximum at ∆t0 [64],

∆t0 =
0.17Re0

2ξ0N

N2kBT
. (2.22)

In this dissertation, we will use ∆t0 as the time step in the simulation. Because

the diffusion of the polymer reaches the maximum at ∆t0.

2.3.3 Single-Chain-in-Mean-Field (SCMF) algorithm

The idea of the SCMF algorithm origins from the SCFT method. The non-

bonded interactions between polymers are decoupled and replaced by external

fields. In the SCMF algorithm, polymers are regarded as isolated molecules in

the environment of external fields ŵA and ŵB. These fields are kept constant

in a short, predetermined simulation time and are frequently updated. This

quasi-instantaneous field approximation significantly enhances the simulation

efficiency and makes it possible to implement the computational algorithm on

a parallel high-performance computer. The SCMF method retains the compu-

tational advantages of the SCFT method and more importantly, the SCMF algo-

rithm includes thermal fluctuations, which are ignored in the SCFT method.

Before introducing the SCMF algorithm, we need to devise strategies to regu-

larize the delta function in the microscopic density φ̂A and φ̂B to adapt to a com-

puter simulation. Generally, there are two approaches: One is the grid-based

scheme and the other one is the weighting function scheme.

In the grid-based scheme, the volume is discretized by cubic cells of linear

length, ∆L. The cell index is identified by the index c. The density φ̂α of the

segments α = A (or B) on the cell c is,

φ̂α(c) =

∫
4V

d3~r

4V
φ̂α(~r) =

∫
d3~r

4V
φ̂α(~r)Π(~r, c). (2.23)

The weight function Π(~r, c) is normalized and satisfy,

∑
c

Π(c, ~r) = 1 (2.24)∫
d3~r Π(c, ~r) = ∆L3 (2.25)
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The zeroth-order assignment function, Π0 associates the segments onto the near-

est grid point,

Π0(c, ~r) =

{
1 if |~rα − cα| < ∆L/2

0 else. (2.26)

where α is in {x, y, z}.

The first-order assignment function is defined by,

Π1(c, ~r) =


∏

α=x,y,z

(1− |~rα − cα|
∆L

) if |~rα − cα| < ∆L/2

0 else. (2.27)

The advantage of the zeroth-assignment function is that it is computationally

simple and is easy to implement. The disadvantage of this scheme is that it

produces discontinuous changes in the density profile when a particle strad-

dles a cell boundary. For instance, the zero-assignment function gives rise to a

discontinuous non-bonded force, ∂Hnb

∂~ri(s)
that acts on the sth segment of polymer

i.

Instead of assigning the particle coordinates to grid points with the grid-based

scheme, it is also possible to represent the delta function of the density φ̂α as a

limit of a continuous, weight function, ω [65, 66].

The local, microscopic density, φ̂α(~r) represented by the weight function ω is

obtained according to,

φ̂α,ω(~r) =
1

∆L3

∫
d3~r′ ω(|~r − ~r′|)φ̂α(~r′) (2.28)

The weight function is a continuous function and is normalized as,∫
d3~r

∆L3
ω(|~r|) = ∆L3, (2.29)

where ∆L3 represent the volume which is important to characterize the original

δ-function.
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One possible form of the weight function is [66],

ω =

(
3

2π

)3/2(
∆L

σ

)3

exp

(
− 3~r2

2σ2

)
. (2.30)

The advantage of the weight function scheme is that it is convenient to compute

the pressure without special techniques due to the translational invariance and

isotropy of the pairwise potential [67]. The major disadvantage is the computa-

tional expense of calculating the pairwise interactions.

In the grid-based approach, the energy contribution of a segment caused by

the non-bonded interaction can be computed from the knowledge of the grid-

based density. Thus the grid-based technique offers a significant computational

advantage for dense polymer systems compared to the weight function scheme.

In this thesis, we use the grid-based scheme with the zeroth-assignment func-

tion.

The Hamiltonian of non-bonded interactions in the discretized form is written

as,

Ĥnb

kBT
√
N̄

=
κN

2

∑
c

∆L3

Re0
3

[
φ̂A(c) + φ̂B(c)− 1

]2

−χN
4

∑
c

∆L3

Re0
3

[
φ̂A(c)− φ̂B(c)

]2

. (2.31)

We use the SCMF algorithm to accelerate the particle-based simulation. The

non-bonded interactions between segments in the SCMF method are decoupled

by introducing external fields ŵA(c) and ŵB(c).

The external fields ŵA(c) are the derivatives of the Hamiltonian to the density

of A segments,
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ŵA =
Re0

3

kBT
√
N̄∆L3

δĤnb

δφ̂A(c)
(2.32)

= κN
[
φ̂A(c) + φ̂B(c)− 1

]
− χN

2

[
φ̂A(c)− φ̂B(c)

]
ŵB =

Re0
3

kBT
√
N̄∆L3

δĤnb

δφ̂B(c)
(2.33)

= κN
[
φ̂A(c) + φ̂B(c)− 1

]
− χN

2

[
φ̂B(c)− φ̂A(c)

]

The non-bonded Hamiltonian in Eq. 2.6 can be approximated by,

Ĥnb

kBT
√
N̄
≈
∑
c

[∑
α

ŵα(c)φ̂α(c)

]
∆L3

Re0
3 . (2.34)

The quasi-instantaneous fields are computed from the instantaneous densities

according to Eq. 2.32. During the short time between the field updates, the

molecules independently evolve in the temporarily constant fields.

The quality of the quasi-instantaneous field approximation is controlled by a

parameter ε which is given by,

ε =
V

nN2∆V
=

1

N2
√
N̄

(
Re0

∆L

)3

. (2.35)

This parameter is obtained by comparing the energy change with the exact MD

simulations [68]. In the limit where ε� 1/max(κN, χN), the updating external

fields after every Monte Carlo step with the SCMF algorithm is quantitatively

accurate.

From Eq. 2.35, the precision of the SCMF algorithm can be controlled by increas-

ing the chain discretization, N or decreasing the spatial resolution, ∆L without

changing the physics of the system.

The SCMF algorithm is in analogy to the reversible reference system propa-

gator algorithm (RESPA) in the MD simulation [69, 70]. This method uses a

similar idea to numerically analyze high-frequency oscillators interacting with

low-frequency baths [69]. It is also a multiple time step method that allows one

to use a time step appropriate for the heavy particles. There is a separation of
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the time scale between the large and the small particles. In block copolymers,

the weak non-bonded interactions give rise to collective processes, which often

occur on time scales that exceed the relaxation time of a single molecule. A

multiple time step method like SCMF is particularly suitable to describe "slow"

collective phenomena.

The advantage of this particle-based algorithm is that the collective kinetics of

the densities and the underlying dynamics of the individual macromolecular

conformation are combined. We mimic the single-chain dynamics by the smart

Monte Carlo scheme for a local unconstrained movement. In each Smart Monte-

Carlo step, every segment tries a displacement once on average.

Another important advantage of the SCMF algorithm is that the decoupling

scheme of interactions between polymers allows a large-scale parallel computa-

tion. In the next subsection, we will introduce the implementation of the SCMF

algorithm and compare the performance of the algorithm on CPUs and GPUs.

2.3.3.1 Performance and workflow

We implement the SCMF algorithm by using the MPI and the CUDA techniques

for the hybrid parallelization approach. The SCMF algorithm is implemented

on GPUs, we use the NCCL 1.0 library to optimize the communication between

GPUs to achieve high bandwidth over PCIe [71]. The MPI parallelization is

used to communicate data between computer nodes.

We demonstrate the implementation of the SCMF algorithm in a flowchart in

the Fig. 2.2. We distribute the coordinates of polymers evenly on each GPU pro-

cessors. Meanwhile each GPU processors stores a replica of the density fields,

φα and external potentials, wα.

As shown in Fig. 2.2, we first initialize the coordinates of the polymers. On

each GPU processor, we can only calculate the density profiles φ′α which are

generated by a subset of polymers on each GPU by the Eq. 2.23. We use the MPI

and NCCL library to gather the densities φ′α in each GPU processor to generate

the real distribution of the segments, φα. After obtaining the density φα, we

broadcast the density back to each GPU processors. Next step, we generate the

external fields, wα with the density φα by Eq. 2.32.
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FIGURE 2.2: The flowchart of the SCMF algorithm.

At the third step, we loop over all the polymers and give every segment a

chance to move once. The trial moves of the segments are generated by the

Eq. 2.18. The new coordinates of the polymers are accepted or rejected accord-

ing to the Monte Carlo criteria in Eq. 2.21. The total energy in the Monte Carlo

criteria includes contributions both from the bonded interactions and the non-

bonded interactions.

From above demonstrations of the SCMF algorithm, the number of the poly-

mers, determines the speed of calculations on each GPU processors. The com-

munication between processors are transferring the density fields, so the num-

ber of the discretized grid points c limits the efficiency of the parallel computa-

tion.

To test the SCMF algorithm on GPUs, we simulate symmetric diblock copoly-

mers in a quasi-two-dimensional system. The thickness of the system is 1 Re0

and the size of the system along the other two directions are equally set as L.

We keep the invariant degree of polymerization
√
N̄ = 128 as a constant with a

polymer chain discretization, N = 32.
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FIGURE 2.3: The performance of SCMF is tested on different GPUs, i.e., the
GTX 670, Tesla P100 and K80. The invariant degree of polymerization,

√
N̄ =

128 is kept as a constant with a polymer chain discretization, N = 32.

We test the performance of the SCMF algorithm on various graphics cards, i.e.,

the GTX 670, Tesla P100 and Tesla K80. We measure the simulation time per

smart Monte Carlo step (TPMS) as a function of the system size L.

The results are presented in the following table 2.1 and the Fig. 2.3. n is the

total number of polymers in the system. The TPMS increases linearly with the

system size, L on different GPUs.

As a comparison, the single thread program on CPU is also tested on a system

size L = 20Re0. On the Core (TM) i3-3240 CPU @ 3.40GHz, it takes approxi-

mately 1200 ms for each SMC step.

We also test the performance of the SCMF algorithm on multiple GPUs. The

results are shown in table 2.2.
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TABLE 2.1: Performance of the SCMF algorithm on a single GPU core. The
table measures the average time per SMC (TPMS) in unit of ms. The polymer-

ization, N is 32.

L/Re0 n Tesla P100 Tesla K80 GTX 670

20 5.12× 104 5.4028 22.05 38.7294
40 2.048× 105 21.2953 84.66 155.862
100 1.28× 106 137.497 532.70 982.311
200 5.12× 106 570.94 - -
400 2.048× 107 2308.02 - -

TABLE 2.2: Performance of the SCMF algorithm on multiple GPUs Tesla K80
on a quasi-two-dimensional system with L = 100Re0 with a polymerization,

N = 32.

Cores TPIS (ms) Speedup

1 522.57 1
2 273.82 1.9
4 149.42 3.5

2.3.4 A comparison of the SCMF algorithm with analytical re-

sults

In this subsection, we will compare the numerical results of the SCMF algorithm

to the analytical results.

2.3.4.1 Mean-square center-of-mass displacement in isotropic, homogeneous

system

In this subsection, we will study the single-chain dynamics generated by the

SCMF algorithm. According to the Rouse dynamics, the mean-square, center-

of-mass displacement, g3(t) in a homogeneous melt is given by the Eq. 2.12.

By the SCMF algorithm, we implement the particle-based simulation in a ho-

mogeneous phase of polymer melts. In Fig. 2.4, we plot the g3(t) as a function of

the simulation time t. As predicted, g3(t) increases linearly with the simulation

time t at a large time scale. The dynamics of the single chain is isotropic in all

directions. In Fig. 2.4, the curve gx3 , gy3 and gz3 are overlap.
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FIGURE 2.4: Mean-square, center-of-mass displacement, g3 and mean-square
displacement of segments, g1 as a function of simulation time t.

In the Rouse model, the relaxation time, τ to equilibrate the polymer chain con-

formation is predicted as,

τ =
Re0

2

DRouse

. (2.36)

In the SCMF algorithm, the time step is determined as ∆t = 0.17ξRe0
2/NkBT .

The self-diffusion constant,Dscmf by the SCMF algorithm is calculated asDscmf ≈
0.0001123Re0

2/SMC. It takes approximately τ = 8900 SMC to fully equilibrium

the chain conformation. In this thesis, we use the time τ as the unit time.

We also present the mean-square displacements of all segments, g1(t) which is

defined as,

g1(t) =
1

N

N−1∑
s=0

〈
(~r(s, t)− ~r(s, t = 0))2〉 . (2.37)
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In the Rouse model, the mean-square displacement of all segments, g1(t) is pre-

dicted as [56],

g1(t)

Re0
2 =

6t

τ
+

1

N

∑
s

∑
p

(
cos(πp(s+0.5)

N
)

N sin( πp
2N

)

)2

× (1− e−12N2 sin(πp/2N)t/τ ) (2.38)

The mean-square displacement of segments, g1(t) can be distinguished by three

regions,

g1(t)

Re0
2 =


6Nt
τ

, t < τ
3πN2

2
√

3t
πτ

, τ
3πN2 < t < τ

3π

6t
τ

, τ
3π
< t.

(2.39)

τR is the Rouse time of the SCMF algorithm which is defined as τR ≡ τ/3π2.

The predictions of g1 and g3 obtained by the Rouse model agree with the particle-

based, SCMF algorithm simulation. As shown in Fig. 2.4, g3 and g1 approxi-

mately collapse at t > 0.1τ .

2.3.4.2 Expansion of an isolated polymer chain

In a polymer melt or solution, the spatial extent of a polymer chain may expand.

The length scale of a polymer chain is characterized by the mean-square, end-

to-end distance, 〈R2
e〉, which is defined by,

R2
e =

〈
[~r(N)− ~r(0)]2

〉
∝ N2ν . (2.40)

N is the polymerization of the polymer chain. The mean-square, end-to-end

distance, R2
e is proportional to N2ν .

For ideal chains without non-bonded interactions, the simplified idealization

model can be replaced by a random walk on a periodic lattice. Numerical stud-

ies on this ideal model show that ν depends only on the dimensionality of the

system. The growth exponent ν can be easily derived and ν equals to 1/2.

In polymer melts, the repulsive interactions between monomers that expand

the length of a polymer chain are the excluded volume interactions. The concept

of "excluded volume" means that the volume of a monomer is not accessible
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FIGURE 2.5: R2
e is plotted as a function of κN . We compare R2

e as a function of
excluded volume interaction parameter κN with the equations given by 2.42

and 2.44.

by other monomers. As a result, the mean-square end-to-end distance R2
e will

increase with the excluded volume interaction.

Numerical experimental studies show that the real chains in a solvent have the

same universal features as the self-avoiding walk (SAW) model on a lattice. In

mathematics, a SAW is a sequence of moves on a lattice (a lattice path) that does

not visit the same point more than once. In three dimensions, the exponent ν is

close to 3/5 [47].

In the previous theoretical investigations [72–75], they investigate the single-

chain expansion by a perturbation calculation using the Borel summation tech-

nique. In this subsection, we will numerically calculate the single-chain expan-

sion by SCMF algorithm.
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FIGURE 2.6: R2
e is plotted as a function of updating field frequency, ω. The

excluded volume interaction, κN = 0.1.

Suppose a single polymer in a solvent, the excluded volume interaction is given

byHexclude,
Hexcluded

kBT
=

1

2
w

N∑
s=0

N∑
s′=0

δ(~r(s)− ~r(s′)). (2.41)

For the small excluded interaction parameter w, 〈R2
e〉 can be written as a pertur-

bation series [74],

〈
R2

e

〉
= Re0

2(1 +
4

3
z − 2.075z2 + 6.297z3 −

25.057z4 + 116.135z5 − 594.717z6 + . . . ). (2.42)

In this equation, the dimensionless interaction parameter z is the Fixman pa-

rameter which is defined as,

z ≡ (
3

2
π)3/2w

N2

Re0
3 . (2.43)
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z has a physical importance as the average number of collisions taking place in

the polymer chain.

M. Muthukumar summarized the chain expansion equation throughout the full

range of z with the simple formula [75],

〈
R2

e

〉
= Re0

2 exp
{

0.1772 ln(1 + 7.524z + 11.06z2)
}
. (2.44)

Analytical formulas Eq.2.42 and Eq.2.42 slightly differs because of different ap-

proximation schemes [75].

To calculate the polymer chain expansion with our SCMF algorithm, we enforce

the non-bonded interaction in Eq. 2.6 to be identical with the excluded volume

interaction in Eq. 2.41. The incompatibility parameter, χN is set to 0 and the

incompressibility parameter, κN can be related to the strength of the excluded

volume interaction w,

w = κN
V

N2
. (2.45)

To relate the dimensionless parameter z to the coarse-grained model, z is repre-

sented as,

z = (
3

2π
)3/2κN

V

Re0
3 . (2.46)

In the simulation, we consider the simplest case that an isolated single polymer

chain with 32 segments is confined to a volume V = 1Re0 × 2Re0 × 2Re0 with

a periodical boundary condition. We measure the mean-square end-to-end dis-

tance R2
e every one thousand SMC. We update the instantaneous external fields

wα after each smart Monte Carlo step.

As shown in the Fig. 2.5, we plot the R2
e as a function of the excluded volume

interaction parameter κN . We compare the results with theoretical predictions

in Eq. 2.42 and Eq. 2.44. The results quantitatively agree with the theoretical

prediction in [75].

The quality of the SCMF algorithm is controlled by the frequency of updating

the external fields, ω. This variable is defined as the number of updates per



36

FIGURE 2.7: The reciprocal of the peak value of the structure factor of compo-
sition, N/S(|q∗|) is plotted as a function of the incompatible parameter, χN .

SMC. We plot R2
e as a function of the frequency ω in Fig. 2.6. The update fre-

quencies which are above 1/10 updates per SMC are sufficient to capture the

non-trivial correlation of an isolated chain.

By decreasing ω, the chain expansion characterized byR2
e decreases. In the limit

of ω = 0, there is no update of the external fields. The mean-square, end-to-end

distance, R2
e gives an ideal chain result, i.e., R2

e = R2
e0, which corresponds to

SCFT approximation where the external fields are replaced by static external

fields.

2.3.4.3 Order-disorder transition of diblock copolymer melts

In this subsection, we will use the SCMF algorithm to investigate the microphase

separation of symmetric diblock copolymer melts. In the section 2.1, we use the

Flory-Huggins theory investigate the phase separation of binary homopolymer
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blends. To describe a microphase separation for the symmetric diblock copoly-

mer melts, one must take into account the long-range energies generated by the

polymer chain connectivity.

The order-disorder transition (ODT) in diblock copolymers can be studied by

the random-phase approximation (RPA). The transition point is predicted to be

at χN ≈ 10.495 within this mean-field approach by calculating the structure fac-

tor of the composition. Detailed calculations of the structure factor of the com-

position in the Appendix B [19]. Diblock copolymers belong to the Brazovskii

universality class. The composition fluctuations alter the character of transition

to first-order. Meanwhile, the position of the ODT point is also shifted. This

phenomenon is observed by many simulations and experiments [21, 76].

Compared to the RPA approach, the advantage of the SCMF algorithm simula-

tion is that the thermal fluctuations are also included. To investigate the com-

position fluctuations, we calculate the structure factor, S(q) for various values

of χN . The structure factor is defined as,

S(q) =

∫
d~r3d~r′

3
〈
m̂(~r)m̂(~r′)

〉
exp

{
−iq(~r − ~r′)

}
. (2.47)

〈. . . 〉 represents the ensemble average. m̂(~r) = φ̂A(~r)− φ̂B(~r) is the local compo-

sition in block copolymer melts. The structure factor of the composition S(q) is

the Fourier transform of the correlation function 〈m̂(~r)m̂(~r′)〉.

This quantity can be measured by many experiment methods such as light, X-

ray, and neutron scattering. For symmetric diblock copolymers, S(q) is zero

at |q| = 0 and q = ∞. S(q) has a maximum for a certain value q∗. When

χN do not exceed the ODT point, the peak value of S(q∗) is finite. As we in-

crease the incompatibility parameter χN , the peak value S(q∗) increases. When

χN exceeds the ODT point, S(q∗) becomes infinite. The homogeneous phase

becomes unstable and the microphase separation occurs spontaneously.

In the particle-based representation, the structure factor is,

S(q) =
1

ρ2
< |

n∑
i=1

N∑
s=0

[γA(s)− γB(s)]e−iq~ri(s)|2 > . (2.48)
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In our simulations, the volume of the simulation box is V = 1 × 10 × 10Re0
3.

The discretization of the box ∆L = 1/6Re0. The number of the polymer in the

box is 12800. The invariant degree of polymerization N̄ equals to 1282.

The reciprocal peak values of the S(q) is plotted as a function of Florry-Huggins

parameter χN in Fig. 2.7. The reciprocal peak height of the structure factor

N/S(q∗) linearly depends on the χN in small χN . At approximately χN = 14,

N/S(q∗) vanishes. From the RPA calculation, N/S(q∗) obeys

ρ2

4n

N

S(q∗)
≈ 2(10.945− χN). (2.49)

We make a comparison of the SCFT simulation with the RPA calculation. The

transition point is shifted to approximately χN = 14.
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2.4 Self-consistent field theory

In the previous section 2.2, we introduce the soft, coarse-grained, particle-based

model. By means of the SCMF algorithm, we can compute quantities, e.g.,

the mean-square end-to-end distance, R2
e , the average density of composition,

〈m̂〉 =
〈
φ̂A − φ̂B

〉
, and the structure factor, S(q). However, we cannot directly

calculate the free energy of the system in a particle-based simulation. Because

the free energy of the system is not an observable which is a function of particle

coordinates.

In a fluid or self-assembling system, this difficulty is more significant which

stems from the absence of a reference state for which the free energy can be ac-

curately calculated. For instance, the crystal structure is a good reference state

in the solid-state system because its free energy can be calculated rigorously.

Non-interacting particles are attached to their ideal lattice positions by a har-

monic spring potential. One can use the thermodynamic integration method to

calculate the free-energy difference between the two thermal states [77]. How-

ever, in polymer systems, molecules are diffusing and cannot be constrained to

the lattice position with a small excursion distance. One cannot easily find a

good reference state.

For practical purposes, we need to compute the free energy of various mor-

phologies and distinguish the thermodynamic equilibrium state from many

metastable alternatives. In a particle-based simulation or an experiment, it may

take protracted long time to reach the thermodynamic equilibrium. The free

energy of the system is a good criterion to determine the thermodynamic equi-

librium state.

In this section, we exploit that the free energy can be accurately calculated by

SCFT in the limit of large N̄ and that our soft, particle-based model is very sim-

ilar to the standard model of self-consistent field theory (SCFT). There are only

two minor differences between a particle-based model and a continuum SCFT

model: (i) In a standard SCFT model, the Gaussian chain contour is continu-

ous. (ii) the local total density is constrained to unity, i.e., the system is strictly

incompressible.

The Hamiltonian of the particle-based model in Sec. 2.2 is modified as,
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Ĥscft

kBT
=

3

2R2
e0

n∑
i=1

∫ 1

0

ds

[
d~ri(s)

ds

]2

(2.50)

− ln δ

[
1−

∑
α

φ̂α

]

−1

2

√
N̄
∑
α 6=α′

∫
d3~r

Re0
3 χα,α′Nφ̂α(~r)φ̂α′(~r).

The density of φ̂A(~r) and φ̂B(~r) is defined in Eq. 2.28.

In the following, we will introduce the saddle-point approximation to solve this

model for the symmetric diblock copolymer melt.

2.4.1 Method

The partition function of the symmetric diblock copolymer melts in a canonical

ensemble is,

Zscft =
1

n!

1

λ3nNA
A λ3nNB

B

∫ n∏
i=1

1∏
s=0

d~ri(s) e
−Ĥscft/kBT , (2.51)

where i is the polymer index and s is the segment index along the linear poly-

mer. The polymer chain is discretized into Ns + 1 segments and the index s

ranges from 0 to 1. λA and λB are the thermal de Broglie wavelength,

λA =
hplanck√

2πmAkBT
(2.52)

λB =
hplanck√

2πmBkBT
(2.53)

where mA and mB is the mass of a single segment of the block copolymer.

The partition function Zscft cannot be solved directly, because the interaction

between molecules are not decoupled. To simply the calculation and make

above partition function more tractable, people use a Hubbard–Stratonovich

(HS) transformation to replace the many-body interaction terms by linear terms

of auxiliary fields WA, WB, ΦA, ΦB and Ξ [17].
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We insert the following equations in the partition function in Eq. 2.51,

∏
~r

δ(1− φ̂A(~r)− φ̂B(~r)) =

∫ ∏
~r

dΞ(~r) e
∫

d~r ρ
N

Ξ(~r) (1−φ̂A(~r)−φ̂B(~r))

(2.54)

1 =

∫ ∏
~r

dΦA(~r) δ
[
φ̂A(~r)− ΦA(~r)

]
∫ ∏

~r

dWA(~r)dΦA(~r) exp

{
−
∫

d~r
ρ

N
WA(~r)

[
φ̂A(~r)− ΦA(~r)

]}
(2.55)

1 =

∫ ∏
~r

dΦB(~r) δ
[
φ̂B(~r)− ΦB(~r)

]
∫ ∏

~r

dWB(~r)dΦB(~r) exp

{
−
∫

d~r
ρ

N
WB(~r)

[
φ̂B(~r)− ΦB(~r)

]}
(2.56)

The partition function, Zscft in Eq. 2.51 is rewritten as,

Zscft ∼
∫ ∏

~r

dΞ
∏
~r

dWA

∏
~r

dWB

∏
~r

dΦA

∏
~r

dΦB

∫ n∏
i=1

Ns∏
s=0

d~ri(s) exp

[
−Ĥb/kBT −

∫
d~r
n

V
(φ̂AWA + φ̂BWB)

]
exp

{
−
[∫

d~rχρΦAΦB −
ρ

N
WAΦA −

ρ

N
WBΦB −

ρ

N
Ξ(1− ΦA − ΦB)

]}
=

∫ ∏
~r

dΞ
∏
~r

dWA

∏
~r

dWB

∏
~r

dΦA

∏
~r

dΦB Qn

exp

{
−
[
n

V

∫
d~rχNΦAΦB −WBΦB −WAΦA − Ξ(1− ΦA − ΦB)

]}
=

∫ ∏
~r

dΞ
∏
~r

dWA

∏
~r

dWB

∏
~r

dΦA

∏
~r

dΦB exp

{
−Fscft

kBT

}
. (2.57)

Fscft is a functional of fields ΦA, ΦB, WA, WB and Ξ which is represented as,

Fscft

nkBT
= − lnQ+

1

V

∫
d~r {χNΦA(~r)ΦB(~r)−WBΦB −WAΦA − Ξ(1− ΦA − ΦB)} .

(2.58)
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The functional Q[WA,WB] is the partition function of a single polymer chain

under external fields WA and WB,

Q[WA,WB] ≡
∫ 1∏

s=0

d~r(s) exp
{
−

1∑
s=0

1

∆s

3

2Re0
2 [~r(s)− ~r(s− 1)]2

−
fA∑
s=0

WA[~r(s)]∆s−
1∑

s=fA

WB[~r(s)]∆s
}
. (2.59)

∆s = 1/Ns is the polymer chain discretization.

The interactions between polymers give rise to high-order terms in the partition

function. In SCFT, these interactions are simplified by a saddle-point approx-

imation. One employs the extreme point in the integrand as the equilibrium

state and neglects the fluctuations.

The self-consistent equations are,

V

nkBT

δFscft

δΞ
= ΦA + ΦB − 1 = 0 (2.60)

V

nkBT

δFscft

δWA

= −V
Q

δQ
δWA

− ΦA = 0 (2.61)

V

nkBT

δFscft

δWB

= −V
Q

δQ
δWB

− ΦB = 0 (2.62)

V

nkBT

δFscft

δΦA

= Ξ−WA −
χN

2
(ΦA − ΦB) = 0 (2.63)

V

nkBT

δFscft

δΦB

= Ξ−WB −
χN

2
(ΦB − ΦA) = 0. (2.64)

The saddle-point approximation ignores thermal fluctuations around the mean

value which are especially important at the weak-segregation regime.

To numerically solve nonlinear equation arrays from Eq. 2.60 to Eq. 2.64, the

most essential procedure is to solve the single-chain partition function Q.

We divide the partition function of the single chain Q by the partition function

of an ideal chain Q0,

Q/Q0 =
1

V

∫
d~r(1) e−WB(~r(1))∆s∫

d~r(1) Ψ(~r(1), ~r(1− 1/Ns))e
WB(~r(1))∆s

· · ·
∫
~r(0)d Ψ(~r(1/Ns), ~r(0))e−∆sWA(~r(0)). (2.65)
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Here Ψ(~r, ~r′) is defined as the probability to transfer from the point ~r to the

point ~r′.

Ψ(~r, ~r′) ≡ e−
a

4s (~r−~r′)2

/(
π4s
a

)
3
2 , (2.66)

where a ≡ 3
2Re0

2 . From above definition, Ψ(~r, ~r′) depends only on the distance

between ~r and ~r′, so Ψ(~r, ~r′) can also be written as Ψ(4r) and4r ≡ |~r− ~r′|. The

external field WA and WB is replaced by Ws,

Ws =

WA if s < fA

WB if s > fA
(2.67)

From the equation 2.65, the partition can be reformulated with a new functional

q(~r, s; [Ws]) of external field Ws,

q(~r, s+ ∆s, [Ws]) = e−Ws(r)∆s

∫
Φ(~r − ~r′)q(~r′, s, [Ws])d~r′

q(~r, 0, [Ws]) = e−Ws(~r)∆s (2.68)

q(~r, s; [Ws]) is the statistical weight for the bead s of a chain at position ~r. This

quantity is also regarded as a chain propagator. The equation 2.68 is a Chap-

man–Kolmogorov equation. In the limit of a continuum chain limit ∆s → 0,

this equation is reduced to the Fokker-Planck equation,

q(~r, s, [Ws]) +
∂

∂s
q(~r, s, [Ws])∆s

= (1−Ws(~r)∆s)

∫
Φ(∆r)q(r + ∆r, s, [Ws])d∆r

= (1−Ws(~r)∆s)

∫
Φ(∆r)

(
q +

∆r2

2
∇2q

)
d∆r

= (1−Ws(~r)∆s)

(
q +
∇2q

2

∫ ∞
0

e−
a

∆s
r2

r3dr

)
= (1−Ws(~r)∆s) (q +

1

2

∆s

2a
∇2q)

∂

∂s
q =

∇2q

4a
−Wsq. (2.69)

From above equations, the Fokker-Planck equation is,
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∂q

∂s
=


Re0

2

6
∇2q−WAq if s < fA

Re0
2

6
∇2q−WBq else if s > fA.

(2.70)

In the limit of continuum chain, the initial condition for q(~r, 0, [Ws]) reduces to

q(~r, 0, [Ws]) = 1. (2.71)

Because the two ends of the block copolymer are distinct. The opposite end

segment distribution, q+ is defined with a similar definition as q. It satisfies

q+(~r, 1, [Ws]) = 1.

The Fokker-Planck equation is also referred as a modified diffusion equation.

The partition function Q/Q0 can be represented by the statistical weight func-

tion q as,

Q
Q0

=
1

V

∫
d~r q(~r, 1; [Ws]) (2.72)

The density of the segment Φ can also be represent with q(~r, 1; [Ws]).

ΦA = −Q0

Q

δ(Q/Q0)

δWA

=
1

Q

fA∑
0

q(~r, s; [Ws])q
+(~r, 1− s; [Ws]) (2.73)

ΦB = −Q0

Q
δ(Q/Q0)

δWA

=
1

Q

1∑
fA

q(~r, s; [Ws])q
+(~r, 1− s; [Ws]) (2.74)

One thing needs to address is that in the limit of ∆s → 0, the double counting

of the exp{−W∆s} is not important. In our discretized chain model, we use

Ns = 100 which gives ∆s = 0.01.

In the next section, we will illustrate the numerical implementation of the SCFT

algorithm.
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FIGURE 2.8: The flowchart of the SCFT algorithm.

2.4.2 Numerical implementation

In the numerical calculation of the SCFT iterative equations, the most essential

and time-consuming step is to solve the diffusion equation 2.70. There are sev-

eral numerical approaches to solve this differential equation. Generally, there

are two main approaches, i.e., the reciprocal-space method and the real-space

approach.

The reciprocal-space method or the spectral method takes advantage of the

symmetry of the equilibrium structures [17]. One takes a set of complete and

orthogonal functions as the basis function to numerically solve the modified

diffusion equation. In analogy to solve the Schrödinger equation in the quan-

tum mechanics, different modes are decoupled in the reciprocal space due to

the spatial symmetry of the equilibrium state for block copolymers. The spec-

tral method presumes the symmetry of the system, this method is not suitable to

investigate meta-stable structure with defects. To exploit the meta-stable mor-

phology in a nonequilibrium process, the real-space approach is comparably

more suitable.

There are two main methods in the real-space approach, i.e., the finite-difference

method and the pseudo-spectral method [78, 79]. The finite-difference method
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can be implemented using an explicit scheme or an implicit scheme. The ex-

plicit scheme like the forward-time centered-space is the most straightforward

scheme [80]. An implicit scheme like the Crank-Nicholson method is condition-

ally stable [81]. This scheme is more stable and accurate than the forward-time

centered-space method. But the finite-difference method is difficult to be paral-

lelly implemented [82].

To most practical method to numerically solve the diffusion equation 2.70 is

the pseudo-spectral method [83]. This method is unconditional stable in all

dimension and is more accurate than the finite-difference method. With parallel

packages like FFTW and cuFFT, it is possible to implement the algorithm on

the computer clusters and GPU with a high efficiency. In the following, we will

employ this method to investigate various problems.

The exact expression q(~r, s+ ∆s, [Ws]) for the solution to the equation 2.70 is,

q (~r, s+ ∆s, [Ws]) = exp
[(
Re0

2∇2/6−Ws

)
∆s
]
q(~r, s, [Ws]).

(2.75)

The operator exp{
[
Re0

2∇2/6−Ws

]
∆s} can not be solved directly, because ∇2

andWs do not commute. This formula can be split with Baker–Campbell–Hausdorff

formula. This splitting operation neglects high-order terms o((∆s)2),

exp

{
−Ws

∆s

2

}(
exp

{
∆sRe0

2∇2/6
}

exp

{
−Ws

∆s

2

})
= exp

{
−Ws

∆s

2

}
exp

{
∆sRe0

2∇2/6−Ws
∆s

2
+

1

2

[
∆s∇2,−Ws∆s/2

]
+ o((∆s)2)

}
= exp

{
∆sRe0

2∇2/6−Ws∆s+ o((∆s)2
}

≈ exp
{

∆sRe0
2∇2/6−Ws∆s

}
(2.76)

The pseudo-spectral method employs the Fourier transform FFT and inverse

Fourier transform FFT−1 to solve above equation,
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exp
{

∆sRe0
2∇2/6−Ws∆s

}
≈ exp

{
−Ws

∆s

2

}
FFT−1FFT

{
exp

(
∆sRe0

2∇2/6
)

exp (−Ws∆s/2)
}

= exp

{
−Ws

∆s

2

}
FFT−1 exp

{
−∆sRe0

2k2/6
}
FFT {exp(−Ws∆s/2)}

(2.77)

The pseudo-spectral method is unconditionally stable and the accuracy is im-

proved. This method allows for fewer spectral elements and a larger chain

contour discretization.

We illustrate the algorithm of SCFT in the flowchart in Fig. 2.8. The SCFT equa-

tions are solved iteratively. The first step in the iterative procedures is to initial-

ize the potential fields WA and WB.

In the SCFT, we only consider the incompressible system. A given morphology

is characterized by the local composition m of A and B species. For a given

morphology m, the potential fields are initialized as,

W 0
A = (1−m)χN/2

W 0
B = (1 +m)χN/2. (2.78)

The second step is to substitute the fields W n−1
A and W n−1

B into the Eq. 2.70

and numerically solve the modified diffusion equations by the pseudo-spectral

method given in Eq. 2.77. The Fourier transform can be implemented by the li-

brary of cuFFT on GPUs or the FFTW library on CPUs. After obtaining q(~r, s, [Ws]),

the new density Φn
A and Φn

B are obtained by Eq. 2.73.

The last step is to modify the field W n
A and W n

A with new density configuration

φnA and φnB,

W n
A = W n−1

A +Kco

(
χNφnB + Ξ−W n−1

A

)
(2.79)

W n
B = W n−1

B +Kco

(
χNφnA + Ξ−W n−1

B

)
. (2.80)

The parameter Kco is a mixing parameter. We continue the iterative procedure

until the SCFT equations are converged. One important convergence criteria is
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the incompressibility condition,

|1− φnA − φnB| < η0, (2.81)

where η0 is set as 10−8 in the program. .

2.4.3 Performance

In this section, we test the performance of the SCFT calculation with a parallel

algorithm. To accelerate the SCFT calculation, we implement the algorithm on

a distributed memory parallel cluster and the parallel computing GPUs with

the MPI and CUDA techniques, respectively.

In 2013, Glenn H. Fredrickson and etc. make a similar implementation. They

claim that the speedup of a double precision calculation on Tesla T20 is 30 com-

pared to a single CPU core serial calculation [84].

As introduced in the above section, the modified diffusion equation is solved

by employing the pseudo-spectral algorithm. The most time-consuming part

of the calculation in this algorithm is to implement the Fourier transform. We

use the parallel version of the FFTW library [85] and the cuFFT library [86] to

implement the fast Fourier transform calculation.

The speed of the fast Fourier transform is determined by the size of the system,

i.e., the number of grid points in the system. The chain discretization ∆s de-

termines the number fast Fourier transforms during one iterative SCFT step. In

this thesis, we set ∆s = 1/100, which needs 200 fast Fourier transforms during

in one iterative step.

We first test the performance of the SCFT calculation on the GPU clusters. The

time per iterative step (TPIS) with different system sizes are measured on dif-

ferent GPUs, e.g., the Tesla K80 and the Tesla P100, as shown in the table 2.3.

The computation time during one iterative step increases linearly with the sys-

tem size, i.e., the total number of the gridsNg. Additionally, the efficiency of the

SCFT algorithm on GPUs does not reach to the maximum with a small system
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TABLE 2.3: Performance of the SCFT algorithm on a single GPU.

Number of grid Ng TPIS on Tesla P100 (ms) TPIS on Tesla K80 (ms)

163 47.76 50.45
323 51.47 60.40
643 97.32 208.16
963 320.44 799.92
1283 628.86 1529.88

TABLE 2.4: Performance of the multiple SCFT calculations on a single GPU
with a grid size Ng = 1× 480× 480.

Number SCFT calculations TPIS on Tesla P100 (ms) TPIS on Tesla K80 (ms)

1 85.93 203.06
2 138.92 381.91
4 246.17 729.55
8 453.63 1429.55
16 1031.55 2835.60

size. We can fully take advantage of the GPU capacity by parallelly implement-

ing multiple SCFT calculations on one GPU.

We test the multiple SCFT calculations. The size of the system is Ng = 1× 480×
480. We present the results on the table 2.4. The reason for this implementation

is that, we employ the string method to investigate collective phenomena which

will be introduced in section 3.5.1. This algorithm implements multiple SCFT

calculations during one iterative step.

In the end, we test the performance of MPI-based SCFT calculations on parallel

clusters. The results are shown in the Fig. 2.5. The size of the system is 96 ×
96 × 96. The performance test is implemented on the Intel Xeon E5-2680 v3

Haswell CPU. The maximum speed-up factor is approximately 19.72. Because

the parallel fast Fourier transform will transpose the matrix and frequently send

and receive data. This process limits the efficiency of parallel algorithms.

As a comparison, it takes 320.44ms on the Tesla P100 for one SCFT iterative step.

The speed-up factor is approximately 35.
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TABLE 2.5: Performance of the SCFT algorithm on multiple CPUs. The grid
points of the system is 96× 96× 96.

Number of cores TPIS (ms) Speedup factor

1 11071.5 1
2 6448.3 1.71
4 3675.4 3.01
8 2310.7 4.79
16 1517.6 7.29
24 993.7 11.14
48 567.9 19.52
96 561.3 19.72

2.5 A comparison of the particle-based SCMF algo-

rithm simulation to the SCFT method

In this section, we will compare the SCFT method to the SCMF algorithm in a

symmetric binary AB homopolymer blend.

Equilibrium properties of block copolymer systems can be well described by the

SCFT method. However, compared to the results from experiments or particle-

based simulations, the physical properties obtained by the SCFT method are

qualitatively correct but some important physical effects are missing. The aim

of this section is to investigate thermodynamic properties in equilibrium, e.g.,

the phase transition in homopolymer blends, the interfacial width of phase-

separated homopolymer blends.

To make a comparison with the particle-based simulation, we can, on one hand,

understand the difference between two numerical methods. On the other hand,

we can examine the validity of our algorithms.

2.5.1 AB binary homopolymer blends

The demixing transition of the symmetric incompatible binary AB homopoly-

mer blends is well studied by the mean-field theory [87]. We have derived and

discussed the Florry-Huggins theory, which gives a transition point at χN = 2

in the section 2.1.
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FIGURE 2.9: The density profile of AB polymer blends at χN = 4 obtained by
the SCFT and the SCMF, particle-based simulation. The SCFT results are com-

pared to the particle-based simulation with
√
N̄ = 1600, 16000, and 160000.

In this section, we will use the SCFT method and the particle-based, SCMF

algorithm to investigate the equilibrium properties of symmetric binary ho-

mopolymer melts with the coarse-grained model (Sec. 2.2). The connectivity

of the polymer backbone is described by a bead-spring model which is shown

in Eq. 2.5. The non-bonded interactions for binary mixtures are identical to the

diblock copolymers.

We implement the calculation in a quasi-one-dimensional system, V = L×Re0×
Re0. Above the critical point χN = 2, the A and B polymers will separate into

two phases along the x-axis. The SCFT calculation neglects the fluctuations, so

we implement the SCFT calculation on a one-dimensional gird box withL/∆L×
1 × 1. In the SCMF algorithm, the polymerization of the polymer chain is N =

32 and the space discretization is ∆L = 1/12Re0. In the SCFT, we use a finer

polymer chain discretization, which givesNs = 100 and the space discretization

is also ∆L = 1/12Re0.
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In Fig. 2.9, we compare the composition m = φA − φB obtained from the SCFT

method to the SCMF algorithm simulations along the x direction. The calcula-

tion is implemented at χN = 4 with a box size L = 2Re0. In the particle-based

simulations, the density profile is homogeneous along the y and z direction,

we average the concentration at y- and z-directions. The small extension of the

system will not significantly broaden the profiles by the capillary wave. In the

simulation, the equilibrium state is obtained after running the simulation for

105 SMCs.

From the snapshot, we find that the density profiles from the simulations devi-

ate a little from the SCFT result. The small deviations origin from the thermal

fluctuations, which is controlled by the invariant degree of polymerization, N̄ .

The density profile from SCFT is more segregated because it corresponds to the

limit of large N̄ . The thermal fluctuations in particle-based simulations will

shift the position of the critical point. As a result, the interface width ωwidth,

which is defined by the inverse of the maximum slope of the density profile,

also increases with N̄ . When we use a very large N̄ , the SCFT method and the

particle-based simulations are quantitatively equivalent.

The symmetric binary homopolymer blends can also be well studied by the RPA

calculation. The free-energy functional of symmetric AB homopolymer blends

FRPA[m] is obtained by a Taylor expansion of the Flory-Huggins free-energy

functional in Eq. 2.1 as,

FRPA
blend[m]

kBT
√
N̄
≈
∫

d3~r

Re0
3

[(
1

2
− χN

4

)
m2 +

1

12
m4 +

Re0
2

36
(∇m)2

]
. (2.82)

The free-energy functional FRPA
blend[m] comprises two parts: The first part is the

bulk free energy of the coexisting phase. The latter part is the interfacial tension

between the two interfaces.

To study the phase behavior with RPA method, we employ an Anzatz func-

tion, A sin(2πx/L) as the equilibrium state, where A is the the amplitude of the

density. The RPA free-energy functional in Eq. 2.82 becomes a function A,

FRPA
blend(A)

kBT
√
N̄

= A2L

(
2− χN

8

)
+

3

96
A4L+

A2π2

18L
. (2.83)
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FIGURE 2.10: The maximum absolute value of m is plotted as a function of the
χN along the x axis .

We plot the maximum absolute value of m as a function of χN in Fig. 2.10. In a

mean-field theory, the critical point of the phase separation is at χN = 2. Due

to the finite-size effect, the critical point is shifted to χ∗N = 2 + 4π2/9L2. In the

vicinity of the transition, the order parameter m gets smaller with an exponent

1/2. The RPA calculation gives m ∝
√
χN − 2− 4π2/9L2.

In the end, we investigate the width of the interface between A polymers and

B polymers. It is defined as the maximum value of the inverse slope of the

interface. In the strong-segregation limit (SSL), where χN � 1, The density

profile is given by [88],

m(x) = tanh(x/ωSSL). (2.84)

The width of the interface is defined as,

ωSSL =
Re0√
6χN

. (2.85)
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In equilibrium, the interfacial width decreases when the incompatible parame-

ter, χN increases. In Fig. 2.11, we plot the interfacial width as a function of χN .

To minimize the finite-size effect, we implement the calculation with a large

system size, L = 72Re0. As expected, the interface becomes steeper when the

χN increases.

In the weak-segregation regime, we use the Ansatz function tanh(x/ωRPA) to

solve the free-energy functional in Eq. 2.82 to obtain the interfacial width, ωRPA.

By minimizing the free-energy at the interface, we obtain the interfacial width,

tanh(x/ωRPA) as,

ωRPA =
Re0

3
√
χN − 2

. (2.86)

We compare the results to the particle-based simulations and the SCFT in the

Fig. 2.11. At smaller χN , both the particle-based simulations and the SCFT

deviate a lot from the SSL prediction. When we increase χN , the deviation

gets smaller. Due to thermal fluctuations, the interfacial width is larger in the

particle-based simulations.
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FIGURE 2.11: The interfacial width is plotted as a function of the incompati-
ble parameter χN . The simulation results qualitatively agrees with the SCFT

results when χN increases.



Chapter 3

Free-energy landscape of block

copolymers

3.1 Free-energy functionals

Soft materials are characterized by free energies on the scale of the thermal en-

ergy, kBT . This energy scale is much smaller than the atomistic-scale, cova-

lent bond energy scale, eV ≈ 40kBT . Many collective phenomena (e.g., the

self-assembly of block copolymers) which involves co-operative movements of

many molecules are often dominated by a small free-energy difference between

different thermal states.

In this sense, the most important information to predict the structure formation

process in block copolymers is the free-energy landscape. The free-energy land-

scape is defined as a free-energy functional of the order parameter, m, which

characterizes the configuration of the system.

The choice of the order parameter is crucial. In block copolymer melts, the

molecules are not distinguishable. It is naturally inappropriate to use the co-

ordinates of a specific portion of the molecules as the order parameter. A slow

process in which the timescale to equilibrate the chain conformation is much

smaller than the time scale of the structure formation process, usually employs

the local densities, φα as the order parameter. This order parameter is collective,

i.e., it does not depend on a specific molecule which gives rise to the density at

56
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given point in space. Therefore it automatically accounts for the indistinguish-

able of identical molecules.

In a near-incompressible diblock copolymer melts or binary homopolymer blends,

the order parameter m is determined as,

m ≡ φA − φB. (3.1)

The definition of the free-energy functional Ftarget[m] for a specified m is,

Ftarget[m] ≡ −kBT ln

∫ ∏
d ~ri(s) exp

[
−Ĥb + Ĥnb

kBT

]
δ(m− φ̂A + φ̂B). (3.2)

The calculation of free energies has many applications. For example, the phase

diagrams of block copolymers (e.g., the phase diagram of diblock copolymer

melts in Fig. 1.3) can be mapped out by comparing free energies of many meta-

stable states. In a top-down, coarse-grained approach, the free energies are

also used to determine invariant, coarse-grained parameters. For example, the

Florry-Huggins parameter, χN can be measured by matching the interfacial

tension between domains.

Besides the free energies of stable and metastable states, the free energies of

many transient, unstable states (i.e., the saddle points), which are found in the

course of the structure formation process are also important. For example, we

can describe many collective processes (e.g., the defect annihilation process) by

a sequence of states, i.e., the minimum free-energy path (MFEP).

As discussed in the chapter 2, the calculation of the free energy for a block

copolymer system is very challenging. In a particle-based simulation, one needs

to find a reference state to determine the free-energy difference between the tar-

get state and the reference state. M. Müller and his colleges calculate the free-

energy difference of interfaces between lamellar morphologies with different

orientations [89]. The free-energy difference is accurately obtained by a combi-

nation of the expanded-ensemble and the replica-exchange Monte Carlo tech-

nique. However, this method is rather computationally demanding. Alterna-

tively, one can use field-theoretic umbrella sampling method, which is compa-

rably efficient. This method restrains the fluctuations of a thermal state, m by a

harmonic umbrella potential. The thermodynamic driving force of the thermal
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state, m can be accurately estimated [46]. This method has been successfully

applied to study the bending rigidity of membrane [90]. Wang and Landau’s

algorithm is also studied to calculate free energy with the smart Monte Carlo

method or the force-biased Monte Carlo method [91].

By means of the SCFT calculation, the free energies of metastable and stable

states can be directly obtained by an iterative SCFT calculation. The free ener-

gies of unstable states can also be calculated by modifying the SCFT equations.

Fredrickson and et al., propose a numerical scheme in SCFT to derive the ther-

modynamic forces for homopolymers [92], polymer blends and diblock copoly-

mers that produce the lowest free energy spatial distribution of segments, sub-

jected to the local incompressibility constraint. By going further, it is possible

to construct numerical schemes that produce the lowest free energy spatial dis-

tribution, subjected to the local density constraint [93].

In this thesis, we will construct a numerical scheme in SCFT which mimics the

field-theoretic umbrella sampling method in the particle-based simulation to

derive the free energies and the thermodynamic forces in block copolymers.

In fact, this numerical scheme is not limited to block copolymer materials, for

example, this method is also used to compute the thermodynamic forces in the

membranes [90].

In the following, we will first introduce numerical schemes to derive the chem-

ical potential in SCFT and in particle-based simulations. To utilize the chemical

potential, we will also investigate the mechanism of translating the chemical

potential into the composition flow. The Onsager coefficient that connects the

two parameters is measured in the particle-based simulations. In the end, we

investigate the structure formation process in diblock copolymers and triblock

copolymers by calculating the MFEP with the string method.
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3.2 Numerical derivation of the chemical potential

In this section, we will introduce several numerical schemes to derive the free

energy and the chemical potential for a target state, m in diblock copolymer

melts or binary homopolymer blends.

We first introduce an analytical form of the chemical potential obtained by the

RPA method. This analytical form of the chemical potential is only valid in

the weak-segregation regime. A more accurate estimation can be made in the

framework of the SCFT method. We construct iterative equations to "exactly"

calculate the free-energy functional in Eq. 3.2. The disadvantage of this ap-

proach is that it is computationally demanding. To decrease the computational

complexity, we use an umbrella potential to substitute the delta function con-

straint in equation 3.2. This scheme mimics the field-theoretic sampling method

in the particle-based simulation.

In the end, we introduce the field-theoretic umbrella sampling method in the

particle-based simulation and compare the results to the approaches in the frame-

work of SCFT.

3.2.1 Random-phase approximation

The RPA free-energy functional for symmetric binary homopolymer blends is

given in Eq. 2.82. We can obtain the corresponding chemical potential by a

functional derivative which gives,

µRPA
blend[m]R3

e0

kBT
√
N̄

=
R3

e0

kBT
√
N̄
δFRPA

homo[m]

δm
≈ (1− χN

2
)m− R2

e0

18
∆m. (3.3)

This RPA prediction is valid in the limit of a small amplitude variation |m| � 1

and a long wavelength, qRe0 � 1.

For AB diblock copolymer melts in the weak-segregation regime, the free-energy

functional is [19],

Fdiblock[m]R3
e0

kBT
√
N̄

=
V

2R3
e0

∑
q

|m(q)|2

g(1/2, x)− g(1, x)/4
, (3.4)
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where g(fA, x) = 2
x2 (e−fAx − 1 + fAx) and x = (qRe0)2/6. fA is the composition

of A blocks.

Taking the leading terms in the limit of qRe0 → 0 and qRe0 → ∞, the free-

energy functional takes the same expression as the Ohta-Kawasaki free-energy

functional in Eq. 2.3.

More complex molecular architectures (e.g., branched polymers, multiblock,

random or comb copolymers) give rise to more complex entropy functionals,

which are difficult to derive with an approximation approach. It is of interest to

determine those functionals in the framework of SCFT.

3.2.2 Exact, delta-function constraint in SCFT

In this section, we introduce an "exact" scheme to derive the chemical poten-

tial µ[m] for a target state m in the framework of SCFT method. The chemical

potential µ is defined as,

R3
e0√
N̄
µ[m]

kBT
≡ R3

e0√
N̄
δFtarget[m]

kBTδm
(3.5)

We rewrite the free-energy functional 3.2 by the HS transformation with the

equations 2.55. The additional delta-constraint function δ(m− φ̂A + φ̂B) is mod-

ified by introducing an additional field, Wex as,

δ(m− φ̂A + φ̂B) =

∫
dWex exp

{∫
d~r

ρ

N
Wex(m− φ̂A + φ̂B)

}
. (3.6)

The free-energy functional, F for a polymer chain is expressed as,

F
nkBT

= − lnQ+
1

V

∫
d~r
{
− Ξ (1− ΦA − ΦB)

+χNΦAΦB −WAΦA −WBΦB

+Wex (m− ΦA + ΦB)
}
. (3.7)

Q is the single-chain partition function which is defined in equation 2.59.
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Based on the saddle-point approximation, the self-consistent equations are ob-

tained as,

V

nkBT

δF
δΞ

= ΦA + ΦB − 1 = 0 (3.8)

V

nkBT

δF
δWA

= −V
Q

δQ

δWA

− ΦA = 0 (3.9)

V

nkBT

δF
δWB

= −V
Q
δQ
δwB

− ΦB = 0 (3.10)

V

nkBT

δF
δΦA

= Ξ−WA + χNΦB −Wex = 0 (3.11)

V

nkBT

δF
δΦB

= Ξ−WB + χNΦA +Wex = 0 (3.12)

V

nkBT

δF
δWex

= m− ΦA + ΦB = 0. (3.13)

The free-energy F at saddle points, which is denoted as Fsaddle is a functional

of m. The functional Ftarget[m] is equivalent to the functional F at these saddle

points,

Ftarget[m] = F[Ξ,ΦA,ΦB,WA,WB,Wex] = Fsaddle[m]. (3.14)

The saddle-point values of Ξ, ΦA, ΦB, WA, WB, and Wex are functionals of m.

The chemical potential µ defined in equation 3.5 can be derived as,

R3
e0√
N̄
µ[m](~r)

kBT
=

R3
e0√
N̄
δFtarget[m]

kBTδm
=

R3
e0√
N̄
δFsaddle[m]

kBTδm
= Wex[m]. (3.15)

We use an iterative approach to solve above functions. With the initial poten-

tials W 0
A and W 0

B, the nth densities Φn
A and Φn

B are obtained by,

Φn
A = − V

Q[W n−1
A ,W n−1

B ]

δQ[W n−1
A ,W n−1

B ]

δW n−1
A

(3.16)

Φn
B = − V

Q[W n−1
A ,W n−1

B ]

δQ[W n−1
A ,W n−1

B ]

δW n−1
B

(3.17)

The parameters, Ξn and W n
ex are Lagrange multiplier that corresponds to the

incompressibility and the order-parameter constraint which are obtained by,

Ξn =
1

2

(
W n−1
A +W n−1

B − χN
)
. (3.18)

W n
ex =

1

2

[
−χNm− (W n−1

A −W n−1
B )

]
. (3.19)
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After obtaining the fields Φn
A, Φn

B, Ξn, and W n
ex, the next step is to update the

external fields, W n
A and W n

B with,

W n+1
A = W n

A +Kco [χN(1−m)/2 + Ξ−W n
ex −W n

A)] (3.20)

W n+1
B = W n

B + kco [χN(1−m)/2 + Ξ +W n
ex −W n

B)] . (3.21)

The parameter Kco is a mixing parameter, which is usually set to 0.01 in our

calculation.

The iterative calculation ends when Φn
A and Φn

B satisfy,

ηncom = |1− Φn
A − Φn

B| < 10−8 (3.22)

ηncon = |m− Φn
A + Φn

B| < 10−8. (3.23)

ηncom and ηcon are incompressible constraint parameter and density constraint

parameters, respectively.

With this technique, one can accurately calculate the chemical potential in the

limit of N̄ → ∞. So this method is important to understand non-equilibrium

phenomena and can be used to extend the field-theoretic model of SCFT into

dynamics [22, 94, 95].

3.2.3 Umbrella potential method in SCFT

In the previous section, we derive the chemical potential, µ[m] by using the

saddle-point approximation on the free-energy functional in Eq. 3.2. This method

can accurately map out the chemical potential within the mean-field approxi-

mation. However, a numerical implementation of this method is rather cum-

bersome. Because there are two Lagrange multiplier fields Wex and Ξ in the

self-consistent equations 3.8. It usually takes several magnitude more iterative

steps than the numerical scheme with a single Lagrange multiplier field to con-

verge.

To efficiently obtain the chemical potential with a controllable precision, we

propose the umbrella potential method. This method resembles the field-theoretic

umbrella sampling method in the Monte Carlo scheme [46]. We constrain the
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system to the target state m by adding an umbrella potential Hλ which is de-

fined as,
1√
N̄
Hλ

kBT
=
λN

2

∫
d~r

R3
e0

{
m− φ̂A − φ̂B

}2

. (3.24)

Similar to the previous treatment, we use the HS transformation to derive the

free-energy functional Fλ,

Fλ[Ξ,ΦA,ΦB,WA,WB]

nkBT
= − lnQ+

1

V

∫
d~r {χNΦAΦB −WAΦA −WBΦB

−Ξ(1− ΦA − ΦB)− λN

2
(m− ΦA + ΦB)2}. (3.25)

The iterative equations are obtained as,

V

nkBT

δFλ
δΞ

= ΦA + ΦB − 1 = 0 (3.26)

V

nkBT

δFλ
δWA

= −V
Q

δQ
δWA

− ΦA = 0 (3.27)

V

nkBT

δFλ
δWB

= −V
Q

δQ
δWB

− ΦB = 0 (3.28)

V

nkBT

δFλ
δΦA

= Ξ−WA + χNΦB − λN(m− ΦA + ΦB) = 0 (3.29)

V

nkBT

δFλ
δΦB

= Ξ−WB + χNΦA + λN(m− ΦA + ΦB) = 0. (3.30)

The free-energy functional Fλ at its saddle points Fsaddle can be regarded as a

functional of m. In the limit of λN → ∞, the umbrella potential constraint is

equivalent to the delta-function constraint. As a result, the free-energy func-

tional Fsaddle[m] at its saddle points can be approximately used as the Ftarget[m],

i.e.,

lim
λN→∞

Fsaddle[m] = Ftarget[m]. (3.31)

The strength of the umbrella potential is controlled by the parameter λN . This

parameter must be set to a value which is large enough to constrain the order

parameter,m. In the next section, we will discuss the influence of the parameter

λN to the numerical precision.
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Similarly, the chemical potential µλ of the free-energy functional Fλ[m] is,

Re0
3

√
N̄

µλ
kBT

=
Re0

3

√
N̄
δFsaddle[m]

kBTδm
= λN (m− ΦA + ΦB) (3.32)

In the limit of λN � 1, we use the approximation µλ ≈ µ.

The system is incompressible, the choice of the umbrella potential is not unique.

In the appendix A, we briefly introduce several equivalent umbrella potentials

and derive their corresponding iterative equations.

3.2.4 Field-theoretic umbrella sampling in the particle-based

simulation

In this section, we will introduce the umbrella sampling method in conjunction

with the SCMF algorithm in the particle-based simulation. The soft, coarse-

grained, particle-based model in the section 2.2 is equivalent to the SCFT model

introduced in section 2.4 when the total density fluctuations and the composi-

tion fluctuations are completely suppressed, i.e., the parameter κN and N̄ are

infinitely large.

Unlike in the SCFT calculation, the phase space of the target state, m cannot

be sampled by using a harsh delta-function constraint in a particle-based sim-

ulation. Because a trial move of the particle will give rise to a small variation

of the local, microscopic density profile and violate the harsh, delta-function

constraint. As a result, such a harsh, delta-function constraint will give rise to

sampling problems in the particle-based simulations and results in a low accep-

tance rate.

To solve this difficulty, the harsh, delta-function constraint is usually substi-

tuted by an umbrella potential. In this section, we use an umbrella potentialHλ

which is given in Eq. 3.24.

The chemical potential µ of the thermal state, m in a particle-based simulation

is derived as,

R3
e0√
N̄
µ[m]

kBT
≈ R3

e0√
N̄
µλ[m]

kBT
= λN

(
m−

〈
φ̂A − φ̂B

〉
λN

)
(3.33)
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The thermodynamic average 〈. . . 〉λN is defined as,

〈. . . 〉λN =

∫
D{~ri(s)} . . . exp

[
−Hb +Hnb +HλN

kBT

]
(3.34)

In the limit of a large λN , this approximation becomes exact. However, we

cannot use a very large value of λN in a particle-base simulation. Because the

umbrella potential will give rise to a large force on the molecular dynamics.

In the following section, we will discuss how to determine a proper λN in the

simulation.

In the end, we can estimate the free-energy difference, ∆F between two states

by measuring the chemical potential. We consider a sequence of states mα,

which is indexed by α. The free-energy difference, ∆F between two states,

mα=0 and mα=1 can be estimated as,

∆F
kBT

=

∫ α=1

α=0

dα

∫
d~r

δF [mα]

δmα

∂mα

∂α
. (3.35)

In a discretization form, ∆F is approximately calculated as,

R3
e0√
N̄

∆F
kBT

≈
∫

d~r
∑
α

(µ[mα+∆α] + µ[mα])

2
(mα+∆α −mα) ∆α. (3.36)

3.2.5 Numerical results

In this section, we will make a comparison of various numerical methods, which

are introduced in the previous sections by computing the chemical potential.

3.2.5.1 A comparison between the RPA method and the exact results ob-

tained by the delta-function constraint in conjunction with SCFT

To utilize the RPA approximation, we try to obtain the chemical potential of

a one-dimensional density profile, m = A sin(qx) for a symmetric binary ho-

mopolymer blend. The incompatible parameter, χN is set to 0 which corre-

sponds to a homogeneous state in equilibrium.
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FIGURE 3.1: A comparison between the exact chemical potential and the RPA
results. The exact results are obtained by the delta-function constraint method

in SCFT.

The amplitude of the target density profile, A is a small value which equals to

0.25. The extension of the system is L = 8Re0 and nq ranges from 1 to 12. By the

Eq. 3.3, the chemical potential is obtained as,

µRPA
blend[m](x)R3

e0

kBT
√
N̄

= A sin(qx) + AR2
e0q

2 sin(qx)/18. (3.37)

The chemical potential, µRPA
blend[m](x) is a sine function, which has an identical

Fourier mode, qRe0 to the density,m. So we only need to compare the amplitude

of the chemical potential of various numerical methods.

As shown in Fig. 3.1, we measure the maximal absolute value of the chem-

ical potential as a function of the wave factor, qRe0. The chemical potential,

µRPA
blend[m](x) obtained from the RPA approach agrees well with the SCFT predic-

tions at a small qRe0. At a large qRe0, the RPA underestimates the strength of the

chemical potential. In this case, the deviation at qRe0/2π = 1.5 is approximately

41%.
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3.2.5.2 An analysis of the umbrella potential method in conjunction with

SCFT

The RPA chemical potential provides an analytical form of chemical potential

in the limit of a small variation of the order parameter, i.e., |m| � 1 and the

long wavelength, qRe0 � 1. In a strongly segregated system, this method is not

appropriate. In this section, we try to calculate the thermodynamic forces at the

interface by using the umbrella potential method in conjunction with SCFT.

Consider a symmetric diblock copolymer melt in a one-dimensional volume,

V = L × Re0 × Re0, the extension of the system along the x-axis is L = 1.5Re0,

which is approximately commensurate with the lamellar spacing of symmetric

diblock copolymers at χN = 20. In the SCFT, the fluctuations of the density

are neglected, so we do not need to take into account the fluctuations on the y-

and z-axis. The number of the grid points at y and z-axis is set as Ny = 1 and

Nz = 1, respectively. The chain discretization in SCFT method is Ns = 100.

In this section, we will generate a target morphology with a sharp interface by

the umbrella potential method in SCFT and calculate its the thermodynamic

forces at the interface. The target morphology with a sharp interface is gener-

ated via a step function, mstep defined as,

mstep(x) =

1 x > 0.75Re0

−1 x < 0.75Re0.
(3.38)

The step function cannot be directly used as the target state to study the ther-

modynamic forces at the interface of the diblock copolymer melts. We generate

the target density profile mtarget by constraining the system to mstep with a soft

umbrella potential in the SCFT. The strength of the umbrella potential is set as

λN = 50. The resulting density mtarget has a "softer" interface and is used as the

target density to calculate the free energy and the thermodynamic force. The

density profile of mtarget and mstep is shown in Fig. 3.2.

In Fig. 3.3, we plot the chemical potential, µλN [mtarget](x) with different values

of λN . Compared to the exact result, µexact[mtarget](x), the chemical potential,

µλN [mtarget](x) obtained by the umbrella potential method underestimates the

strength of the chemical potential, especially at the interface. The reason is that
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FIGURE 3.2: The density profile of diblock copolmers mstep and mtarget along
the x axis. mtarget is obtained by the chemical potential method in conjunction

with SCFT.

the chemical potential is large at the interface, a small umbrella potential cannot

constrain the system. In some circumstance (e.g., the alchemical transformation

[96]), we need to investigate highly unstable state with a large chemical poten-

tial which requires a large umbrella potential constraint.

In the limit of λN →∞, we have,

µλN [mtarget](x) = µexact[mtarget](x). (3.39)

As shown in the Fig. 3.3, the difference between the µexact[mtarget](x) and the

µλN [mtarget](x) becomes smaller, when we increase the strength of the umbrella

potential, λN . At λN = 10000, the maximum difference between µexact[mtarget](x)

and µλN [mtarget](x) is only approximately 1.23%.

The deviation between µλN [mtarget](x) and µexact[mtarget](x) is measured by cal-

culating the free-energy difference, ∆F between Fλ and Fexact. In Fig. 3.4, we

plot the ∆F as a function of λN . At large λN , ∆F decays with a power law
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FIGURE 3.3: The chemical potential µλN [mtarget](x) of diblock copolymers is
calculated with different values of λN . The blue curve is the exact result ob-

tained from the exact delta constraint method.

∝ (λN)−η. The decay exponent η is related to the state m and the form of the

free-energy functional. In this case, we obtained an exponent η ≈ 0.92.

From above discussions, we conclude that the umbrella potential method and

the exact-delta constraint method are equivalent in the limit of large λN . In

principle, we can use both methods to calculate the free energy or the chemical

potential for a specific state, m. Practically, we only use the umbrella potential

method due to the computational simplicity.

3.2.5.3 A comparison of the umbrella potential method in SCFT and the

field-theoretic umbrella sampling method in conjunction with the

SCMF algorithm

One difference between a particle-based simulation and the SCFT method is

that the particle-based simulation takes into account thermal fluctuations, which

can be reduced by increasing N̄ . The umbrella potential method in conjunction
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FIGURE 3.4: The free-energy difference ∆F betweenFλ andFexact is calculated
with different values of λN .

with SCFT is accurate at large value of λN . In the particle-based simulation,

we cannot use a very large value of λN due to the poor sampling scheme. In

this subsection, we will compare the umbrella potential method in SCFT to

the field-theoretic umbrella sampling method in conjunction with the SCMF,

particle-based simulation with a value of λN = 50.

To make a comparison with the particle-based simulation, we also calculate the

chemical potential of the state, mtarget. The size of the system along the x-axis is

also set as Lx = 1.5Re0. The discretization of the system, ∆x equals to 1/12Re0.

There are 12 grid points on y and z axis, respectively. The chain discretization

in the SCMF algorithm is N = 32.

We run the simulation with different values of N̄ . As shown in Fig. 3.5, in a

large value of N̄ = 327682, the deviation between the particle-based simulation

and the SCFT is very small. In the limit of N̄ → ∞, the fluctuations in the SCMF

are eliminated and becomes identical with the SCFT method. With a large value

of λN , thermal fluctuations can also be eliminated in the particle-based simu-

lations. However, we cannot use a very large value of λN in the particle-based



71

FIGURE 3.5: The chemical potential of diblock copolymers computed by the
field-theoretic umbrella sampling method at λN = 50. The chemical potential
µλN [mtarget](x) of diblock copolymers is calculated with different values of N̄

and compare the results with the SCFT.

simulations. Because the incompressible parameter, κN is fixed to 50 in the

particle-based simulations. The energy contribution from the incompressible

term may be negligibly small compared to the contribution from the umbrella

potential. As a result, the system will probably violate the incompressible con-

straint.

From above discussions, we find that the umbrella potential method in SCFT

and the field-theoretic umbrella sampling method in SCMF are equivalent, in

the limit of N̄ → ∞. The advantage of the umbrella potential method in SCFT

is that it can use a very large value of λN , which enhances the accuracy of the

chemical potential.
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3.3 Dynamic evolution of densities

A collective process in polymeric systems involves the co-operative movement

of many molecules, which results in a molecular flow. One important approach

to investigate collective phenomena is by directly evolving the particle’s density

instead of a particle-based simulation.

The driving force for the density evolution is the chemical potential. In the

previous sections, we have introduced several numerical methods to compute

the chemical potential, µ[m] for a target state, m. To construct a dynamic equa-

tion, the next step is to translate the thermodynamic driving force into a flow of

particles via the Onsager coefficient, Λ(~r, ~r′),

J(~r) = −
∫

d~r′ Λ(~r, ~r′)∇′µ[m(~r′)]. (3.40)

A dynamic equation can be constructed by a combination with the continuity

equation.

∇ · J(~r) +
∂m

∂t
= 0. (3.41)

As a result, the dynamic density evolution equation takes the form of model B

[97],
∂m(~r)

∂t
= ∇ ·

∫
d~r′ Λ(~r, ~r′)∇′µ[m(~r′)]. (3.42)

For simple liquids, which are made up of simple small units, dynamic evolu-

tion equations are proved to be valid by a comparison with molecular dynamics

simulations [98, 99]. In the case of polymeric systems, the connectivity of the

polymer chain makes the problem complicated. Because the thermodynamic

driving forces are transmitted along the molecular backbone, the Onsager coef-

ficient becomes nonlocal in space.

In the following subsections, we will discuss the dynamics of density evolu-

tion for diblock copolymers, based on the mean-field, SCFT method, and the

particle-based, SCMF algorithm.
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3.3.1 Conserved dynamics

To construct a dynamic evolution equation for diblock copolymers, it is crucial

to obtain the Onsager coefficient. If we do not take into account the influence of

the molecular connectivity, we will obtain an Onsager coefficient which is local

in space. In an incompressible system, the Onsager coefficient takes the form

[100],

Λlocal(~r, ~r
′) =

DRouse

4

[
1−m(~r)2

]
δ(~r − ~r′), (3.43)

where DRouse is the single-chain diffusion constant in Rouse dynamics. This

Ansatz is called "local dynamics". In diblock copolymer melts, the collective

motion of diblock copolymers is described by the composition, i.e., the order

parameterm = φA−φB. The term [1−m(~r)2] accounts for the incompressibility

of the polymer blends. This term assumes that the flow of A monomers will

generate a reverse flow of B monomers at the same time.

If the impact of the connectivity of the molecular backbone is taken into ac-

count, the Onsager coefficient is nonlocal. The thermodynamic forces will be

transmitted along the molecular backbones. A nonlocal coupling Ansatz is pro-

posed [101],

Λα,β(~r, ~r′) = Λlocal(~r, ~r
′)Pα,β(~r, ~r′). (3.44)

Here, Pα,β(~r, ~r′) is the pair density of monomers α, β from the same chain at po-

sitions ~r and ~r′. In practice, the calculation of Pα,β(~r, ~r′) is not straightforward.

Further approximations are made for a linear homopolymer chain. One employ

that Debye correlation function, g0(~r, r′). This Ansatz is also called the "Debye

dynamics".

The Debye dynamics Ansatz is used to investigate collective phenomena, e.g.,

the spinodal decomposition process of block copolymers [22, 102, 103].

3.3.2 External potential dynamics (EPD)

In the previous section, we introduced dynamic evolution equations to evolve

the densities of block copolymer system. Alternatively, it is also possible to
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evolve auxiliary fields which are in conjunction with the densities in the frame-

work of the SCFT method. This numerical scheme is called the "external poten-

tial dynamics" [22].

One can rewrite the Hamiltonian in terms of independent chains in fluctuat-

ing fields. Then, one can integrate out the particles’ coordinates and obtain

a Hamiltonian which only depends on the auxiliary fields. By assuming that

the Onsager coefficient is translationally invariant, one can evolve the auxiliary

fields to mimic a polymer dynamics in a real system.

We start with the partition function ZEPD, which is equivalent to the Zscft in

Eq. 2.51,

ZEPD ∼
∫ n∏

i=1

Ns∏
s=0

d~ri(s) exp
[
−Ĥ0/kBT

]
exp

{
−
[∫

d~r − χρ

4
(φ̂A − φ̂B)2 + ln δ(1− φ̂A − φ̂B)

]}
(3.45)

The external potential WA and WB are replaced by,

WA =
U +W

2
(3.46)

WB =
U −W

2
. (3.47)

By using the HS transformation, the partition function is modified as,

ZEPD ∼
∫ n∏

i=1

Ns∏
s=0

d~ri(s) exp
[
−Ĥ0/kBT

]
∫
DW exp

{
− ρ

N

∫
d~r (φ̂A − φ̂B)

W

2
+

W 2

4χN

}
∫
DU exp

{
− ρ

N

∫
d~r

U

2
(φ̂A + φ̂B − 1)

}
(3.48)

We can define a free-energy functional, G[U,W ] in terms of the external fields,

W and U .
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ZEPD ∼
∫
DWDU exp{−G[U,W ]/kBT}, (3.49)

where,

G[U,W ]

nkBT
≡ − lnQ[U,W ] +

1

V

∫
d~r

{
W 2

4χN
− U

2

}
.

(3.50)

The single-chain partition function Q[U,W ] is defined as,

Q[U,W ] =

∫ Ns∏
s=0

d~r(s) exp
[
−Ĥb/kBT

]
exp

{
− ρ

N

(∫
d~r (φ̂A1 − φ̂B1)

W

2
+ (φ̂A1 + φ̂B1)

U

2

)}
. (3.51)

where φ̂A1 and φ̂B1 are segment density functions of a single chain.

φ̂A1(~r) =
1

ρ

NA∑
s=0

δ [~r − ~r(s)] . (3.52)

φ̂B1(~r) =
1

ρ

Ns∑
s=NA

δ [~r − ~r(s)] . (3.53)

The functional derivative of the free-energy functional, G[U,W ] with respect to

W is,

V

nkBT

δG[U,W ]

δW
= − V

Q[U,W ]

δQ[U,W ]

δW
+

1

2χN
W = −(ΦA−ΦB)+

1

2χN
W. (3.54)

ΦA and ΦB are densities that are conjugated to the fields, WA and WB, respec-

tively.

The functional derivative of G[U,W ] with respect to the field U gives,

V

nkBT

δG[U,W ]

δU
= ΦA + ΦB = 1. (3.55)

We consider an incompressible system which enforces the free-energy func-

tional G[U,W ] depending only on the field W . Given an external potential,

W , we can calculate potential field, U by the saddle point approximation. We
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use an iterative procedure to obtain the external potential U which satisfy the

equation 3.55,

Un+1 = Un + ∆t(ΦA(~r)n + ΦB(~r)n − 1), (3.56)

where ∆t is the step length in each iteration.

The calculation can be accelerated by considering the structure factor of diblock

copolymers. The iterative equation 3.56 is modified as [92],

Un+1(q 6= 0) = Un(q) + (Φn
A(q) + Φn

B(q)− 1)
∆t

1 + ∆tS(q)
(3.57)

Un+1(q = 0) = 0 (3.58)

S(q) is the composition structure factor which is obtained in the Appendix B.

To investigate the time evolution of the composition, m which is conjugated to

the order parameter, W , we consider the conserved dynamics of W is given by

model B,
∂W (r)

∂t
= ∇~r′

∫
d~r′ Λ(~r, ~r′)∇~r′

δG[U,W ](~r′)

δU(~r′)
(3.59)

In the end, we summarize the main procedures of the EPD method. We initially

have the external fields W . Then we generate the corresponding fields U by the

Eq. 3.57. By evolving W by the Eq. 3.59, we can generate new external fields W .

The biggest advantage of the EPD method is that it is magnitude faster com-

pared to the density evolution method in the SCFT. Because EPD method only

needs to evolve the field W . Comparably, the DSCFT method needs to find two

fields WA and WB from the density ΦA and ΦB. This method is widely applied

to investigate the structure formation process in polymer blends and solutions

[102, 104].

3.4 A direct measurement of Onsager coefficients in

particle-based simulations

Theoretical studies on the structure formation of block copolymers are of inter-

ests for both theoretical investigations and the industry [105–107]. To realize
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a large time and length scale simulation, a field-theoretic, continuum model is

a necessity [54]. The degrees of freedom of the particles’ coordinates are inte-

grated out but the information of the molecular connectivity can be preserved.

For example, the self-consistent field theory (SCFT) has been successfully ap-

plied to mapped out the phase diagram of various block copolymers in equilib-

rium [17, 18, 108].

In order to use a continuum description to investigate the dynamical or kineti-

cal properties of block copolymers, the first procedure is to pick up an "appro-

priate" order parameter to formulate the correspondent free-energy functional.

For example, one usually selects the local densities of different components as

the order parameter. In many circumstances (e.g., the macroscopic phase sepa-

ration in polymer blends), this order parameter is a slow variable compared to

the relaxation time of a polymer chain. We can assume that the chain conforma-

tion is always equilibrated during the density evolution [64, 68, 101, 109–111].

In such circumstances, we can use a purely dynamic equation, which employs

the local composition, m(r) in a binary homopolymer blend, as the order pa-

rameter to investigate the early stages of phase separation [22, 27, 48, 103, 112–

117]. This assumption is valid in many circumstances especially in intrinsi-

cally slow collective processes (e.g., the Lifshitz-Slyozov coarsening in the bi-

nary homopolymer blends [118]). A multiple-time integrator method which

evolves the densities and the molecular configuration separately by combining

the SCMF algorithm simulation and the continuum Flory-Huggins-de Gennes

model has been devised to accelerate the particle-based simulations [110]. In the

end, the speedup of this scheme reaches two orders of magnitudes compared

to a purely particle-based simulation. This assumption is not available when

we consider a relaxation process from a highly non-equilibrium, stretched state

(i.e., the chain which is under tension), the interplay of the structure forma-

tion and the relaxation of the polymer chain are not negligible. Researchers

find that the planar elongation of the molecular conformation of symmetric di-

block copolymer melts in a disordered initial state will result in an alignment of

lamella normals perpendicular to the stretch direction during the self-assembly

process [57].

The next procedure in a continuum description is to evolve the order param-

eter. In this section, we consider the case that employs collective variables,

i.e., the local densities as the order parameter. The co-operative movement of
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molecules is related to the single-chain dynamics by the Onsager coefficient,

Λ(r, r′). The Onsager coefficient, Λ(r, r′) translates thermodynamic forces into a

flow of particles. In the simplest case for a polymer chain with Rouse dynamics,

the Onsager coefficient, Λ(r, r′) is characterized by the single-chain correlation

function g(r, r′). One obtains,

Λ(r, r′) =
ND

ρkBT
(1−m2)

g(r, r′)

V
. (3.60)

Here D is the self-diffusion constant of a polymer chain. N is the degree of

polymerization and V is the volume of the system [54, 101, 119].

In this section, we investigate the interplay between the single-chain dynam-

ics and the dynamics of collective variables by directly measuring the Onsager

coefficient with a particle-based simulation. We implement the particle-based

simulation by means of the SCMF algorithm, which retains the Rouse dynam-

ics.

We find that the Onsager coefficient is related to the single-chain dynamic struc-

ture factor, gs. As a result, we assume that the Onsager coefficient, which gives

rise to a nonlocal term (e.g., the Debye function in binary homopolymer blends)

also is time-dependent to account for the subdiffusive segmental dynamics at

short times.

In the following, we will introduce a numerical scheme to measure the On-

sager coefficient in a quasi-one-dimensional system. We find that our numer-

ical results are in agreement with analytical predictions [120]. Additionally,

this method is rather general and can be easily extended to more complicated

systems. By measuring the Onsager coefficient, we find that monomers move

independently at the very initial stage. The thermodynamic forces are not trans-

ferred along the polymer backbone. By increasing the simulation time, the evo-

lution of the densities gradually mimics the prediction in Eq. 3.60. This theory

assumes that all the monomers of a chain move coherently on large time and

length scale.
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3.4.1 Onsager coefficient: the long-time limit

In this section, we will derive an analytical form of the Onsager coefficient in a

symmetric binary homopolymer blend for the long-time limit.

We assume that the Onsager coefficient is time-dependent and take into account

the memory effect. The Onsager coefficient, Λ(r, r′, t, t′) connects the thermody-

namic force to the order-parameter flow, J(r) [121–123]:

J(r, t) = −
∫
t′=0

dt′
∫

dr′ Λ(r, r′, t, t′)∇′µ[m](r′, t′). (3.61)

The dynamic equation of the composition can be formulated by the continuity

equation,
∂m(r, t)

∂t
= −∇ · J(r, t). (3.62)

In the end, the dynamic equation to evolve the order-parameter takes the form,

∂m(r, t)

∂t
= ∇

∫
dt′
∫

dr′Λ(r, r′, t, t′)∇′µ(r′, t′). (3.63)

We assume that the Onsager coefficient is translationally invariant in time and

space, i.e., Λ(r, r′, t, t′) = Λ(r− r′, t− t′). m(q, ω), Λ(q, ω), and µ(q, ω) represents

the Fourier transform m, Λ, and µ, respectively.

The dynamic equation in the reciprocal space is derived as,

−m(q, 0)− iωm(q, ω) = −q2Λ(q, ω)µ(q, ω). (3.64)

Different Fourier modes are decoupled in the reciprocal space. The Onsager

coefficient is therefore derived as,

Λ(q, ω) =
1

q2

m(q, t = 0) + iωm(q, ω)

µ(q, ω)
. (3.65)

In the following, we will derive the Onsager coefficient in a binary homopoly-

mer mixture , which contains nA = n/2 A polymers and nB = n/2 B polymers

in a volume V , respectively. The incompatible parameter, χN is determined as



80

0, which favors mixing in equilibrium. We employ the local composition of the

two different species as the order parameter, i.e., m = φA − φB.

The chemical potential of a target state, m is obtained by the Eq. 3.3,

µRPA
blends[m]R3

e0

kBT
√
N̄

=
R3

e0√
N̄
δFRPA

blend[m]

kBTδm
=

[
m− R2

e0∆m

18

]
.

(3.66)

We consider a decay process in a one-dimensional system, V = L × Re0 × Re0.

The initial density profile, m(x, 0) = A0 sin(qx) consists only one Fourier mode

q. A0 is the amplitude of the density profile. The density profile at time t is

represented as, m(x, t). When t→∞, we have m(x, t) = 0.

There are three reasons for us to chose this particular condition: if the initial

composition variation is shallow, i.e., A0 � 1, (i) the chemical potential can

be accurately and analytically obtained by the RPA, (ii) the chain conforma-

tions are Gaussian because they are not distorted by the weak spatial inhomo-

geneity, (iii) our study focus on the time-dependence of the Onsager coefficient.

Since there is only one single spatial Fourier mode involved, deviations from

the long-time behavior cannot be captured by fiddling with the q-dependence

of Λ [124].

We observe the relaxation process from the initial density profile m(x, 0) to the

equilibrium homogeneous state. The density profile will decrease its ampli-

tude and keeps the wave factor q unchanged. The time evolution of the density

profile, m(x, t) satisfies m(x, t) = A(q, t) sin(qx).

We use the symbol Ft and Fx to represent the Fourier transform in time and

space. m(q, ω) takes the form,

m(q, ω) = Ft[A(q, t)]Fx[sin(qx)] = A(q, ω)Fx[sin(qx)], (3.67)

with A(q, ω) ≡ Ft[A(q, t)].

According to the Eq. 3.66, the time evolution of the chemical potential, µRPA
blend[m](x, t)

by the RPA is obtained as,

R3
e0µ

RPA
blend[m](x, t)√
N̄kBT

= A(q, t) sin(qx)(1 +
R2

e0q
2

18
). (3.68)
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The Onsager coefficient by the RPA is represented as,

ΛRPA
blend(q, ω) =

1

q2(1 + q2R2
e0/18)

A0 + iωA(q, ω)

A(q, ω)

R3
e0

kBT
√
N̄
. (3.69)

In order to obtain an analytical form of the Onsager coefficient, we need to

obtain the time evolution of the densities, i.e., the A(q, ω). The collective motion

of the monomers is related to the single-chain dynamics of a polymer chain.

We use the symbol ~ri(s) to represent the position of the sth segment on polymer

i. We have the following approximate RPA-like relation between the collective

dynamical structure factor and the single-chain dynamic structure factor,

〈m(q, t)m(−q, t0)〉

=
1

ρ2

∑
i′i

∑
s,s′

γ(i, i′)
〈
e−iq~ri(s,t)eiq~ri′ (s

′,t0)
〉

≈ N

ρ2

∑
i

∑
s,s′

1

N

〈
e−iq~ri(s,t)+iq~ri(s

′,t0)
〉
− 2

ρ2

∑
i∈A

∑
i′∈B

∑
s,s′

〈
e−iq~ri(s,t)

〉 〈
eiq~ri′ (s

′,t0)
〉

+
1

ρ2

∑
i∈A

∑
i′∈A,i 6=i′

∑
s,s′

〈
e−iq~ri(s,t)

〉 〈
eiq~ri′ (s

′,t0)
〉

+
1

ρ2

∑
i∈B

∑
i′∈B,i 6=i′

∑
s,s′

〈
e−iq~ri(s,t)

〉 〈
eiq~ri′ (s

′,t0)
〉

≈ N

ρ2

∑
i

∑
s,s′

1

N

〈
e−iq~ri(s,t)+iq~ri′ (s

′,t0)
〉

=
nN

ρ2
gs(q, t), (3.70)

where γ(i, i′) = −1, when i, i′ belongs to different type of polymers, other-

wise γ(i, i′) = 1 and t0 is at t = 0. The 〈. . . 〉 represents the ensemble average

over particles’ configurations. The interactions between monomers on differ-

ent polymer chains are dominated by the forces to suppress the total density

fluctuations. These interactions are rather weak, so we neglect the inter-chain

correlations.

gs(q, t) is the single-chain dynamic structure factor and is derived as [56],
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gs(q, t) =
1

N

∑
s,s′

exp
{
− (qRe0)2|s− s′|

6N
−Dq2t

− 2(qRe0)2

3π2

∑
p=1

1

p2
cos(

πps

N
) cos(

πps′

N
)

(1− e−3π2p2t/τ )
}
. (3.71)

The time evolution of the amplitude, A(q, t) satisfies,

A(q, t) = A0
gs(q, t)

gs(q, 0)
. (3.72)

At large time and the small scattering angle |qRe0| � 1, the time evolution of

A(q, t) scales as A0 exp (−Dq2t). In experiments, this can be used to measure

the diffusion constant, D. In this limit, the time evolution of the density profile

satisfies m(x, t) = A0 exp(−Dq2t) sin(qx).

In this limit ω → 0, the Onsager coefficient is,

ΛRPA
blend(q, ω) =

D

1 + (qRe0)2/18

R3
e0

kBT
√
N̄
. (3.73)

This result is consistent with the Debey function Ansatz in Eq. 3.60. The term

1/(1 + (qRe0)2) is the Debey function, S(q). This formula misses the term (1 −
m2)/4, which accounts for coupling of the chain motion via the incompressibil-

ity constraint, i.e., the motion of different chains is uncorrelated.

3.4.2 Evidence of time-dependent behavior for the Onsager co-

efficient: numerical results in the high-frequency regime

In the high-frequency regime (i.e., the time scale which is much smaller than the

relaxation time of a polymer chain), the motion of the segments is subdiffusive.

We assume that this factor will change the behavior of the Onsager coefficient

from its long-time behavior.
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FIGURE 3.6: The amplitude of the density profileA(q, t) is plotted as a function
of the simulations time, t with different Fourier modes, qRe0/2π.

To confirm this assumption, we measure the time-dependent behavior ofA(q, t)

in the particle-based simulation. We consider a decay process in a quasi-one-

dimensional system of volume, V = L × Re0 × Re0 with a periodical boundary

condition. We can average the density profile over the y- and z-axis and con-

sider only the variation of the density profile along the x-axis. The length of the

system along the x-direction L is set to 8.0Re0.

We restrain the system to the density profilem(q, 0) with different Fourier modes

q by using an umbrella potential in the particle-based simulations. As illus-

trated in the previous section, the target density profile is a sine functionm(x, 0) =

A0 sin(qx). Here A0 is the amplitude which equals to 0.25 at t = 0. The spatial

discretization is 1/12Re0, which limits the Fourier mode qL/2π ranging from 1

to 12. The discretization of the polymer chain is N = 32, which concomitants a

Rouse time τR ≈ 300 SMCs (see Sec. 2.3.4.1).

After obtaining the target density profile m(x, 0) in the particle-based simula-

tion, we remove the umbrella potential and observe the time evolution of the
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FIGURE 3.7: The time-evolution of density profile amplitude, A(q, t) at
qRe0/2π = 1 and qRe0/2π = 1.5, respectively. The results are well matched

to the time-evolution of the single-chain, dynamic structure factor, gs(q).

density profile. We run the particle-based simulations for 100 SMCs. As ex-

pected, we find that the density profile only decreases its amplitude and keeps

the wave factor q unchanged.

In Fig. 3.6, we plot the averaged maximum absolute value of the density profile,

i.e., A(q, t) as a function of the simulation time, t. The density profile with a

large value of q decays fast in the simulation. At qRe0/2π = 1.5, the A(q, t)

decays approximately to 0.02 after 100 SMCs.

In the previous section, we predict that the time evolution of A(q, t) satisfies

A(q, t) = A0gs(q, t)/gs(q, 0). As shown in Fig. 3.7, we compare the time-evolution

of the dynamic single-chain structure to the amplitude of the density, A(q, t) at

qRe0/2π = 1 and qRe0/2π = 1.5, respectively.

As a result, the Onsager coefficient is obtained as,

ΛRPA(q, ω) =
1

q2

1

1 + (Re0q)2/18

{
gs(q, t = 0) + iωgs(q, ω)

gs(q, ω)

}
R3

e0

kBT
√
N̄
. (3.74)
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From above discussions, the time evolution of A(q, t) and gs(q, t) at large q de-

viates from the exponential decay at the beginning of the simulation.

For a large q, the time-evolution ofA(q, t) and gs(q, t) deviate from the exponen-

tial decay behavior. In the limit, when 1� DR2
e0tq

4 � (qRe0)4, the single-chain

dynamic structure factor scales like gs(q, t) ∼ exp (−2
√
DR2

e0tq
4/12π) [64].

This result can also be quantitatively obtained by the assumption that the dis-

placements of different subunits of the polymer chain can be conceived as mo-

tions of uncorrelated blobs of segments with a blob size that increases from the

segment scale to the chain scale within the Rouse time, leading to a subdiffusive

behavior on short time scales [120]. The time-dependent behavior of A(q, t) at

a large q suggests that the Onsager coefficient is not only nonlocal in space, it is

also nonlocal in time.

3.4.3 Conclusions

In this section, we provide a numerical scheme to directly measure the Onsager

coefficient in the particle-based simulations. Although we only focus on the lin-

ear polymer chains with a simple Rouse dynamics, this method is rather gen-

eral and can be easily extended to measure the Onsager coefficient in various

polymer architectures and dynamics.

Based on the collective dynamic equation in Eq. 3.74, we can preliminary es-

timate the Onsager coefficient by the RPA. We find evidence that the Onsager

coefficient is time-dependent. In the high-frequency regime with a small wave-

length, the displacement of different segments are subdiffusive.
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3.5 Minimum free-energy path

3.5.1 Illustration of string method

The free-energy landscape is a functional of a collective variable, m (e.g., the

composition of two species in homopolymer blends). It captures important in-

formation for the structure formation process. Because it not only characterized

the most probable transition path but also provides a one-dimensional reaction

coordinate for the process. To understand the kinetics of block copolymers, it is

computationally impossible to explore the full free-energy landscape in block

copolymers. Because the dimension of a collective variable is very large.

For a given process, it is possible to understand its mechanism by exploring

part of the free-energy landscape, i.e., computing the minimum free-energy

path (MFEP) [39, 125]. A MFEP that connects two ordered phases is computed

which gives the information of the shape, size, and free-energy barrier of crit-

ical nuclei. Most importantly, the MFEP is used to investigate defect annihila-

tion processes [126]. The MFEP also provides important insights for biological

processes, e.g., the fusion and fission process in membranes.

The MFEP is defined by a series of order parameters,mα(~r) which is indexed by

a continuous contour variables α, where 0 ≤ α ≤ 1. These states {mα} satisfy

the condition that the gradient of the chemical potential, µ on the free-energy

landscape perpendicular to the path vanishes, i.e., µ⊥ = 0, for all the states α

with

µ⊥[mα](~r) ≡ µ[mα](~r)

−dmα(~r)

dα

∫
d~r
[
µ[mα](~r)dmα(~r)

dα

]
∫

d~r(dmα(~r)
dα

)2
(3.75)

We employ the string method to find the MFEP ([123]), which consists of a

two-step cycle procedure: (i) Minimizing the free energy F by evolving the

morphologies according to the chemical potential µ,

mα(~r, t+ ∆t) = mα(~r, t)−∆tµ[mα](~r) (3.76)
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(ii) New morphologies mα(~r, t + ∆t) are reparameterized by the cubic spline

interpolation along α for the fixed position ~r to restore uniform distance of ∆α

between adjacent states. The distance ∆α between two adjacent states mα1(~r)

and mα2(~r) is defined as,

∆α ∝
∫

d~r [mα1(~r)−mα2(~r)]2 (3.77)

Starting and ending states α = 0 and α = 1 are only subjected to the chemical

potential µ, they will not be extrapolated by the cubic spline interpolation. From

the definition of the MFEP, it is possible that there might exist many MFEPs in

the complex free-energy landscape. So it is crucial to provide proper initial mor-

phologies for the string calculation. To study the structure formation process,

we can use the initial morphologies, which are obtained by observing the time

evolution in particle-based simulations.

To calculate a MFEP, we also need to determine an appropriate numerical method

to compute the chemical potential, µ. In previous sections, we have proposed

several numerical strategies. For diblock copolymers, the external potential

method (EPD) uses the collective variable W which is conjugated to the local

density composition variable m in SCFT as the order parameter. This simple

strategy is applied to investigate the nucleation of various ordered phases in

block copolymers [127]. In this thesis, we use the umbrella chemical potential

in conjunction with the SCFT method to derive the chemical potential for block

copolymers. There are two advantages of this strategy: (i) We can directly use

the composition of the two species as the order parameter. (ii) The umbrella

potential method is not limited to a specific system. It can be easily migrated to

a more complex system.

To evolve the order parameter, m, we use the simple dynamics of model A (i.e.,

the Allen-Cahn dynamics [128]) in Eq. 3.76. This scheme is computationally

simple with a high efficiency. We can also employ the Cahn–Hilliard dynamics

in Eq. 3.42 to evolve the order parameter that characterize the diffusive dynam-

ics of the corresponding particle system.

It is also possible to use the field-theoretical umbrella sampling method in con-

junction with the SCMF algorithm to calculate the MFEP. This numerical scheme
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FIGURE 3.8: We present the snapshots of the MFEP that connects the
metastable, layered lamellae to the stable, standing lamellae.

avoids cumbersome derivations to obtain the corresponding SCFT equations.

From our discussions in the previous section, in the limit of N̄ → ∞, the SCFT

and the particle-based simulations are equivalent. The deficiency is that in the

particle-based simulations, the string method cannot compute the free-energy

barrier with a high precision due to the thermal fluctuations.

In the following, we will use the string method to investigate collective phe-

nomena in diblock copolymers and triblock copolymers, respectively.

3.5.2 Orientation transition of lamellar-forming diblock copoly-

mers

In this section, we investigate a transition process from a metastable, layered

lamella to the equilibrium, standing lamellar state in diblock copolymer melts.

The size of system is 4 × 1 × 1 R3
e0 with a periodic boundary condition. The

incompatible parameter χN = 16.
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FIGURE 3.9: The free-energy difference F [mα] is plotted as a function of reac-
tion coordinates α. The snapshots are shown in Fig. 3.8.

We use an umbrella potential to obtain the initial, metastable, layered state in

the particle-based simulation. After we remove the umbrella potential, the sys-

tem evolves to the equilibrium state (i.e., the standing lamellar state). The initial

states for the MFEP calculation is obtained from the particle-based simulation.

We use the string method combined with the umbrella potential method to de-

rive the MFEP and the discretization of the string is 18. The points on the string

are redistributed by the cubic spline interpolation. The starting point of the

string, α = 0 and the ending point, α = 1 are not fixed. These two points

are meta-stable and stable, respectively. In the end, the string converges to the

MFEP. We present the snapshots in the Fig. 3.8.

The free-energy difference, ∆F between the state mα=0 and other states on the

string as a function of the reaction coordinates, α is plotted on the Fig. 3.9. We

also compute the MFEP via the EPD scheme. The only difference between these

two approaches is that the order parameter in EPD is the auxiliary fields. As a

result, the distance between the two neighboring points on the MFEP from the

EPD is different from the umbrella potential method. However, the quantities
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that we are interested in (e.g., the excess free energy and the free-energy barrier)

are quantitatively the same.

We are particularly interested in determining the free-energy barrier ∆Fb/kBT

of the transition. It determines the inverse rate of the transition between the two

thermal states. According to Kramers’ theory [129], the corresponding Boltz-

mann factor exp(−∆Fb/kBT ) dictates the transition rate.

The saddle point is at approximately α ≈ 0.2 and the barrier is ∆F/kBT
√
N̄ ≈

0.05128. In an experiment, this invariant degree of polymerization, N̄ = 1282,

which gives a small free-energy barrier, ∆F/kBT ≈ 6.258. This small free-

energy barrier can be easily overcome by the thermal fluctuations.

3.5.3 Impact of the molecular architecture on the structure for-

mation process

In a diblock copolymer melt, the influence of the temperature on the structure

formation process is intensively studied by the string method [126, 130]. For

example, the free-energy barrier of the annihilation of the B-core dislocation

dipole increases linearly with the Flory-Huggins parameter, χN [130].

However, the influence of the molecular architecture on the structure formation

process is not clear. For lamellar-forming block copolymers, we can easily find

many similar defects in the structure formation process. In this section, we will

only focus on a defect removal process (i.e., the B-core dislocation dipole) in

triblock copolymers and diblock copolymers, respectively.

The triblock copolymers are obtained by replacing half of the B block with the C

block in symmetric diblock copolymers (i.e., fA = 0.5, fB = 0.25, and fC = 0.25).

The scheme representation of the triblock copolymers is shown in Fig. 3.11. By

tuning the incompatible parameters, χBCN between B blocks and C blocks, we

can find a smooth transition from the symmetric diblock copolymer to the ABC

triblock copolymer. The incompatible parameter between A block and B(C)

block is χABN = 30 (χACN = 30). We implement the calculation in a volume of

8× 8× 1 R3
e0 with periodic boundary conditions.
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FIGURE 3.10: The MFEP snapshots of the removal process of the B-core dislo-
cation dipole in diblock copolymers. The order parameter of the snapshots is
φB−φC . The free-energy difference F [mα] of the MFEP is plotted as a function

of reaction coordinates α.

The defect annihilation process of the B-core dislocation dipole is well studied

[130]. As shown in the Fig. 3.9, the removal process in symmetric block copoly-

mer melts (i.e., χBCN = 0) is triggered by breaking one connection between

two A domains. This process gives the largest free-energy barrier which de-

termines the defect-removal rate. Subsequently, the morphology relaxes to a

meta-stable state with a small free-energy barrier to overcome. This metastable

state is eliminated by breaking the remaining A connection. In the end, the two

disconnected A lamellar domains are connected without a barrier.

Similarly, we obtain the MFEP for triblock copolymers to eliminate this defect.

We use the chemical potential method in conjunction with SCFT to compute the

chemical potential with three components A, B and C. We consider only the

incompressible system with ΦC = 1−ΦA−ΦB. We use the densities ΦA and ΦB
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FIGURE 3.11: The MFEP snapshots of the removal process of the B-core dislo-
cation dipole in triblock copolymers. The order parameter of the snapshots is
ΦB−ΦC . The free-energy differenceF [mα] of the MFEP is plotted as a function

of reaction coordinates α.

as the order parameter. The free-energy functional is denoted as,Ftri[ΦA,ΦB, 1−
ΦA − ΦB].

The dynamic evolution equation of the densities with Model A dynamics is

obtained as,

Φt+∆t
A = Φt

A + ∆tµA[ΦA,ΦB,ΦC ] (3.78)

Φt+∆t
B = Φt

B + ∆tµB[ΦA,ΦB,ΦC ] (3.79)

(3.80)
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where µA and µB are chemical potentials defined as,

µA =
δFtri

δΦA

(3.81)

µB =
δFtri

δΦB

. (3.82)

The initial states mα(t = 0) along the string is obtained by uniformly discretiz-

ing the two starting and ending states. Similar to the standard string method,

we can obtain a converged path in Fig. 3.10.

The resulting MFEP in triblock copolymers differs a lot from the defect anni-

hilation process in diblock copolymers. As shown in Fig. 3.11, the defect an-

nihilation process is triggered by a connection between the two dislocations in

triblock copolymers. Meanwhile, we can find that there is only one free-energy

barrier on the MFEP of the triblock copolymers. As a comparison, there are two

free-energy barriers on the MFEP for the diblock copolymers.

The reason for this difference is that the meta-stable morphology α = 0.5 in

diblock copolymers is unstable in triblock copolymers. As a result, the MFEP

in diblock copolymers will converge to the MFEP in triblock copolymers. As

a contrast, the MFEP in triblock copolymers is also a MFEP in diblock copoly-

mers. However, the free-energy barrier of this process is approximately 0.0118kBT

per chain, which is much larger than the original MFEP in diblock copolymers

which is only 0.0046kBT per chain.

Above discussions suggest that the molecular architecture has an impact on the

defect annihilation process. It alters both the defect annihilation process and

the free-energy barriers. As a result, by increasing χBCN , there is a transition

point that separates the two defect annihilation process.



Chapter 4

Pattern formation in diblock

copolymer melts

4.1 Qualitative behavior of diblock copolymers in a

thin film

In this section, we will use computer simulations (i.e., the SCMF, particle-based

simulation) to study the kinetics of structure formation for symmetric diblock

copolymer melts in a quasi-two-dimensional system. The thickness of the sys-

tem is determined as 1Re0, which is smaller than the typical lamellar spacing.

As a result, the resulting structure of the system is two dimensional, which re-

sembles a thin film. The system is characterized by a large extension L in the

two lateral directions. The square shape geometry of the system facilitates the

detection of the defects and allows us to address large lateral system sizes.

The system is initialized to mimic the high-temperature state, χN = 0 by ran-

domly distributing Gaussian polymer chains. At time t = 0, the incompatible

parameter, χN between unlike segments is switched to a value which is above

the order-disorder transition (ODT). This quenching process mimics e.g., rapid

solvent evaporation.

The ODT of symmetric diblock copolymer is at χN ≈ 10.495 . . . [17, 19], ob-

tained by the RPA or the SCFT calculation. In simulations or experiments, com-

position fluctuations shift the ODT point to χN ≈ 10.495 + 41.022N̄−1/3 and

94
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FIGURE 4.1: (a) Snapshots of the time evolution of two SCMF, particle-based
simulations in a thin film system at χN = 15 and χN = 20, respectively. The
lateral system extension, L is L = 100Re0 and the thickness of the thin film
1Re0. The insets show enlarged portions of the morphology in a small region
of 20 × 20R2

e0 whose position is indicated by the red square in the main pan-
els. Morphologies are obtained at times t/τ ≈ 11, 56, 112 and 337 after the
quench from the disordered phase are presented. (b) Enlarged snapshots of
morphologies at time t ≈ 562τ after the quench to χN = 15 and χN = 20, re-
spectively. (c) Snapshots at approximately 337τ by particle-based simulations
after the quench for six different values of χN = 15, 16, 17, 18, 19 and 20. The

system size is L = 40Re0.
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alter the character of the transition from second order to first order [68]. For a

typical value of N̄ = 1282 in an experiment, the system exhibits lamellar phase

for χN = 15.

Due to phonons and dislocation defects, it is difficult for diblock copolymer thin

films to exhibit truly long-range orders. The free-energy scale in polymeric sys-

tems is set by kBT
√
N̄D/Re0, where D denotes the thickness of the quasi-one-

dimensional system. For example, the excess free-energy of an isolated disloca-

tion pair at χN = 21 (below which the metastable dislocation pair is unstable) is

approximately Fd ≈ 1.04kBT
√
N̄D/Re0 ≈ 133kBT [130]. As a result, the equilib-

rium density of this kind of defect is vanishingly small (i.e., the equilibrium dis-

tance between dislocation pairs is on the order Ld ∼ Re0 exp(∆Fd/2kBT ) � L).

It is also found that the compression modulus of the lamellar structure scales

like B = kBT
√
N̄ D

R3
e0
fB(χN), where fB increases with incompatibility [131]. As

a result, on the length scale that we studied in particle-based simulations, an

equilibrium structure corresponds to a defect-free lamellar structure. Although

the free-energy cost of defects and deformations increases with incompatibility,

χN , we observe that the order of a pattern obtained by a quench from the disor-

dered phase, at a given, fixed time is less developed at large χN . Therefore our

conclusion is that the deviations from a defect-free lamellar structure observed

in our particle-based simulations cannot be explained by equilibrium fluctua-

tions around the perfect equilibrium state, instead, stem from the kinetics of

structure formation.

We first qualitatively examine the time evolution of two independent particle-

based simulations at χN = 15 and 20, respectively. Systematically quanti-

fying and investigating the structure formation process in symmetric diblock

copolymer melts are presented in the following sections. In Fig. 4.1 (a), time-

dependent morphologies of particle-based simulations at χN = 15 and χN =

20 are presented for the lateral size, L = 100Re0. Time in these simulations

is measured in units τ , which is defined as τ = R2
e0/D, where D is the self-

diffusion coefficient of a polymer chain in the disordered state.

Diblock copolymers are weakly segregated at χN = 15. At t ≈ 11.236τ , we find

that the morphology consists of many lamellar grains. The lamellar order is

established within these lamellar grains whose orientation and positional reg-

istration differs. Domain connections across a grain boundary will break and

reconnected within one τ . As a result, domain connections at grain boundary
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are transient and this allows for the movement of grain boundaries, which re-

sults in a gradual coarsening of the grain structure. At the end of our simulation

time, t ≈ 562τ cf. Fig. 4.1 (b), grains with orientational order can increase up to

nearly half of the system size.

At intermediate segregation regime, χN = 20, polymers are segregated more

strongly. The composition contrast between unlike species domains is much

larger but the grain-coarsening speed slows down dramatically compared to

the structure ordering process at χN = 15. In the snapshots of our particle-

based simulations, we observe a fingerprint-like morphology at t ≈ 11τ where

only local order is established. Similar to a micellar solution, there is a char-

acteristic length scale (i.e., the domain spacing) but no grain structures with a

scale separation between an extended lamellar ordered interior of a grain and

narrow grain boundaries, can be detected. The morphology is almost "frozen"

in our particle-based simulations, i.e., the topology of the domain structures

remains almost unaltered over several hundred τ , as shown in the insets of

Fig. 4.1 (a). It is very protracted to establish long-range order and outside the

times that our large-scale, particle-based simulation can access.

From above two examples, it is quantitatively demonstrated that the ordering

time dramatically increases from χN = 15 to χN = 20. To further illustrate

this behavior, we show the snapshots of smaller systems, L = 40Re0, at t ≈ 337

from χN = 15 to 20. In Fig. 4.1 (c), at a fixed time after a quench from the

disordered state, we observe that the order gradually decreases as a function

of incompatibility, χN . At χN = 15, we find that the system of lateral size

L = 40Re0 consists of a single lamellar grain with some undulations and a few

dislocation defects. For a larger χN = 16, we find that there are multiple grains

on the morphology with a visible grain boundary. The size of grains shrinks and

the defect density increases, upon increasing the incompatible parameter, χN .

The morphology cannot be conceived as grain structures with a clear separation

between an ordered interior of a grain and grain boundaries.

4.2 Commensurability and lamellar spacing

As shown in Fig. 4.1, although the morphologies obtained by the particle-based

simulations are absent of long-range order, the characteristic domain size is well
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FIGURE 4.2: The free-energy difference of a single polymer chain between mor-
phologies with various lamellar spacing and the morphology with the optimal

lamellar spacing obtained by the SCFT.

established (as defined by the location of the peak of the collective structure

factor). It does not change in time and agrees to the lamellar spacing of the

equilibrium structure.

The lamellar spacing is determined by the Flory-Huggins parameter, χN and

can be measured by calculating the structure factor or by comparing the free

energies.

The morphology is characterized by the structure factor of composition fluctu-

ations

S(~q, t) ≡ 1

V

〈∣∣∣∣∫ d~r ei~q~rm(~r, t)

∣∣∣∣〉 , (4.1)

where 〈. . . 〉 denotes the time average. The lamellar spacing is estimated by the

position of peak value,

Ls = 2π/q∗. (4.2)

It gives the average value of the lamellar spacing for a morphology.
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FIGURE 4.3: The optimal lamellar spacing as a function of the Florry-Huggins
parameter, χN . Results obtained by the structure factor are averaged from 5

independent simulations after 107 SMCs.

More precisely, the lamellar spacing at different χN can be measured by com-

paring the free energies. We consider a morphology with a fixed number of

lamellae (e.g., 8 lamellae) and identical orientations along the x-axis. By tuning

the lateral extension, L, we can find an optimal system size L∗ which gives the

lowest free energy per chain, i.e., the optimal system sizes which corresponds

to the lamellar spacing.

For example at χN = 14, we plot the free-energy difference between morpholo-

gies with different extension L and the morphology which gives the smallest

free energy. As shown in Fig. 4.2, there is only one minimal free energy which

corresponds to the optimal system size L∗ = 11.8Re0, i.e., the lamellar spacing

at χN = 14 is 1.475Re0.

As a comparison to the particle-based simulations, we use a value of N̄ = 1282.

After running the simulation for 107 SMCs, we obtained a fingerprint-like mor-

phology. The peak value, q∗ of the morphology ranges from 4.04224R−1
e0 to
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4.36946R−1
e0 from 5 independent simulations. The resulting lamellar spacing

ranges from 1.4379Re0 to 1.5543Re0, which is consistent with the SCFT calcu-

lation.

As shown in Fig. 4.3, we plot the lamellar spacing as a function of χN . We

find that the lamellar spacing increases linearly with χN . The polymer chain

is stretched by the repulsive force between unlike species and reach a balance

between the entropy loss due to chain stretching and free-energy minimization

by minimizing internal AB interfaces.

4.3 Correlation length

Intuitively, we try to quantify the structure formation process in diblock copoly-

mer melts by measuring the structure factor, S(|~q|) defined in Eq. 4.1. In Fig. 4.4

(a), we present the angularly averaged structure factor, S(|~q|) at various χN .

It has a peak at |~q∗| = 2π/L∗ that quantifies the lamellar spacing, Ls. The po-

sition of the peaks is shifted to smaller wavevectors (i.e, the domain spacing

increases), while increasing χN . The height of the peak value of S(~q∗) is deter-

mined by two factors: the correlation length of the morphology and the degree

of segregation that dictates the composition contrast of different domains.

The two-dimensional structure factor at χN = 15 and 20 is presented in Fig. 4.4

(b). At χN = 20, this snapshot of the structure factor is isotropic, i.e, there are

many domains with different orientations in the system. For χN = 15, the struc-

ture factor exhibits a strong angular variation, which indicates the presence of

large grains (i.e., a size on the order L).

Although the structure factor contains the information of the size of lamellar

grains, it is not easy to directly extract this information from the structure fac-

tor. To obtain the correlation length from the morphology, we measure the cor-

relation function, gr as an alternative, which corresponds to the structure factor

S(q), in real space,

gr(∆r) =
1

2πr∆rL2

∫
L2

d2~r

∫
|~r−~r′|=∆r

d2~r′ m̄(~r)m̄(~r′). (4.3)
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FIGURE 4.4: (a) S(~q) (i.e., structure factor of composition fluctuations ) for vari-
ous incompatibilities in the symmetric diblock copolymer melt. (b) S(~q) on the
xy plane and the corresponding angular dependence from the instantaneous

morphologies shown in Fig. 4.1 (c).
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FIGURE 4.5: The correlation function, gr for six independent simulations with
different χN is obtained as a function ∆r (Re0). The morphologies of these
simulations are shown in Fig. 4.1 (c). Inset: The logarithm of the absolute

value of extreme values of gr, ln |Ae(n, t,∆r))| as a function of distance ∆r.

On the two-dimensional morphology, ∆r ≡ |~r− ~r′| is the distance between two

points and the morphology is averaged over z-axis denoted by m̄(x, y) as the

z-averaged order parameter.

In Fig. 4.5, we plot gr(∆) as a function of ∆r from χN = 16 to χN = 20 for the

morphologies shown in Fig. 4.1 (c). We find that gr(∆r) shows an oscillation

with a periodLs and exponential decay that characterizes the correlation length,

ξ, of the order. As expected, the lamellar spacing increases with χN from χN =

16 to χN = 20. The value of the correlation function at short distances, ∆r also

increases with χN because it reflects the segregation between unlike segment

species. From the simulations data, the correlation function is described with

the form,

gr(∆r) ∼ e−∆r/ξ cos

(
2π∆r

Ls

)
. (4.4)

The size of lamellar grains is characterized the correlation length, ξ.
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In order to obtain the correlation length, ξ, we use the extreme points of the cor-

relation function, gr(∆r). We use Aj = gr(∆rj) and ∆rj to denote the absolute

value of the jth extreme point of gr. lnAj vs. ∆rj shows a linear behavior in the

inset of Fig. 4.5. This linear behavior dictates the exponential decay and we can

easily read off the correlation length, ξ from the inverse slope.

To analyze the growing of correlation length at different χN , we average the

results over multiple independent ordering processes that are obtained by the

particle-based simulations. In order to avoid the finite-size effect (i.e., the value

of the correlation length depends on the system size), we compare the time

dependence of the correlation length at χN = 16 and 20 for different system

sizes in Fig. 4.6. Each point of ξ is averaged over five independent simulations.

We find that there is a pronounced slowing down of the growth of the correla-

tion length. On the double-logarithmic plot, there are two slopes of the correla-

tion length. The correlation length, ξ becomes smaller at the final slope of ξ(t).

We concluded that this is not a finite-size effect because of two reasons: (i) the

results for different system size exhibit similar results within the statistical er-

rors. (ii) we can observe correlation lengths for the same system size at smaller

χN = 16. Qualitatively, we can observe the absence of the finite-size effect by

comparing the snapshots in Fig. 4.1.

The correlation length at a small incompatible parameter, χN = 16 is larger

and continues to grow at later times. The correlation length that obtained at

different system size shows that the finite-size effect is still negligible because

the data agree within the error bars. Therefore we can focus on smaller system

size, L = 40Re0 in the following.

The correlation length, ξ(t), increases like a power law, ξ(t) ∼ tη found by pre-

vious studies in experiments and continuum models. The growth exponent, η

ranges from 0.066 to 0.3 [14, 53, 132–134].

In Fig. 4.7, we present the time evolution of the correlation ξ(t) at χN = 15, 16,

17, 18, 19, and 20. The correlation length, ξ at a given, specific simulation time,

decreases with χN . In Fig. 4.1 (c), we find that the size of lamellar grains in each

morphology gradually decreases with χN . This observation is consistent with

the behavior of the correlation length.
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FIGURE 4.6: The correlation length, ξ is plotted as a function of time, t. Results
are obtained at χN = 16 and χN = 20 for different system size L. Each point

on the graph is averaged over 5 independent simulations.

Due to the limitation of the current amount of computational resources, the

simulation data can span only a limited regime. Our simulation time exceeds

the smallest characteristic time, τ = 8900 only by about 2.5 orders of magnitude.

The correlation length varies only by a factor of 2 when we use the smallest

value of the growth exponent. It is insufficient to accurately extract growth

exponents. We can, however, qualitatively observe that the initial growth for

t < 101τ is much faster than the later times after t ≈ 101τ . The growth exponent

η ≈ 0.25 and η ≈ 0.1 are compatible with the simulation data and are illustrated

in the figure which coincides with experimental results [14].

We assume that the growth exponent is a constant for t > 100τ to approx-

imately extrapolate the ordering time of correlation length to reach a speci-

fied value. The extrapolations are presented in the main panel of Fig. 4.7.

We present in the inset of the figure an Arrhenius plot of the extrapolated

times, t∗ξ , to reach the specified correlation lengths, ξ = 4Re0 or 5Re0, respec-

tively. The extrapolated simulation are compatible with a thermally activated

behavior, t∗ξ ∼ exp(∆F/kBT ). The activation free energy is on the order of
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FIGURE 4.7: The correlation length ξ is plotted as a function of simulation
time t in unit τ . The results are averaged over 5 independent simulations at
χN = 15, 16, 17, 18, 19, 20. Inset: The extrapolated time for the system with

different χN to the correlation length 4Re0 and 5Re0.

∆F/kBT ≈ 1.45χN and 2χN for ξ = 4Re0 and 5Re0, respectively. Qualita-

tively, the linear dependence on χN in the range 15 ≤ χN ≤ 20 agrees with

the excess free energy dependence of isolated dislocation pairs on χN and their

free-energy barrier, ∆Fb for the defect annihilation in a perfectly ordered lamel-

lar structure [130].

Our analysis is limited by the simulation time and statistic errors. However our

simulation results, in conjunction with the visual impression of the snapshots in

Fig. 4.1, indicate that the dependence on the incompatibility, χN , is rather grad-

ual. Even at the largest value of χN , the coarsening process does not completely

arrest but only becomes very protracted.
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4.4 Identifying free-energy basins: Inherent morphol-

ogy and Euler characteristics

4.4.1 Integral-geometry morphological analysis

In the previous section, we observe that morphologies can be "frozen" at large

χN , i.e., the topological structure of a morphology persists for several hundred

τ . It is crucial to investigate the change of topological structures because it is

probably related to a free-energy basin hopping event.

We use the Euler characteristic, χE as an indicator to monitor the change of

topological structures. The Euler characteristic, χE gives a unique integer value

to a specific topological structure. The measurement of the characteristic is im-

plemented by the integral-geometry morphological analysis method [135]. This

method has been applied to classify disordered structures, e.g., to distinguish

ripple- and dimple-like morphologies. If χE is approximately zero, the pattern

looks ripple-like. Otherwise, χE > 0 gives a signal that there are many A do-

mains which are dispersed in a B matrix and, conversely, a morphology with

many isolated B domains in a continuous A matrix results in χE < 0.

A two-dimensional pattern, according to integral geometry, is characterized by

three, additive, translational and rotationally invariant, Minkowski measures

[135, 136]: the area of A domains, As, the perimeter of A domains, U , and the

Euler characteristic, χE, which equals to the number of A domains minus the

number of holes surrounded by A domains.

In the particle-based simulations, our calculation is implemented via the den-

sities on a collocation grid. We obtain a discretized, two-dimensional order-

parameter field by averaging the density along the thin z-dimension of the film.

If the z-averaged order parameter is positive, we assign the value +1 to the grid

cell, and 0 otherwise. we use the composition of two species, m(~r) as the order

parameter. This continuum variable is discretized by the first-order assignment

function, Π(c, ~r) defined in Eq. 2.23.

Now the order parameter,m(c) is three dimensional. To obtain a two-dimensional

description of the morphology, we average the order parameter m(c) over the
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configuration which is perpendicular to the morphology,

m2d(c′) ≡
∑
x

m(c)/Nx. (4.5)

Nx is the number of grids on the x direction.

m2d(c′) is a grey-level, two-dimensional function. We replace the intensity of

the pixel m2d(c′) by a black or a white pixel P(c′),

P(c′) =

{
1 m2d(c′) >= 0

0 m2d(c′) < 0. (4.6)

If the number of A segments dominates in the square pixel c′, P (c′) = 1, other-

wise P(c′) gives a value of 0.

We can straightforwardly obtain the Minkowski measures from this discretized,

two-dimensional, binary map of the system [135]. Each pixel of this map is a

square-shaped region with 4 vertices and 4 edges. We colored the interior of

the pixel according to the binary map. For each A-rich pixel, we define nv as

the total number of vertices, ne as the total number of edges, and ns as the total

number ofA-rich pixels. Counting these values over allA-rich pixels, we obtain

the Minkowski functionals as [135],

As = ns (4.7)

U = −4ns+ 2ne (4.8)

χE = ns− ne+ nv. (4.9)

The time evolution of the area As of A domains and length U of the internal AB

interfaces are illustrated in Fig. 4.8 for a system of lateral size L = 8Re0 in re-

sponse to a quench to χN = 30. The fluctuations are induced by the assignment

of the z-averaged order-parameter profile to the binary map. At the initial time,

the length U which indicates the internal AB interfaces decreases with time.

U gradually decreases when the morphology becomes more ordered, Eventu-

ally, the value measured in the simulation is still larger than the ideal value

U∗ ≈ 2L2/Ls ≈ 70, where Ls is the lamellar spacing, of a perfect, lamellar struc-

ture.
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FIGURE 4.8: Upper: The A domain area is plotted as a function of time t.
Lower: The time evolution of the perimeter of A domain as a function of sim-

ulation time t.

4.4.2 Identifying free-energy basins

Previous results indicate that the ordering of diblock copolymers in a thin film

consists of a sequence of thermally activated processes, which can be conceived

as "jumps between free-energy basins". In a self-assembly fluid, free-energy

basins are difficult to be directly identified because we cannot simply minimize

the potential energy by a rapid temperature quench T → 0. As a contrast, the

glass-forming liquids of hard-core particles characterize the basin by its corre-

sponding minimum-energy configuration. In a self-assembling fluid, the indi-

vidual molecules diffuse even in the perfectly ordered state. We need to identify

a local free-energy minimum that comprises a region in configuration space in-

stead of a single minimum-energy configuration.

To characterize a free-energy basin, we employ the order parameter, m(~r), to
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describe the morphology, instead of utilizing the coordinates of individual par-

ticles. The advantage of this collective order parameter is that it remains un-

changed under permutations of the same kind of particles, as a result, this or-

der parameter automatically accounts for the indistinguishability of identical

particles. It also remains the domain structure when the molecules of the liquid

diffuse.

According to above discussions, a free-energy basin is quantitatively character-

ized by a local minimum of the free-energy landscape, F [m]. A metastable state

can be well defined within SCFT because it ignores fluctuations of the order

parameter, m. Initialized with the morphology observed in the particle-based

simulation, which includes fluctuations, we use the SCFT calculation to con-

verges to the nearest, local free-energy minimum. The free-energy basin of the

initial particle-based configuration is characterized by this metastable state. The

limit of N̄ → ∞ in SCFT, corresponds to the limit, 1/T → ∞ in the hard-core

particles when minimizing the potential energy in a glass in order to identify

inherent structures. In this thesis, the so-obtained free-energy minima are re-

ferred to as inherent morphologies.

In our case, the soft, coarse-grained model can be directly mapped onto the

standard model of SCFT [137]. So this strategy to identify free-energy basins

is reliable because the SCFT method is an accurate and numerically tractable

mean-field theory for the particle-based model. However, an explicit form of

the free-energy functional, F [m] for a particle-based model is not known. In

order to identify the local minima, it is useful to identify other indicators.

We qualitatively assume that the change of free-energy basin is related to the

breaking or connecting of domains. Meanwhile, a change of domain connectiv-

ity results in a discrete change of the Euler characteristic of the domain struc-

ture. In the particle-based simulations, we observe that domain topology re-

mains unaltered for several hundred τ . Details about the computation of the

Euler characteristic are presented in the previous section. The Euler character-

istic can be straightforwardly applied in our simulation data and experimental

studies of self-assembly.

To illustrate the relation between inherent morphologies and Euler character-

istic, we will present two examples obtained in the particle-based simulations.

We study the time evolution in a quasi-two-dimensional system with L = 20Re0
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FIGURE 4.9: (a) Euler characteristic, χE is plotted as a function of time t at
χN = 30. (b) Snapshots of particle-based simulations. Times are indicated by
arrows in panel (a). The black circle indicates the position, where we can ob-
serve that the size of an isolated domain varies in time. We use squares to high-
light areas where changes of the domain topology occur. Enlarged portions of
the domain structure are shown in the inset. Two ending A domains connect
between t3 and t4. .one lamellar domain breaks from t6 to t7. (c) Inherent mor-
phologies: All instantaneous morphologies of the particle-based simulation at
t1, t2 and t3 correspond to the same inherent morphology α. The inherent
morphology β is obtained by quenching the instantaneous particle-based mor-
phologies at t4, t5 and t6, whereas the inherent morphology γ characterizes
the free-energy basin at t7. Squares on the figure indicate the position, where
changes of the domain topology occur which corresponds to jumps from one

free-energy basin to another.
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and the thickness of the system is D = Re0, at χN = 30. We show the first pro-

totypical example in Fig. 4.9 (a). The changes of the Euler characteristic are

identified at times, t ≈ 119τ , 264τ , and 866τ . We present the concomitant snap-

shots of the morphology in panel (b) and times are marked by arrows in panel

(a).

At t ≈ 264τ , we observe that two A domains, which are colored red, connect.

As a result, the Euler characteristic, χE, decreases from 0 to −1. One lamellar

domain breaks at time t ≈ 866τ and χE increases from −1 to 0. The typical time

difference between changes of the domain topology can exceed several hundred

τ at the large incompatibility, χN = 30.

To test the assumption that the change of topology is related to a jump between

free-energy basins, we employ the SCFT method. The instantaneous density

from the the particle-based simulations at times t1 = 121.34τ , t2 = 168.53τ , t3 =

265.16τ , t4 = 266.29τ , t5 = 561.79τ , t6 = 866.29τ , and t7 = 868.53τ , are averaged

over the short z-direction. We construct a two-dimensional order-parameter

field, m̄ on a discretized, 480×480 square grid. We utilize these two-dimensional

fields as the initial condition for SCFT. In the end, these SCFT calculations will

converge to the nearest free-energy minimum, i.e., the corresponding inherent

morphology. Thermal fluctuations of the order parameters are eliminated.

In Fig. 4.9 (b) and (c), we find that morphologies in the particle-based simu-

lation and the inherent morphologies have identical domain topologies. Mor-

phologies at t1, t2, and t3 have identical inherent morphologies and denoted by

α in panel (c). Similarly, the inherent morphologies that correspond to times

t4, t5, and t6 are also identical. They are in the same free-energy basin that is

characterized by the inherent morphology β. The particle-based simulation is

in the free-energy basin of the inherent morphology γ at t7. This example shows

that changes of the Euler characteristic (i.e., the change of domain topology) are

highly associated with jumps between free-energy basins, which are character-

ized by inherent morphologies.

In the SCFT calculation, we can directly obtain the free energy to characterize

the inherent morphologies. The free-energy difference between inherent mor-

phologies α and β is ∆f = 0.0020734kBT per chain in the two-dimensional SCFT

calculations, which corresponds to ∆F =
√
N̄ V

Re0
3 ∆f ≈ 106kBT in the quasi-

two-dimensional system studied in the particle-based simulation. Similarly,
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from the inherent morphology β to γ, free energy reduces by ∆F ≈ 70.6kBT .

At the same incompatibility, χN = 30, the excess free-energy of apposing dis-

location defects, Fd ≈ 229kBT is about three times of these free-energy changes

[130]. For polymeric systems with a large degree of polymerization, N̄ , such

large free-energy changes are typical, because the changes of the domain topol-

ogy involve the participation of many molecules which strongly interdigitate.

Previous investigations suggest that morphologies located inside the same free-

energy basins, include thermal fluctuations around the inherent morphology.

By observations of instantaneous snapshots of the particle-based simulations,

we find that the morphology also evolves deterministically towards the inher-

ent morphology, which is driven by long-range strain-field mediated Peach-

Koehler forces [138] and compression forces [139] that alter when the domain

topology is changed. This deterministic evolution towards the inherent mor-

phology can be protracted, because it may involve co-operative rearrangements

on the scale of multiple lamellae, induced by long-range strain fields. Especially

at early times, the time scale of the collective relaxation of the domain structure

towards the inherent morphology and the thermally activated jumps from one

free-energy basin to another may not separate.

Such a protracted, gradual change example is shown in Fig. 4.9 (b). We high-

light an enclosed, isolated A-domain by the circle, whose size is on the order

of 2Re0. The morphologies of the particle-based simulation at t1, t2 and t3 cor-

respond to the same inherent morphology α. However, we note that this en-

closed, isolated A domain at at t1, t2 and t3 differs in size, shape, and orien-

tation, even after the time ∆t = 140τ . In this particular case, the morphology

in the particle-based simulation did not completely relax towards the inherent

morphology. The relaxation time, ∆t significantly exceeds the time scale for a

copolymer to diffuse parallel to the internalAB interface of theA domain. Such

a protracted relaxation process is caused by two factors: (i) It is an intrinsically

slow process to change the size of an enclosed A domain [110] because this pro-

cess involves the transfer of A blocks across the enclosing B domains, which in-

curs a large free-energy barrier onto the single-chain dynamics [139]. This pro-

cess is also similar to the perpendicular diffusion of copolymers in a perfectly

ordered lamellar structure from one lamella to a neighboring one [140, 141]. (ii)

The change of the orientation of the A domain also involves modifications of

neighboring domains.
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FIGURE 4.10: (a) The Euler characteristic, χE, as a function of time at χN = 30.
(b) Snapshots of particle-based simulations at times that are marked by arrows
in panel (a). One lamellar connection breaks between t′4 and t′5; this breaking
event is presented in the enlarged insets. (c) Inherent morphology that charac-
terizes the free-energy basin corresponds to all simulation morphologies at t′1,

t′2, t′3, t′4, t′5, and t′6.
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Due to the lack of time-scale separation between the relaxation of a morphol-

ogy inside a free-energy basin towards the inherent morphology and subse-

quent jumps between free-energy basis, it is possible that false identifications

of jumps between free-energy basins by changes of the Euler characteristic, oc-

cur. The change of the Euler characteristic will overestimate the rate of basin

jumps. When the domain-breaking and connecting events occur on a time scale

that is comparable to the time between basin jumps, the multiple changes of the

Euler characteristic and a basin-jump are not bunched together.

As shown in Fig. 4.10, we present such a case that the change involves multi-

ple events of domain breaking and connecting. In panel (a) of Fig. 4.10, three

changes of the Euler characteristic of the domain morphology are observed

around t′1 ≈ 166τ , t′2 ≈ 225τ , and t′4 = 728τ . Similar to the previous example,

various instantaneous snapshots of the particle-based simulation are obtained.

In panel (b), the corresponding inherent morphologies are presented. We find

that all snapshots of the particle-based simulation result in the same inherent

morphology which is shown in panel (c). The simulation remains located inside

the same free-energy basin, after the χE-change at t′1 ≈ 225τ . After t′1 ≈ 225τ ,

the domain topology of the particle-based simulation does not coincide with

the domain topology of the inherent morphology for ∆t ≈ 600τ . During this

simulation time, we observe that the lamellar domain, which is highlighted in

panel (b), gradually becomes thinner. At around t′4 ≈ 787 after this lamellar do-

main breaks, the domain topology of the simulation coincide with the domain

topology of the inherent morphology.

In the subsequent process, the morphology continues to evolve in response to

the remaining strain field even after ∆t = 336τ (at t′6 = 1123τ ). At the end of

the simulation, the morphology still differs from the inherent morphology not

only by thermal undulations of the internal AB interfaces.

By this caveat, we try to quantify the rate with which the domain topology

changes in the course of structure formation in the particle-based simulation.

We measure the fraction, ΠE(t, te), of the self-assembling process that change

their Euler characteristics between the time points, t−∆tE, and t.

ΠE(t,∆tE) =
1

Ns

Ns∑
k=1

Θ̄
(
χkE(t)− χkE(t−∆tE)

)
(4.10)
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FIGURE 4.11: The persistence rate of Euler characteristic Π(11.23τ) is presented
as a function of the simulation time, t at χN = 16, 17, 18, 19, 20.

where k = 1, · · · , Ns = 50 loops over all Ns independent simulations at a given

incompatibility, χN . The variable Θ̄ = 1 if the argument is non-zero, and Θ̄(0) =

1. In the following, we use a large time interval, ∆tE = 11.23τ or 100 000 Monte-

Carlo steps, which is larger than the actual time to break or connect a domain,

and it allows for some relaxation of the morphology.

In Fig. 4.11, we plot the probability of changing the Euler characteristics during

the time interval [t − 11.23τ : t] for various incompatibilities, χN . The size of

the system is 20Re0 × 20Re0 × Re0. At a given incompatibility, ΠE decreases

with time. The time dependence of the simulation data is compatible with an

exponential behavior, which give rises to a characteristic time, τΠ that decreases

with incompatibility from about 800τ at χN = 16 to about 250τ at χN = 20.

This is consistent with our previous qualitative impression of the snapshots in

Fig. 4.1 that the time evolution is significantly faster at lower incompatibility

and there is a pronounced but gradual slowing down of the ordering kinetics.
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4.5 Defects

The change of free-energy basins, which involves the breaking or connecting

of domains is also a defect annihilation process. In a stripe phase environ-

ment, the annihilation of isolated defects (e.g., the annihilation of disinclination

quadrupole or the annihilation of disinclination dipole) is well-understood [28].

In a stripe pattern with two or four disclinations on the film, two disclinations

are attracted by a driving force which is proportional to their inverse distance,

i.e., 1/r. Peach and Koehler generalize this force and develop Peach-Koehler

equation to describe the force of dislocation from the internal stress [142].

In a more disordered morphology, the dynamics of defect annihilation are rather

co-operative and are strongly influenced by surrounding defects. In the subse-

quent section 4.5.3.1, we find one defect which is similar to the B-core dis-

location dipole defect but in a disordered environment. In the particle-based

simulation, the defect annihilation process is rather different from the process

in a lamellar phase.

It is, therefore, necessary to understand the defect annihilation processes, sta-

tistically. Motivated by experiments and numerical approaches [28, 126, 143],

we measure the kinetic exponents in terms of defect annihilation process.

4.5.1 Approximately estimating the defect density via the Euler

characteristic of small patches

In this section, we will introduce a scheme that allows us to estimate and ap-

proximately categorize defect motifs in a two-dimensional morphology by dis-

tinguishing topological structures of A domains. A typical simulation snapshot

is depicted in Fig. 4.12, featuring different kinds of local defect motifs: an iso-

lated domain, an end of a lamellar domain, and an intersection of two lamellar

domains. These local defect motifs differ in their topology and these distinc-

tions can be quantified by the Euler characteristic, χE. We compute the Euler

characteristic, χE, of B domains (blue color) in a small square detection region,

as illustrated in Fig. 4.12. For the isolated domains, χE gives a value of 0. Sim-

ilarly, χE is 1 for the end of a lamellar domain and the intersection of domains
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FIGURE 4.12: Left is the snapshot of one typical morphology obtained by
the particle-based simulation. This morphology contains three typical defects
which are marked by a square curve. On the right, we present these defects in

the detection region.

results in a value of 3. A defect-free structure in the detection region yields the

value of χE = 2.

We move the small square detection region, which is centered in A domains

across the two-dimensional morphology. A defect is detected when the Euler

characteristic, χE do not take the value of 2. We have two difficulties in practice,

which would possibly induce a false signal of defects.

The first difficulty is to determine a proper size of the detection region to re-

duce the influence of irrelevant structures. Fortunately, in diblock copolymer

melts, the lamellar spacing is determined by the Flory-Huggins parameter χN ,

which gives a uniform width of the stripe in the morphology. This property

guarantees that a proper size of the detect region exists.

To determine a proper size of the detection region, Ld×Ld, we measure the Eu-

ler characteristic of various defects with various values of Ld. In Fig. 4.13, we

measure the Minkowski functionals of B domains. We plot the Euler character-

istic, χE and the ratio of the area, S, which is defined as the ratio of B domain in

the detection region as a function of size of the detection region, Ld.

These defects are placed at the center of the detect region. As shown in Fig. 4.13,

the value of Ld ranges from 1/3Re0 to 6Re0. For the isolated block defect, there

is window ranging from Ld ≈ 1.5 to Ld ≈ 2.5, where χE gives the correct value

of the defect. The area of B domains also reaches a peak in that window. From
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FIGURE 4.13: For different defects in the snapshot in Fig. 4.12, we plot the Eu-
ler characteristic χE of the B domains (blue color) and the portion of B domains
(blue area) in the detection region (right) as a function of the size of Ld. Upper:
the end of the line defect. Middle: the intersection defect. Lower: the isolated

block defect.

this result, the proper size of the detection region ranges from Ld = 1.5Re0 to

Ld = 2.5Re0. In the following, we use the value of Ld = 2Re0.

The second difficulty is to distinguish an end of a lamellar domain from the

isolated block domain. The reason for this incorrect detection is that when the

detection region is at the edge of an isolated block domain, the Euler character-

istic, χE also takes the value of 1, which corresponds to the end of a lamellar

domain. This mistake is avoided by detecting different types of defects sub-

sequently. We identify the isolated block domains first and mark the regions

where the isolated block domains are detected. In the next round of defect

detection, we start to detect the end of the line domains and do not take into
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FIGURE 4.14: Defects in a typical two-dimensional fingerprint morphology
obtained by the particle-based simulation which is quenched to χN = 20.

account the regions where the isolated block domains are found.

To verify the algorithm, we count defects on a morphology with an extension

40Re0 × 40Re0. The morphology is obtained by quenching the particle-based

simulation to χN = 20 and running the simulation for approximately 561τ .

As shown in Fig. 4.14, there are 15 end of line domains (blue points) and 16

intersection domains (red points). The is only one isolated block domains (black

point). This result is verified by our algorithm.

4.5.2 Quantifying the ordering process: time evolution of de-

fect density

The statistics of defect annihilation can be quantified by the time dependence

of the number, Nd of defect. A description of the identification and classifica-

tion of defect motifs is given in the previous section. In fig. 4.15, we present

the density of defect motifs, ρd = Nd/L
2, in the data for various system sizes

demonstrates the absence of finite-size effects, the data are compatible with a

power-law decay of the defect density, ρd ∼ t−ηd with an effective exponent,

ηd ≈ 0.2.
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FIGURE 4.15: Estimate of the density of local defect motifs as a function of time
t after a quench to χN = 20. The system size L, ranges from 40Re0 to 100Re0.

Results are averaged over five independent simulations.

As shown in Fig. 4.15, we also measured the decrease of the defect density for

other value of incompatibility, χN , using the system size, L = 40Re0. In accord

with the previous observations, the defect density at a given time increases with

χN and the exponent ηd decreases from ηd ≈ 0.32 to 0.02 as we increase χN from

18 to 30.

The local defect morphology can be classified by end of lamellar domains, inter-

sections of domains, and isolated domains. In a symmetric copolymer system,

the former two are equally probably within the statistical accuracy. The number

of isolated domains-denoting small unconnected domains-is much smaller than

the number of the former defects, e.g., for L = 100Re0, χN = 20, and t = 500τ ,

the system contained 205 defects, of which only 3 were isolated domains. The

number of end of the line defect and the intersection defect were 104 and 98,

respectively.

The density of isolated-domain defects in the early stage of self-assembly is

presented in Fig. 4.17 for L = 100Re0. We observe that for χN = 18 and 20,
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FIGURE 4.16: The density of defects is plotted as a function of simulation time
t with a system size L = 40Re0 quenched to χN = 18, 20 and 30. Results are

averaged over five independent simulations.

the defect density rapidly decreases and at t = 8τ these large systems contain

less than 10 defects of this type. At high incompatibility, however, the decrease

of the number of these defects is significantly slower, i.e., if we postulated in

a power law the concomitant exponent ηid
d ≈ 0.01 would be very small. The

protracted behavior at large incompatibility can be rationalized by the single-

chain dynamics that is involved in the annihilation of isolated domains. In

order to eliminate an isolated domain by shrinkage, blocks of the encircled,

isolated domain have to diffuse through a domain of the opposite species. This

imparts a large free-energy barrier on the single-chain motionbecasue the lbock

is exposed to a hostile environment, resulting in an exponential slowing down

with χN for this intrinsically slow process.

The stability of the defects is determined by the minimal free-energy barrier to

eliminate the defect. By means of the string method, we discuss the defect an-

nihilation process on the view of the free-energy landscape in the next section.
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FIGURE 4.17: The number of isolated block domains estimated by quenching
χN = 18, 20, and 30 is plotted as a function of simulation time t (τ ). The results

are averaged by 5 independent simulations.

4.5.3 Minimum free-energy path of two typical defects

In this subsection, we will illustrate two typical defect-annihilation mechanisms

using two-dimensional SCFT calculations and particle-based simulations in a

thin film. The transition states may involve non-trivial three-dimensional struc-

tures in the particle-based simulations [130]. The free-energy barrier obtained

by the string method in conjunction with two-dimensional SCFT calculations is

expected to overestimate the barriers but still provide qualitative insights into

the free-energy landscape [126].

4.5.3.1 Bifurcation in the free-energy landscape

In this section, we investigate an example of defect annihilation, which is ob-

served by a particle-based simulation after a quench from the disordered state

to χN = 30. The transition process is depicted in Fig. 4.18. The system size is

L = 8Re0 and, unlike previous simulations, we use a smaller invariant degree
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FIGURE 4.18: (a) The breaking of a domain is depicted by a sequence of snap-
shot (marked by the black square), in the course of a quench from the disor-
dered phase to χN = 30. The invariant degree of polymerization is reduced
to N̄ = 702, in the SCMF simulations. (b) A MFEP is obtained by initializing
the string with morphologies before and after the change of domain morphol-
ogy. The left panel shows the free-energy profile ∆f in units of kBT per chain,

whereas the right panel depicts morphologies along the MFEP.

of polymerization,
√
N̄ = 70, to facilitate thermally activated processes in the

simulation.

The sequence of snapshots are shown in Fig. 4.18 (a). One domain breaks at

around t ≈ 41τ , in turn, creates an end of a lamella (dislocation). We initialize

the string calculation by uniformly interpolating between the two morpholo-

gies obtained before and after the breaking of the domain in the particle-based

simulations. We do not constrain the morphologies at the two ends of the string.

As a result, they will converge towards metastable states according to Allen-

Cahn dynamics. Two inherent morphologies before and after the change of the

domain topology are identified, i.e., the end points of the string. The calcula-

tion of the MFEP1 provides the transition path between the two inherent mor-

phologies. The free-energy profile and snapshots along the MFEP1 are shown

in panel (b) of Fig. 4.18.
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We find that there is a small free-energy barrier along the MFEP, which is related

to the change of domain topology. At α ≈ 0.31, the free-energy profile exhibits

a shoulder, which indicates that the thermodynamic driving force for morpho-

logical changes is rather small. The snapshot along the MFEP1 reveal that this

feature is associated with the expansion and re-orientation of the created end

of the lamella. In the Fig. 4.18 (b) bottom right, we highlight this process by

the square in the two last morphologies. In the simulation we expect that such

a process, approaching the inherent morphology after the breaking of the con-

nection, is rather protracted.

The free-energy barrier of the topological change at α ≈ 0.05 is rather small.

For
√
N̄ = 70, L = 8Re0, and D = Re0, the free-energy barrier, ∆fb ≈ 0.0007kBT

per chain corresponds to a small barrier of about 3.1kBT . The value of the free-

energy barrier is not significantly larger than the thermal energy scale, kBT . It

is expected that the system can escape the inherent morphology within a short

simulation time. We verified this by employing the inherent morphology at

α = 0 as an initial density distribution for particle-based simulations. For 10

independent simulations, we observe that all simulations escape from this in-

herent morphology within ∆t = 10τ .

We observe that some runs, starting from the inherent morphology α = 0 of

MFEP1, do not follow the MFEP1. In the particle-based simulations, we have

observed an alternate transition path, as shown in Fig. 4.19 (a).1 After ∆t =

0 and 6.71τ , the domain morphology changes in accord with MFEP1. Later,

instead of relaxing towards the inherent morphology, α = 1, of MFEP1 via

the protracted, expansion and re-orientation of the created end of the lamella,

we find that another isolated domain breaks open in the top right corner of

the system (cf. zoom-in in Fig. 4.19 (a)) around ∆t = 7.87τ , i.e., rather rapidly

after the first change of domain topology. This new event gives rise to further

changes of the domain morphology (see simulation snapshot at ∆t = 21.37τ ).

In order to understand the transition of this second change of domain topology

between ∆t = 6.71τ and 7.87τ , we investigate the free-energy landscape by the

MFEP2 between the inherent morphology that corresponds to the configuration

at ∆t = 6.71τ , i.e., the end of MFEP1, and the inherent morphology that corre-

sponds to the morphology at ∆t = 7.87τ . We find that the inherent morphology

of the simulation snapshot at ∆t = 7.87τ has the same domain topology as the
1If we increase N̄ to 1282, all runs would follow the MFEP1.
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FIGURE 4.19: (a) Snapshots of a defect annihilation process which is similar to
a B-core dislocation dipole defect. The particle-based simulation is initialized
with the morphology α = 0 in MFEP1. The snapshot of the B-core dislocation
dipole defect is enlarged in the inset. (b) Snapshots and free-energy profile of
the MFEP2, in which the starting morphology α′ = 0 is the ending morphol-
ogy in MFEP1 α = 1 (c) Schematic representation of the free-energy landscape

associated with MFEP1, MFEP2, simulation1, and simulation2.
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simulation snapshot. The simulation2 from ∆t = 0 to ∆t = 7.87τ , corresponds

to a process that concatenates MFEP1 and MFEP2.

In Fig. 4.19 (b), we present the free-energy profile of MFEP2 and the corre-

sponding morphologies. We find that the change of domain topology along

the MFEP2 involves a significant free-energy barrier, corresponding to approx-

imately 22.4kBT in the particle-based simulations. After overcoming the very

shallow barrier of MFEP1, we find that the particle-based simulation approaches

to the inherent structure α = 1 of MFEP1 (or equivalently α′ = 0 of MFEP2) re-

mained there for more than 750τ .

To make it easier to understand, the relation between the two MFEPs and the

alternate evolution in simulation2 is sketched in panel (c) of Fig. 4.19. We con-

clude that the strain-field mediated, co-operative rearrangements of the mor-

phology that occur between the barrier and the end point of MFEP1 (start-

ing point of MFEP2) do significantly change the free energy, even if they have

the same domain topology. The domain morphology evolves in response to

the change of the strain-field mediated interactions, immediately, after the first

topological change. In the simulation2, before the system has approached the

corresponding inherent morphology, a second topological change occurs. This

suggests that the barrier is only of the order kBT . The barrier for a second

change of domain topology significantly increases, in the course of the relax-

ation towards the corresponding inherent morphology. When the system reached

the inherent morphology, quantified by the barrier along the MFEP2, the sec-

ond topological change would incur the much larger free-energy barrier. As

a result, the barriers for changes of the domain topology, i.e., the barrier can

be smaller than suggested by the MFEP between inherent morphologies can be

significantly altered due to strain-field mediated interactions.

4.5.3.2 Trifurcation in the free-energy landscape

In another independent simulation, we investigate a process to eliminate an

isolated block defect. The system size is also set as L = 8Re0 and the Flory-

Huggins parameter is χN = 30. The invariant degree of polymerization is set

to
√
N̄ = 70.
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FIGURE 4.20: (a) Right: The free-energy of four MFEPs to eliminate an iso-
lated block domain. Left: The starting α = 0 and ending α = 1 meta-stable
morphologies are obtained by the SCFT. (b) Snapshots of intermediate states
in four MFEPs. (c) Scheme illustration of the annihilation process by MFEP3 in

the three-dimensional system.

FIGURE 4.21: The statistics of the relaxation time to eliminate the isolated
block defect for 100 particle-based simulations with an initial density configu-

ration α = 0.
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One isolated block defect is eliminated by thermal fluctuations at t = 665τ .

We select two morphologies in the simulation at t = 665τ and t = 669τ . We

quenched these two morphologies with the SCFT method, as shown in Fig. 4.20

(a) left.

As shown in Fig. 4.20 (b), there are four possible MFEPs to eliminate the isolated

A domain. MFEP1 is merging the isolated block into the lower stripe domain.

MFEP2 and MFEP3 are merging into left and right stripe domains, respectively.

The fourth MFEP, i.e., the MFEP 4 is an evaporation-like mechanism.

In the simulation, we can estimate the free-energy barrier of four MFEPs. The

free-energy barrier of the MFEP1 is about 12.383kBT . The free-energy barrier of

the MFEP4 is the lowest which is 9.408kBT . The free-energy barrier of the sec-

ond and the third MFEP are approximately the same which is about 12.998kBT

due to the symmetry. Above computation is implemented in a two-dimensional

lattice, the free-energy barrier is overestimated. We calculate the MFEP3 in

a three-dimensional bulk system. As depicted in the Fig. 4.20 (c), in a three-

dimensional computation, the isolated domain and the line domain get con-

tact with a very thin connection at the initial stage. Later, the thin connection

gets thicker in the direction that is perpendicular to the plane of the quasi-two-

dimensional system. The value of the free-energy barrier on a 3D calculation is

reduced to 11.827kBT in the simulation.

We run 100 independent simulations which are initialized with the metastable

morphology α = 0. The total simulation time is about 332τ . We make a statis-

tics on these simulations which is shown in Fig. 4.21. There are 28 simulations

remaining the same topological structure with the morphology at s = 0 within

a simulation time 332τ . Only 4 simulations eliminate the isolated block domain

with the MFEP1. Most simulations chose the MFEP 2 and the MFEP 3 to elimi-

nate the defect. Their numbers are 35 and 33, respectively.

Although the free-energy barrier in the MFEP4 is the smallest. But we do not

observe this process in the simulation. This evaporation-like mechanism is diffi-

cult to realize for diblock copolymer melts in the strong-segregation regime. Be-

cause the Onsager-coefficient that translates the thermodynamic force into the

composition flow is proportional to (1−m2). It is difficult to transport different

species through a domain [130]. The MFEP 1 also involves an evaporation-like

mechanism in the initial stage. It first shrinks to a smaller block, then it merges
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to the lower line domain. In our simulations, only four samples out of 100 in-

dependent simulations follow the MFEP1.



Chapter 5

Summary and outlook

5.1 Summary

In this thesis, we investigate the non-equilibrium, structure formation process

in block copolymers. We can, on one hand, investigate the structure formation

process kinetically by observing mass, large-scale, particle-based simulations,

or on the other hand, thermodynamically by exploring the free-energy land-

scape.

On the perspective of the free-energy landscape, we investigate two important

quantities in the chapter 3: one is the thermodynamic force (i.e., the chemical

potential), which drives the formation of various long-range order structures.

The other one is the Onsager coefficient, which transmits the thermodynamic

forces along the molecular backbone.

The thermodynamic force is directly related to the free-energy landscape. We

propose a very accurate and computationally efficient method (the umbrella

potential method in conjunction with SCFT) to obtain the chemical potential.

For the multiple-dimensional, free-energy landscape, it is not possible or neces-

sary to obtain its full knowledge. By means of the string method, we can obtain

the most useful information, i.e., the minimum free-energy path. It gives the

most probable transition path connecting the two thermal states.

The Onsager coefficient cannot be easily obtained analytically. We provide a

numerical scheme to directly measure the Onsager coefficient in the particle-

based simulations. Although we only focus on the linear polymer chains with

130
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a simple Rouse dynamics in this article, this method is rather general and can

be easily extended to measure the Onsager coefficient in various polymer archi-

tectures and dynamics.

The Onsager coefficient, Λ(q, ω) is time-dependent, which is associated to the

single-chain molecular dynamics in a quasi-homogeneous system. Based on the

dynamic equation of densities in Eq. 3.64, we can preliminary estimate the On-

sager coefficient for a long-time limit. In the sub-diffusive regime, the Onsager

coefficient is time-dependent.

We also investigate the structure formation process from the kinetic perspective.

By employing massive particle-based simulations, we investigate the kinetics

of pattern formation in quasi-two-dimensional symmetric diblock copolymer

melts. When lamellar-forming block copolymer melts are quenched far below

the order-disorder transition temperature, the quasi-two-dimensional systems

form an isotropic morphology with finite-size lamellar grains. In the structure

ordering process, these grains will grow up by the grain-coarsening process.

From the observations of morphologies in particle-based simulations, domains

of A block or B block will break and connect at the boundary of lamellar grains

due to the frustrated orientation of lamellar grains.

The growth of the lamellar grains dramatically slows down when the temper-

ature decreases. This phenomenon is confirmed by measuring the correlation

length. From χN = 16 to χN = 20, the relaxation time of the structure or-

dering increases dramatically with χN . The slow ordering process in block

copolymers has been liken to the glassing-forming systems, which means that

the free-energy landscape is rugged below the critical temperature. The basins

in the free-energy landscape are related to the topology of the morphologies.

By means of SCFT, we quench the morphologies obtained in the simulation to

the inherent morphologies. We find that morphologies which have an identical

topology are in the same free-energy basins. The breaking or connecting do-

mains which changes the topology of the morphology is usually a rare event

of basin-hopping. We use the Euler characteristic, χE to monitor the change of

the topology. The topology of the morphology is altered via eliminating un-

stable structures, i.e., defects. We classify three kinds of defects according to

their topological structure. The number of defects in the morphology decays

with a power-law, t−ηDt. The decay exponent ηD decreases with χN . This sug-

gests that the number of basins in the free-energy landscape increases with χN .
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In the end, we investigate the mechanism to eliminate unstable structures via

the string method in conjunction with SCFT. The possibility to escape the free-

energy basin is mainly determined by the value of the free-energy barrier along

the free-energy profile.

5.2 Outlook

In this thesis, we put a lot of efforts to investigate the structure formation pro-

cess in block copolymers. We try to cover as many topics as we can, but there

are still many open questions which worth further investigations.

(i) To explore the free-energy landscape, we only consider slow variables (e.g.,

the composition of diblock copolymers) as the order parameter and neglect the

influence of the dynamics of the molecular chain. In fact, this effect is also

important, especially when the polymer chain is strongly stretched.

The major difficulty to take into account the dynamics of a polymer chain is

to determine a proper order parameter. One possible strategy to capture the

polymer chain conformation is to utilize the Rouse mode as the order parameter

[57].

(ii) The string method has become a very mature technique to obtain the MFEP.

One has a good understanding of various defect annihilation mechanism via

the MFEP. One question still remains untouched is that how the structure for-

mation processes are related to the molecular architecture. This is a very com-

plex question and we will only investigate a defect removal process in triblock

copolymers in Sec. 3.5.3. We compare the B-core dislocation dipole defect in

symmetric diblock copolymers with the triblock copolymers. As expected, we

find that molecular architectures have an impact on the defect annihilation pro-

cess. We still do not understand the mechanism and this question is to be un-

derstood by a further investigation.



Appendix A

Other umbrella potentials

In the section 3.2.2 and 3.2.3, we introduce the exact constraint method and the

umbrella potential method to derive the free energy, Ftarget[m] and the chemical

potential, µ[m] for a specific configuration characterized by the order parameter,

m.

For block copolymer melts, we use the constraint, δ(m − φA + φB). In many

circumstances, the choice of the constraint is not unique. For example, in an

incompressible diblock copolymer melt, we can also use a constraint, δ(φA −
Φ̃A), where Φ̃A ≡ (1 +m)/2. These two constraint are equivalent.

To use the new constraint, δ(φA−Φ̃A), the corresponding free-energy functional,

Ftarget[Φ̃A] is modified as,

Ftarget[Φ̃A]

nkBT
= − lnQ+

1

V

∫
d~r − Ξ (1− ΦA − ΦB)

+χNΦAΦB −WAΦA −WBΦB

+Wexphi

(
Φ̃A − ΦA

)
. (A.1)

The self-consistent equations are modified as,
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Ξ = (WA +WB − χN +Wex)/2 (A.2)

Wex = −χN(2Φ̃A − 1)− (WA −WB) (A.3)

WA = Ξ + χN(1− Φ̃A)−Wexphi (A.4)

WB = Ξ + χNΦ̃A (A.5)

The chemical potential µ[m] is newly derived as,

µ[m]

kBT
=

1√
N̄kBT

δF
δm

=
1

2

δF
δΦ̃A

=
1

2
Wexphi (A.6)

Similarly, instead of using the umbrella potential in equation 3.24, we can use

the chemical potentialHλ1 orHλ2,

Hλ1√
N̄kBT

≡ λN

2R3
e0

∫
d~r
(

Φ̃A − φ̂A
)2

+
λN

2R3
e0

∫
d~r
(

1− Φ̃A − φ̂B
)2

(A.7)

Hλ2√
N̄kBT

≡ λN

2R3
e0

∫
d~r
(

Φ̃A − φ̂A
)2

. (A.8)

The self-consistent equations forHλ1 is,

Ξ = (WA +WB − χN)/2 (A.9)

WA = Ξ + χN(1− Φ̃A)− λN(Φ̃A − ΦA) (A.10)

WB = Ξ + χNΦ̃A − λN(1− Φ̃A − ΦB) (A.11)

The self-consistent equations forHλ2 is,

Ξ =
[
WA +WB − χN + λN(ΦA − Φ̃A)

]
/2 (A.12)

WA = Ξ + χN(1− Φ̃A)− λN(Φ̃A − ΦA) (A.13)

WB = Ξ + χNΦ̃A (A.14)
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Importantly, the chemical potential µλ1 and µλ2 is,

1√
N̄
µλ1[Φ̃A]

kBT
=

1

kBT
√
N̄
δFλ1

δΦ̃A

= λN(2Φ̃A − 1− ΦA + ΦB) (A.15)

1√
N̄
µλ2[Φ̃A]

kBT
=

1

kBT
√
N̄
δFλ2

δΦ̃A

= λN(Φ̃A − 1− ΦA) (A.16)

We have the following relation,

µ[m] =
1

2
µλ1[Φ̃A] =

1

2
µλ2[Φ̃A] (A.17)



Appendix B

Random-phase approximation

In the following, we will employ the random-phase approximation to derive

the structure factor for symmetric diblock copolymers.

The structure factors are important quantities for both experimentalists and the-

orists. Many experimental techniques such as the elastic radiation scattering

experiments (light, X-Ray, or neutron scattering) can directly measure the struc-

ture factor of block copolymers according to the linear response theorem [19].

Theoretically, these functions can be used to accelerate the computation of SCFT

equations [92]. In the section 3.3.1, we also show that the Onsager coefficient is

nonlocal, which is described by the single-chain correlation function [119].

Before embarking on the multiple-component block copolymer system, we will

first calculate the structure factor for ideal chains as a preparation. We consider

a linear polymer chain which is confined in a volume V = L × L × L with a

periodical boundary condition. The number of segments along the single chain

is N . The coordinate of the sth monomer is denoted as ~r(s). The local density of

the single chain is represented as,

φ̂(~r) =
1

ρ

N∑
s=0

δ(~r − ~r(s)), (B.1)

where ρ equals to N/V .

The single-chain correlation function, g0(~r, r′) is defined as,

g0(~r, r′) ≡
〈
φ̂(~r)φ̂(~r′)

〉
0
. (B.2)

136



Appendices 137

The thermodynamic average 〈. . . 〉0 denotes the canonical ensemble average

which only subjected to the bonded interactions in Eq. 2.5. The structure factor

of an ideal chain is the Fourier transform the single-chain correlation function,

S0(q,q′) ≡
∫

d~rd~r′ g0(~r, r′) exp {i~rq + i~r′q′} . (B.3)

The S0(q,q′) can be directly calculated as,

S0(q,q′) =
N2

ρ2
0

∫
d~r

∫
d~r′ e−iq~r−iq

′~r′ 〈φ(~r)φ(~r′)〉0

=
N2

ρ2

∫ 1

s=0

ds

∫ 1

s′=0

ds′
∫

d~r

∫
d~r′ e−iq~r−iq

′~r′
〈
δ (~r − ~r(s)) δ(~r′ − ~r(s′))

〉
0

=
N2

ρ2

∫ 1

s1=0

∫ 1

s2=0

ds1ds2 e
−R

2
e0
6

q2|s2−s1|δ(q + q′)
1

V
. (B.4)

We use S0(q) ≡
∫

dq′ S(q,q′), and make the substitution of x ≡ R2
e0

6
q2,

S0(q) = Ng(x) =
2N

x2
(x− 1 + e−x), (B.5)

where g is the Debye function.

The limiting behavior of the structure factor S(q) is simplified as,

S(q) =

N(1− q2R2
e0/18) ,qRe0 � 1

12N/q2R2
e0 1� qRe0

(B.6)

By the inverse Fourier transform on S(q), we can obtain the single-chain corre-

lation function g0(~r, r′). The single-chain correlation function, g0(~r, r′) is isotropic

in the space. g0(~r, r′) can be represented as a function of the two points distance

r = |~r − ~r′|with the following equation,

g0(r) =
1

4πr2

∫
|~r−~r′|=r

d~rd~r′ g0(~r, ~r′). (B.7)

We have the normalization relation that,

4π

∫
dr r2g0(r) = V 2. (B.8)
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In the limit of q � 1, S(q) ∼ 1/q2. The inverse Fourier transform of 1/q2 is 1/r.

The second term in Eq. B.10 can be neglected, which gives,

V 2g0(r) ≈ 3N

πR3
e0r

. (B.9)

At another limit 1� q, S(q) ∼ exp{−q}. The single-chain, correlation function

exponentially decays with the distance r.

The analytical form of the single-chain correlation function, g0(r) is,

V 2g0(r) =
3N

πR2
e0r

[
1− 2

∫ 1

0

dε erf

(√
3

2εN

r

b

)]
. (B.10)

The physical meaning of the single-chain correlation function g0(r) is that we

randomly select a monomer on the chain and measure the probability to find

another monomer at a distance r.

To numerically verify the behavior of the single-chain correlation function, we

simulate an ideal chain in a cubic box with L = 4Re0 in all direction to obtain

g0(r). The mean-square end-to-end distance R2
e = R2

e0. The polymer chain can

fully span in the box, such that the finite size effect is negligible. The discretiza-

tion of the polymer chain is N = 32.

As is shown in the Fig. B.1, the single-chain correlation function ρ2g0(r) expo-

nentially decay with the distance r at large r limit.

Next we embark on the multi-chain system. We calculate the structure factor of

diblock copolymer melts by the RPA. The fraction of A block is denoted as fA
and the fraction of B block is fB = 1− fA.

The basic idea of the RPA approach is to replace interactions between polymers

by an effective external fields. Thus the partition function of a multiple chain

system is decoupled and can be written as a summation of single-chain parti-

tion functions Q[WA,WB] under weak external fields WA and WB.

So we first consider the single-chain partition functionQ[WA,WB] which can be

expanded in terms of the external potentials,
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FIGURE B.1: The single-chain correlation function is plotted as a function of
the distance r.

Q
Q0

≡
〈

exp

{
−
∫

d~r
1

V
(φA1WA + φB1WB)

}〉
0

=

〈
exp

{
−
∫

dq
1

V
(φA1(q)WA(−q) + φB1(q)WB(−q))

}〉
0

= 1−
〈∫

dq
1

V
(φA1(q)WA(−q) + φB1(q)WB(−q))

〉
0

+
1

2
<

∫
dqdq′

1

V 2
{φA1(q)WA(−q) + φB1(q)WB(−q)}

{φA1(q′)WA(−q′) + φB1(q′)WB(−q′)} >0 +o(W 2
A,B), (B.11)

where the partition function of an ideal chain is,

Q0 = V

(√
2πR2

e0

3N

)
. (B.12)
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φA1 and φA1 are the single-chain density of A and B species, respectively. They

are defined as,

φA1(~r) =
1

ρ

fAN∑
s=0

δ (~r − ~r(s)) (B.13)

φB1(~r) =
1

ρ

N∑
s=fAN

δ (~r − ~r(s)) (B.14)

The structure factor of AA density and BB density and AB density is given as,

SAA(q) ≡ 〈φA1(q)φA1(q′)〉0

=
N2

ρ2

∫ s1=fA

s1=0

∫ s2=fA

s2=0

ds1ds2 exp

{
R2

e0

6
q2|s2 − s1|

}
= Ng(f, x) (B.15)

SBB(q) ≡
〈
φ̂B1(q)φ̂B1(q′)

〉
0

=
N2

ρ2

∫ s1=1

s1=fA

∫ s2=1

s2=fA

ds1ds2 exp

{
R2
e0

6
q2|s2 − s1|

}
= Ng(1− f, x) (B.16)

SAB(q) ≡
〈
φ̂A1(q)φ̂B1(q′)

〉
0

=
N2

ρ2

∫ s1=fA

s1=0

∫ s2=1

s2=fA

ds1ds2 exp

{
R2

e0

6
q2|s2 − s1|

}
=

N

2
[g(1, x)− g(f, x)− g(1− f, x)] (B.17)

According to the random-phase approximation, we neglect high order terms

o(W 2
A,B). The first order term is zero, because we employ a periodic boundary

condition. The partition function is simplified as,

Q
Q0

≈ 1 +
1

2V

∫
d~k
{
SAA|WA|2 + SBB|WB|2 + 2SAB|WAWB|

}
. (B.18)

Similar to the Eqn. 2.59, we consider an incompressible system with a soft con-

straint. The free-energy functional Fs of the single chain is,
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Fs
nkBT

= − lnQ0 − ln
Q
Q0

+
1

V

∫
d~rχNΦA(1− ΦA)−WAΦA −WB(1− ΦA)]

≈ − lnQ0 −
1

2V

∫
d~k SAA|WA|2 + SBB|WB|2 + 2SAB|WAWB|

−χN
4

(ΦA − ΦB)2 +
κN

2
(ΦA + ΦB − 1)2

+WAΦA +WBΦB (B.19)

By the saddle-point approximation, the free energy functional Fs
nkBT

[WA,WB,ΦA,ΦB]

gives the linear relation between the density and the field,

−ΦA = SAAWA + SABWB (B.20)

−ΦB = SABWA + SBBWB (B.21)

In the diblock copolymer melts, we consider the composition fluctuation 〈|m(q)|2〉
where m = ΦA − ΦB and the density fluctuation 〈|Φ(q)|2〉where Φ = ΦA + ΦB.

We obtain that,

WA =
m(SAA + SAB)− Φ(SAB − SBB)

2(S2
AA − SAASBB)

(B.22)

WB =
Φ(SAA − SAB)−m(SAA + SAB)

2(S2
AA − SAASBB)

(B.23)

The free energy functional Fs
kBT

[WA,WB,ΦA,ΦB] is substituted by these saddle-

point terms,

1√
N̄
Fs
kBT

=

∫
dq

1

2

(
SAA + 2SAB + SBB
4(SAASBB − S2

AB)
− χN

2

)
|m|2

+
1

2

(
SAA − 2SAB + SBB
4(SAASBB − S2

AB)
+ κN

)
|Φ|2

+
1

2

(
SAA − SBB

2(SAASBB − S2
AB)

)
|mΦ|2 (B.24)

The coupling term between the density fluctuation and the composition fluctu-

ation vanishes when the composition fraction fA equals to 0.5. We can read off
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the composition structure factor of block copolymers Scon(q),

N

Scon(q)
=

4

n

V 2

N2

1

〈|m(q)|2〉
=

2

SAA − SAB
− 2χN. (B.25)

Similarly, we obtain the density fluctuations Stot,

N

Stot(q)
=

4

n

V 2

N2

1

〈|Φ(q)|2〉
=

1

2(SAA + SBB)
+ κN. (B.26)

When the incompatible parameter χN increases to the order-disorder transition

point, the composition fluctuation at a certain value of q will diverge. This is the

spinodal point of symmetric diblock copolymer melts where the homogeneous

phase becomes unstable.
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