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Regarding clay rock at the mesoscale (that is, millimeter to centimeter), the structure of the porous clay 
matrix treated as continuum controls transport properties. Upscaling these mesoscale properties to the 
macroscale requires that representative elementary volumes (REVs) exists. The objective of this paper 
is to quantify the mesoscale REVs of the continuous clay matrix. Here, the REV is defined as the 
minimum volume for which the variance of the determined clay matrix content for one measured 
sample is sufficiently small. The calculations reveal a strong dependence of the size of REV on the clay 
matrix content. Assuming a relative error of 10% on the true bulk clay matrix content, the size of the 
REV increases from 200 microns to about 15 centimeter when the clay matrix content decreases from 
0.7 to 0.13. The dependency of the size of REV on the clay matrix content is related to the grain size 
distribution of sand grains (e.g. carbonates and quartz). Sand grains in clay rocks with high sand 
contents have a wider grain size spectrum, which leads to a higher geometric complexity. This 
increases the size of the REV.  
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INTRODUCTION 
 
The evaluation procedure whether clay rocks can be 
used as host rocks for repositories of nuclear waste or as 
reservoir rocks commonly involves transport modeling to 
predict the sealing behavior/reservoir quality of porous 
sedimentary rocks up to the repository/reservoir scale. 
Clay rock formations such as Opalinus Clay are typically 
heterogeneous from the microscopic through the 
mesoscopic to the macroscopic scale.  

At the micrometer scale (that is, nanometer to 
micrometer) local variations of grain shape and size leads 
to an irregular pore space geometry, where pores are 
formed due to geometric incompatibilities along grain 
boundaries of  clay  platelets  (Keller et al., 2013).  These 

pores are commonly referred to as intergranular pores, 
which fundamentally control the flow properties of clay 
rocks. Moving up to the mesoscale (that is, millimeter to 
centimeter), layers composed of clay-rich domains may 
alternate with layers rich in non-clayey materials such as 
carbonates and quartz. Different content of non-clayey 
material likely affects the ability to store and transmit 
fluids and layers therefore contrast in transport properties 
(Revil and Cathles, 1999).  

This is supported by the fact that nanoporosity in non-
clayey components (carbonates) is low and the pore 
space consists of isolated pore objects, which are not 
connected (Keller et al., 2013). In a hierarchical upscaling 
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concept, microscopic properties related to different 
constituents (e.g. porous clay matrix) can be used to 
determine mesoscopic transport properties, which 
themselves can then be upscaled to the macroscale of 
geological models. Upscaling of transport properties 
using simulation tools is subject to the condition that 
inhomogenous rock constituents can be replaced with an 
equivalent homogenous material using a continuum 
description. The prerequisite for the use of a continuum 
description of rock constituents is the existence of the so-
called representative elementary volumes (REVs). The 
REVs may be regarded as the smallest volumes that 
must be measured to determine a certain material 
property with an acceptable accuracy so that the 
determined value is representative for the whole (Kanit et 
al., 2003).  

This definition is based on the idea that material 
properties are constant over certain length scales. If 
REVs of a property (e.g. porosity) exist they limit the 
length range, in which the continuum description of 
certain rock constituent is valid. Regarding clay rocks at 
the micrometer scale, the REV of porosity in the clay rich 
matrix is on the order of 100s of micrometers, which is 
about one order of magnitude larger than the typical 
length of the pore paths but is several orders of 
magnitude larger than the pore radii (Keller et al., 2011; 
Keller et al., 2013).  

Similar REVs of porosity were determined for different 
samples, which imply that REV of porosity really exists 
and that the porous clay matrix can be treated as a 
continuum on the mesoscale. Hence, a clay rock at the 
mesoscale consists essentially of a permeable porous 
clayey matrix with interdispersed and non-permeable 
non-clayey grains. In such a case, transport properties of 
clay rocks depend on the volume fraction and 
geometrical properties of the clay matrix (Revil and 
Cathles, 1999). At the mesoscale the clay matrix content 
varies locally, which may best be illustrated by the 
presence of a sediment layering. In such cases, 
individual layers can be described as a continuum 
provided the minimum size of the local mesoscale REV is 
smaller than the thickness of the layers.  

Regarding the overall layering, a REV likely exists if the 
layering follows a regular pattern.  In case of a gradient in 
clay matrix content a REV may not exist at all. In this 
report we determine the size of the mesoscale REV 
related to the clay matrix treated as a continuum. The 
calculations are based on mesostructures, which were 
reconstructed on the base of synchrotron X-ray computed 
tomography (XCT). Then, the clay matrix content was 
measured in sub-samples of different sizes and for a 
number of realizations. These data sets are then used to 
determine the minimum size of material volume that must 
be analyzed to determine averaged bulk clay matrix 
content for a given error (Kanit et al., 2003). The 
calculations were done on the base of mesostructures, 
which are related to different clay matrix contents and 

that way unrevealed the relationship between the size of 
the REV and the clay matrix content.   
 
 
METHODS 
 
Samples 
 
The determination of the REV is based on microstructural 
reconstructions, which were presented by Keller et al. (in pres.) and 
are displayed in Figure 1. Two out of the three samples are from 
the Schlattingen borehole SLA-1. The location of the borehole is in 
the Swiss Molasse basin near the town of Schaffhausen. The 
sedimentary sequence at SLA-1 includes marine limestones, marls 
and shales, which are unconformably covered by tertiary rock of the 
Alpine Molasse. Miocene thrusting related to the formation of the 
Jura Mountain did not affect rocks at SLA-1. Sample BD-7 is 
calcareous marl taken at a depth of 781 m. Sample Opa-3 was 
taken from Opalinus Clay unit and is an argillaceous marlstone 
taken at depth of 837 m. In order to cover a wider range of clay 
contents and related microstructures a third sample BWS was taken 
at Mont Terri rock laboratory in northwestern Switzerland (Bossart 
and Thury, 2008). This sample contains the highest content of non-
clayey grains and was taken from sandy facies of Opalinus Clay. 
Clay matrix contents of the samples are documented in Table 1. 
 
 
Input data  
 
The segmented images from XCT were transformed into binary 
images, in which the clay matrix was set to white and the remaining 
area to black. Segmentation quality of our image processing 
workflow is discussed in Keller et al. (in press.). The resulting 
images are two-dimensional arrays of one’s (white) and zeros 
(black). The images were then read into three-dimensional arrays of 
0’s and 1’s, in which the 1’s indicate the clay matrix. For the 
statistical analysis the analyzed volume was subdivided into a 
regular cubic grid/lattice, in which each cell has an edge length L 
that corresponds to a certain number of voxels. Then, the clay 
matrix content was measured for each cell.  

This procedure was applied to grids with different grid constants 
(cells with different edge length L). This yielded different sets of 
measured clay matrix contents corresponding to different sample 
sizes L, which were then used as input for the calculation of the 
local clay matrix phase distribution and the calculation of the REV. 
Note, the edge length of the analyzed volumes are not integer 
multiples of the chosen grid constants, which led to residual 
volumes. These residual volumes were too small to be subdivided 
into measuring cells and were thus not considered in the 
calculations. In addition, the residual volumes were not the same 
for each grid constant, which led to differences in the total analyzed 
volumes related to each cell edge length L.  
 
 
Local clay matrix phase distribution 
  
To characterize the heterogeneity of the material we followed the 
approach outlined in Hilfer 1991; Biswal et al. 1998; Hu and 
Stroeven 2005; Hilfer and Helmig 2004; Cosenza et al. 2015. 
Based on different sets of measured clay matrix contents the local 
clay matrix content distribution can be calculated using the relation  
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Figure 1.  Reconstructed microstructures of major components (rows) of the analyzed 
samples (columns). XCT refers to the analyzed volume (see also Table 1). 

 
 
 
and δ(t) denotes the delta function (Keller et al., 2013). The function 
μ(,L) is a measure for the probability to find the local clay matrix 
content  in a cell with side length L. Here, the local clay matrix 
content distribution was evaluated for 8 different cell sizes, which 
represent sub-samplings from the same set of tomographic data. 
 
 
Representative elementary volume of clay matrix phase  
 
On the millimeter scale a clay rock can be considered as a two-
constituent mixture consisting of a permeable clay matrix and non-
permeable non-clayey grains. In such a case, transport properties 
depend on the amount of non-clayey grains, which are dispersed in 
the clay matrix (Revil and Cathles, 1999; Keller et al., in press).  

In terms of continuum transport modeling, the REV corresponds 
to a sub-volume that is sufficient in size to capture enough of the 
geometric complexity necessary for obtaining appropriate 
homogenized clay-matrix/non-clayey-grains properties. The REV 
can be imagined as a cube in 3D space whose properties 
correspond to the ones of the bulk rock (Bear, 1993). Therefore, the 
REV represents the bulk rock mass in transport models on a large 
scale. Note, that the REV must not necessarily be the same for all 
parameters.  

Local clay matrix distributions showed that the clay matrix 
possesses a certain spatial homogeneity on the 100s of micrometer 
scale (Keller et al., 2013). However, at this length scale the mean 
clay matrix content is still related to an error, which decreases 
asymptotically with increasing L as shown in Figure 2. In addition, 
the mean clay matrix content does not vary much in dependence of 
L as shown in Figure 2.  

In sample BWS, a minor decrease of mean clay matrix content 
for larger L (Figure 2a) is likely related to different sizes of the total 
analyzed volumes related to each size of measuring cell (see 
paragraph methods). These results indicate that the true mean 
value of clay matrix content can be predicted from a sample size 
that is smaller than the REV and that only a sample of infinite size 
will produce an error-free measurement.  

In this way of thinking, a realistic size of REV (that is, not too 
large), which can also be used for macroscopic modeling, should 
be calculated for an acceptable error. In what follows and in order 
to calculate the size of the REV for a given error we used the 
method, which is outlined by Kanit et al. (2003) and references 
therein. Based on classical sample theory, the relative error on the 
exact mean value of clay matrix content M (or volume fraction in 
general), obtained from N independent realizations of volume V, is 
given by: 
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Figure 2. (a, b, c) Mean value of clay content and intervals of confidence versus size of measuring cells L. (d, 
e, f) variances of porosity versus volume of measuring cells. 

 
 
 

 r 
2D (V )

M N
                                             (1) 

 
where D(V) is the standard deviation (the square root of variance). 
Following Kanit et al. (2003) the variance of clay matrix content may 
be given as:  
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where A3 is referred to as the integral range which gives information 
of the domain size of the clay matrix structure for which the clay 
matrix content in the measured volume V  has good statistical 
representatives.  If we plot the variance of clay matrix content vs. L 
in a log-log plot, the points are arranged on a straight line with a 
slope  -1. According to Lantuejoul (1991), this points to an infinite 
integral range and because coefficient controls the slope of the 
line we have  1. In such a case, a power law in the form of 
Equation (2) with 1 is proposed (Lantuejoul, 1991; Kanit et al., 
2003). In the case of a finite integral range the slope is -1 with  = 
1. Using Equation (1) in Equation (2) gives an expression for the 

smallest volume with a given relative error , N realization and the 
true mean value M: 
 

V (N,r ) 
4(1M )


r

2NM











1/

A3

                             (3) 
 
The integral range A3 for clay matrix was approximated by 
computing the variance D2(V) for the recorded clay  matrix  contents 

of the respective measuring cells of size V. Then, the integral range 
A3 was obtained by fitting Equation (2) to our data as shown in 
Figure 2. Here one has the problem that the true mean value M of 
clay matrix content cannot be predicted from tomographic methods 
because they have been applied to volumes, of which sizes are far 
from infinite. The latter statement assumes that the true clay matrix 
content can be obtained from a clay rock body of infinite size, only. 
Here, we assumed that bulk volume fractions of clay matrix content 
that were determined are valid estimates of the true volume 
fractions. This is supported by the fact that calculated mean values 
do not vary much in dependence of L as depicted in Figure 2. The 
values of A3, and volume fractions for each sample are given in 
Table 1. Then, the size of the respective REV for each bulk clay 
matrix content can be calculated for a given precision of the mean 
value that results from different realizations N (that is, independent 
measure cells with the size of the REV).  
 
 
RESULTS 
 
Homogeneity of the clay matrix phase 
 
In Figure 3 it can be seen that with increasing L the local 
clay content distributionsof the samples change from a 
wide distribution to a distribution with a peak at the 
position of the bulk clay matrix content. With increasing 
clay content , the peak is increasingly more pronounced 
and spatial fluctuations in clay content decrease. 
Regarding sample Opa-3 the formation of single peak 
distribution starts at smaller samples sizes of L when 
compared to the other two samples.  Furthermore, the 
peak width of sample Opa-3 is smaller when compared to 
samples BD-7 and BWS.  The  distributions  of  the  latter  
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Table 1. Values of volume fractions of pores and clay content, integral range A3 and coefficient  for different data sets 
obtained from different tomographic methods. 
 

Sample Volume (mm) Clay matrix content  Integral range A3 [m3] Coefficient  Figure 

BWS 0.5×0.22×0.4 0.13 12.82 0.23 1 
BD 1.0×0.8×0.3 0.55 10.50 0.27 1 
Opa 3 0.8×0.8×0.3 0.70 4.37 0.36 1 

 
 
 

 
 
Figure 3. (a, b, c) Local clay matrix distributions calculated for different length L of measuring cell and on the base of XCT 
data 

 
 
 
two samples indicate that spatial clay content fluctuations 
are still present on the hundreds of microns scale in 
samples with lower clay contents than 60 vol. %. In 
combination, these facts indicate that the clay matrix of 
sample Opa-3 is more homogenous than the one of 
samples BD-7 and BWS.  

Apparently, homogeneity of the clay matrix in shales 
depends on clay content. Local clay content distributions 
 can be regarded as a probability measure to find a local 
clay content within a cell or sample of certain size L. 
Regarding the clay content >~ 60 vol. % (that is, sample 
Opa-3) the development of a single peak occurs for cells 
with edge lengths L >~ 100 m. Interestingly, Cosenza et 
al. (2015) have shown similar order of magnitude with a 
Callovo-Oxfordian clay rock, Figure 3, in Cosenza et al. 
2015. This means that at few hundred-micron scale 
length, there is a high probability to find a local clay 
content that equals the bulk clay content, which in turn 
can only be true if the clay matrix, at this length scale, 
possesses a certain degree of homogeneity. 
 
 
REV of clay matrix phase 
 
Using expression (3), the REV of the clay matrix content 
can be calculated if parameter N is set to one (Kanit et 
al., 2003). Figure 4a shows calculated LREV as a function 
of relative precisions r. For a given relative error the size 
of the REV increases with decreasing clay matrix content. 

For example, accepting a relative error of 0.1, the size of 
the REV increases from 200 microns to about 15 cm 
when the clay matrix content decreases from 0.7 to 0.13. 
More practical would be a plot, which shows the size of 
REV as a function of the clay matrix content. Such a plot 
was constructed on the base of the data related to Figure 
4a. Figure 4b allows an assessment of the REV for a 
given clay matrix content and relative error.  
 
 
DISCUSSION 
 
It was demonstrated that the size of the REV related to 
the microstructure of the continuum clay matrix depends 
on the volume fractions of the respective constituents. It 
was found that a decrease in clay matrix content is 
associated with a substantial increase of the size of the 
REV.  

In part, this behavior is inherited in the definitions that 
were used to calculate the size of the REV, of which 
dependency on the volume fraction is such that the size 
of the REV increases with decreasing volume fraction . 
However, the size of the REV depends also on the 
integral range, of which value decreases towards higher 
clay matrix contents (Table 1). Furthermore, for larger 
sample sizes, the local variance of the clay matrix content 
is smaller in case of higher clay matrix contents. The 
systematic size variation of the integral range and local 
variance  of   the  clay  matrix  content  indicates  that  the  
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Figure 4. (a) REV of clay matrix vs. relative error related to different clay matrix content. (b) REV of clay matrix 

vs. clay matrix content for a given relative error . 
 
 
 
morphological complexity increases with decreasing clay 
matrix content. This is supported by local clay matrix 
distributions, which indicate that the homogeneity of the 
clay matrix decreases with decreasing volume fraction.  

Regarding the used approach, the coefficient  is 
considered as a measure for homogeneity and only a 
sample with  = 1 can be considered to be representative 
at the mesoscale (Lantuejoul, 1991). In the present case 
 is clearly below 1, which indicates that none of the 
samples is representative in terms that the mean clay 
matrix content can be determined with high precision. 
However, the used approach also provides an idea of the 
error that can be expected if the mean clay matrix content 
is determined on the base of the presented samples. The 
samples have edge lengths of a few hundred microns, 
which in combination with Figure 4, implies that only 
sample Opa-3 provides information on the mean clay 
matrix content with an acceptable precision (relative error 
~ 10%).  

This finding is well in line with results related to local 
clay matrix distributions (Figure 3), showing that only 
sample Opa-3 develops a single peak distribution, 
whereas distributions of sample BD-7 and BWS are still 
associated with spatial fluctuations in clay matrix content 
at the hundred micron scale (curves develop several 
peaks). In addition, the coefficient  increases with 
increasing clay matrix content, which again indicates that 
the homogeneity increases with increasing clay matrix 
content.             

The increasing morphological complexity towards lower 
clay matrix contents can be explained by realizing that 
the geometry of the clay matrix is in fact defined by the 
microstructure of non-clayey grains. The samples show a 
systematic relationship between clay content and grain 
size distributionof  non-clayey  mineral  grains  (Figures 1 

and 5), which in case of carbonates is well pronounced 
and reveals that an increase in clay content is related to a 
decrease in grain-size spectrum of non-clayey grains.  

In case of quartz, this trend is less pronounced but the 
low-clay content sample BWS shows a substantial higher 
grain size spectrum when compared to the other two 
samples. Hence, the investigated samples imply that clay 
rocks with low clay matrix contents contain more, larger 
and a larger size spectrum of non-clayey grains when 
compared to samples with higher clay matrix content. 
Hence, a higher geometric complexity of the non-clayey 
grains/clay matrix microstructure can be expected for clay 
rocks with low clay matrix contents, which then increases 
the size of the REV. However, it remains unclear if the 
observed correlation between the grain size spectrum of 
non-clay grains and the clay content is a generic trend, or 
merely a correlation related to the 3 investigated 
samples.    

Continuum models are used to predict the behavior of 
radioactive waste deposits at various scales. Such 
methods assume that the host rock exists as a 
continuum, which in the case of clay matrix content 
means that it is homogenously distributed over a certain 
length scale. More specifically, the continuum assumption 
depends on the idea of a REV. The size of the REV is 
related to specific material properties and here we 
discussed the size of the REV related to the porous clay 
matrix treated as a continuum.  

In a continuum description, the clay matrix is attributed 
with the porosity associated with the REV related to the 
micrometer scale. Thus, the presented size of REVs is 
expected to not differ much from the ones related to 
mesoscale flow properties such as permeability, which 
depend on the porosity. Furthermore, solute transport in 
clay rocks occurs by diffusion within the  clay  matrix  and  
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Figure 5. Grain size distribution of (a) carbonates and (b) tectosilicate grains. 

 
 
 
thus, depends on volume fraction and geometric 
properties of the clay matrix phase (e.g. constrictivity, 
geometric tortuosity). Hence, it is expected that the REV 
of clay matrix will be on the same order of magnitude as 
the one related to the REV of diffusion. It should be noted 
that the results presented here are restricted to cases 
where the microstructure is homogenous over a certain 
length scale.  In case of a continuous lateral change in 
clay matrix content, the determined REV (based on 
Figure 4) is only of local relevance.  
 
 
Conclusion 
 
The representative elementary volume of the clay matrix 
treated as a continuum and its dependence on clay 
content was addressed. It was demonstrated that 
homogeneity and the size of the REV of the clay matrix 
depend on clay content. This result is better understood 
from the perspective of non-clayey grains. An increase in 
the amount of non-clayey grains is associated with an 
increase in the grain size spectrum, which in combination 
results in an increase of geometric complexity and an 
increase of the sample size that must be analyzed to 
capture the geometric complexity of the sample. 
Assuming a relative error on the mean clay matrix 
content of 10% and for a clay matrix content of 0.13, the 
REV is on the order of 15 cm. The REV decreases 
substantially with increasing clay matrix content and 
reaches values of < 1 mm for clay contents of around 0.7. 
As a consequence, computational efforts attempting to 
calculate effective properties of transport properties, 
which depend on the clay matrix content, must be carried 
out on the base of system sizes, which consider the 
strong dependence of REV on clay matrix content.        
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