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Abstract 
 
Considerable work has been devoted in the last decades to the identification and 
quantification of key aroma-active compounds in coffee as well as their precursors. 
The aim of this work was to demonstrate the applicability of a data-driven holistic 
method rather than a targeted chemical study. As an illustrative example, coffees at 
different roast degrees were analysed with a range of instrumental techniques (LC-
MS, GC-MS, PTR-MS) and evaluated by a sensory panel. This allowed identifying 
correlations between chemical markers and sensory qualities and developing a 
deeper understanding on reaction mechanisms involved in coffee aroma formation. 
 
Introduction 
 
Already in the early 1970s, chemometrics led to the development of statistical 
methods to treat multivariate data sets obtained by chemical analysis (1,2), in parallel 
to the design of optimized measurement strategies. Most of the theories developed at 
that time are still used when dealing with multiple and multivariate datasets, even 
though today’s computers allow the treatment of much larger volumes of data. The 
application of “omics” approaches to monitor metabolites in the human body related 
to various diseases accelerated the development of statistical and instrumental 
techniques. Minimalistic approaches, such as principal component analysis (PCA) 
and partial last squares (PLS) and their extensions to orthogonal-PLS (OPLS), 
hierarchical PCA, PLS and OPLS, with the aim to reduce a multidimensional space to 
a lower dimensional planes, are regularly used to investigate complex problems. A 
main advantage of “data driven” methods is that they are not based on fundamental 
chemical theories and can therefore be applied to reproducible unbiased data. 

The application of chemometrics to coffee is interesting because of its 
complexity, e.g. the formation of coffee flavour during roasting, but also due to the 
success of chemometrics in linking quality differences to aroma compounds and 
precursors. The range of datasets that can be included in such studies is large and 
may encompass genetic fingerprints, agricultural information, meteorological data 
during bean maturation, chemical fingerprints and sensory profiles. Some of these 
data can directly be compared between samples (e.g. the number of days of 
sunshine or the growing region) while others need to be pre-processed. In particular, 
GC and LC data need to be pre-processed in such a way that peaks are recognized 
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and aligned to compensate for shifts in retention time. A fully targeted approach 
requires that all compounds be identified before applying multivariate analysis. An 
untargeted approach overcomes these limitations but requires a more sophisticated 
pre-processing of the data including baseline correction, peak picking, alignment and 
centrotyping of raw data sets. As a consequence, time consuming identification can 
be focused on characteristic markers selected by multivariate statistics. 
 
Experimental 
 
To relate differences in chemical composition to cup quality, 65 coffee varieties 
grown in well defined conditions were evaluated by ten trained coffee panellists. 
Chemical data of volatile compounds was obtained by GC-TOF-MS/PTR-MS (Tenax 
desorption) and online PTR-MS measurements of roast and ground (R&G) coffee, 
prepared with an espresso machine. Volatiles released from coffee extracts within a 
sampling cell were analysed by online PTR-MS and trapped during two minutes on a 
Tenax trap for desorption on column using an automatic thermal desorption unit (4). 
Online PTR-MS data were interpreted by combining the GC-PTR-MS datasets with 
GC-MS (3). Thus, the various molecular contributions to single PTR-MS ion signals 
can be quantified and traced over time. Non-volatile compounds of extracts of green, 
slightly roasted and dark roasted coffees were analysed with LC-MS and GC-TOF-
MS (after MSTFA derivatization) (6). For LC-MS measurements, 20 mg of powder 
from beans were weighed in 10 ml glass tubes and dissolved in 3 ml pure water and 
75% methanol (containing 0.1% formic acid), respectively, by vortexing and 
sonication for 15 min. After centrifugation, the extracts were filtered through 0.2 µm 
PTFE filters, and directly used for LC-PDA-QTOF-MS analyses in ESI positive mode 
(6). For GC-TOF-MS measurements, 20 mg were weighed and extracted with pure 
water (80°C) in addition of an internal standard (Ribitol; Sigma, cat. no. 488-81-3). 
After stirring (10 min at 70°C in a thermomixer at 950 r.p.m.) the sample was 
centrifuged (10 min at 11000 g) and 750 μL chloroform (-20°C) added to the 
supernatant. The upper clear water phase (15 μL) was taken, dried in a vacuum 
concentrator and used for on-line MSTFA derivatization and GC-TOF MS analysis. 

LC-MS and GC-TOF-MS raw data were processed by using the Metalign 
software (www.metalign.nl). The software includes base line correction, peak picking 
respecting a limitation in signal to noise ratio and alignment of the detected peaks 
through all samples by an algorithm which compensates for slight shifts in retention 
time. Due to the ionization induced fragmentation by electron impact in GC-MS, 
single compounds are represented by an average of 10 mass signals. To reduce the 
data volume and eliminate redundant information a “centrotyping” program, similar to 
that reported in Ref. (5), was applied. This program correlates the intensity profiles of 
individual mass signals across all samples within a predefined retention time window 
which can be adjusted according to the shifts in retention time caused by the 
limitation of instrumental accuracy. Mass signals that correlate are clustered and 
expressed as single centrotype since they are expected to belong to one and the 
same compound (Figure 1). This reduces the data volume without loss of 
information, since the fragmentation pattern of each centrotype is stored. Hence, this 
information can be used for identification via comparison with databases.  

Cluster analysis and correlation maps were obtained to visualize correlations 
between sensory data, volatile compounds and non volatile compounds. Correlation 
maps help identifying groups of related centrotypes and show their interrelation. 
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146 3235 10692450 33 437 473 513 434 506 529 .... 301 330
2565 3235 10692450 56 58409 60879 58508 56705 57229 61151 .... 36131 38724
2930 3235 10692450 58 3893 3911 3947 3826 3863 3920 .... 2591 2630
2763 3236 10695730 57 71059 73647 70257 68394 70142 72966 .... 45007 48893
3010 3237 10699000 59 2570 2542 2640 2450 2431 2688 .... 1665 1785
3617 3237 10699000 65 317 335 327 324 325 342 .... 240 224
193 3239 10705570 37 1050 1075 1088 1119 1097 1161 .... 710 766
1785 3239 10705570 52 663 760 709 753 672 794 .... 465 474
6357 3239 10705570 83 125 125 125 127 302 285 .... 125 229
10 3240 10708850 29 1739 1932 1683 1220 1892 1795 .... 977 1728
26 3240 10708850 30 1290 1254 1203 1330 1305 1305 .... 776 862
609 3240 10708850 41 89904 92971 90090 90183 89198 93367 .... 59830 64841
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512 3242 10715400 40 5012 5230 5148 5067 5272 5345 .... 3524 3567
769 3242 10715400 42 85578 87409 85238 84508 84316 88879 .... 56159 60851
942 3242 10715400 43 70150 72318 70397 69630 69102 72398 .... 45856 50339
1087 3242 10715400 44 5880 6295 5953 5970 5898 6125 .... 3842 4266
1164 3242 10715400 45 19320 19555 19357 19277 18922 19909 .... 12883 13801
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Figure 1. Example of eluted peaks selected within a defined retention time window. 

Three mass peaks correlate strongly through all samples and therefore 
most probably belong to the same compound. A fourth mass peak intensity 
shows a different pattern and therefore belongs to another compound. 

 
Results and Discussion 
 
A large set of markers were aligned through all samples applying the Metalign 
program to GC and LC data. Further reduction of the data using a centrotype 
program helped remove redundant information, improving the readability and 
accuracy of correlation maps and multivariate analysis. This approach allowed 
comparing the differences in concentration of more than 200 volatile and 500 non-
volatile compounds. The fragmentation patterns of individual compounds allowed 
identifying more than 150 volatile compounds. The identification of non-volatile 
compounds was focused on key correlations, where cluster analysis and correlation 
maps showed to be useful when investigating correlations between volatile 
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compounds their precursors and sensory profiles. The obtained datasets allowed 
developing a sensory predictive model which goes beyond the one already published 
(4), mainly by increasing the number of compounds included in the model (data not 
shown). 

While the approach works for most of the compounds, volatile pyrazines were 
challenging to be differentiated by the automatic pre-processing and needed frequent 
manual intervention to avoid misalignment. However, the network of pyrazines was 
highly correlated (Figure 2) when analyzing the corresponding GC-TOF-MS 
correlation map. 

 
 

 
Figure 2. Correlation map: This network shows a series of pyrazines that are highly 

correlated (blue lines indicate a correlation higher 0.9). 
 

By investigating changes in the chemical composition of volatiles and non-
volatiles and testing their impact on predicted or evaluated sensory profiles, a robust 
method was developed to identify coffee varieties with the highest potential of in-cup 
quality.  
 
References 
 
1. Sharaf M.A., Illman D.L., Kowalski B.R. (1986) Chemometrics, Chemical Analysis 

Series Vol. 82: Wiley, New York. 
2.  Otto M. (2007) Chemometrics, Statistics and Computer Application in Analytical 

Chemistry: Wiley, Weinheim. 
3.  Lindinger C., Pollien P., Ali S., Yeretzian C., Blank I., Mark T. (2005) Anal. Chem. 

77: 4117-4124. 
4.  Lindinger C., Labbe D., Pollien P., Rytz A., Juillerat M.A., Yeretzian C., Blank I. 

(2008) Anal. Chem. 80: 1574-1581. 
5.  Tikunov Y., Lommen A., de Vos R.C.H., Verhoeven H.A., Bino R.J., Hall R.D., 

Bovy A.G. (2005) Plant Physiology 139: 1125-1137. 
6.  de Vos R.C.H., Moco S., Lommen A., Keurentjes J.J.B., Bino R.J., Hall, R.D. 

(2007) Nature Protocols 2(4), 791. 




