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Abstract

Immunity to malaria is believed to wane with time in the absence of exposure to Plasmodium falciparum infection, but
immunoepidemiological data on longevity of immunity remain controversial. We quantified serum cytokines and
chemokines by suspension array technology as potential biomarkers for durability of immunity in immigrants with
clinical malaria after years without parasite exposure. These were compared to serum/plasma profiles in naïve adults
(travelers) and semi-immune adults under continuous exposure, with malaria, along with immigrant and traveler
patients without malaria. Immigrants had higher levels of IL-2, IL-5 and IL-8 compared to semi-immune adults with
malaria (P≤0.0200). Time since immigration correlated with increased IL-2 (rho=0.2738P=0.0495) and IFN-γ
(rho=0.3044P=0.0282). However, immigrants did not show as high IFN-γ concentrations as travelers during a first
malaria episode (P<0.0001). Immigrants and travelers with malaria had higher levels of IFN-γ, IL-6, and IL-10
(P<0.0100) than patients with other diseases, and IL-8 and IL-1β were elevated in immigrants with malaria
(P<0.0500). Therefore, malaria patients had a characteristic strong pro-inflammatory/Th1 signature. Upon loss of
exposure, control of pro-inflammatory responses and tolerance to P. falciparum appeared to be reduced.
Understanding the mechanisms to maintain non-pathogenic effector responses is important to develop new malaria
control strategies.
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Introduction

Plasmodium falciparum infection still causes millions of
malaria cases and deaths worldwide, mainly in sub-Saharan
Africa [1]. The complex nature of the parasite and the lack of
immune correlates of protection are impairing the development
of a vaccine against malaria. In addition, the understanding of
the mechanisms of induction and maintenance of
immunological memory is very limited. Epidemiological data
show that age and repetitive P. falciparum infections are key
factors in naturally acquired immunity to malaria. Immunity to
severe clinical symptoms and later to clinical malaria is

achieved quite rapidly after few infections. However, immunity
to parasitemia develops only after repeated infections over a
number of years, it is not sterile and thus asymptomatic
infections may exist throughout life [2].

Mechanisms of immunity to malaria are complex and include
antibody and cellular responses that are required for both anti-
parasitic and clinical immunity [3,4]. Cellular immune
responses involved in immunity include (i) interferon (IFN)-γ
and tumor necrosis factor (TNF) producing CD8+ T cells that
inhibit parasite development and destroy infected hepatocytes,
(ii) IFN-γ and memory CD4+ T cells that activate macrophages
to phagocyte parasitized erythrocytes and merozoites, and (iii)
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regulatory T cells that control pathogenesis [4]. Despite the
identification of these responses and several antigens
putatively involved in protection, there is no biomarker that has
reliably been shown to correlate with immunity. However,
cytokines could be considered biomarkers of immunity and/or
disease progression due to their prognostic role [5–7].
Cytokines and chemokines mediate cellular immune responses
and they are responsible for the symptoms and pathological
alterations during malaria disease. In fact, the outcome of the
infection depends on the regulation of pro-inflammatory and
anti-inflammatory immune responses, leading to protection or
immunopathology [8].

It is commonly believed that anti-malarial immunity is short-
lived and that continuous exposure to parasite antigens is
needed to maintain it. In this line, it has been observed that
severe disease and pro-inflammatory responses might not be
less common among immigrants than among individuals who
have not been previously exposed to malaria [9]. However,
most clinical evidence indicate that after several years without
exposure to P. falciparum infection, immigrants still maintain
some immunity to clinical malaria, and their disease episodes
are characteristically milder compared to naïve travelers with
malaria [10–16]. Importantly, malaria epidemiology studies in
areas of low and unstable transmission, such as South Africa
and Madagascar, have shown that prior exposure, even
several decades before, had a significant protective effect
much later in life [17–19], suggesting persistence of
immunological memory in the absence of re-infection.
Therefore, it seems likely that people exposed to malaria do
accumulate cellular immune memory, but few studies have
investigated Plasmodium-specific cellular memory immune
responses in malaria-exposed people. Remarkably, it was
recently shown that antigen-specific IFN-γ and IL-2 T cell
responses, as well as γδ T cells, can remain undiminished up
to 14 months after a single P. falciparum experimental infection
[20]. Under natural exposure conditions, IFN-γ CD4+ T cell
responses to P. falciparum appeared to be short-lived (half-life
of 3.3 years) in areas of unstable malaria transmission,
whereas IL-10 CD4+ T cells did not appear to decline for 6
years [21]. In another study, regulatory T cells circulating
during acute malaria episode almost exclusively expressed an
activated memory phenotype suggesting that they expanded
from a pre-existing pool of memory T-cells [22].

In this study, we aimed to identify peripheral cytokines and
chemokines during a malaria episode as potential biomarkers
for maintenance or loss of immunity after an extended
cessation of exposure to P. falciparum. We recruited African
immigrants living in Spain for an average 7 years returning
from a malaria endemic area with a malaria episode. Cytokine
and chemokine serum levels on admission were compared with
those of naïve travelers with a first clinical malaria episode, and
semi-immune adults from a malaria endemic area of
Mozambique presenting to hospital with clinical malaria.
Results provide insights into immune responses that might be
key for the induction and maintenance of immunity to clinical
malaria in relation to history of exposure to P. falciparum and
could help in the identification of cytokine/chemokine prognosis
markers.

Methods

Ethics Statement
Written informed consent was obtained from participants

before sample collection. Approval for the protocols was
obtained from the Hospital Clínic of Barcelona Ethics Review
Committee and the National Mozambican Ethics Review
Committee. Parasitemic individuals were treated according to
standard national guidelines at the time of the studies. The
antimalarial drug regimen used to treat patients in Spain was
Malarone (atovaquone/proguanil) or quinine plus doxycycline if
intravenous treatment was needed and in Mozambique the
treatment was artesunate plus sulphadoxine-pyrimethamine.

Study design, subjects and sample collection
Patients attending the Tropical Medicine Units at Hospital

Clínic de Barcelona (Barcelona, Spain), Hospital Arnau de
Vilanova (Lleida, Spain) and Hospital Santa Caterina de Salt
(Girona, Spain) between 2005 and 2009 were invited to
participate. Sick volunteers enrolled in the study were African
adults residing in Spain (immigrants, n=55) and adults from
non-African origin without previous episodes of malaria
(travelers, n=22) [23] who had been diagnosed with P.
falciparum malaria after traveling to an African country. Malaria
was defined by the presence of P. falciparum on Giemsa-
stained blood smears detected by light microscopy together
with fever and other clinical signs of malaria. Parasitemia in
blood was assessed by thin blood smears by examining 10 to
100 high power fields and counting from 1,000 erythrocytes up
to 10,000 erythrocytes depending on the parasite numbers,
and expressed as the percentage of parasitized erythrocytes.
In addition, 38 immigrants or travelers attending the Tropical
Medicine Units presenting with other diseases but without
malaria were also recruited (Table 1). Most of them had a
febrile syndrome or traveler diarrhea, but also giardiasis,
katayama syndrome, mononucleosis syndrome EBV,
pneumonia, pruritus eczema, anxiety disorder, appendicitis,
dermatitis, toxic syndrome, viral infection, ketoacidosis,
diabetes, headache, spontaneous abortion, bacterial lung
abscess, HIV infection were diagnosed. Blood samples from
acute malaria episodes (day 0) and at convalescence after
malaria treatment (days 7 and 28) and blood samples from
non-malaria patients were collected by venipuncture into one
vacutainer without anticoagulant for serum cryopreservation at
-80° C. Clinical and demographical data were recorded in
standardized questionnaires. Data on cytokine levels in serum
from travelers have been previously published [23], but are re-
analysed here for comparison to the immigrant group.

Additionally, 90 semi-immune adults with life-long exposure
to P. falciparum were recruited in the context of a hospital-
based study conducted at the Centro de Investigaçao em
Saúde de Manhiça (Manhiça, Mozambique), where malaria
transmission is perennial, with some seasonality and of
moderate intensity. Non-pregnant women and men patients
attending the Manhiça District Hospital with a diagnosis of P.
falciparum clinical malaria in 2006 were enrolled into the study
[24]. Clinical malaria was defined as the presence of asexual P.
falciparum parasites on blood smears, together with fever.

Cytokine Profiling in Immigrants with Malaria
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Blood slides were read to quantify parasitemia following
standard quality-controlled procedures at the CISM laboratory.
Blood films were Giemsa-stained, and examined using a light
microscope. Parasite density was assessed by counting the
number of asexual stage parasites until 500 leukocytes or

parasites had been counted. Slides were declared negative
only after 2,000 leukocytes had been counted. Parasite
numbers were converted to a count/mL by assuming a
standard leukocyte count of 8,000/mL. All sides were read by
two independent microscopists and a third reading was

Table 1. Description of study participants.

 Immigrants Travelers Semi-Immunes

Characteristics Malaria No Malaria Malaria No malaria Malaria

N      

Day 0 55 17 22 21 90

Day 7 31 na 14 na na

Day 28 11 na 6 na na

Age, median IQR (years)d 34 (29,43) 36 (30,44) 31 (28,38) 31 (28,38) 26 (19,36)

Sexe, n (%)      

Males 40 (72.7) 7 (41.18) 15 (75) 9 (42.86) 52 (53)

Origin area, n (%)      

Europe 0 (0) 0 (0) 17 (85) 21 (100) 0 (0)

Africa 54 (100) 17 (100) 0 (0) 0 (0) 90 (100)

Others 0 (0) 0 (0) 3 (15) 0 (0) 0 (0)

Time since immigration, median IQR (years) 7 (5,14) 4 (1,8) na na na

Number of returns, n (%)      

0 5 (9.6) 6 (42.86) na na na

1-2 11 (21.2) 2 (14.29) na na na

3-4 26 (50) 3 (21.43) na na na

>5 10 (19.2) 3 (21.43) na na na

Parasitemia by microscopy      

median IQR (%)f 0.4 (0.02; 1.5) na 0.075 (0.01;0.8) na nd

median IQR (parasites/μl) nd na nd na 35379 (14338; 61176)

Symptoms, n (%)      

Fever na 7 (41.18) na 12 (57.14) na

Nauseas, epigastralgia na 3 (17.65) na 2 (9.52) na

Discomfort, arthralgia, anxiety na 3 (17.65) na 1 (4.76) na

Respiratory infection na 1 (5.88) na 1 (4.76) na

Cough na 1 (5.88) na 0 (0) na

Ketoacidosis na 1 (5.88) na 0 (0) na

Lung abscess na 1 (5.88) na 0 (0) na

Diarrhea n (%) na 0 (0) na 4 (19.05) na

Skin lesion na 0 (0) na 1 (4.76) na

Abbreviations: na, not applicable; nd, not determined; IQR, Interquartile range
a Immigrants returned from visiting their countries of origin: Cameroon (n=3, 5.5%), Ghana (n=8, 14.6%), Guinea-Conakry (n=4, 7.3%), Equatorial Guinea (n=12, 21.8%),
Gambia (n=8, 4.6%), Mali (n= 4, 7.3%), Mauritania (n=1, 1.8%), Mozambique (n=1, 1.8%), Nigeria (n=6, 10.9%) and Senegal (n=7, 12.7%). Data was missing for one
immigrant.
b Immigrants without malaria were from Benin (n=1, 5.9%), Burkina Faso (n=2, 11.8%), Guinea-Conakry (n=2, 11.8%), Equatorial Guinea (n=2, 11.8%), Gambia (n=1, 5.9%),
Kenya (n=1, 5.9%), Mali (n=3, 17.7%), Mauritania (n=1, 5.9%), Mozambique (n=1, 5.9%), Nigeria (n=1, 5.9%), Senegal (n=1, 5.9%) and Sudan (n=1, 5.9%).
c Travelers came from Burkina Faso & Mali & Senegal (n=1, 5.0%), Burkina Faso (n=3, 15.0%), Burkina Faso & Mali & Ghana & Togo (n=1, 5.0%), Ivory Coast (n=1, 5.0%),
Guinea-Conakry (n=1, 5.0%), Equatorial Guinea (n=3, 15.0%), Gambia & Senegal (n=1, 5.0%), Madagascar (n=1, 5.0%), Mali (n=1, 5.0%), Mozambique (n=2, 10.0%),
Mozambique & South Africa (n=1, 5.0%), Senegal (n=3, 15.0%) and Sierra Leone & Senegal (n=1, 5.0%). Data was missing for two travelers.
d P=0.0001 Kruskal Wallis test.
e P=0.0140 χ2 test.
f P=0.0890 Mann-Whitney test.
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performed if there was discrepancy in positivity or the ratio of
densities from the two readings was more than 1.5 or the
absolute difference was 10 parasites/mL. Blood samples were
collected by venipuncture into heparinized vacutainers and
plasma samples cryopreserved at -80° C.

Cytokine and chemokine levels
Concentrations (pg/mL) of interleukin (IL)-12p70, IL-2, IFN-γ,

IL-4, IL-5, IL-10, IL-8, IL-6, IL-1β, TNF and TNF-β in plasma
and serum were measured using a commercial multiplex
suspension array kit (Human Th1/Th2 11plex FlowCytomix kit,
Bender MedSystems, Austria) and flow cytometry. This kit was
chosen after comparison of several commercial kits to measure
cytokine responses to P. falciparum [25]. Twenty-five µL of
plasma or serum were tested following manufacturer’s
instructions and one positive control was used in each plate for
qualitative evaluation of the assay performance. Mean
fluorescence intensity (MFI) from microspheres was acquired
with a BD FACSCanto II and analyzed in FlowCytomix Pro2.2.1
software (Bender MedSystems). A 7-point dilution standard
curve supplied by the manufacturer was performed in
duplicates in each assay, and concentration of each analyte
was obtained by interpolating MFI to a 5-parameter logistic
regression curve automatically calculated by the FlowCytomix
software for each analyte. Any value below the limits of
detection was given a value of half the detection limit for that
cytokine or chemokine.

Statistical methods
Categorical variables were presented as frequencies or

percentages, and their comparison between patient groups
was done using chi-square test or Fisher’s exact test. For non-
normally distributed continuous variables, medians and
interquartile ranges (IRQ) were shown and their comparison
between groups was done using the non-parametric Kruskal
Wallis test or the Mann–Whitney U test. TNF-β was excluded
from the statistical analysis since concentration in most
samples was below the limit of detection (14/267 [5.24%]) as
we have observed before in previous studies [8,23].
Correlations within groups were assessed by Spearman’s rank
coefficient. P-values <0.05 were considered statistically
significant. Although Bonferoni tests were performed, crude p
values reported in this exploratory study were not adjusted for
multiple comparisons and were interpreted for internal
coherence, consistency of results and biological plausibility. All
data collected were analyzed using Stata version 11.0 (Stata
Corporation, College Station, TX, USA).

Results

Description of participants
Table 1 shows the characteristics of the study participants.

Age was lower in semi-immune adults compared to immigrants
and travelers (P>0.0001) and there were more males in the
immigrant and traveler groups with malaria than in the other
groups (P=0.0140). Immigrants were original of different
African countries and most of the travelers were from Europe.

Visiting countries were very heterogeneous among immigrants
and travelers. Immigrants returned from visiting their countries
of origin. Immigrants with malaria had lived for a median of 7
years in Spain and 9.6% had never returned to their original
country before, 21.1% had returned 1 to 2 times, 50% 3 to 4
times and 19.2% had returned more than 5 times. Immigrants
without malaria had a different time since immigration, but this
difference was not statistically significant. No significant
differences were detected in parasitemias between immigrants
and travelers (Table 1).

Differential cytokine profiling in immigrants compared
to semi-immune adults

Immigrants showed a different cytokine profile than semi-
immune adults during an acute malaria episode (Figure 1).
Immigrants had significantly higher serum IL-2 (median [IQR] of
14.74 [8.20; 22.97] pg/mL), IL-5 (0.80 [0.80; 2.87] pg/mL) and
IL-8 (52.2 [32.72; 114.69]) pg/mL levels compared to plasma
levels in semi-immune adults (8.20 [8.20; 8.20] pg/mL,
P=0.0001; 0.80 [0.80; 0.80] pg/mL, P=0.0187; and 32.32
[14.69; 51.61] pg/mL, P=0.0200, respectively). However, only
IL-2 differences remained statistically significant after applying
a correction test for multiple comparisons.

To determine the effect of time since immigration on the
cytokine responses in a malaria acute episode, Spearman
correlation coefficients were calculated for cytokines and years
since immigration (Figure 2). IFN-γ and IL-2 correlated
positively with time since immigration.

Differential cytokine profiling in immigrants compared
to naïve travelers

Cytokine and chemokine serum levels were measured in all
immigrants and travelers during the acute malaria episode and
in a subset of patients during convalescence (31 immigrants
and 14 travelers at day 7; 11 immigrants and 6 travelers at day
28; Figure 3). Immigrants had lower concentrations of IFN-γ in
an acute episode of malaria (median [IQR] of 12.1 [6.11; 32.88]
pg/mL) and at day 7 of convalescence (7.97 [2.09: 23.78]
pg/mL) compared to naïve adults with a first episode of malaria
(584.535 [77.17; 1446.56] pg/mL, P<0.0001; and 23.23 [14.38;
259.39] pg/mL, respectively, P=0.0334). Immigrants also had
higher levels of IL-10 at day 28 of convalescence (7.74 [0.95;
10.25] pg/mL) compared to naïve adults (0.95 [0.95: 0.95]
pg/mL, P=0.0090). However, only differences in IFN-γ levels
remained statistically significant after correcting for multiple
comparisons.

To evaluate the magnitude of the cytokine/chemokine
responses as well as its kinetics from acute to convalescent
phases, ratios of cytokine/chemokine concentrations between
days 0, 7 and 28 were calculated. Day 0 to day 7 ratios of IL-4
and IL-1β were significantly higher in immigrants compared to
travelers (P=0.0023 and P=0.0084, respectively). In
immigrants, there was also a trend to have higher ratio of IL-12
(P=0.0513) and TNF (P=0.0684), and lower ratio of IFN-γ
(P=0.0954). There were no differences in day 0 to day 28 ratios
(data not shown).

Cytokine Profiling in Immigrants with Malaria
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Figure 1.  Effect of loss of exposure on cytokine responses in immigrants compared to semi-immune individuals, all with a
malaria acute episode.  Cytokines and chemokines were measured in serum from immigrants and plasma from semi-immune
adults by a multiplex suspension array kit and flow cytometry. The boxplots illustrate the medians and the 25th and 75th quartile and
the whiskers represent the 10% and 90% percentiles. Outliers are marked with circles. A Mann Whitney U test was performed for
each comparison, and significant P values (P<0.05) are shown.
doi: 10.1371/journal.pone.0073360.g001
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Cytokine and chemokine responses correlating with
parasite densities

IL-10 and IL-6 levels correlated positively with parasitemias
in immigrants and travelers (Table 2). Levels of IL-8 only
correlated with parasitemia in travelers, and IL-1β in
immigrants. None of the cytokines/chemokine tested correlated
with parasite density in semi-immune adults.

Cytokine/chemokine concentrations did not show any
correlation with age or any association with the area of birth or
with the travel destination where immigrants and travelers
became infected (data not shown). Also, there were no
correlations among cytokines/chemokines and antibody
responses to P. falciparum antigens [26] in these patients (data
not shown).

Cytokine and chemokine profiles during clinical malaria
episodes

Patients presenting to the Tropical Medicine Units with an
acute malaria episode showed a different cytokine/chemokine
profile than patients presenting with other symptoms (Table 1).
Travelers and immigrants with clinical malaria had an overall
stronger cytokine/chemokine response (Figure 4). IFN-γ levels
were higher in travelers (median [IQR] of 584.535 [77.17;
1446.56] pg/mL) and immigrants (12.1 [6.11; 32.88] pg/mL)
with malaria, compared to individuals with other diseases (24.3
[5.88; 113.11] pg/mL, P=0.0003 and 5.64 [2.81; 8.43] pg/mL,
P=0.0069, respectively). IL-6 levels were also higher in
travelers (13.085 [8.17; 27.69] pg/mL) and immigrants (10.59
[5.65; 43.1] pg/mL) with malaria than in patients without malaria
(5.26 [0.6; 6.61] pg/mL, P=0.0003 and 4.98 [0.6; 7.8] pg/mL,
P<0.0001, respectively). Travelers and immigrants with malaria
also had higher levels of IL-10 (325.68 [52.71; 740.19] pg/mL
and 210.1 [65.55, 1277.3] pg/mL, respectively) compared to
individuals with other diseases (7.7 [0.95, 11.47] pg/mL, 325.68

[52.71, 740.19] pg/mL, respectively, P<0.0001). IL-8 and IL-1β
were higher only in immigrants with malaria (52.45 [30.33;
100.25] pg/mL and 2.1 [2.1; 3.7] pg/mL, respectively)
compared to immigrants with other diseases (37.86 [14.81;
48.08] pg/mL, P=0.0218 and 2.1 [2.1; 2.1] pg/mL, P=0.0377,
respectively).

Discussion

Estimating duration of immune memory against clinical
malaria in malaria-endemic populations is complicated due to
re-exposure and boosting. Migrants moving from malaria
endemic to non-endemic areas offer a good opportunity to
study persistence of immunity and associated immune
markers. This study was conducted in immigrants presenting
with clinical malaria after returning from endemic areas, to
assess how the loss of exposure affected their acute and
convalescent peripheral blood cellular immune responses.

First, when cytokine/chemokine blood levels in immigrants
were compared to those in semi-immune individuals, both with
clinical malaria, a different profile was observed. Loss of
exposure was associated with increased levels of IL-2, IFN-γ,
IL-8 and IL-5. In particular, immigrants showed higher serum
concentrations of IL-2, IL-8 and IL-5 in acute malaria compared
to semi-immune adults, although only IL-2 and IFN-γ showed to
be dependent on time since migration. It is possible that recent
visits to endemic countries or the total number of returns (69%
of immigrants had returned at least 3 times) may have
represented some malaria re-exposure that could have diluted
the effect of time since immigration. The fact that cytokines/
chemokine were measured in serum in immigrants and in
plasma in semi-immune adults may have introduced certain
error as it has been described that measurements may differ,
depending on the cytokine, if the matrix plasma or serum

Figure 2.  Effect of time of immigration on IL-2 and IFN-γ serum concentrations.  Cytokine concentrations in serum from
immigrants were measured by multiplex suspension array kit and flow cytometry and correlated with time of immigration. Only
significant correlations are shown. Correlations were performed using Spearman’s test, n=52.
doi: 10.1371/journal.pone.0073360.g002
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[27,28], but we do not think that it affected significantly our
results.

Second, when compared with naïve adults presenting a first
malaria episode, immigrants with malaria had lower levels of

Figure 3.  Effect of loss of exposure on cytokine responses in immigrants compared to naïve individuals, all with a malaria
episode.  Serum cytokine and chemokine concentrations in immigrants and travelers at different time-points during and after a
malaria episode: during an acute malaria episode (day 0, black boxes) and at convalescence (day 7 dark grey, day 28 light grey).
Data are presented as boxplots that illustrate the medians and the 25th and 75th quartile and the whiskers represent the 10% and
90% percentiles. Outliers are marked with circles. A Mann Whitney U test was performed for each comparison, and significant P
values (P<0.05) are shown.
doi: 10.1371/journal.pone.0073360.g003
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IFN-γ, suggesting that even if there was a decline in cellular
immunity this loss was not complete. In this line, we had
previously observed that this group of travelers had higher
levels of IFN- γ compared to malaria-exposed individuals (after
few or continuous exposure) [23]. Nevertheless, similar
parasitemias were observed in immigrants and travelers
suggesting that there are no differences in parasite-controlling
immunity, but rather in the cellular responses controlling
disease. This is consistent with our clinical observations that
indicate a certain maintenance of protective immunity in
immigrants, despite some loss of responses upon cessation of
malaria exposure [14,15].

The cytokines/chemokine measured come from peripheral
blood cells as well as from endothelial cells [29] and site
specific responses may not be reflected. IFN-γ is produced by
natural killer (NK) cells, γδ-T cells, CD8+ T cells and TH1 CD4+T
cells. IL-2 is mainly produced by T cells and reflects a strong
cellular activation and proliferation. IL-2 stimulates NK
differentiation and proliferation as well as B cell production of
immunoglobulins. IL-8 is an important chemokine mediator of
inflammation produced mainly by macrophages and endothelial
cells, which recruits innate cells such macrophages,
granulocytes and stimulates phagocytosis. IL-5 is produced by
TH2 CD4+ T cells, but also eosinophils and mast cells and is
involved in eosinophil activation, B cell growth and
immunoglobulin secretion. Therefore, all these cytokines/
chemokine are probably (mostly) reflecting a strong innate
immune activation, although this should be demonstrated with
data of cytokine producing cells. Not all patients were febrile at
the time of day 0 serum sampling, although most of the
patients had a history of fever during the previous days. This is
of importance as some cytokines such IL-6, TNF, and IL-1β,
considered pyrogens [30,31], may fluctuate with fever, so we
are probably detecting lower levels of these proinflammatory
cytokines. This would explain why our patients had such low
levels of IL-1β and TNF compared to other studies [32].
Nevertheless, immigrants and travelers with malaria had higher
IFN-γ, IL-6 and IL-10 compared to those without malaria.
Similar findings have been previously shown in other studies
[32–34] and excessive production of pro-inflammatory
cytokines such as IL-6 has been associated to severe malaria
[8,33] as well as high levels of IL-10 [32,33], although specific
patterns of cytokines have been found to vary depending on
the different clinical presentations of severe malaria [32,33].

We wanted to explore if parasitemia or parasite density was
directly affecting the production of cytokines. There were no

Table 2. Relevant Spearman correlations of parasitemia or
parasite density with serum or plasma cytokine/
chemokines.

 Immigrants Semi-Immunes Travelers

Cytokines rho P rho P rho P
IL-10 0.4760 0.0004 0.1064 0.3182 0.6324 0.0028

IL-8 0.1876 0.1875 -0.0451 0.6731 0.5061 0.0228

IL-6 0.2772 0.0489 0.0740 0.4880 0.7277 0.0003

IL-1β 0.2819 0.0451 -0.0441 0.6797 0.4873 0.4873

significant differences in parasitemia between immigrants and
travelers, but parasite density data could not be compared with
those of semi-immune people due to different slide reading
methods. The assessment of correlations between each of the
cytokines/chemokine and parasitemia showed that IL-2 and
IFN-γ levels were independent from parasitemias, suggesting
that other mechanisms could play a role in regulating those TH1
cytokines. Furthermore, IL-10 and IL-6 positively correlated
with parasitemia in immigrants and travelers, whereas IL-1β
only correlated with parasitemia in immigrants, and IL-8 only in
travelers. Of note, semi-immune individuals did not show any
correlation between cytokine/chemokine concentrations and
parasite density. This may reflect a better capacity to regulate
or mitigate the immune pro-inflammatory response induced in
an acute infection, probably through mechanisms of tolerance
that could result in milder malaria [35].

Data about the persistence of protective immune responses
is controversial and may depend on the antigen and the
immune response assessed [20,21,36–38]. In our study, we
found increased serum cytokines/chemokine associated with
loss of exposure, reflecting a more prominent TH1 and pro-
inflammatory cellular response, characteristic of non-immune
patients with malaria compared with patients with other
diseases. This is in line with what might be expected with
increasing time since last malaria exposure: a shift in the
cytokine/chemokine balance from an anti-inflammatory
response towards a more pro-inflammatory response, reflecting
a loss of malaria tolerance [35]. Thus, immune responses that
limit appearance of clinical symptoms may be lost more easily
(e.g. potentially related to rapid decay of antibodies against
glycosylphophatidylinositol after leaving an endemic area
[39,40]) than for example, immune responses controlling
parasite density. This would explain that previously immune
patients appear to make strong inflammatory responses to
rather low numbers of parasites, feeling ill but recovering
rapidly, and with lower risk of developing severe malaria or
dying compared to travelers [10,11]. However, the elevated
IFN-γ response in immigrants does not seem consistent with
the reported protective role of this cytokine [41], and the
relatively short half-life of IFN-γ effector CD4+ T cells described
recently in an area of low transmission in Thailand [21].
Nevertheless, the Thai study measured CD4+ T cell memory
responses, whereas the IFN-γ concentration in plasma may
come from other cell types, reflecting a predominantly innate
response rather than an acquired one.

A limitation of this study could be that immigrants and naïve
adults were originally from very diverse countries (African or
European), whereas semi-immune adults were from a unique
African endemic area (Mozambique); thus, this could add
genetic or environmental confounding factors. However, the
immune response in clinical malaria is so pro-inflammatory
compared to other diseases that it probably overcomes these
limitations.

In summary, immigrants returning from endemic areas with
malaria had higher serum concentrations for some cytokines/
chemokines (IL-2, IL-5, IL-8) compared to semi-immune adults
with malaria, suggesting that this profile is associated with a
partial loss of immunity. Time since immigration, and therefore,
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loss of exposure, correlated with increased TH1 cytokines IL-2
and IFN-γ. However, immigrants did not show as high IFN- γ
response as naïve adults in a first malaria episode, reflecting
some persistence of responses associated with semi-immune
individuals. Taken together, these observations may imply that

immune mechanisms involved in malaria tolerance may be lost,
explaining why previously immune patients appear to make
strong inflammatory responses to clinical malaria. In addition
data point out to immune responses that need further study to

Figure 4.  Serum cytokine and chemokine profiles in patients with malaria or with other diseases.  Cytokines and
chemokines were measured in serum of immigrants and travelers with malaria (dark grey boxes) and in serum of immigrants and
travelers with other diseases (light grey boxes). Data are presented as boxplots that illustrate the medians and the 25th and 75th

quartile. Whiskers represent the 10% and 90% percentiles and outliers are marked with circles. A Mann Whitney U test was
performed to compare groups with malaria with groups with other diseases, and significant P values (P<0.05) are shown.
doi: 10.1371/journal.pone.0073360.g004
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develop strategies to induce or potentiate immunity to clinical
malaria.
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