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Abstract

Background: Clusters of infectious diseases are frequently detected late. Real-time, detailed information about an
evolving cluster and possible associated conditions is essential for local policy makers, travelers planning to visit the
area, and the local population. This is currently illustrated in the Zika virus outbreak.

Methods: In the Netherlands, ICARES (Integrated Crisis Alert and Response System) has been developed and tested on
three syndromes as an automated, real-time tool for early detection of clusters of infectious diseases. From local general
practices, General Practice Out-of-Hours services and a hospital, the numbers of routinely used syndrome codes for three
piloted tracts i.e., respiratory tract infection, hepatitis and encephalitis/meningitis, are sent on a daily basis to a central unit
of infectious disease control. Historic data combined with information about patients’ syndromes, age cohort, gender and
postal code area have been used to detect clusters of cases.

Results: During the first 2 years, two out of eight alerts appeared to be a real cluster. The first was part of the
seasonal increase in Enterovirus encephalitis and the second was a remarkably long lasting influenza season with
high peak incidence.

Conclusions: This tool is believed to be the first flexible automated, real-time cluster detection system for infectious
diseases, based on physician information from both general practitioners and hospitals. ICARES is able to detect and
follow small regional clusters in real time and can handle any diseases entity that is regularly registered by first line
physicians. Its value will be improved when more health care institutions agree to link up with ICARES thus improving
further the signal-to-noise ratio.
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Background
Worldwide, the number of infectious disease outbreaks is
increasing [1]. Consequently, the early detection of and re-
sponse to clusters of infectious diseases is becoming more
important.
Past experience shows that many outbreaks of infec-

tious diseases are detected late. For example, in the
Netherlands in 1999, a point source outbreak of Legion-
naire’s disease was detected 14 days after the first patient
was admitted to hospital. At that time, another 70

patients had already been admitted to various hospitals
throughout the Netherlands [2, 3].
There are many similar examples where retrospective

analysis of data clearly indicates that clusters of infec-
tious diseases are not detected until relatively late. This
hampers the identification of the source of the outbreak,
the control of the associated transmission route(s) and
the identification of associated conditions.
For example, delayed detection of hemolytic uremic

syndrome (HUS) and bloody diarrhea of Shiga Toxin-
producing Escherichia coli outbreak in Germany in 2011
had significant and long-lasting impacts [4, 5]. The
speculation about the association between the Zika virus
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outbreak and microcephaly gave rise to conflicting ad-
vice to women of childbearing age [6, 7].
Such delayed detections and lack of detailed insight in

possible related conditions are costly in terms of the dis-
ease burden but also have impact on the social and eco-
nomic aspects of the communities affected [8].
Reasons for late detection can be attributed to the non-

specificity of the detection systems. For example, Google
Flu Trends was developed to find a potential flu cluster as
soon as possible. Critical analysis revealed that it has over-
estimated the number of flu cases and Google Flu Trends
has discontinued to publish current estimates [9, 10].
This large amount of data noise can be overcome by

medical doctors being the data source. Medical doctors
define a working diagnosis at first patient contact. Such
primary data yield more specific results in comparison
with lay persons based systems as Google Flu Trends.
On the other hand, using disease syndromes in outbreak

surveillance frequently lacks specificity and commonly re-
fers to a broader categorisation, e.g., respiratory tract infec-
tion or gastro-enteritis. Additionally, General Practitioners
(GPs) do not, for instance, regularly request microbiological
testing for these syndromes. This can easily result in a
missed opportunity to successfully identify a possible clus-
ter that could represent the first sign of a much larger
potential outbreak.
To overcome this information gap, the Dutch Public

Health Law (Wet Publieke Gezondheid), based on the
International Health Regulations (IHR) [11], obliges med-
ical doctors to report unusual clusters of infectious dis-
eases with possible serious public health consequences.
The criteria for reporting under this heading are not well
specified and in practice medical doctors hardly ever re-
port such clusters. Still, individual physicians will miss
clusters in overlapping physician catchment areas. This is
clearly exemplified by the aforementioned examples.
The gaps in surveillance intelligence described above

highlight the urgent need for a surveillance tool to cap-
ture and analyse regional clusters of infectious diseases.
This tool should ideally be automated, real-time and
based on diseases identified by medical doctors without
adding to the administrative burden of medical profes-
sionals [12, 13]. This will prompt public health profes-
sionals to investigate further when certain upper limits
of incidence for a given syndrome have been reached.
Detailed information about the extent of an outbreak
will help public health authorities to inform and advice
the involved population adequately. Our case study ad-
dresses this gap specifically.

Methods
From 1 October 2013 to 1 October 2015, a pilot
ICARES (Integrated Crisis Alert and Response System)
case study was conducted in the Leiden-The Hague

region in the western part of the Netherlands. This area
has approximately 1.25 million inhabitants, six hospitals,
eight GP Out-of-Office-Hours services and 380 individ-
ual GP practices.
This study was approved by the Medical Ethical Commit-

tee of the Leiden University Medical Center on 18 April
2012. The aim of the case study was to design, develop and
test an automated surveillance tool capable of providing
early signals of potential clusters that could escalate into
outbreaks. The complete spectrum of front-line health care
organisations contributed to this case study and included
General Practices, Out-of-Hours General Practitioner ser-
vices, and one hospital (emergency department, ward and
intensive care unit admissions and outpatient department
consultations). For the hospital, DBC/DOT (Diagnose
Behandel Code Op weg naar Transparantie) codes were
used to map to the corresponding syndrome. Hospital phy-
sicians routinely enter codes during the first evaluation of a
patient. These DBC/DOT codes are developed for hospitals
to reimburse the costs of patient care at health care insurers
and represent the patient’s diagnosis.
Diagnostic information from General Practitioner (GP)

patient records is obtained using the International Clas-
sification of Primary Care (ICPC) [14], according to the
guidelines of the Dutch College of General Practitioners
[15]. Nowadays, both in daily practice and during out-
of-office hours, GPs routinely enter these codes in the
electronic patient file at first patient presentation.
Any disease entity that is routinely coded and entered in

the patient record can be selected. In this case study, we
focused on respiratory tract infection, infectious hepatitis
and meningoencephalitis.
Trigger diagnostic codes (Table 1) are collected and sent

to ICARES every 24 h, yielding a near real-time snapshot of
what is happening in the community and its burden on
health care institutions. Together with these diagnostic
codes, the minimal data set (MDS) of patient sex, age
range, the four digits of the postal district (i.e., not the full
postal code), identification of the participating health care
facility and date of consultation are captured for transmis-
sion to ICARES. For reasons of data confidentiality, privacy
and security, no specific patient identifiable information is
collected from the GP systems. With hospital data, an
encrypted patient identification number is added, with only
the principal investigator at the hospital being able to de-
crypt these codes. This practice ensures that the minimal
data set does not contain patient identifiable information.
In order to obtain calculation baselines for the data

analysis, historic data from the various participating or-
ganisations were collected and analysed. This case study
benefited from 1 year’s data from GPs, including GP
Out-of-Office-Hours services, as well as 8 years of hos-
pital data. This yielded means and standard deviations
for various codes.
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A secure web-based decision support tool was devel-
oped for the purpose of this study by inFact Ltd. and
was named ICARES (Integrated Crisis Alert and Re-
sponse System). The software tool receives the MDS
from the various participating organisations every night.

Special web services have been written to interface, in a
non-intrusive way, with the disparate electronic patient
records. ICARES then maps all the diagnostic codes re-
ceived onto the corresponding three sets of syndromes
mentioned, and presents the analysed data in an easy to
understand dashboard with a risk dial for each disease to
the local unit of infectious disease control.
ICARES aggregates the actual data harvested and

compares these values with those for the nearest
current time window historically. Calculations in
ICARES are currently performed using this Cumula-
tive sum (CUSUM) method for a moving seven-day
period [16]. To calculate the equivalent historic
period, the previous seven-day period is taken into
consideration, adjusted for holidays.
The above information is synthesised in a risk dial with

traffic light colors immediately recognisable as green to
signify a normal setting, orange when a warning threshold
has been reached corresponding to an incident ratio be-
tween 0.75 and 1.40 and red for an incident ratio of more
than 1.40. The rates can only be calculated for the GP
population since it is only in the GP practices that the
number of patients, the denominator, is known. For hos-
pital and Out-of-Hours General Practitioner services,
colors are determined by rates of the 7-day numbers ob-
served divided by the historic 7-day numbers. Thresholds
are the same as those for incident ratio.
These colors on the dashboard provide a crude indica-

tion of current numbers versus historic numbers. If
colors turn red, more profound investigation is war-
ranted to define whether further action is needed. These
action limits are visualized in the graphs and defined by
three standard deviations above average.
Should the ICARES action limit be exceeded, i.e., indicat-

ing that a possible cluster is detected for that given institu-
tion, the local unit of infectious disease control will use this
as a trigger for further investigation. After assessment of
geographic information and raw data, they will consult the
treating physicians to find out more about the specific diag-
nosis and patient characteristics of the possible cluster. Up-
to-date information continues to be available on the dash-
board in order to follow the cluster as it evolves over time.
If a specific, microbiologically confirmed diagnosis is not
available at the time when the trigger appears, diagnostic
protocols for possible outbreaks have been put in place to
deal with this. Parts of these protocols are adapted from
current national guidelines [17].
The dashboard is an easy to use quick scan for pos-

sible clusters. If colors and numbers are within normal
range, no further action is necessary and the dashboard
can be reopened the next day. This visual quick scan of
the dashboard is done daily by the local unit for infec-
tious disease control in the Leiden-the Hague area and
by the research team and takes less than one minute.

Table 1 Trigger diagnostic codes

DBC/DOT code (Hospital)ª Representing syndrome/diagnosis

Respiratory tract infection

INT401 Pneumonia

INT402 Interstitial pneumonia

INT409 Other respiratory tract infections

LON1401 Pneumonia

LON1405 Acute (trachea)bronchitis

KIN3104 Upper respiratory tract infection

KIN3202b Asthma/bronchial hyperreactivity

KIN3207 Laryngotracheobronchitis

KIN3208 Lower respiratory tract infection

KIN3210 RSV bronchiolitis

Infectious hepatitis

INT463 Viral hepatitis (not B or C)

INT944 Hepatitis B or C

MDL701 Hepatitis

MDL705 Hepatitis B or C with antiviral therapy

MDL718 Acute liver failure

KIN3312 Hepatitis

Meningitis/encephalitis

INT441 Meningitis/encephalitis/brain abscess

NEU0101 Bacterial Meningitis

NEU0102 Non-bacterial meningitis

NEU0111 Encephalitis

KIN3511 Meningitis/encephalitis

ICPC (General Practice) Representing syndrome/diagnosis

Respiratory tract infection

R74 Acute upper respiratory tract infection

R77 Acute laryngitis/tracheitis

R78 Acute bronchitis/bronchiolitis

R80 Influenza

R81 Pneumonia

Infectious hepatitis

D13 Icterus

D72 Infectious hepatitis

Meningitis/encephalitis

N70 Poliomyelitis/(entero)viral infection CNS

N71 Meningitis/encephalitis
aDBC/DOT codes from internal medicine, pulmonology, pediatrics, neurology
and gastroenterology are used
bThis code is only used in children under the age of 5 since asthma/bronchial
hyperreactivity, at this age, is most often triggered by a respiratory tract infection
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All alerts will be evaluated whether it have been real
clusters or not. Reasons for false positive alerts will be
documented as well as the use of additional, public
health care initiated, diagnostic tests.

Results
ICARES, the automated, real-time tool for the detection
of clusters of infectious diseases has been tested on three
disease entities since October 2013: respiratory tract in-
fection, infectious hepatitis and meningoencephalitis.
After a run-in period of 3 months, the project started

with one teaching hospital participating (catchment area
approximately 200,000 inhabitants) and four GP practices
with 33,117 patients [18]. During the first 24 months, four
Out-of-Hours General Practitioner services (catchment
area approximately 500,000 inhabitants) and ten more GP
practices joined, contributing to a total number of 78,924
GP patients [19, 20].
GP coverage in the complete Leiden-The Hague study

area was 6%. Since most of the health care facilities were
located in the Leiden part of the study area, GP coverage
in the Leiden region was 11%. Coverage of Out-of-
Hours GP services in the Leiden region was 67%, hos-
pital coverage was 27%.
On a daily basis, the local unit of infectious disease

control and the research team checked the risk dials on
the ICARES dashboard.
In the first 2 years of ICARES, eight signals of possible

clusters were detected. Two of these alerts appeared to
be a real cluster. Characteristics are outlined in Table 2.
Alert 3 was detected from August 8 2014 onwards

(Fig. 1). Eight cases of meningoencephalitis were re-
ported within 1 week in the hospital (Figs. 1 and 2).
Prompt analysis ultimately revealed that three cases with
Enterovirus encephalitis belonged to the same cluster.
Two of these three were household contacts. The third
case was from a different four-digit postal district.
The other five notifications from the cluster of menin-

goencephalitis were double coded or had another cause

than Enterovirus. Daily evaluation of this cluster re-
vealed a sharp decline in incidence after 1 week.
The peak in meningoencephalitis cases occurred dur-

ing the Enterovirus season, which was also detected,
retrospectively, by the virologic surveillance program in
the Netherlands [21].
Alert 6 consisted of influenza cases in March-May

2015 (Fig. 3). It was part of the 2014–2015 influenza sea-
son which was remarkably long lasting and had a higher
peak incidence compared to previous influenza seasons.
Figure 4 represents hepatitis cases in the hospital.

Numbers during study period did not exceed the upper
alarm limit.
Two alerts were not analysed. From March 6 2014 on-

wards, a small peak of respiratory tract infections was
detected (Fig. 3). This alert coincided with a late, minor
peak in Influenza-like illness, detected by national sur-
veillance system. It was therefore not analyzed further.
On December 26 2013, the threshold for meningo-

encephalitis was exceeded (Fig. 2). Discussion by the re-
search team concluded that this could not be a real
cluster, partly because of the low absolute numbers.
Further evaluation was abandoned.

Discussion
We developed and tested ICARES as an automated,
real-time tool for the detection of clusters of infectious
diseases. In a small pilot region, ICARES detected differ-
ences in incidence in the three groups of diseases in real
time (24-h window) during the first 2 years of the pro-
ject. Alert 3 and alert 6 demonstrate the ability of
ICARES to detect and to monitor clusters of infectious
diseases in real time.
Important strengths of ICARES are the robust diagno-

sis data with the minimal data set, the real-time collec-
tion and easily interpretable presentation of disease data,
the historic comparison specific for each health care
provider, the absence of administrative burden for med-
ical professionals and the flexibility of the system.

Table 2 Alerts during the first 2 years of ICARES

Alert Syndrome (Health care institution) Additional public
health diagnostics

True cluster Comment

1 Respiratory tract infection (GP) No No Different causative agents and coding imperfections

2 Infectious hepatitis (GP) Yes No Non-infectious hepatitis

3 Meningoencephalitis (Hospital) No Yes Enterovirus encephalitis

4 Meningoencephalitis (Hospital) No No Two unrelated cases of Listeria in Katwijk

5 Infectious hepatitis (GP) No No Coding imperfections

6 Respiratory tract infection (Hospital and GP) No Yes Long lasting influenza season with high peak incidence

7 Meningoencephalitis (Hospital) No No Coding imperfections/double coding

8 Meningoencephalitis (GP) No No Non-acute illness
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Disease data should be very specific and we therefore
opted in our project for definition by a medical doctor. In
the Dutch health care system, doctors enter a diagnostic
code in their medical record routinely. This diagnostic
code most likely has a higher reliability than data used by
other detection tools as Google Flu Trends and Triple S,
using non-specific health indicators and proxy measures
to define a syndrome [22]. In our case study, the exceed-
ingly long lasting flu season of 2014/2015 was notified and
no significant alert was generated for the mild 2013/2014
flu season. On top of that, ICARES will represent the
health care consumption in possible outbreaks since all
patients in ICARES did visit a medical doctor.
Another strength of ICARES is the minimal data set. De-

tails relating to geographic mapping or age cohort are im-
portant for source detection in the early phases of a
possible outbreak. The minimal data set is non-patient spe-
cific and fully respects data privacy laws. But, if required, in-
dividual hospital-patient data can be traced by the treating
physician since an encrypted patient identification number

can be decrypted by the principal investigator in the hos-
pital. At GP level, the treating GP can share information by
finding the cases in a possible cluster via a query in their
own GP information system. Diagnostics to evaluate the
cluster (and the individual patient’s illness) can be advised
to treating physicians by public health care professionals.
This was done during the second alert.
Daily, new data from health care providers are com-

pared with their own historic numbers. Without signifi-
cant changes in coding custom or patient population,
this entails that the percentage of double coded patients
or travelers would be the same in both historic group
and current patients making false positive clusters for
these reasons less likely.
Data acquisition and presentation on a dashboard are

done daily. This contains the real-time character of
ICARES enabling public health authorities to analyse clus-
ters at an earlier stage. Other comparable systems, such as
the Electronic Surveillance System for the Early Notifica-
tion of Community-Based Epidemics (ESSENCE), show

Fig. 1 Dashboard on 13 August 2014 during meningoencephalitis outbreak. Dial numbers are incident ratios: the ratio between the observed
previous 7 days incident rate with the equivalent historic incident rate. Rates are calculated as the numbers of incidents per 100,000 as based
upon the GP practice’s population data. The dial color is set as green for an incident ratio of less than 0.75, orange for between 0.75 and 1.40 and
red for greater than 1.40. Dials are limited to GP practices as these are the only ones where population data is available. Colored numbers are
absolute incident counts for the last 7 days for a given institution. The institution that is displayed, is the one with the largest incident ratio. This
is the ratio between observed and historic using rate values if available, otherwise absolute counts. The color is determined in a similar manner
to the dial color. Trend arrows are determined from the ratio between the current week’s (previous 7 days) observed incident rate (or observed
absolute incident count if rate not available) and the same value as calculated for the previous week. The trend arrow reflects current week
versus previous week. A rising trend is shown for ratios greater than 1.1, stable for between 0.9 and 1.1, and falling for less than 0.9. NaN = Not a
Number. NaN is displayed when the equivalent historic 7 day period has zero cases. A ratio would result in a divide by zero error
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Fig. 2 Hospital cases of meningoencephalitis 1/10/2013–1/10/2015

Fig. 3 Hospital cases of respiratory tract infections 1/10/2013–1/10/2015
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the difficulty in detecting an outbreak soon enough to
start up control measures [23]. So far, the limited amount
of small clusters detected with ICARES is insufficient to
evaluate its real-time character and to determine its ability
to slow the spread of infection.
As shown in the third alert with a cluster of Enterovirus

encephalitis, updates on the evolution of the cluster are
made available on a daily basis enabling public health care
authorities to inform policy makers and public adequately.
On the other hand, when numbers of infectious dis-

eases are not above alarm threshold, a quick scan of the
dashboard is usually enough to reassure public health
care authorities.
The codes used for ICARES make it possible to capture

clusters of a wide range of diseases via the three selected
syndromes. Even new emerging infectious diseases pre-
senting as one of these syndromes can be detected via
ICARES. To implement ICARES fully, other syndromes
will be added in the future. Also, in case of newly arising
possible disease associations, any other disease entity
might be selected for this type of surveillance.
An important reason is that ICARES algorithm is not

based on a static threshold before triggering an alert. Sea-
sonal variations in the incidence of syndromes warrant
adjusting the baseline values of syndromes. The ICARES al-
gorithm with adjusting baseline values for seasonal varia-
tions in the incidence of syndromes, gives rise to a moving

threshold for cluster detection. The pragmatic and mature
SPC-based (Statistical Process Control) algorithm used in
ICARES can readily be used in most generalized case stud-
ies. Various challenges arising from shortcomings of other
methods have been explored by various authors [24–28].
CUSUM charts seem to adapt better to this type of analysis
as they help improve the consideration of seasonal patterns
as mentioned by Fricker et al. [29].
This case study has several limitations as well.
Signal-to-noise ratio was questionable during this case

study with two real clusters versus six false positive
alerts. Positive predictive value is therefore 0.25. Al-
though we are not aware of any missed clusters, we can-
not calculate sensitivity.
Imperfections in coding for a new patient with a non-

specific syndrome may constitute reasons for low signal-
to-noise ratio. This may result in false positive alerts.
This is illustrated by the alert 1, 5 and 7. Other reasons
for false positive alerts might be provoked by other fac-
tors contributing to a syndrome resembling an infectious
disease. A sudden increase in respiratory symptoms can
be attributed to a contagious viral infection but also, e.g.,
to a high pollen count.
The relatively small number of health care facilities

and, with that, the limited regional coverage during this
first 2 years of ICARES may give rise to false positive
and false negative alerts.

Fig. 4 Hospital cases of hepatitis 1/10/2013–1/10/2015
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The historic data from our GPs only cover a 1-year
period and are therefore not robust. Eight-year historic
hospital data might be too long as changes in care and
population might make the oldest data irrelevant for up-
coming cluster definition. Further work is therefore re-
quired to determine the appropriate length of history.
Currently, GP data is aggregated according to the under-

lying patient population data. This is not possible when
considering hospitals and Out-of-Hours GP services as the
exact catchment area is not known. As regional coverage
broadens, assessment of this catchment area will also im-
prove and incidence rates can be calculated for all health
care facilities based on the total population in the (public
health) district. As more health care facilities join the
ICARES project, improved mathematical modelling to de-
fine alarm thresholds will be necessary.
Alerts are visible for public health care authorities within

24 h after the treating physician routinely enters the trigger
code. General Practitioners enter the ICPC code during the
first consultation, DBC/DOT codes in hospital should be
entered at first patient presentation. However, DBC/DOT
codes can be changed when initial diagnosis changes and
whether medical doctors abide by instant coding, is un-
known. This could hamper real-time detection of clusters.
ICARES is a new and unique surveillance tool in the

Netherlands to detect clusters of diseases in real time.
Current local detection of small clusters depends on no-
tification by medical doctors or laboratories as is defined
in the Dutch Public Health Law (Wet Publieke Gezond-
heid), based on the International Health Regulations
(IHR) [11]. Nationwide, weekly updates of virological re-
sults are published [21] and weekly updates about pa-
tients visiting their GP with influenza-like illness are
reported [30]. Automated tools for real-time detection
of clusters are lacking. Systems for detection of acute
hepatitis or meningoencephalitis are lacking as well.
Therefore, ICARES can improve outbreak detection in

the Netherlands when used as a complement rather than
a substitute for human involvement in interpreting cluster
detection.
Diagnostic protocols in possible clusters have not been

tested sufficiently during this project. It would be inter-
esting to explore more disease syndromes, like food-
borne diseases. This might improve its use for public
health care authorities.
Further implementation of ICARES will enable cost

benefit analysis. At this stage, maintenance costs are less
than €10.000,- per year; daily efforts of local units of in-
fectious disease control are minimal in case no thresh-
olds are being exceeded. Besides time expenditure of
existing staff, the development and primary piloting
costs did not surpass €100,000.-.
Benefits will depend on the appearance of any clus-

ters of infectious disease and the contribution of

ICARES as a complement of surveillance tools in
order to curb the outbreak.
To cite an outbreak that would have benefitted from an

automated surveillance system, the current Zika epidemic
in South America is an example. We could survey the ill-
ness as well as complications like microcephaly and Guillain
Barre syndrome by adding diagnostic codes to ICARES.
As the project evolved, more institutions have expressed

their willingness to participate. At the time of writing of
this paper (22 November 2016) four hospitals, four Out-
of-Hours General Practitioner services and 25 GP prac-
tices (87,380 patients) submit their consultation data daily.
For GP patients, this leads to a coverage of approximately
12% in the Leiden region. There is still some way to go to
improve regional coverage and robustness of data.

Conclusions
ICARES was able to detect and to monitor local clusters
of infectious diseases automatically and in real-time.
Therefore it could be a complement to current surveil-
lance tools in the Netherlands and other countries with
highly digitalized health care administrations.
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