
Int. J. Biol. Sci. 2017, Vol. 13 
 

 
http://www.ijbs.com 

1138 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  BBiioollooggiiccaall  SScciieenncceess  
2017; 13(9): 1138-1151. doi: 10.7150/ijbs.19436 

Research Paper 

Effect of Population Size and Mutation Rate on the 
Evolution of RNA Sequences on an Adaptive Landscape 
Determined by RNA Folding  
Ali R. Vahdati1, 2, Kathleen Sprouffske1, 2 and Andreas Wagner1, 2, 3 

1. Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; 
2. The Swiss Institute of Bioinformatics, Lausanne, Switzerland; 
3. The Santa Fe Institute, Santa Fe, USA. 

 Corresponding author: andreas.wagner@ieu.uzh.ch 

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license 
(https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. 

Received: 2017.02.01; Accepted: 2017.07.05; Published: 2017.09.05 

Abstract 

The dynamics of populations evolving on an adaptive landscape depends on multiple factors, 
including the structure of the landscape, the rate of mutations, and effective population size. 
Existing theoretical work often makes ad hoc and simplifying assumptions about landscape 
structure, whereas experimental work can vary important parameters only to a limited extent. 
We here overcome some of these limitations by simulating the adaptive evolution of RNA 
molecules, whose fitness is determined by the thermodynamics of RNA secondary structure 
folding. We study the influence of mutation rates and population sizes on final mean population 
fitness, on the substitution rates of mutations, and on population diversity. We show that 
evolutionary dynamics cannot be understood as a function of mutation rate µ, population size N, 
or population mutation rate Nµ alone. For example, at a given mutation rate, clonal interference 
prevents the fixation of beneficial mutations as population size increases, but larger populations 
still arrive at a higher mean fitness. In addition, at the highest population mutation rates we study, 
mean final fitness increases with population size, because small populations are driven to low 
fitness by the relatively higher incidence of mutations they experience. Our observations show 
that mutation rate and population size can interact in complex ways to influence the adaptive 
dynamics of a population on a biophysically motivated fitness landscape. 
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Introduction 
Perhaps the most fundamental process in 

Darwinian evolution is a population's exploration of 
an adaptive landscape [1] by mutation and selection. 
As a population scales ever higher peaks in such a 
landscape, its mean fitness increases. (A fitness peak 
refers to one or more sequences with higher fitness 
than all their neighbors.) Many factors influence this 
process. Among them is the structure of the landscape 
itself, including its number of peaks, environmental 
changes that might influence this structure, the 
presence and incidence of recombination, the rate of 
DNA mutations, the kinds of genetic changes that 
such mutations cause, and population size [2–9]. To 

understand these factors and how they interact to 
affect adaptive evolution is not just of academic 
interest. It may also help predict the outcome of 
adaptive evolution, for example in pathogens and 
their arms races with human and non-human hosts 
[10–14]. 

Unfortunately, the factors influencing adaptive 
evolution interact in complex ways. Here we focus on 
two such factors, mutations and their rate, as well as 
the effective size of a population Ne [15, 16]. We study 
how these factors interact in the adaptive evolution of 
RNA molecules subject to mutation and selection on 
an unchanging fitness landscape. 
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Both separately and jointly, the two factors 
influence adaptive evolution in complex ways. 
Consider population size. On the one hand, adaptive 
evolution may be more rapid in large populations. 
First, larger populations produce more mutant 
individuals per generation, which helps explore more 
genotypes and find optimal genotypes faster than 
smaller populations. Second, natural selection is more 
effective in larger populations [17]. Specifically, as 
effective population size Ne increases, natural 
selection becomes more effective in fixing beneficial 
mutations and removing deleterious mutations. In 
other words, the substitution rate of beneficial 
mutations is an increasing function of Ne, and the 
substitution rate of deleterious mutations a decreasing 
function of Ne [18, 19]. Third, if mutation rates and 
population sizes are large enough, then some 
individuals in large populations will experience 
double mutations that can help them cross fitness 
valleys and explore genotypes that would otherwise 
be inaccessible [11], a phenomenon also known as 
stochastic tunneling [20–24]. 

On the other hand, there are also reasons why 
adaptive evolution may be more rapid in smaller 
populations. First, such populations experience little 
or no clonal interference, a phenomenon that can slow 
down the adaptation rate in large and polymorphic 
populations [11, 25]. In clonal interference, multiple 
beneficial mutations coexist in a population at the 
same time. In the absence of recombination, 
individuals harboring different beneficial mutations 
compete with each other, which can slow down the 
fixation of beneficial mutations and thus adaptive 
evolution. Second, small populations experience 
stronger genetic drift and the stochastic changes in 
allele frequencies that can help a population cross a 
fitness valley [7, 8]. A different perspective on the 
same phenomenon is provided by considering the 
adaptive peaks in a multi-peaked adaptive landscape. 
Because only differences in fitness effects that are 
greater than the reciprocal of the population size (1/ 
Ne) are visible to selection [17], some fitness peaks 
separated by a valley will merge as population size 
decreases, thus reducing the number of peaks in the 
landscape [8, 11, 13]. This will decrease the likelihood 
that a population becomes trapped on a local peak, 
and increase its chances to find the landscape’s global 
fitness peak. 

Further complications ensue if one considers the 
influence of mutations and the distribution of their 
fitness effects [26, 27]. These effects fall into three 
broad categories, deleterious, neutral, and beneficial. 
While the fate of neutral mutations is independent of 
population size [17, 19], this does no longer hold for 
beneficial or deleterious mutations. To be sure, 

strongly deleterious (lethal) mutations get eliminated 
rapidly, and strongly beneficial mutations sweep to 
fixation rapidly, but the fate of weakly deleterious and 
weakly beneficial mutations can depend on stochastic 
events caused by genetic drift and thus on population 
size. For example, weakly deleterious mutations can 
persist for substantial amounts of time, or even 
become fixed in small populations. 

As a result of these interactions between 
mutation rate and population size, the substitution 
rate of mutations is expected to show a U-shaped 
relationship with Ne [18]. That is, at small Ne, many 
slightly deleterious mutations become fixed. At large 
Ne, many slightly beneficial mutations become fixed, 
because positive selection is strong. At intermediate 
Ne, fewer mutations become fixed. The exact form of 
this relationship, however, depends strongly on the 
distribution of mutational fitness effects [26–28]. 

Existing work to elucidate the role of population 
size and mutation rate on adaptive dynamics falls into 
two categories. The first comprises computational and 
theoretical studies to understand these dynamics [5, 6, 
9, 13, 29]. Because they do not use data from empirical 
adaptive landscapes, such studies usually make ad 
hoc assumptions about the structure of a fitness 
landscapes, the fitness effects of individual mutations, 
non-additive (epistatic) interactions of mutations [30, 
31], and so on. Violations of these assumptions may 
affect the evolutionary dynamics [18]. For example, 
the effective population size Ne and the substitution 
rate of beneficial mutations are expected to show a 
positive association if beneficial mutations are rare 
[18]. However, the incidence of beneficial mutations 
may change when the environment changes, or while 
a population explores a fitness landscape. Such 
change can affect the substitution rate of beneficial 
mutations, and thus also the rate of adaptive 
evolution. 

Other studies use experimental approaches. 
Unlike theoretical studies, they examine fitness 
landscapes of realistic complexity. However, because 
such landscapes are very large and may involve 
astronomically many genotypes, we usually have 
very limited knowledge about the structure of these 
landscapes and about a population's evolutionary 
trajectories on them [32, 33]. Moreover, experimental 
studies are subject to limited replication, and can thus 
vary mutation rates, population sizes, and other 
relevant parameters only to a limited extent. 

Here we overcome some of these limitations by 
simulating adaptive evolution on a biophysically 
motivated adaptive landscape that does not require 
ad hoc assumptions about landscape structure. It is a 
landscape whose structure is determined by the 
thermodynamics of RNA folding [34–36]. RNA 
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molecules fold into secondary structures by internal 
pairing of complementary base pairs (G-C, A-U). 
Driven by thermal motions, an RNA molecule can 
fold and re-fold incessantly and thus adopt a 
spectrum of different secondary structures that differ 
in their free energy. The structure in which a molecule 
spends most of its time is the minimum free energy 
(MFE) structure [35, 37]. In our simulations, we use 
the fraction of time a molecule spends in a given fold - 
the stability of this fold - as a measure of fitness. This 
stability may itself be subject to selection [38]. A 
potential example is the stability of yeast mRNA 
secondary structures, which increases with gene 
expression levels [39]. For reasons of tractability, and 
considering existing precedents in modeling RNA 
evolution [34, 36, 40, 41], we assume that selection acts 
only on the stability of a single structure, but note that 
in nature a balance between multiple secondary 
structures may be important [42–44]. 

Aside from using a biophysically motivated 
adaptive landscape, our simulation model also has the 
advantage that it does not require us to make ad hoc 
assumptions about fitness effects of mutations or 
about epistatic interactions of mutations, because 
these quantities are determined by the 
thermodynamics of folding. And with a simulation 
model, we can explore a wider range of mutation 
rates and population sizes than in experimental work. 
Although one might naively assume that evolutionary 
dynamics can be understood as a function of mutation 
rate µ or population mutation rate (Nµ) alone, our 
observations show otherwise. 

Results 
Short RNA sequences folding into any 
secondary structure are highly connected 

Our evolution simulations build on two different 
kinds of RNA sequences. The first comprise all of 
those 410 = 1,048,576 ten-nucleotide-long sequences 

that fold into some secondary structure in their 
minimum free energy (MFE) state. Before studying 
the evolutionary dynamics of these molecules, we first 
characterized how they are organized in RNA 
genotype space. To this end, we first determined by 
exhaustive enumeration that there are 39,410 
sequences (3.76% of sequence space) with some MFE 
secondary structure, and that they form nine distinct 
secondary structures. Each of these structures has a 
single stem-loop but with different nucleotides 
involved in the stem (Table 1). Although these 
sequences comprise a small fraction of the whole 
genotype space, they are highly accessible from one 
another through single mutations. This can be shown 
by constructing a genotype network, i.e., a graph 
whose nodes are sequences that form some secondary 
structure (regardless of the identity of that structure), 
and whose edges connect two sequences that differ by 
a single point mutation. This graph has five connected 
components. (A component is a set of nodes that are 
accessible from each other through a path of one or 
more edges.) However, one of these components 
contains the vast majority (99.24%, 39,109) of 
sequences (Figure 1). 

One can subdivide the nodes (sequences) in this 
graph into subsets of sequences associated with each 
one of the nine MFE secondary structures. Each such 
subset itself forms a genotype network with multiple 
connected components. Specifically, depending on the 
structure, these networks comprise between 943 to 
8,513 nodes, and have between 3 to 21 connected 
components each. All of them are positively 
assortative, with assortativity values between 0.13 
and 0.82 (see Methods), meaning that highly 
connected sequences tend to be connected to other 
highly connected sequences. It takes 5 to 10 mutations 
to travel between the most distant two nodes while 
staying within the largest component of each network 
(see column "Diameter" in Table 1). 

 

Table 1. Properties of genotype networks of RNA molecules of length 10 that fold into the nine possible secondary structures.  

ID Vertices GC vertices Components Assortativity Diameter Structure Min-Max time in MFE structure 
Str1 1,728 731 3 0.75 9 ..((....)) 0.36-0.85 
Str2 5,717 2,445 6 0.70 11 .((....)). 0.38-0.98 
Str3 7,790 1,487 13 0.79 11 (((....))) 0.42-0.97 
Str4 2,286 506 10 0.67 6 .(((...))) 0.46-0.90 
Str5 6,934 1,335 21 0.82 10 (((...))). 0.52-0.98 
Str6 943 384 5 0.55 6 .((.....)) 0.40-0.64 
Str7 7,765 3,328 9 0.65 8 ((....)).. 0.38-0.98 
Str8 1,437 475 5 0.13 6 ((......)) 0.39-0.64 
Str9 4,801 2,115 4 0.58 8 ((.....)). 0.39-0.95 
Columns from left to right: 'ID': an identifier for the secondary structure; 'Vertices': number of sequences folding into the structure; 'GC vertices': number of edges in the giant 
component of the genotype network formed by the sequences; 'Components': number of connected components within each network (a connected component is a set of 
sequences which are all accessible from each other through a series of single point mutations that preserve the structure); 'Assortativity': assortativity coefficient of the largest 
connected component. The assortativity coefficient indicates to what extent sequences have neighbors with degrees (numbers of neighbors) similar to themselves [82]; 
'Diameter': the diameter of the largest connected component. The diameter of a network is the largest minimal distance between any pair of nodes in a connected component; 
'Structure': MFE structure of the sequences in the network; 'Min-Max time in MFE structure': range of the fraction of times that sequences folding into the MFE structure 
spend in this structure. More time spent in a structure corresponds to higher fitness in our model. 
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Figure 1. The genotype network of RNA sequences of length 10. Each circle (node) corresponds to a sequence. Two nodes are connected if they 
differ by a single point mutation. Nodes with the same color have the same minimum free energy secondary structure (Legend). The inset enlarges a part of the largest 
component. Nodes are clustered based on their number of shared connections (based on ForceAtlas2 embedding in Gephi [73]. For clarity of representation, our 
display allows for overlapping nodes, such that the actual number of nodes may be more than the number of nodes that are visible. The graph in the figure illustrates 
the intertwined organization of different genotype networks and genotype sets. Because of its large number of nodes (39,401) and edges (311,000), not all nodes and 
edges are visible, and accurate accounting of component numbers is thus not possible. 

 
Our simulations of evolving populations use the 

fraction of time that sequences spend in their MFE 
structure as a measure of fitness. This fraction varies, 
depending on structure, between 0.27 and 0.97 among 
the nine structures. Here, a value of 0.27 (0.97) means 
that a sequence spends 27 (97) percent of the time in 
its MFE structure, and the remaining 73 (3) percent in 
some other structures with higher free energy. (The 
MFE structure can be viewed as the structure in which 
a sequence spends more time than in any other 
structure, even though it may not spend the majority 
of its time in this structure.) Within the genotype 
network of each structure, it varies between values 
ranging from 0.27 to 0.96 for structure. ((....)). to 
values ranging from 0.51 to 0.71 for structure. 
((.....)). 

How an evolving population explores a fitness 
landscape depends in part on the fraction of its 
sequences’ neighbors that are neutral. If a population 
has a larger neutral neighborhood, it may be able to 
access larger regions of the landscape through 
non-deleterious mutations, and may have a higher 
chance of finding beneficial mutations and new 
phenotypes. We computed the size of neutral 
neighborhoods, because it may be important for our 
evolutionary analysis. This size is a function of 
effective population size Ne [45], which in our case is 

identical to the census population size N, because the 
populations we simulate are unstructured, do not 
experience migration, and do not fluctuate in size. 
Following standard population genetic theory [46, 47], 
we consider two neighboring sequences neutral if 
their fitness differs by less than 1/N. Figure S1a 
shows neutral neighborhood size as an average over 
1,000 randomly sampled RNA molecules of length 10 
that fold into one of the nine structures we consider 
(Table 1). Unsurprisingly, neutral neighborhood size 
decreases with increasing population size, where 
neutral evolution and crossing of fitness valleys 
becomes more difficult. 

To ensure that any observations we obtain from 
our simulations are not artefacts of using very short 
and non-biological sequences, we also simulated the 
evolution of four longer biological RNA molecules 
(30-43nts) that originate from different organisms, 
have different functions, and fold into different 
predicted secondary structures (Table 2). Specifically, 
these sequences include a ribozyme, a noncoding 
transcript, a small non-messenger RNA (snmRNA), 
and a small nuclear RNA (snoRNA). (We note that 
even though the secondary structures of these 
sequences occur in nature, most of the sequences that 
we analyze and that fold into these structures may not 
occur in nature.) While the large number of sequences 
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folding into such longer structures [34] precludes an 
exhaustive analysis of their genotype networks, we 
find that the neutral neighborhoods of these genotype 
networks also decrease in size with increasing 
population size (Figure S1b). 

We quantified the ruggedness of the fitness 
landscapes of our RNA molecules in two ways. First, 
we counted the number of fitness peaks in each 
landscape of sequences of length 10, where we define 
a fitness peak as one or more sequences whose 
neighbors all have lower fitness. With the exception of 
structure 2 (Str2) and structure 3 (Str3), which have 10 
and 23 peaks, respectively, all structures have fewer 
than 10 peaks (Figure S2). This analysis was not 
possible for the biological sequences, where too many 
sequences fold into any one structure. Second, we 
estimated the incidence of reciprocal sign epistasis, 
which causes fitness valleys to exist between a 
sequence and its two-mutant neighbor. In epistasis, 
the fitness effect of an allele depends on other alleles. 
Sign epistasis occurs when the sign of the fitness effect 
of an allele changes (e.g. from beneficial to 
deleterious) due to epistatic interactions. When a 
sequence and its two-mutant neighbor both show 
higher fitness than the two single-mutants connecting 
them in sequence space, one speaks of reciprocal sign 
epistasis [48]. We find that fewer than 10 percent of 
such sequence quadruplets show reciprocal sign 
epistasis. This holds regardless of whether we 
consider sequences of length 10 or longer sequences 
(Figure S3). Overall, these analyses show that the 
landscapes we examine are not highly rugged. 

We simulated the adaptive evolution of 
sequences forming each one of the nine secondary 
structures of length 10, as well as each one of the four 
biological secondary structures. That is, we evolved 
populations of such sequences through 800 cycles 
(generations) of mutation and selection favoring an 
increase in the time that a sequence spends in the focal 
secondary structure (see Methods). We performed 50 
replicates for each population simulation. Because we 
were interested in the influence of population size N 
and mutation rate µ on the speed of adaptive 
evolution, we varied both parameters systematically 
(0.0001 < µ < 1, 0.01 < Nµ < 10). In the following, we 
find it most useful to analyze our observations 
separately for varying µ and varying population 
mutation rates Nµ. 

Adaptive evolution under varying mutation 
rate µ 

µ=0.0001 
At this low mutation rate Ne<<1 for all 

population sizes we considered. All populations of 
sequences with length 10 reach similar mean fitness at 

the end of evolution (Figure 2a), except for a minority 
of structures where the largest populations reach a 
significantly higher mean fitness (Str2, Str7 and Str9, 
Figure S4). In contrast, our longer sequences show a 
consistent and significant increase in final mean 
fitness as population size increases (Figure 3a). The 
likely reason of this difference between sequences of 
length 10 and biological sequences is that the 
incidence of neutral, beneficial, and deleterious 
mutations differs between them. In sequences of 
length 10, beneficial mutations are less common than 
deleterious ones, whereas in longer sequences, they 
are more common (Figure S5). These differences may 
result from differences in landscape size. Our 
biological sequences, due to their length, have a vastly 
larger landscape (430-443 sequences) than sequences of 
length 10 (410 sequences), which may influence the 
distribution of fitness effects. An additional difference 
may come from how we implemented selection. In 
sequences of length 10, we allowed only sequences 
whose MFE secondary structure matches the target 
structure to survive, which permitted us to restrict the 
evolutionary dynamics to sequences with the same 
MFE structure. In contrast, for longer sequences, we 
allowed any sequence that folds into a given target 
structure to survive. Moreover, we initialized 
populations of the longer RNAs from random 
sequences whose fitness was less than 0.01, whereas 
populations of 10-nucleotide sequences started from 
sequences with a fitness in the bottom 5%. This is 
because the landscapes of our longer (biological) RNA 
structures were too large to analyze exhaustively. 
These two differences may also affect the distribution 
of fitness effects and consequently, the prevalence of 
beneficial mutations between the 10-nucleotide and 
longer sequences. As a result of the greater incidence 
of beneficial mutations, larger populations of longer 
sequences can increase their fitness more easily. It 
may seem surprising that population size makes a 
difference at mutation rates this small, but larger 
populations have an advantage at several levels. 
Firstly, in every generation, larger populations are 
slightly more diverse (Figures 2c and S6a), even 
though the difference between larger and smaller 
populations is minute. Second, across all 50 
simulation replicates, larger populations visit more 
unique sequences than smaller populations (Figures 
2b and S6b). In other words, because larger 
populations produce more mutations per generation 
than smaller populations, they are better at exploring 
genotype space. Third, and consistent with this 
observation, larger populations also experience more 
nucleotide substitutions (Figure 2d), the majority of 
which are beneficial (e.g. Figure 2d). The reason is that 
selection is more efficient in larger populations [8, 11, 
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13]. The difference between sequences of length 10 
and longer sequences highlights the importance of the 
distribution of mutational effects and of its 
interactions with population size for adaptation. 
When deleterious mutations are prevalent, larger 
populations may not adapt faster. However, when 
beneficial mutations are prevalent, larger populations 
may adapt significantly faster. 

µ=0.01 
At this mutation rate, all populations reach a 

higher final mean fitness than at µ=0.0001 (Figures 2a 
and 3a). Two different regimes are relevant to 
understand the evolutionary dynamics of populations 
at different sizes N. At smaller population sizes 
(N=20, N=40, and N=81), Nµ < 1, whereas at larger 
sizes (N=162, N=325, and N=650) Nµ > 1. In the latter 
case, populations are expected to be polymorphic 
most of the time [49], which raises the possibility of 
clonal interference. That is, a population may harbor 
more than one beneficial sequence variant, and the 
two sequences may compete for fixation, resulting in 
lower fixation rates for either variant. We first wished 
to find out whether clonal interference occurs in our 
populations. Figures S7a and S7b show the frequency 
of the average number of unique sequences per 
generation in each population, and classify these 
sequences according to their fitness effect -– 
beneficial, neutral, or deleterious -– relative to the 
ancestral sequence at the start of the simulation. 
Clearly, as N increases, the number of unique 
beneficial alleles that are present at any one time in a 
population increases as well (Figures S7a and S7b). 
We also find that nucleotide substitution rates drop 
for populations with population mutation rates Nµ > 
1 (i.e. N=162, N=325, and N=650), both for sequences 
of length 10 (Figure 2d) and for our longer sequences 
(Figure 3d). But despite increased clonal interference 
and decreased substitutions in large populations, we 

also find that larger populations generally have 
higher final mean fitness (Figure S8a). Specifically, 
final fitness is significantly higher for seven out of the 
nine structure of length 10 (all but Str4 and Str9), and 
for all our longer, biological sequences (Figure S8b). 
To find out what may be responsible for this increase, 
we pooled data from simulations at different 
population sizes, and asked whether final mean 
population fitness is correlated with two measures of 
population diversity, namely the total number of 
sequences explored by a population, and the total 
diversity of a population in the last generation 
(generation 800, see Methods). In populations of 
sequences of length 10, mean final population fitness 
showed a significant positive association with the 
total number of explored sequences (Table S2, Figure 
S9a), and a significantly positive association with 
population diversity for all structures except Str1 
(Table S1, Figure S9b). Mean final fitness has a 
significant positive association with total number of 
explored sequences and population diversity for 
longer (biological) sequences (Figures S10a and S10b). 
We note that larger populations explore more unique 
sequences during evolution (Figure 2b) and are on 
average more diverse in the last generation (Figure 
2c). Taken together, these observations suggest an 
explanation for the consistently higher fitness in large 
populations: Such populations explore more 
sequences and thus have higher standing variation, 
which increases the prevalence of beneficial alleles 
(Figures S7c and S7d). A greater number of beneficial 
alleles, in turn, is associated with an increase in the 
average fitness of a population (Figures S11a and 
S11b), even when no mutations are fixed. In sum, the 
final mean fitness of a population is not completely 
determined by clonal interference, but also depends 
on a population’s genetic diversity. 

 

Table 2. Biological RNA sequences used in this study.  

Identifier Organism RNA type Sequence Secondary structure 
AF357483 Mus musculus snmRNA AAGCAAUUGUUUUACUUACAGUCUGGAGAA ...(((((((.......))))).))..... 

Z71666 Saccharomyces 
cerevisiae 

snoRNA AGGCGUGUAACAUUUAUUGGUUACAACAUG .....((((((........))))))..... 

AB055777 Homo sapiens noncoding 
transcript 

CUCUUUUACCAAGGACCCGCCAACAUGGGC .(((((....)))))((((......)))). 

AF036740 Schistosoma 
mansoni 

ribozyme AUCCAGCUCACGAGUCCCAAAUAGGACGAAACGC
GUCCUCCAU 

......................((((((.....)))))
).... 

Columns from left to right: 'Identifier': the fRNAdb database identifiers [74] for the four sequences considered here; 'Organism': the organism in which the RNA sequence 
was identified; 'RNA type': functional classification of the RNA sequence; 'Sequence': the sequence of the RNA; 'Secondary structure': the secondary structure of the RNA 
sequence. We computed secondary structures using the fold function from the ViennaRNA package [75]. 
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Figure 2. Simulated evolution of sequences with secondary structure 1 (Str1, Table 1) at varying mutation rates and population sizes. We 
randomly-selected a low-fitness sequence to initialize each simulation, and then simulated 800 generations of mutation and selection. We performed 50 replicate 
simulations for each mutation rate (horizontal axes) and population size (see Methods). Boxplots show (a) final mean population fitness, (b) total unique sequences 
explored, and (c) final population diversity (number of unique sequences at generation 800). Each box encloses the second and third quartiles of the 50 replicates, the 
center line corresponds to the median, and whiskers depict the minimum and maximum values obtained from any replicate, excluding the outliers. (d) Mean numbers 
of unique beneficial, deleterious, and neutral substitutions (green, pink, and cyan) are summarized as bars for the 50 replicates at each mutation rate (horizontal axis) 
and population size (labels above bars). 

 

µ=0.1 
At this mutation rate, populations arrive at a 

mean final fitness similar to that at µ=0.01 (Figures 2a 
and 3a). All population sizes are in the regime of Nµ > 
1 where clonal interference occurs and becomes 
stronger in large populations. For all but four 
sequences of length 10 (Figure S12a), we no longer 
observe a significant increase in average population 
fitness as population size increases, but such an 
increase still exists for longer sequences (Figure S12b). 
To explain the observation that mean fitness does not 
decline in larger populations, even though clonal 
interference becomes stronger, it helps again to 
consider the incidence of nucleotide substitutions and 
population diversity. At µ=0.1, smaller populations 
fix more mutations than large populations, whereas 
large populations fix hardly any mutations (Figures 
2d and 3d) due to clonal interference. However, not 
unexpectedly, larger populations again explore more 

unique sequences than smaller populations (Figure 
2b). This reinforces the notion that increased sequence 
exploration can override the influence of clonal 
interference on final mean fitness. Populations with 
few substitutions but high diversity and more 
beneficial mutations (Figure S13) have a higher 
average fitness than sequences with lower diversity 
and exploration but more substitutions. The 
difference between sequences of length 10 (little 
increase in mean fitness at larger N) and longer 
sequences (larger increase in mean fitness) is 
consistent with this notion. For example, populations 
with size N=650 and size N=20 differ in mean fitness 
by approximately 10% for the biological structure 
AF036740, but only by about 5% for Str1 of length 10. 
The reason is that the total number of explored 
sequences increases to a much greater extent between 
the smallest and largest population size in our longer 
sequences (ca. 30-fold) than for sequences of length 10 
(7-fold) (Figure S14, similar patterns exist between 
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other structures (data not shown)). This may be 
because longer (biological) structures have larger 
landscapes. 

µ=1 
In this regime, all populations have Nµ >> 1. Just 

as for µ=0.1, we do not observe dramatic differences 
in final mean fitness as population sizes vary (Figures 
2a and 3a). More strikingly, however, mean fitness at 
all population sizes is lower than at smaller mutation 
rates. The reason of this fitness decrease is the high 
fraction of mutant sequences per generation. Each 
individual sequence on average experiences one 
mutation per generation, which drives a population 
away from high-fitness sequences. Consequently, the 
mean fitness of the population fluctuates around a 
low value, and populations fix few mutations. 

Adaptive evolution under varying population 
mutation rates Nµ 

As the preceding observations showed, mutation 

rates interact with population sizes to influence 
adaptive evolution. We next wanted to find out 
whether the population mutation rate Nµ, a central 
quantity in population genetics, is sufficient to 
capture this interaction. 

Nµ=0.01 to Nµ=1 
At these low to moderate population mutation 

rates, mean population fitness does not depend on 
population size (Figures 4a and 5a), nor does the 
mean final diversity of populations (Figures 4c and 
5c), which suggests that Nµ may be sufficient to 
describe the evolutionary dynamics of populations. 
However, at least for Nµ =1, the number of explored 
sequences decreases with population size N (Figure 
4b and 5b). The likely reason is that smaller 
populations have larger neutral neighborhoods 
(Figures S1a and S1b), which means that fewer 
mutations will be eliminated by natural selection, and 
more sequences can be explored through mutation. 
This is also consistent with the observation that larger 

 

 
Figure 3. Simulated evolution of sequences with secondary structure AF036740 (Table 2) at varying mutation rates and population sizes. We 
randomly-selected a low-fitness sequence to initialize each simulation, and then simulated 800 generations of mutation and selection. We performed 50 replicate 
simulations for each mutation rate (horizontal axes) and population size (see Methods). Boxplots show (a) final mean population fitness, (b) total unique sequences 
explored, and (c) final population diversity (number of unique sequences at generation 800). Each box encloses the second and third quartiles of the 50 replicates, the 
center line corresponds to the median, and the whiskers depict the minimum and maximum values obtained from any replicate, excluding the outliers. (d) Mean 
numbers of unique beneficial, deleterious, and neutral substitutions (green, pink, and cyan) are summarized as bars for the 50 replicates at each mutation rate 
(horizontal axis) and population size (labels above bars). 
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populations experience fewer nucleotide 
substitutions, especially of neutral mutations, at Nµ=1 
(Figures 4d and 5d). It can also be explained by the 
larger size of neutral neighborhoods at small N, which 
leads to more neutral mutations, and thus to more 
neutral substitution events. In sum, even though final 
mean fitness does not depend on N for small to 
moderate Nµ, population diversity and substitution 
rates do depend on population size. Nµ is thus not the 
only relevant parameter describing the evolutionary 
dynamics of our populations. 

Nµ=10 
At the largest population mutation rates, N 

affects not only the number of explored sequences 
(Figures 4c and 5c), the final population diversity 
(Figures 4b and 5b), and the number of substitution 
events (Figures 4d and 5d), but also the final mean 
fitness (Figures 4a and 5a). This underscores that Nµ 

cannot account for all aspects of the evolutionary 
dynamics. Specifically, at constant Nµ =10, mean final 
fitness increases strongly with N (Figures 4a and 5a). 
At least two causes can help explain this pattern. First, 
at constant Nµ, larger populations may fix more 
beneficial mutations, because selection is stronger in 
such populations. Second, and more importantly, a 
higher population mutation rate may be more 
destabilizing for smaller populations than for larger 
populations. For example, ten new mutations per 
population and generation means that half of all 
sequences in the smallest populations (N=20) are 
mutated per generation, whereas only about 1.5 
percent of sequences in the largest populations 
(N=650) are mutated. Such a high incidence of 
mutation in the largest populations can drive a 
population away from a fitness peak, and overwhelm 
natural selection’s power to increase mean fitness. 

 

 
Figure 4. Simulated evolution of sequences with secondary structure 1 (Str1, Table 1) at varying population mutation rates Nµ and population 
sizes. We randomly-selected a low-fitness sequence to initialize each simulation, and then simulated 800 generations of mutation and selection. We performed 50 
replicate simulations for each mutation rate (horizontal axes) and population size (see Methods). Boxplots show (a) final mean population fitness, (b) total unique 
sequences explored, and (c) final population diversity (number of unique sequences at generation 800). Each box encloses the second and third quartiles of the 50 
replicates, the center line corresponds to the median, and the whiskers depict the minimum and maximum values obtained from any replicate, excluding the outliers. 
(d) Mean numbers of unique beneficial, deleterious, and neutral substitutions (green, pink, and cyan) are summarized as bars for the 50 replicates at each mutation 
rate (horizontal axis) and population size (labels above bars). 



Int. J. Biol. Sci. 2017, Vol. 13 
 

 
http://www.ijbs.com 

1147 

 
Figure 5. Simulated evolution of sequences with secondary structure AF036740 (Table 2) at varying population mutation rates Nµ and 
population sizes. We randomly-selected a low-fitness sequence to initialize each simulation, and then simulated 800 generations of mutation and selection. We 
performed 50 replicate simulations for each mutation rate (horizontal axes) and population size (see Methods). Boxplots show (a) final mean population fitness, (b) 
total unique sequences explored, and (c) final population diversity (number of unique sequences at generation 800). Each box encloses the second and third quartiles 
of the 50 replicates, the center line corresponds to the median, and the whiskers depict the minimum and maximum values obtained from any replicate, excluding the 
outliers. (d) Mean numbers of unique beneficial, deleterious, and neutral substitutions (green, pink, and cyan) are summarized as bars for the 50 replicates at each 
mutation rate (horizontal axis) and population size (labels above bars). 

 

Discussion 
Understanding the rate at which populations 

undergo evolutionary adaptation is central to research 
areas such as conservation biology [50–52], and 
microbial evolutionary biology [2, 53–55]. 
Experimental approaches often have difficulties 
measuring quantities that are crucial to understand a 
population's evolutionary dynamics completely [13, 
56–58], whereas theoretical approaches are often 
forced to make simplifying assumptions [5, 6, 9, 29]. 
Here we tried to overcome some of these limitations 
by simulating the adaptive evolution of RNA 
molecules on a biophysically determined adaptive 
landscape. This helped us avoid making ad hoc 
assumptions about landscape structure, and allowed 
us to study adaptive dynamics in more detail than 
experimental approaches could. Our observations 
suggest an unexpectedly complex interaction between 
mutation rate and population size. First, at any one 
mutation rate, final population mean fitness tends to 

increase with population size, and especially for the 
longer, biological RNA structures we analyzed 
(Figure 3a). This holds even where Nµ > 1 and thus 
where clonal interference reduces the number of 
nucleotide substitutions. This observation is 
significant, because the substitution rate, especially 
that of beneficial mutations, is sometimes treated as 
being equivalent to the rate of adaptive evolution [18, 
29, 49, 59–62]. On the adaptive landscape we study, 
this is not the case. Even though larger populations 
with more clonal interference experience fewer 
substitution events, their final fitness is higher. At 
very high mutation rates, large populations hardly 
have any substitutions (Figures 2d and 3d), but they 
can still achieve a higher final mean fitness (Figures 2a 
and 3a). The likely reason is that large populations are 
more likely to discover beneficial mutations, as long 
as enough such mutations exist (Figures 2b and 3b). 
And when such beneficial alleles occur in a 
population, they may help increase final mean fitness, 
even when they do not become fixed. This pattern is 
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consistent with a prevalence of soft selective sweeps 
([63] p. 472), where multiple beneficial mutations can 
co-occur and rise in frequency, even though none of 
them goes to fixation [64,65]. 

Second, at large Nµ, final mean fitness does not 
just depend on Nµ, but also on population size N. 
Specifically, at a given Nµ, larger populations achieve 
higher mean fitness. The reason is that a high 
population mutation rate translates into higher 
mutation rate per individual in smaller populations, 
which can overwhelm selection. 

Third, the mean number of unique sequences 
explored by an evolving population, as well as the 
mean final population diversity depend on 
population size, both for any given µ, and for any 
given Nµ. 

Our observations also speak to the question 
whether adaptive evolution is more rapid in large or 
small populations, because several conflicting factors 
can influence the speed of adaptation in such 
populations [18]. We find that smaller populations 
have no adaptive advantage over larger populations, 
because they do not reach higher mean final fitness at 
any given mutation rate. Thus, even though smaller 
populations can escape local fitness peaks more 
easily, have larger neutral neighborhoods (Figures 
S1a and S1b), and could thus explore more sequences 
(Figure 4b), they are at a disadvantage, at least on the 
relatively smooth fitness landscape we study (Figures 
S3 and S2). 

Among the limitations of our study is that we 
considered only asexual populations. Recombination 
may alter the evolutionary dynamics substantially 
[66–71]. In addition, the landscapes we study are not 
very rugged, with few fitness peaks for most 
structures (Figures S2 and S3), and little reciprocal 
sign epistasis that might slow down adaptive 
evolution (Figure S3). More rugged landscapes could 
yield substantially different evolutionary dynamics. 

In sum, our observations suggest that simple 
models of evolutionary dynamics, especially on 
highly simplified fitness landscapes, need to be taken 
with caution, because evolutionary adaptation on a 
complex landscape can reveal interdependencies 
between various factors affecting adaptive evolution, 
particularly when Nµ is very large. 

Methods 
Network analysis 

We constructed all networks and characterized 
their graph-theoretical properties using the iGraph 
library (version 0.7.1) [72] for Python. We used Gephi 
(version 0.9.1) [73] for network visualization. 

RNA molecules 
Our analysis focuses on two different kinds of 

RNA molecules. The first kind comprises all RNA 
molecules of length 10 that have at least a paired base 
in their minimum free energy (MFE) secondary 
structure. We chose these short sequences to be able to 
fully analyze and visualize their genotype space. The 
second kind comprises a small number of longer RNA 
sequences with biological functions, which we chose 
from the database of functional RNA molecules 
fRNAdb [74]. Specifically, we chose four short RNA 
molecules from different organisms and with 
different functions, a snmRNA (small non-messenger 
RNAs), a snoRNA (small nucleolar RNA), a 
non-coding transcript, and a ribozyme (Table 2). The 
major difference between sequences of length 10 and 
biological sequences is their length, but this difference 
may influence other properties, such as the incidence 
of neutral and deleterious mutations. 

Calculating the fitness of RNA sequences 
Our measure of fitness is based on the amount of 

time that an RNA molecule spends in a given 
structure, such as its minimum free energy (MFE) 
secondary structure. To calculate the MFE secondary 
structure of a sequence we used the function fold in 
the ViennaRNA package (version 2.1.9) [75]. To 
calculate the time that a sequence spends in a given 
structure (the probability that it is found in this 
structure at any given time), we used the following 
procedure. First, we calculated the ensemble free 
energy F of the sequence using again the fold 
program, where F= -kT ln(Z) [75]. Here, Z is the 
partition function of the sequence, K is the Boltzmann 
constant (1.98717 × 10-3 kcal/K), and T is the absolute 
temperature (310.15 K or 37° C in our case) [41]. Thus, 
the partition function of a sequence is equal to 
Z=eF/-kT. Second, we calculated the free energy E of 
the focal structure using the energy_of_struct function 
within the ViennaRNA package. These calculations 
also allowed us to compute the probability that the 
sequence can be found in the focal structure as 
p=e(-E/kT)/Z [41]. For a structure whose free energy 
lies outside an energy interval of 5kT (3 kcal/mol at 
37° C) above the MFE of the sequence, the time spent 
in the structure is very small, and we thus set it to zero 
for the purpose of our simulations. 

We used two different measures of fitness, which 
are both defined relative to an arbitrary target 
secondary structure S. For the first measure, we set an 
RNA molecule's fitness to zero if its MFE secondary 
structure was different from S. If the molecule’s MFE 
was identical to S, we assumed that its fitness was 
equal to the time that the sequence spent in S. We 
used this measure to calculate the fitness of our RNA 
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sequences of length 10. This measure of fitness 
ensures that the evolution of RNA populations is 
confined to the set or network of genotypes that have 
S as their MFE structure. 

The second fitness measure, which we used only 
for the longer sequences, is identical to the first, 
except that we did not assign sequences whose MFE 
structure differs from the target structure S a fitness 
value of 0. Instead, we assumed that their fitness is 
equal to the time they spend in the target structure.  

Population evolution model 
We used only non-modified ribonucleotides 

[76–79], i.e. A, C, G and U, in our discrete-time 
simulations of RNA sequence evolution. Any one 
evolving population initially consisted of identical 
sequences whose MFE structure is the target structure 
for selection. Because we wanted to explore how such 
sequences evolve towards high fitness, that is, a large 
fraction of time spent in the MFE structure, we 
wanted to initialize populations to a state of low 
fitness. Specifically, in our simulations of sequence 
evolution for sequences of length 10, we arbitrarily 
chose a sequence of length 10, whose fitness was in 
the bottom 5% of the fitness distribution (i.e., it spends 
little time in its MFE structure) as the initial sequences 
for each replicate simulation. For each of our 50 
replicate evolution simulations of longer, biological 
sequences, we arbitrarily chose an initial sequence 
whose fitness was smaller than one percent, i.e. it 
spent less than 1% of its time in the target structure. 
The length of this sequence was exactly the same as 
that of the biological sequence, so that it could in 
principle fold into the same target structure. Each of 
these replicate simulations thus started from a 
different initial sequence, but with otherwise identical 
parameters.  

Our simulations proceeded through repeated 
cycles (“generations”) of mutation and selection. For a 
given mutation rate µ per sequence and generation 
(0.0001 < µ < 1), we mutated individual sequences as 
follows. We chose a random number n from a Poisson 
distribution with mean µ as the number n of 
nucleotides to be mutated in the sequence. To mutate 
the sequence, we chose a random position (with a 
uniform distribution along the sequence) for 
mutation, replaced its nucleotide by a randomly 
chosen one of the three possible alternative 
nucleotides, and repeated this process n times. 

 After all sequences had been mutated, we 
determined their fitness, and chose sequences for 
survival into the next generation by randomly 
sampling with replacement from the mutated 
population, where we weighted the probability that a 
sequence is sampled by its fitness. Sampling with 

replacement ensures a constant population size across 
generations. 

Neutral neighborhood size calculation 
We chose 1,000 random sequences and 

calculated their fitness based on the MFE structure of 
a reference sequence, which could be one of our 
natural RNA sequences, or, for sequences of length 10, 
a sequence with maximum fitness for a given 
structure. For each of these 1,000 sequences, we 
calculated the fitness of all one mutant neighbors. If 
the fitness difference between a sequence and any one 
of its neighbors was smaller than 1/N, we considered 
the neighbor to be in the sequence's neutral 
neighborhood. We report the average fraction of 
neighbors of the 1,000 sequences that are neutral. 

Estimating reciprocal sign epistasis for 
different sequences 

As a measure of landscape ruggedness, we used 
the fraction of sequences that are separated from their 
two-mutant neighbors (sequences separated by two 
single nucleotide changes) by a fitness valley, i.e., 
where both one-mutant neighbors have lower fitness 
than the sequence itself and the two-mutant neighbor. 
As in our other analyses, we considered two fitness 
values different if they differed by more than 1/N.  

To compute the incidence of reciprocal sign 
epistasis for any one secondary structure, we first 
chose from genotype space 1,000 random sequences 
that were capable of forming this secondary structure. 
To do so for biological sequences, we generated 
random RNA sequences (with uniform and 
independent nucleotide distributions across the 
nucleotide sites), and verified for each sequence 
whether it could form the desired structure, until we 
had identified 1,000 such sequences. We considered a 
sequence as being able to form the desired structure, if 
this structure occurred among all structures within an 
energy interval of 5kT above the sequence's MFE 
structure. For sequences of length 10, we simply chose 
1,000 random sequences from each genotype network 
(or all sequences in the genotype network if the size of 
the network was less than 1,000). For all 1,000 
sequences thus generated, we counted the number of 
fitness valleys between that sequence and all its 
two-mutant neighbors that had higher fitness. 

Computing population diversity 
We used the number of sequences that exist in an 

evolving population in any one generation as a 
measure of diversity of the population. More 
specifically, we computed two complementary 
measures of population diversity. The first is the 
average number of unique sequences in the last 
generation (800), where the average is taken over all 



Int. J. Biol. Sci. 2017, Vol. 13 
 

 
http://www.ijbs.com 

1150 

replicate simulations. The second is the total number 
of unique sequences that occurred during the entire 
course of a simulation, i.e., each sequence that existed 
in a population during at least one generation, 
averaged over all replicates. 

Counting the incidence of deleterious, neutral 
and beneficial mutations 

To identify the number and type of mutations 
that occur in any one generation of a simulation, we 
tracked every mutation in single sequences that 
occurred during a simulation. We compared the 
fitness of a sequence before and after each mutation, 
and considered the mutation neutral if this difference 
was less than 1/N. If the fitness of the sequence 
increased (decreased) by more than 1/N after a 
mutation, we considered the mutation beneficial 
(deleterious). 

Number of substitutions 
At each generation of a population's simulation, 

we considered any mutant sequence as having 
become fixed if it was different from the founding 
sequence of the population, and if its population 
frequency exceeded a value of 90% (following 
common practice in population simulations [5, 80] to 
limit computational cost). We counted any sequence 
fixation event only once. That is, if a sequence 
exceeded this fixation threshold in any one 
generation, dropped below this threshold later on, 
and then exceeded the threshold once again at a later 
time, we considered that the sequence underwent 
only one fixation event. 

Finding network peaks 
We used the Python package Genonets [81] to 

find fitness peaks in the adaptive landscape defined 
on the genotype network of sequences with the same 
structure. The package requires a minimal fitness 
differential Δ between two neighboring sequences to 
call two sequences different in their fitness. The 
smaller this minimal fitness differential, the greater 
may be the number of apparent peaks in a rugged 
fitness landscape. We used Δ=0. 

Supplementary Material  
Supplementary figures and tables. 
http://www.ijbs.com/v13p1138s1.pdf  
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