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ABSTRACT: The complexation reaction of Cr(III) ion in the presence of a large excess of 

EDTA does not follow a pseudo-first-order kinetics as sometimes suggested. There are two 

causes for the deviation from this simple behavior: the involvement of a long-lived 

intermediate, precluding the application of the steady-state approximation, and the 

autoinhibition provoked by the release of hydrogen ions from the organic ligand to the 

medium as the final Cr(III)-EDTA violet complex is formed. Numerical simulations have 

allowed obtaining for each kinetic experiment the values of two rate constants, k1 

(corresponding to the formation of the long-lived intermediate from the reactants) and k2 

(corresponding to the formation of the final complex product from the long-lived 

intermediate), as well as the number of hydrogens liberated per molecule of final complex 

product formed (Hkin). The results indicate that k1 is associated to a fast step (Ea = 87 ± 4 kJ 

mol-1) and k2 to a slow step (Ea = 120 ± 2 kJ mol-1), whereas the number of hydrogen ions 

lies within the range 0 < Hkin < 2 in all the kinetic runs. A mechanism in accordance with the 

experimental data has been proposed.   
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INTRODUCTION 

 

In most kinetic studies found in the chemical literature the reactions are reported to be of 

pseudo-first-order (after application of the isolation method). However, it should be 

emphasized that the concept of kinetic order can be applied only in particular cases in which 

the kinetic behavior is simple enough to be described by the use of a single pseudo-rate 

constant. When fitting of the concentration-time plots requires the use of two or more pseudo-

rate constants, the classification of the reaction according to its presumed kinetic order might 

lead to erroneous conclusions. It is described here an important example where this has 

occurred: the complexation reaction of chromium(III) by ethylenediaminetetraacetic acid 

(EDTA).   

Chromium(III) is an important species both in the chemistry laboratory and in biology.  In 

the first case, it is the final product from nearly all chromium(VI) oxidations of different 

reducing agents [1,2]. In the second, it is a trace element required in the formation of the 

glucose tolerance factor (GTF) by coordination with a peptide molecule and playing a central 

role in the cellular carbohydrate metabolism [3,4]. In addition, Cr(III) complexes with several 

biological ligands showing GTF-like activity have been prepared [5]. Although Cr(III) 

supplementation has been proposed as a potential therapy to improve insulin sensitivity in 

diabetic patients [6], intoxication by this element has been described [7]. An interesting result 

reported in the scientific literature is that Cr(III) leads to notable increases in both median and 

maximum lifespan in rodents [8]. The effects of supplemental Cr(III) are similar to those 

observed in animals on calorie-restricted diets: decreased glucose levels, enhanced insulin 

sensitivity, and longer lifespan [9]. 

On the other hand, EDTA is a useful chemical substance exhibiting both reducing [10,11] 

and complexing [12 14] reactivities. Among the latter, its ability to complex divalent [15,16] 
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and trivalent [17  19] metal ions as a polydentate ligand is noteworthy. For instance, it can be 

used to complex Fe(II) and Fe(III) ions in kinetic studies of the Fenton reaction [20,21], as 

well as a food additive to trap metal impurities [22]. The metal-chelating character of EDTA 

makes it helpful as a therapy in intoxications by metal ions [23]. In particular, it has been used 

for the treatment of Wilson’s disease (copper overload) [24] and thalassemia (iron overload) 

[25] patients. Actually, EDTA-chelating therapy for the treatment of metal-induced diseases 

has already been applied in millions of patients [26]. In addition, its applications have recently 

been extended to the nanomedicine field [27].  

The chemical structure of the Cr(III)-EDTA complex has been the objective of some 

spectroscopic research [28 30] and quantitative determinations of its acid-base properties 

have also been reported [31]. This complexation has been applied to the elimination of toxic 

and carcinogenic Cr(VI) by ultrafiltration techniques [32]. The kinetics of the reactions of 

Cr(III) with EDTA and similar ligands [33,34] have been studied both in the absence and in 

the presence of hydrogen peroxide [35,36]. Although the Cr(III)-EDTA reaction under 

conditions of a large ligand/metal excess has so far been classified as a pseudo-first-order 

reaction [37  39], some experimental results showing compelling evidence of deviations from 

this simple kinetic behavior have been found and will be presented here forth.   

 

 

EXPERIMENTAL  

 

Materials and Methods 
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The solvent used in all the experiments was water previously purified by deionization 

followed by treatment with a Millipore Synergy UV system (milli-Q quality,  = 0.05 S/cm 

at 25.0 ºC). The reactants used in all the experiments were chromium(III) nitrate nonahydrate 

[Cr(NO3)3·9H2O, Merck, purity ≥ 98.0%] and sodium dihydrogen ethylenediaminetetraacetate 

dihydrate [(NaOOCCH2)2NCH2CH2N(CH2COOH)2·2H2O, Na2EDTA, Panreac, purity ≥ 

99.0%]. When necessary, in some experiments other reactants were also added: potassium 

hydroxide (KOH, Merck, purity ≥ 85%), potassium nitrate (KNO3, Merck, purity ≥ 99.0%), 

gum arabic (Merck), polyvinylpyrrolidone [(C4H6ONCHCH2)n, PVP, Sigma-Aldrich] and the 

organic solvents (Sigma-Aldrich, purity ≥ 99.0%) methanol (CH3OH), ethanol (CH3CH2OH), 

1-propanol (CH3CH2CH2OH), 2-propanol (CH3CHOHCH3), 1-butanol 

(CH3CH2CH2CH2OH), ethylene glycol (CH2OHCH2OH) and acetone (CH3COCH3). 

 The pH measurements were done by means of a Metrohm 605 pH-meter, provided with a 

digital presentation until the third decimal figure (± 0.001 pH) and a combination electrode, 

calibrated with the aid of two commercial buffers at pH 4.00 ± 0.02 and 7.00 ± 0.01 (Sigma-

Aldrich). The temperature was kept constant by means of a Julabo thermostatic bath provided 

with a digital reading (± 0.1 ºC). The absorbances were measured and the spectra recorded 

with a Shimadzu 160 A UV-Vis spectrophotometer (± 0.001 A). Quartz cuvettes (optical path 

length: 1 cm) were used. The kinetic runs were followed at five different wavelengths (410, 

445, 495, 540 and 575 nm), measuring the absorbances periodically at time intervals of 

180  360 s. 

 

 

Kinetic Experiments 
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In most of the runs the initial concentration of the complexing agent, Na2EDTA, was much 

higher than that of the metallic ion, Cr(III), in order to attain an approximately constant 

concentration of the organic reactant (isolation method). The total solution volume was kept 

the same in all the experiments (51 mL). Among the five wavelengths chosen to monitor the 

process, 540 nm corresponded to the maximum increase of the solution absorbance during the 

course of the reaction and, to minimize the experimental errors, was chosen to obtain the 

kinetic data. In order to assess reproducibility, all the runs were duplicated. 

 

 

Kinetic Calculations 

 

A program was written in BASIC language for the treatment of the absorbance-time 

experimental data. Four fitting parameters were required: the initial absorbance (Ao), the 

number of hydrogen ions released per Cr(III)-EDTA complex molecule formed (Hkin) and 

two pseudo-rate constants (k1 and k2). Pseudo-rate constant k1 was associated to the 

conversion of the reactant Cr(III) into a long-lived intermediate, whereas k2 was associated to 

the base-catalyzed decay of that intermediate to yield the final complex product. The 

calculations were implemented on a Sony Vaio personal computer. 

 

 

 

RESULTS AND DISCUSSION  
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The reaction was studied in the absence of an added buffer in order to avoid any perturbation 

caused by the competition of its anionic form with EDTA as a Cr(III) potential ligand. 

Although EDTA actually exercised some self-buffering action, the retarding effect caused by 

the decrease in pH as the reaction advanced allowed obtaining some valuable information on 

the number of hydrogen ions released to the medium during the formation of different Cr(III)-

EDTA complexes. 

 

 

Electronic Spectra 

 

A periodical scanning of the UV-Vis spectrum of the solution during the course of the 

reaction is shown in Fig. 1 (top). It can be seen that the absorbance increased with time over 

the whole wavelength range, and that the peaks corresponding to the violet complex product 

(392 and 540 nm) were shifted toward the left with respect to those corresponding to the blue-

gray complex reactant (412 and 576 nm). Moreover, whereas for the reactant [Cr(H2O)6]
3+

 the 

low-wavelength band was more pronounced than the high-wavelength band, for the product 

Cr(III)-EDTA happened the opposite. No isosbestic point was observed. 

 

 

Involvement of a Long-Lived Intermediate 

 

In the present case, there are at least two chemical species absorbing light in the visible region 

of the spectrum: the reactant [Cr(H2O)6]
3+

 and the product Cr(III)-EDTA. When a reaction is 

followed spectrophotometrically at two different wavelengths (1 and 2) at which both the 
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reactant (R) and the product (P) absorb light, assuming that the Lambert-Beer law is fulfilled 

and that all the intermediates involved in the mechanism are short lived (in steady state), it is 

easy to demonstrate that the relationship between the corresponding absorbances A(1)t and 

A(2)t at time t should be: 

 

 
        

P,1 R,1

1 1 2 2

P,2 R,2

t o t o

 

 

   
( )    =   ( )  +  ( )   ( )

 
A A A A

 
   

 





    (1) 

 

where A(1)o and A(2)o are the initial absorbances at the two wavelengths, whereas the 

subscripts of the molar absorption coefficients indicate the corresponding species and 

wavelength.  Hence, provided that the above mentioned hypotheses are fulfilled, an A(1) vs 

A(2) plot is expected to be linear. A representation of the absorbance at 445 nm versus the 

absorbance at 540 nm during the course of the reaction for a typical kinetic experiment is 

shown in Fig. 1 (bottom). These wavelengths were selected because the visible spectrum of 

the final Cr(III)-EDTA complex had a minimum at the first (445 nm) and maximum at the 

second (540 nm). Thus, the existence of an absorption minimum for the product at 445 nm 

offered a chance to look for any absorption caused by a potential long-lived intermediate. The 

plot shows a definite upward-concave curvature instead of the expected linearity. Since, of the 

conditions required for fulfilment of Eq. (1), the validity of the steady-state approximation for 

all the intermediates is the one with a higher probability of not being reached, the curvature of 

the A(445) vs A(540) plot suggests that a long-lived intermediate is involved in the reaction 

mechanism. This hypothesis was confirmed later by the excellent agreement between the 

absorbance-time experimental data and the numerical simulations based on it.    
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Formation of Two Cr(III)-EDTA Complexes 

 

The absorbance measured at 540 nm at the end of the process increased with the initial Cr(III) 

concentration (Fig. 2, top). However, the relationship was not exactly linear, since it showed a 

certain downward-concave curvature, indicating that the optical behavior of the violet 

complex formed as product exhibited some deviation with respect to that predicted by the 

Lambert-Beer law. Although other explanations are indeed feasible, this deviation would be 

consistent with the coexistence of two Cr(III)-EDTA complexes with different metal/ligand 

stoichiometric ratios. When EDTA was in large excess with respect to Cr(III) (at low initial 

metal ion concentration) the 1:2 complex would be predominant whereas when the excess was 

lower (at high initial metal ion concentration) the contribution of the 1:1 complex would be 

increasingly important. According to this interpretation, the molar absorption coefficients 

would be in the sequence 540(1:0) = 12 M
-1

 cm
-1

  < 540(1:1) = 188 M
-1

 cm
-1

 (upper limit) 

<540(1:2) = 230 M
-1

 cm
-1

, the first of them corresponding to the hexaaquachromium(III) ion 

and the others to the 1:1 and 1:2 Cr(III)-EDTA complexes. The value of 540(1:0) was 

obtained from the initial absorbance at 540 nm (before the violet complex is formed), whereas 

the upper limit for the value of 540(1:1) and the value of 540(1:2) were obtained from the 

slopes of the tangents to the curve shown in Fig. 2 (top) at the highest experimental value of 

[Cr(III)]o (lowest ligand/metal ratio) and at [Cr(III)]o = 0 (infinite ligand/metal ratio), 

respectively. It was reported that the 1:1 complex still retains one water molecule in its 

coordination sphere [40], and the new data suggest that the 1:2 complex retains none. As a 

result, it can be concluded that successive replacement of Cr(III)-H2O bonds by Cr(III)-EDTA 

bonds leads to an increase of the electronic absorption at 540 nm. 
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 The final pH showed a singular profile when represented as a function of the initial Cr(III) 

concentration, showing first a definite decrease, passing through a minimum, increasing later 

and reaching a plateau at the end (Fig. 2, bottom). This plot suggests that the organic divalent 

ion (H2Y
2-

) used as initial reactant suffers a partial deprotonation during the formation of the 

complex and that the number of hydrogen ions released to the medium is higher for the 1:2 

complex than for the 1:1 counterpart. In this way, the initial decrease of the pH


vs [Cr(III)]o 

plot would correspond to the conditions for which the 1:2 complex predominates (high 

[ligand]/[metal] ratio), whereas the posterior increase and final plateau would correspond to 

the range for which the contribution of the 1:1 complex starts to be high enough (low 

[ligand]/[metal] ratio). Thus, we can conclude that the plots shown in Fig. 2 cannot be 

explained by the formation of just one Cr(III)-EDTA complex with a unique metal-ligand 

stoichiometric ratio, strongly suggesting that at least two complexes were formed. 

 

 

One Rate-Constant Kinetic Model 

 

In the literature, the Cr(III)-EDTA reaction in the presence of a ligand/metal large excess has 

been classified as a pseudo-first-order process [37  39]. The absorbance at 540 nm has been 

represented versus time for a typical kinetic run (Fig. 3, top) and it can be observed, however, 

that the plot shows a sigmoid profile, with an upward-concave curvature at the beginning 

followed by an inflection point and a downward-concave curvature at the end of the reaction. 

This behavior is quite different from the uniformly downward-concave plot expected for a 

pseudo-first-order reaction according to the exponential function: 
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t o    =       (  ) k tA A A A e

    (2) 

 

where 
 oA , 

  tA  and 
  

A  are the absorbances at the beginning, at time t and at the end of the 

reaction, respectively, whereas k is the pseudo-first-order rate constant. 

 Linearization of Eq. (2) yields: 

 

 
    t o  ln  (  )   =   ln  (  )     A A A A k t     (3) 

 

However, systematic deviations of the experimental data from the straight line were observed 

in the attempted pseudo-first-order plots for all the kinetic runs, presenting a downward-

concave curvature at the beginning of the reaction and an upward-concave curvature at the 

end (Fig. 3, bottom). 

On the other hand, for a pseudo-first order reaction an exponential decay of the reaction 

rate with time would be expected: 

 

   

t t o   =    [R]    =    [R]  k tk k e   (4) 

 

where [R]o and [R]t are the concentrations of the limiting reactant, hexaaquachromium(III) 

ion, at the beginning of the reaction and at time t, respectively. However, the reaction rate vs 

time plots showed in all the cases a bell-shaped profile, with a definite acceleration period 

followed by a maximum and a deceleration period (Fig. 4, top). During the latter, a double-

logarithm plot of the rate vs the total concentration of Cr(III) not present as reaction product 

(limiting reactant + long-lived intermediate) yielded a roughly straight line with slope 1.98 ± 
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0.03 (Fig. 4, bottom). The reaction rate values were obtained from the absorbance at 545 nm 

vs time kinetic data by means of a combination of the finite-difference method of derivation 

and the formula of physical additive properties as t+ t/2   =     

t ot+ t o(  )[Cr(III)] /[(  ) ]tA A A A     for small values of t. 

Thus, the experimental behavior revealed two distinct deviations from the simple pseudo-

first-order kinetic model: an initial acceleration period, as well as a posterior deceleration 

period where the reaction rate decreased much faster than expected for a pseudo-first-order 

reaction. These deviations were probably originated by two independent causes, and led to the 

conclusion that a new and more elaborated kinetic model was required. 

 

 

Two Rate-Constant Kinetic Model 

 

Many different mechanisms were tried by numerical simulations until finding one leading to 

good results. The experimental absorbance-time data were consistent with the simplified 

mechanism given by the following sequence: 

 

 
  

  

             

1 2

HO
R          I          P-

k k
   (5) 

 

where R is the limiting reactant, [Cr(H2O)6]
3+

, I the long-lived intermediate, P the Cr(III)-

EDTA final product, k1 the pseudo-first-order rate constant for the first step and k2 the 

pseudo-second-order rate constant for the base-catalyzed second step. The corresponding 

differential equations are: 
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 1  
 d[R] 

       [R]
d

k
t

   (6) 

 
    

 

     1 2
-  

            
d[I]

[R] [I] [HO ]
d

k k
t

   (7) 

 
    

 

   2
-  

       
d[P]

[I] [HO ]
d

k
t

  (8) 

 

Equations (6)-(8) have been integrated for each kinetic experiment by means of a numerical 

approximate procedure, the fourth order Runge-Kutta method [41]. In this way, once known 

the initial concentration of R, as well as those of I and P (both equal to 0), the concentrations 

of the three species at different instants during the course of the reaction could be obtained, 

using to that end short time intervals (t = 180360 s, depending on the experimental 

conditions). The concentration of hydroxide ion during the course of the reaction was 

obtained from a combination of the EDTA dissociation equilibrium constants and the number 

of hydrogen ions released per Cr(III)-EDTA complex formed. As a starting point, a BASIC 

computer program (KIN SIM, Supporting Information) was developed for the optimization of 

the values of the 5 fitting parameters involved: the initial absorbance (Ao), the number of 

hydrogen ions released during the reaction (Hkin), the two pseudo-rate constants (k1 and k2) 

and the ratio between the molar absorption coefficients of the inorganic reactant and the long-

lived intermediate at 540 nm (Q). Different combinations of those parameters were 

systematically tried for each kinetic run until reaching a minimum of the average error 

defined as: 

 
i,cal i,exp

i 1

  

  

 

      

N

N

A A

E 






 (9) 
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where 
i,cal

A  and 
i,exp

A  are the calculated and experimental absorbances, respectively, and N 

is the number of time-absorbance datum couples for each kinetic run. The average value 

found for the ratio of molar absorption coefficients corresponding to 28 kinetic runs with 

different initial concentrations of metal ion and organic ligand was Q = 0.98 ± 0.04 (Table I). 

The fact that this value is so close to unity suggests that the number of Cr(III)-EDTA 

chemical bonds in the long-lived intermediate is much lower than in the final complex 

product, probably just one bond. In order to decrease the accidental errors associated to the 

kinetic parameters, the numerical simulations were performed for all the kinetic experiments 

with 4 fitting parameters, taking Q = 1 (the same molar absorption coefficients for the 

inorganic reactant and the long-lived intermediate). The values of Ao obtained from the fits 

were consistent within the experimental errors with the ones measured for the same 

concentrations of Cr(III) in the absence of EDTA.   

 

 

Comparison between Kinetic Models 

 

The values of the average error were within the ranges E = 3.4610
-3
3.6710

-2
 for the 

one rate-constant model and E = 2.9010
-4
1.4010

-3
 for the two rate-constant model, 

indicating that the errors between calculated and experimental absorbances were one order of 

magnitude smaller in the second case. This was confirmed by representing the ratio between 

the calculated (according to the two kinetic models) and experimental absorbances at 540 nm 

as a function of time for a typical kinetic run (Fig. 5). The values were within the ranges 

A(540)cal/A(540)exp = 0.9531.640 for the one rate-constant model and A(540)cal/A(540)exp 

= 0.9891.007 for the two rate-constant model. Moreover, the plot showed only 2 crossing 
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points with the horizontal line of A(540)cal/A(540)exp = 1 (corresponding to a perfect fit) for 

the one rate-constant model and 52 crossing points for the two rate-constant model, indicating 

that the errors were essentially of systematic nature in the first case and of accidental nature in 

the second. It can then be concluded that the two rate-constant model is a better choice to 

describe the kinetic behavior of the Cr(III)-EDTA complexation reaction than the one rate-

constant model. 

 

 

Time Evolution of the Cr(III) Complexes 

 

The concentration vs time profiles for the limiting reactant, the long-lived intermediate and 

the final product, calculated according to the two rate-constant model, have been plotted for a 

typical kinetic run in Fig. 6 (top). It can be seen that the formation of the intermediate from 

the reactant was rather fast, whereas the formation of the product from the intermediate was 

much slower. A comparison of the experimental reaction rate with the calculated long-lived 

intermediate concentration (Fig. 6, bottom) revealed that the initial increase of the rate almost 

exactly matched the increase of the intermediate concentration. However, the maximum in the 

rate took place slightly before than the maximum in the intermediate concentration, and the 

rate decreased much faster than the concentration. This fast deceleration was caused 

(according to the proposed kinetic model) by the decrease in the solution pH due to the 

release of hydrogen ions during the reaction. 

 

 

Number of Hydrogen Ions Released 
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In order to form its complex with Cr(III), the dianionic form of EDTA must lose at least part 

of its acidic hydrogen atoms. The number of hydrogen ions released per Cr(III)-EDTA 

complex molecule formed has been denoted as H. The value of this parameter corresponding 

to each experiment was obtained in two different ways: from the fitting of the absorbance-

time data (kinetic value, Hkin) and from the measurements of the pH values at the end of the 

reaction combined with the acidity equilibrium constants reported in the literature [42] for the 

dissociations of H3Y
-
 and H2Y

2-
 (thermodynamic value, Hth). Both Hkin and Hth decreased as 

the metal ion initial concentration increased, and their respective values converged at high 

[Cr(III)]o (Fig. 7, top). On the contrary, an increase in the initial ligand concentration led to an 

increase of both Hkin and Hth, and their respective values converged at low [Na2EDTA]o (Fig. 

7, middle). Addition of KOH resulted in an increase of both Hkin and Hth (Fig. 7, bottom). 

The values found for these parameters were in the range 0 < H < 2 in all the experiments, 

with a trend to Hth > Hkin.  

 

 

Kinetic Data 

 

Excellent accordance between the experimental absorbances and those predicted by the two 

rate-constant kinetic model was observed in all the kinetic runs (see Fig. 8). 

 After application of the isolation method, the pseudo-rate constants should be independent 

of the initial concentration of the limiting reactant. Thus, this independence can be adopted as 

a criterion to check the validity of the kinetic model used to fit the experimental data. In the 

present case, pseudo-rate constant k1 was independent of the initial concentration of metal 
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ion, whereas k2 decreased as that concentration increased (Table II).  A double-logarithm plot 

of k1 vs [Cr(III)]o yielded the slope 0.04 ± 0.03, whereas that of k2 yielded the slope – 0.27 ± 

0.03. The small absolute values of those slopes indicated that the two rate-constant model, 

although not perfect (especially as concerning the determination of k2), was a rather faithful 

description of the kinetics followed by the Cr(III)-EDTA complexation reaction. 

 Both pseudo-rate constants increased with increasing initial ligand concentration, although 

the dependence of k1 on [EDTA]o (Fig. 9, top) was stronger than that of k2 (Fig. 9, bottom). 

The experimental data could be fitted to the functions: 

 

  

 

o1
1

o1

 [EDTA]
   =   

 1   [EDTA]  

a
k

b
  (10) 

 

  

 

o2
2 2

o2

 [EDTA]
   =     +  

 1   [EDTA]  

a
k c

b
 (11) 

 

with a1 = (3.8 ± 0.2)10
-2

 M
-1

 s
-1

, b1 = 14 ± 2 M
-1

, a2 = (7.4 ± 0.2)10
6
 M

-2
 s

-1
, b2 = 26.0 ± 

1.2 M
-1

 and c2 = (4.02 ± 0.12)10
4
 M

-1
 s

-1
. Thus, it can be concluded that, although EDTA is 

a reactant essential in the part of the mechanism associated to pseudo-rate constant k1, in that 

associated to pseudo-rate constant k2 there are at least two reaction pathways involved, one 

including EDTA as a reactant and the other not (see that, for [EDTA]o = 0, k1 = 0 and k2 = 

c2). 

 The reaction showed base catalysis. Pseudo-rate constant k1 increased linearly with 

increasing [KOH]o (Fig. 10, top), whereas k2 decreased at first and reached soon a plateau 
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(Fig. 10, bottom). Addition of KNO3 resulted in slight changes of the pseudo-rate constants, a 

decrease of k1 and an increase of k2, whereas the value of Hkin increased (Table III).  

 Addition of the water-soluble polymer polyvinylpyrrolidone (PVP) did not appreciably 

change the values of either k1, k2 or Hkin (Table S1, Supporting Information). Since PVP was 

expected to act as a protective colloid, hindering the approach of EDTA to a potential Cr(III) 

intermediate species of colloidal nature, its lack of noticeable effect on the rate of the Cr(III)–

EDTA reaction allows to exclude colloidal Cr(OH)3 as a possible intermediate in the 

mechanism of this complexation process. However, when the water-soluble polymer gum 

arabic (GA) was added, a net decrease in all k1, k2 and Hkin was observed (Table S2, 

Supporting Information). This suggests the possible formation of a complex between Cr(III) 

and the polysaccharide GA in competition with the Cr(III)-EDTA complexation reaction. 

Actually, the monosaccharide D-ribose is known to form long-lived intermediate complexes 

in its reaction with Cr(VI) [43,44]. 

 Addition of an organic solvent (several alcohols or acetone) resulted in an increase of both 

pseudo-rate constants k1 (Fig. 11, top) and k2 (Fig. 11, bottom), with the only exception of 1-

butanol (which led to a decrease of k2). The results shown in Table IV for the slopes of the 

log (k1/k1,0) vs [organic solvent]o and log (k2/k2,0) vs [organic solvent]o linear plots (k1,0 and 

k2,0 being the pseudo-rate constants in the absence of organic solvent) indicate that in the 

homologous series of primary alcohols the rate-increasing effect followed the sequence of 

increasing non-polar hydrocarbon chain length (methanol < ethanol < 1-propanol < 1-butanol) 

as far as k1 was concerned. Moreover, the slopes of the log (k1/k1,0) vs [organic solvent]o 

linear plots were strongly correlated with the number of carbon atoms in the hydrocarbon  

chain for all the 7 organic solvents studied (Fig. 12). However, the effect on k2 was rather 

similar for the different solvents (1-butanol excepted). A comparison of the data shown in 
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Tables IV and S3 (Supporting Information) reveals that an increase of the initial EDTA 

concentration resulted in a net decrease of the ethanol effect on k1 (duplication of that 

concentration led to a decrease of the slope from 0.124 ± 0.006 M
-1

 to 0.048 ± 0.005 M-1) 

whereas the effect on k2 remained unchanged (0.081 ± 0.009 M-1 vs 0.078 ± 0.010 M-1, 

respectively). 

 The fulfilment of the Arrhenius equation was reasonably good for k1 (Fig. 13, top) and 

excellent for k2 (Fig. 13, bottom). The activation energy associated to the second pseudo-rate 

constant was much higher than that associated to the first (Table V). Although the activation 

entropy corresponding to k1 was slightly negative and that corresponding to k2 largely 

positive, caution should be exercised when interpreting these results, for it has to be reminded 

that activation entropies associated to pseudo-rate constants with different units cannot be 

compared, since they present a different dependence on the arbitrary choice of the standard 

state [45].
 

   

 

Mechanism 

 

According to the experimental information so far available, the mechanism that can be 

proposed for the Cr(III)-EDTA complexation reaction can be divided into two different 

sections, each corresponding to one of the pseudo-rate constants. The elementary steps 

associated to the first constant are the following: 

 

 [Cr(H2O)6]
3+

  +  H2Y
2-

   
IK    [Cr(H2O)6]

3+
H2Y

2-
 (12) 
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 [Cr(H2O)6]
3+
H2Y

2-
  +  HO

-
   

IIK    [Cr(HO)(H2O)5]
2+
H2Y

2-
  +  H2O

 
(13) 

 [Cr(H2O)6]
3+
H2Y

2-
   III

slow
k    [Cr(H2Y)(H2O)5]

+
  +  H2O

 
(14) 

 [Cr(HO)(H2O)5]
2+
H2Y

2-
   IV

slow
k    [Cr(H2Y)(H2O)5]

+
  +  HO

- 
(15) 

 

An inorganic-organic ion pair is proposed to be reversibly formed in Eq. (12) from 

hexaaquachromium(III) ion and the dianionic form of EDTA predominant in the medium. 

This section of the mechanism involves two different rate-determining (slow) steps for the 

two reaction pathways involved (without base catalysis and with it). The proposed long-lived 

intermediate [chemical species I in Eq. (5)] is the Cr(III) complex formed in Eqs. (14) and 

(15).  

 Since Eq. (12) does not involve the breaking of any Cr(III)-H2O chemical bond, it is 

expected to be fast enough to be in quasi-equilibrium. The same can be stated about Eq. (13), 

corresponding to a fast, reversible acid-base reaction. Thus, application of the quasi-

equilibrium approximation to those steps leads to the following laws for the first part of the 

mechanism: 

 3+
2 61 1   =    [Cr(H O) ]v k  (16) 

 -I

I

III II IV1

 [EDTA]
   =      +   [HO ]

 1   [EDTA] 
( )K

K
K

k kk


 (17) 

 

Equation (17) is consistent with the kinetic results shown in Figs. 8 (top) and 9 (top), as well 

as with Eq. (10) provided that a1 = -

I III II IV  +   [HO ]( )K Kk k  and b1 = KI  = 14 ± 2 M
-1

. 
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 For the mechanism associated to the second pseudo-rate constant the following elementary 

steps can be proposed: 

 

 [Cr(H2Y)(H2O)5]
+
  +  HO

-
   

VK    [Cr(HO)(H2Y)(H2O)4]  +  H2O
 

(18) 

 [Cr(HO)(H2Y)(H2O)4]  +  H2Y
2-

   
VIK    [Cr(HO)(H2Y)(H2O)4]H2Y

2- 
(19) 

 [Cr(HO)(H2Y)(H2O)4]   
VII

slow
k    [Cr(H2Y)(H2O)2]

+
  +  HO

-
  +  2H2O

 
(20) 

 [Cr(HO)(H2Y)(H2O)4] H2Y
2-

   VIII

slow
k    [Cr(HY)2]

3-
  +  H3O

+
  +  4H2O (21) 

 [Cr(H2Y)(H2O)2]
+
       [Cr(HY)(H2O)2]  +  H

+ 
(22) 

 [Cr(HY)(H2O)2]   slow
    [Cr(HY)(H2O)]  +  H2O (23) 

  

The long-lived intermediate previously formed suffers a fast acid-base reaction resulting in its 

deprotonation to yield a hydroxo complex [Eq. (18)]. The latter reacts in a reversible fast step 

with the dianionic form of EDTA to yield an adduct [Eq. (19)]. Two rate-determining steps 

are involved also in this part of the mechanism, leading to 1:1 [Eq. (20)] and 1:2 [Eq. (21)] 

complexes. The mechanism ends with a fast deprotonation of the 1:1 complex [Eq. (22)] 

followed by a slow reaction in which a water molecule is lost [Eq. (23)].  

 Both Eqs. (18) and (19) correspond to reversible reactions fast enough (the first acid-base 

and the second without involving the breaking of any bond other than the weak reactant-

solvent intermolecular forces) for the quasi-equilibrium approximation to apply, leading to the 

following laws for the second part of the mechanism: 
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 -

2 2   =    [I] [HO ]v k  (24) 

 
 

VIV
2 -

V VI

VIII
VII

  [EDTA]   
   =      + 

1+  [HO ]  1   [EDTA] 
( )KK

k
K K

k
k


 (25) 

 

where  [Cr(H2Y)(H2O)5]
+
 is the long-lived intermediate. Equation (25) is consistent with 

the kinetic results shown in Figs. 8 (bottom) and 9 (bottom), as well as with Eq. (11) provided 

that       
-

2 V VI VVIII  =  /(1+ [HO ])K K Kka , b2 = KVI = 26.0 ± 1.2 M
-1

 and 2   =c  

     
-

V VVII /(1+ [HO ])K Kk . 

 The decrease of rate constant k1 with increasing ionic strength (Table III) can be explained 

by the effect on equilibrium constant KI, expected to decrease because the corresponding 

reaction, Eq. (12), involves the encounter of two strongly charged anion-cation reactants. 

However, this decreasing effect failed to show up in the case of rate constant k2, probably 

because the reaction associated to equilibrium constant KV, Eq. (18), involves two ionic 

reactants with a much lower electrostatic charge, and the combined effects on the different 

elementary reactions should then be taken into account. 

 The number of hydrogen ions released to the medium during the reaction per Cr(III)-

EDTA complex formed can be calculated as: 

 

 
 

 

3-

2 2

+ 3-

2 2 2 2 2

kin

[Cr(HY)(H O)] +  2 [Cr(HY) ]
   =   

 [Cr(H Y)(H O) ] + [Cr(HY)(H O)] + [Cr(HY) ] 
H  (26) 

 

where the concentration of [Cr(HY)(H2O)2] has been neglected. It has been considered that 

per each [Cr(H2Y)(H2O)2]
+
, [Cr(HY)(H2O)] or [Cr(HY)2]

3-
 formed 0, 1 or 2 hydrogen ions are 

released to the medium, respectively. Equation (26) predicts that 0 < Hkin < 2, in agreement 
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with the results shown in Tables II and III, as well as in Fig. 7. Moreover, an increase of 

[Cr(III)]o should result in an increase of the ratio of the 1:1 complexes (releasing either 0 or 1 

hydrogen ions) versus the 1:2 complex (releasing 2 hydrogen ions), thus decreasing Hkin, 

what agrees with the results shown in Fig. 7 (top). On the contrary, an increase of [EDTA]o 

should result in an increase of the ratio of the 1:2 complex versus the 1:1 complexes, thus 

increasing Hkin, what agrees with the results shown in Fig. 7 (middle). Addition of KOH 

shifts the quasi-equilibrium defined by Eq. (22) toward the right side, thus increasing Hkin, in 

agreement with Fig. 7 (bottom). Furthermore, the trend observed for the value of the number 

of hydrogen ions liberated per Cr(III)-EDTA complex formed as calculated from the final 

experimental pH being higher than that calculated from the numerical simulations performed 

on the absorbance-time data (Hth > Hkin) can be explained by the combination of Eqs. (22) 

and (23) as long as the latter reaction is slow enough to have a negligible effect during the 

kinetic runs but a measurable effect on the final pH. 

 The effect of addition to the medium of low-polarity organic solvents is also consistent 

with the proposed mechanism. Given that Eq. (12) involves the participation as reactants of a 

strongly charged anion-cation pair, a decrease of the medium polarity is expected to result in 

an increase of equilibrium constant KI and, hence, also of pseudo-rate constant k1 [see Eq. 

(17)], because an enhancement of the anion-cation electrostatic attraction would produce an 

increase of the forward rate constant, the backward rate constant remaining essentially 

unchanged. However, since Eq. (18) involves as reactants a less strongly charged anion-cation 

pair, the effect of addition of an organic solvent on equilibrium constant KV and, hence, also 

on pseudo-rate constant k2 [see Eq. (25)], is expected to be of a lesser magnitude. In fact, 

whereas in the case of k1 the effect is so notable (see Fig. 11, top) that it has been possible to 

correlate it with the number of carbon atoms in the hydrocarbon chain (see Fig. 12), in the 
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case of k2 a clear-cut difference between the various organic solvents with an acceleration 

effect could not be established (see Fig. 11, bottom). The finding that 1-butanol had a 

decreasing effect on k2, quite different from the effects produced by the other organic 

solvents, might be connected with its ability to aggregate in the form of micelles, thus 

introducing a big change in the medium structure.     

 The fact that the activation energy associated to the experimental rate constant k1 is much 

lower than that associated to k2 (87 ± 4 versus 120 ± 2 kJ mol
-1

) is coherent with the fact that 

the intermediate [Cr(H2Y)(H2O)5]
+
 is long lived, since it must be formed in a fast step (low 

activation energy) and consumed in a slow step (high activation energy). In the opposite case, 

if it would have been formed in a slow step and consumed in a fast one, that species would 

behave as a short-lived intermediate in steady state, leading to continuously decreasing rate vs 

time plots, instead of the bell-shaped curves experimentally observed, as shown in Figs. 4 

(top) and 6 (bottom). Moreover, the notable high values of the activation energies associated 

to both pseudo-rate constants is consistent with the well-known inherent kinetic inertness to 

substitution of the d
2
sp

3
 octahedral complexes of Cr(III) [46 48].   

 It should be noticed that, in the lack of any direct independent proof, the proposal of the 

formation of the 1:2 Cr(III)-EDTA complex in Eq. (21) should be considered as only a 

working hypothesis. Several indirect evidences of its existence, however, can be extracted 

from the present kinetic study: (i) The downward-concave curvature of the A(540)∞ vs 

[Cr(III)]o plot (Fig. 2, top), suggesting that at high [EDTA]/[Cr(III)] ratios a complex with a 

high molar absorption coefficient is predominantly formed (presumably, the 1:2 complex), 

whereas at low [EDTA]/[Cr(III)] ratios a complex with a low molar absorption coefficient is 

predominantly formed (the 1:1 complex). (ii) The finding that the final pH did not decrease 

monotonously as the metal ion initial concentration increased (situation expected if only 1:1 
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complexes were formed), since at high [Cr(III)]o values the plot showed a slight increase 

followed by a plateau (Fig. 2, bottom), suggesting that additional increases of [Cr(III)]o did 

not result in a further increase of the number of hydrogen ions released by EDTA to form the 

violet complex. (iii) The decrease of both Hkin and Hth as [Cr(III)]o increased (Fig. 7, top). 

(iv) The increase of both Hkin and Hth as [EDTA]o increased (Fig. 7, middle). (v) The 

increase of rate constant k2 as [EDTA]o increased (Fig. 9, bottom), suggesting that the long-

lived intermediate actually reacts with a second ligand molecule. Although the tendency of 

EDTA as a chelating ligand to wrap itself around a single metal center (thus leading to 1:1 

complexes) is indeed well known, the rather prolonged lifetime of the long-lived intermediate 

(Fig. 6) might offer a chance for a second ligand molecule to become attached to Cr(III) 

before the first ligand molecule wraps itself around the metal center. This would be certainly 

consistent with the high activation energy associated to rate constant k2, indicating that the 

conversion of the long-lived intermediate into the reaction product is notoriously slow. 

 

 

Structures of the Cr(III)-EDTA Complexes 

 

Given that Cr(III) forms hexacoordinated complexes and EDTA can behave as a hexadentate 

ligand (including two amine nitrogen atoms and four carboxylate oxygen atoms as electron 

donors), it might seem logic at first view that in the final violet complex six Cr(III)-EDTA 

bonds be involved. However, EDTA complexes with the organic ligand fully coordinated to 

the metal are known to present a considerable structural stress [28]. Consequently, there has 

been some discussion in the chemical literature on the actual number of Cr(III)-EDTA bonds 

involved in the violet complex, both in aqueous solution and in the solid state. Spectroscopic 
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studies have yielded apparently conflicting results. Some reports favor a structure with five 

bonds and the sixth metal position occupied by a water molecule, as proposed in the product 

[Cr(HY)(H2O)] formed in Eq. (23) [49  53]. Certainly, this structure agrees with the well-

known fact that the Cr(III)-EDTA complex presents two distinct acidity equilibrium 

constants, corresponding to the loss of  hydrogen ions from the unbounded carboxyl group of 

the organic ligand HY
3-

 and from the metal-bonded water molecule [29,54]. On the contrary, 

other reports favor a structure with six Cr(III)-EDTA bonds [28,29,55 57].  

 Since the sodium salt of the dianionic form of EDTA was used as organic reactant in the 

present study, if the predominant form of the final Cr(III)-EDTA complex was 

hexacoordinated, [Cr(Y)]
-
, one would expect values of Hth   2. However the experimental 

values were in most cases considerably lower. This finding suggests that the loss of the sixth 

water molecule from the coordination sphere of Cr(III) is very slow, probably involving a 

notably high activation energy: 

 

 [Cr(HY)(H2O)]       [Cr(Y)(H2O)]
-
  +  H

+ 
(27) 

 [Cr(Y)(H2O)]
-
   

very slow
    [Cr(Y)]

-
  +  H2O (28) 

 

Eq. (27) suggests that an increase in the pH should result in a higher contribution of the 

hexacoordinated complex. This prediction agrees with the results shown in Fig. 7 (bottom), 

showing that at high [KOH]o the value of Hth approaches the theoretical limit of 2. 

 

  

Applicability of the Kinetic Model 
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The procedure developed in this work for the treatment of the kinetic experimental data 

corresponding to the Cr(III)-EDTA reaction might prove useful for other complexation 

reactions involving as reactants aqua complexes of transition metal ions kinetically inert to 

substitution and different polydentate ligands. 
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Table I  Values of the Ratio of Molar Absorption Coefficients of the Long-Lived 

Intermediate and the Inorganic Reactant at 540 nm
a
 

___________________________________________________________________________ 

[Cr(III)]o [EDTA]o Q  E  

(10-3 M) (10-2 M)   (10-4)
 

 

___________________________________________________________________________ 

 1.47  7.84 1.11 ± 0.05 4.14 ± 0.01 

 2.94 7.84 1.00 ± 0.04 3.71 ± 0.10 

 4.41 7.84 0.95 ± 0.02 4.52 ± 0.49 

 5.88 3.92 0.95 ± 0.01 4.41 ± 0.59 

 5.88 4.90 0.94 ± 0.03 3.95 ± 0.23 

 5.88 5.88 0.92 ± 0.02 5.36 ± 1.14 

 5.88 6.86 1.00 ± 0.01 3.92 ± 0.60 

 5.88 7.84 0.98 ± 0.03 3.84 ± 0.14 

 5.88 8.82 0.97 ± 0.05 3.50 ± 0.05 

 5.88 9.80 0.96 ± 0.02 4.02 ± 0.07 

 7.35 7.84 0.98 ± 0.02 3.76 ± 0.06 

 8.82 7.84 0.98 ± 0.01 5.97 ± 0.36 

 10.3 7.84 1.00 ± 0.02 4.71 ± 0.54 

 11.8 7.84 0.98 ± 0.01 8.94 ± 1.75 

___________________________________________________________________________  

 a E is the average error of the calculated absorbances with respect to the experimental 

values.  Errors were calculated as one half of the range (2 determinations). Temperature: 25.0 

oC.   
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Table II  Kinetic Data at Various Initial Metal Ion Concentrations
a
 

___________________________________________________________________________ 

[Cr(III)]o k1 k2 Hkin
 E  

 

 (10-3 M) (10-3 s-1) (105 M-1 s-1)  (10-4) 

___________________________________________________________________________ 

 1.47  1.45 ± 0.10 2.95 ± 0.05 1.572 ± 0.126 4.27 ± 0.13 

 2.94 1.43 ± 0.03 2.67 ± 0.01 1.201 ± 0.007 3.76 ± 0.09 

 4.41 1.53 ± 0.02 2.43 ± 0.04 0.975 ± 0.058 4.61 ± 0.57 

 5.88 1.39 ± 0.03 2.32 ± 0.06 0.782 ± 0.004 4.01 ± 0.30 

 7.35 1.49 ± 0.02 2.00 ± 0.03 0.686 ± 0.003 3.88 ± 0.06 

 8.82 1.54 ± 0.01 1.85 ± 0.03 0.583 ± 0.014 6.04 ± 0.31 

 10.3 1.46 ± 0.02 1.79 ± 0.01 0.484 ± 0.002 4.72 ± 0.54 

 11.8 1.63 ± 0.03 1.74 ± 0.05 0.393 ± 0.011 9.10 ± 1.73 

___________________________________________________________________________ 

 
a k1 and k2 are the pseudo-rate constants, Hkin the number of hydrogen ions released per 

Cr(III)-EDTA complex formed (kinetic value) and E the average error of the calculated 

absorbances with respect to the experimental values. Errors were calculated as one half of the 

range (2 determinations). Experimental conditions:
 
[Na2EDTA]o = 7.84 10-2 M, 25.0 oC.   
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Table III  Kinetic Data at Various Initial Potassium Nitrate Concentrations
a
 

___________________________________________________________________________ 

[KNO3]o k1 k2 Hkin
 E  

 

 (M) (10-3 s-1) (105 M-1 s-1)  (10-4) 

___________________________________________________________________________ 

 0.000  1.39 ± 0.03 2.32 ± 0.06 0.782 ± 0.004 4.01 ± 0.30 

 0.006 1.42 ± 0.03 2.23 ± 0.09 0.828 ± 0.046 3.31 ± 0.70 

 0.012 1.46 ± 0.04 2.23 ± 0.01 0.815 ± 0.013 3.49 ± 0.18 

 0.118 1.35 ± 0.10 2.29 ± 0.14 0.875 ± 0.048 3.54 ± 0.12 

 0.235 1.29 ± 0.03 2.37 ± 0.08 0.923 ± 0.014 3.78 ± 0.32 

 0.353 1.17 ± 0.04 2.47 ± 0.12 0.960 ± 0.029 3.76 ± 0.15 

 0.471 1.10 ± 0.01 2.62 ± 0.04 1.032 ± 0.001 3.66 ± 0.24 

 0.588 1.11 ± 0.01 2.79 ± 0.05 1.057 ± 0.031 4.04 ± 0.42 

___________________________________________________________________________ 

 a k1 and k2 are the pseudo-rate constants, Hkin the number of hydrogen ions released per 

Cr(III)-EDTA complex formed (kinetic value) and E the average error of the calculated 

absorbances with respect to the experimental values. Errors were calculated as one half of the 

range (2 determinations). Experimental conditions:
 
[Cr(NO3)3]o = 5.8810

-3
 M, [Na2EDTA]o 

= 7.84 10-2 M, 25.0 oC.   
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Table IV  Effects of Various Organic Solvents on the Pseudo-Rate Constants
a
 

___________________________________________________________________________ 

Organic solvent slope (k1) slope (k2)    
 

  (M-1)  (M-1) 

___________________________________________________________________________ 

 Methanol  0.031 ± 0.006 0.089 ± 0.004   

 Ethylene glycol 0.122 ± 0.015 0.115 ± 0.012 

 Ethanol 0.124 ± 0.006 0.081 ± 0.009   

 1-Propanol 0.191 ± 0.019 0.067 ± 0.008  

 2-Propanol 0.211 ± 0.013 0.071 ± 0.008  

 Acetone 0.263 ± 0.016 0.083 ± 0.012  

 1-Butanol 0.351 ± 0.020 -0.113 ± 0.010  

___________________________________________________________________________ 

 
a 

The slopes correspond to the log (k1/k1,0) vs [organic solvent]o and log (k2/k2,0) vs 

[organic solvent]o linear plots. Errors were calculated as the statistical standard deviations of 

the slopes. Experimental conditions:
 
[Cr(NO3)3]o = 5.8810

-3
 M, [Na2EDTA]o = 3.92 10-2 

M, 25.0 oC.   
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Table V  Activation Parameters Associated to the Pseudo-Rate Constants
a
 

___________________________________________________________________________ 

Activation parameter k1 k2
  

 

___________________________________________________________________________ 

 ln A 29 ± 2  61 ± 1 

 Ea (kJ mol-1) 87 ± 4  120 ± 2 

 oH  (kJ mol-1) 84 ± 4  118 ± 2 

 oS  (J K
-1

 mol-1) -15 ± 15  252 ± 7 

___________________________________________________________________________ 

 
a 

The Arrhenius pre-exponential factors (A) are given in either s-1 (k1) or M-1 s-1 (k2). 

Errors associated to the activation parameters were calculated from the standard deviations for 

the intercept and slope of the Arrhenius and Eyring plots.
 
The activation entropies are referred 

to the 1 M standard state. Experimental conditions: [Cr(NO3)3]o = 5.8810
-3

 M, [Na2EDTA]o 

= 9.8010
-2

 M, 20.0  30.0 ºC. 
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Figure 1  Periodical scanning of the UV-Vis spectrum recorded at 32-min intervals (top) and  

absorbance at 445 nm as a function of the absorbance at 540 nm measured periodically at 4-

min intervals (bottom) during the course of the reaction at [Cr(NO3)3]o = 5.8810
-3

 M, 

[Na2EDTA]o = 8.8210
-2

 M and 25.0 ºC. The arrows show the progression of the reaction. 

The dashed line is the tangent to the curve at time zero.  
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Figure 2  Final absorbance at 540 nm (top) and pH (bottom) as a function of the initial metal 

ion concentration at [Na2EDTA]o = 7.8410
-2

 M and 25.0 ºC. The dashed line is the tangent 

to the curve at [Cr(III)]o = 0. 
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Figure 3  Absorbance at 540 nm as a function of time measured periodically at 4-min 

intervals during the course of the reaction (top) and attempted pseudo-first-order plot (bottom) 

at [Cr(NO3)3]o = 5.8810
-3

 M, [Na2EDTA]o = 9.8010
-2

 M and 25.0 ºC. 
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Figure 4  Reaction rate as a function of time (top) and double-logarithm plot of the reaction 

rate against the total concentration of limiting reactant and long-lived intermediate for the 

deceleration period (bottom) at [Cr(NO3)3]o = 5.8810
-3

 M, [Na2EDTA]o = 6.8610
-2

 M 

and 25.0 ºC. 
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Figure 5  Ratio between the calculated and experimental values of the absorbance at 540 nm 

as a function of time at 4-min intervals for the one rate-constant (bottom, E = 1.4310
-2

) and 

two rate-constant (top, E = 3.4510
-4

) kinetic models with [Cr(NO3)3]o = 5.8810
-3

 M, 

[Na2EDTA]o = 8.8210
-2

 M and 25.0 ºC. 
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Figure 6  Top: concentrations of three Cr(III) species [reactant (triangles), long-lived 

intermediate (circles) and product (squares)] according to the two rate-constant kinetic model 

as a function of time. Bottom: comparison between the experimental values of the reaction 

rate (triangles) and the calculated long-lived intermediate concentration (circles) as a function 

of time. [Cr(NO3)3]o = 5.8810
-3

 M, [Na2EDTA]o = 6.8610
-2

 M and 25.0 ºC. 
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Figure 7  Number of hydrogen ions released per Cr(III)-EDTA complex molecule formed at 

25.0 ºC as a function of the initial concentration of:  metal ion (top, [Na2EDTA]o = 7.8410
-2

 

M), organic ligand (middle, [Cr(NO3)3]o = 5.8810
-3

 M) and potassium hydroxide (bottom, 

[Cr(NO3)3]o = 5.8810
-3

 M and [Na2EDTA]o = 7.8410
-2

 M). Empty circles: kinetic values 

obtained from the fitting of the absorbance-time data by numerical simulations (Hkin). Filled 

circles: thermodynamic values obtained from the final pH measurements (Hth).  
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Figure 8  Absorbance at 540 nm as a function of time measured periodically at 5-min 

intervals during the course of the reaction at [Cr(NO3)3]o = 1.47, 4.41, 7.35 and 11.8 (from 

bottom to top)10
-3

 M, [Na2EDTA]o = 7.8410
-2

 M and 25.0 ºC. Squares: Experimental 

absorbances. Black points inside: Theoretical absorbances predicted by the two rate-constant 

kinetic model. 
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Figure 9  Dependences of the pseudo-rate constants k1 (top) and k2 (bottom) on the initial 

organic ligand concentration at [Cr(NO3)3]o = 5.8810
-3

 M, [Na2EDTA]o = 

(3.92 9.80)10
-2

 M and 25.0 ºC. 
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Figure 10  Dependences of the pseudo-rate constants k1 (top) and k2 (bottom) on the initial 

potassium hydroxide concentration at [Cr(NO3)3]o = 5.8810
-3

 M, [Na2EDTA]o = 7.8410
-2

 

M and 25.0 ºC. 



 

 46 

 

 

0.0 2.6
-0.10

0.05

-0.05

0.05

0.15

0.40

[Organic solvent]   / Mo

lo
g

 (
k 

  
/ 

k 
  

  
)

0.20

0.10

1.3

1

0.00

0.10

0.30

0.25

0.15

0.20

1
,o

lo
g

 (
k 

  
/ 

k 
  

  
)

2
2
,o

0.35

 

 

 

 

Figure 11  Dependences of the logarithms of the ratios of the pseudo-rate constants k1 (top) 

and k2 (bottom) in the presence and absence (k1,0 and k2,0) of added organic solvent on the 

initial concentrations of methanol (empty circles), ethylene glycol (filled circles), ethanol 

(empty triangles), 1-propanol (filled triangles), 2-propanol (empty squares), acetone (filled 

squares) and 1-butanol (rhombuses) at [Cr(NO3)3]o = 5.8810
-3

 M,  [Na2EDTA]o = 

3.9210
-2

 M and 25.0 ºC. 
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Figure 12  Dependence of the slope corresponding to the log (k1/k1,0) vs [organic solvent]o 

linear plot (k1,0 being the pseudo-rate constant in the absence of organic solvent) on the 

number of carbon atoms in the hydrocarbon chain. Solvents: methanol (empty circle), 

ethylene glycol (filled circle), ethanol (empty triangle), 1-propanol (filled triangle), 2-

propanol (empty square), acetone (filled square) and 1-butanol (rhombus). Experimental 

conditions: [Cr(NO3)3]o = 5.8810
-3

 M, [Na2EDTA]o = 3.9210
-2

 M and 25.0 ºC. 
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Figure 13  Arrhenius plots for the pseudo-rate constants k1 (top) and k2 (bottom) at 

[Cr(NO3)3]o = 5.8810
-3

 M, [Na2EDTA]o = 9.8010
-2

 M and 20.0 30.0 ºC. 


