
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

RRRRYear : 2017 

Exploring the Role of White Matter Connectivity in Cortex 
Maturation 

Friedrichs-Maeder Cecilia 

Friedrichs-Maeder Cecilia, 2017, Exploring the Role of White Matter Connectivity in Cortex 
Maturation 

Originally published at : Thesis, University of Lausanne 

Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_3B8D547CB8972 

Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 

Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/


UNIVERSITE DE LAUSANNE - FACULTE DE BIOLOGIE ET DE MEDECINE 

Département de radiologie médicale 
Service de radiodiagnostic et radiologie interventionnelle 

Exploring the Role of White Matter Connectivity in Cortex Maturation 

THESE 

préparée sous la direction du Professeur Patric Hagmann 

et présentée à la Faculté de biologie et de médecine de 
l’Université de Lausanne pour l’obtention du grade de 

DOCTEUR EN MEDECINE 

par 

Cecilia FRIEDRICHS-MAEDER 

Médecin diplômée de la Confédération Suisse 
Originaire de Büchslen (FR), Lurtigen (FR) 

Lausanne 

2017





 
Résumé 

 
 
 
De nombreuses études ont mis en évidence un processus de maturation séquentiel pour 
différentes régions cérébrales, notamment la matière grise corticale et ses connections de 
matière blanche (WM). Cependant, les mécanismes à l’origine du processus de maturation 
cérébrale, ainsi que la relation entre la maturation des ces deux structures demeurent mal 
compris. Dans cette étude, nous utilisons l’imagerie par résonance magnétique (IRM) pour 
obtenir simultanément des informations reflétant la maturation microstructurelle des 
différentes structures cérébrales, ainsi que la mise en place des connections de matière 
blanche durant le développement précoce. Pour ce faire, nous employons deux mesures 
d’IRM bien établies reflétant les changements microstructurels liés à la maturation, soit le 
coefficient de diffusion apparent (ADC) et le temps de relaxation T (T1), ainsi que des 
algorithmes mathématiques permettant de reconstruire les groupes d’axones reliant 
différentes régions de matière grise (connectome).  
Ce travail démontre une interdépendance entre la maturation des structures de matière grise 
corticale et le développement de l’arbre connectionel de matière blanche sous-jacent. En 
effet, nous mettons en évidence un degré de maturation analogue entre les régions 
corticales, ainsi que les groupes de fibres axonales associées durant les stades précoces de 
la maturation. Un tel lien est également observé entre deux régions corticales reliées par un 
groupe de fibres. 
Sur la base de ces observations, cette étude propose un modèle mathématique et 
informatique simple parlant pour un rôle clé des structures de matière blanche dans le relai 
des signaux maturationnels depuis un stimuli externe via les structures primaires 
sensorielles et atteignant finalement les structures cérébrales corticales d’ordre plus 
complexes.  
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Abstract

The maturation of the cortical gray matter (GM) and white matter (WM) are described as

sequential processes following multiple, but distinct rules. However, neither the mecha-

nisms driving brain maturation processes, nor the relationship between GM and WM matu-

ration are well understood. Here we use connectomics and two MRI measures reflecting

maturation related changes in cerebral microstructure, namely the Apparent Diffusion Coef-

ficient (ADC) and the T1 relaxation time (T1), to study brain development. We report that the

advancement of GM and WM maturation are inter-related and depend on the underlying

brain connectivity architecture. Particularly, GM regions and their incident WM connections

show corresponding maturation levels, which is also observed for GM regions connected

through a WM tract. Based on these observations, we propose a simple computational

model supporting a key role for the connectome in propagating maturation signals sequen-

tially from external stimuli, through primary sensory structures to higher order functional

cortices.

Introduction

Although most of its cellular components are formed by mid-gestation, the human brain con-
tinues to mature into postnatal life [1,2]. This reflects the development of the organized struc-
tural connectivity network, which is at the basis of neural processing [3], for a review). These
maturation processes consist of myelination of both white (WM) and gray matter (GM), but
also of dendritic arborization, growth of terminal axon arborization and synaptic pruning in
the cortex. Adequate completion of this developmental phase is crucial as insults during this
period result in impaired neurodevelopmental outcome [4].

Distinct sequential patterns of GM and WM maturation are described. Cortical GM matu-
ration is related to the development of brain functions. Evidence shows that primary sensory
and motor areas differentiate [5,6] and reach mature dendritic structure [7,8], adequate intra-
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cortical myelination [9,10] and mature macroscopic architecture [11] before higher-order pro-
cessing areas such as fronto-parietal cortices. WM axonal maturation mainly follows a spatial
gradient, with myelination beginning in central and caudal areas and progressing towards
polar and rostral locations [12–15].

Evidence from histology and in vivo imaging studies suggests that a relationship exists
between the maturation of axonal WM connections and local GM structural features (e.g.,
emergence of gyri and sulci) [16–18]. Moreover, the WM maturation level of distinct func-
tional circuits was related to corresponding functional scores, such as performance in working
memory [19] and language-related tasks [20]. Nonetheless, so far, the large-scale mechanisms
driving the brain maturation patterns, and the relationship between the development of GM
and WM structures, remain unclear.

While early patterns of neural cell differentiation and axonal guidance are mainly driven by
genetic molecular cues [21], refinement and maturation of the produced coarse neural circuits
including synaptic, axonal and dendritic outgrowth and pruning also depend on neural activ-
ity [22]. This early electrical activity is spontaneous during early development and progres-
sively becomes experience-driven during the postnatal period [23]. Starting from the last
trimester of pregnancy [24], it acts in synergy with molecular cues [25] and is fundamentally
important as it provides trophic support for neuronal survival and endogenous guidance for
activity dependent wiring [26–28]. Recent studies outlined a key role of action potentials for
promoting myelination [29,30]. Animal studies provide evidence that early feed-forward sen-
sory experience plays a key role in shaping local GM structure [31,32] and excitatory/inhibi-
tory network architecture [33–35]. Altogether, these findings suggest that WM connections
relay essential signals involved in cerebral plasticity and development. Accordingly, the propa-
gation of nervous signals from one cortical area to the next through WM tracts could promote
maturation of both the GM and the outgoing WM connections, and ultimately contribute to
define the overall spatio-temporal patterns of brain maturation.

From these considerations, we make a simplifying hypothesis that: (i) WM axonal pathways
play a key role in shaping maturation of cortical structures, and (ii) maturation propagates in a
feed-forward fashion originating from primary cortical sensory areas, whose activations are
initially spontaneous and later on driven by external sensory inputs, and spreading through
the WM network toward higher-order processing areas over time.

Recently developed MRI sequences sensitive to microstructural changes in the cerebral cor-
tex and the WM (diffusion tensor, T1-mapping) have emerged as sensitive assays to study
developmental related changes in human brain [36–40]. Our study is designed in two parts.
First, we use two of these measures, namely the Apparent Diffusion Coefficient (ADC) and the
T1 relaxation time (T1). We then extensively compare these parameters within GM regions
and within their incident WM axonal tracts. In the second part, we propose a computational
model of brain maturation based on a random walk process, which reproduces empirical mea-
sures of cortical and WM maturation, and supports the hypothesis that the WM connectivity
network plays a key role in conveying biological signals essential for brain maturation.

Materials and methods

Subjects

Neonatal scans from 9 very prematurely born infants (4 males, mean gestational age: 27.3
weeks ± 1.0 day) acquired at term equivalent age (TEA, mean age at scan 41.0 weeks ± 2.0
days) were selected from a prospective cohort of neonates born before 30 weeks of gestation
conducted between February 2011 and May 2013 in the level III neonatology unit at the Uni-
versity Hospital of Lausanne, Switzerland [40]. This cohort included solely children considered
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as ‘cerebral low-risk’, meaning that they showed no evidence for severe intraventricular haem-
orrhage grade III-IV and/or parenchymal haemorrhagic infarction, no high grade periventri-
cular leucomalacia, no congenital malformations or genetic abnormalities and had normal
neurological assessment at TEA according to the Hammersmith Neonatal Neurologic Exami-
nation from [41]. The local ethical committee of the Canton de Vaud approved the current
study and parental written informed consent was obtained. Inclusion of the subjects in our
study was based on (i) data quality, (ii) no substantial brain lesions on TEA MRI and (iii)
absence of significant cognitive and psychomotor delays at 18 months of corrected age. Single
subjects’ characteristics are reported in S1 Table.

MRI data acquisition

Structural and diffusion-weighted MR images were obtained with a 3T scanner (MAGNE-
TOM TrioTim, Siemens Healthcare, Germany) and a dedicated 8-channel baby head coil
(NOMAG, LMT Lammers) integrated in an MR-compatible incubator. Structural scans were
acquired using a double-echo MP2RAGE sequence with the following parameters: flip angle 4
degrees, TI1/TI2/TR = 900/2200/4000 ms, TE = 3.17 ms, GRAPPA R = 2, TA = 4.58 min. Two
image volumes per echo time were obtained (at the 1st and 2nd inversion time INV1b and
INV2b) and two morphological high resolution T1-weighted images were reconstructed: a
bias-free T1-weighted image (flatImg) and a T1 relaxation map (T1map) [42]. The acquisition
was sagittal with a FOV of 190 mm (feet-head) x 179 mm (ant-post) and a matrix of 256 x 241
voxels yielding an in-plane resolution of 0.7 x 0.7 mm2 and 96 slices of 1.2 mm.

The diffusion-weighted acquisitions were performed using Diffusion Tensor Imaging
(DTI) with a twice-refocused spin echo EPI sequence with TR/TE = 5200/84 ms and a spatial
resolution of 8 mm3 (2x2x2 mm3) isotropic with an in-plane matrix of 96x96 voxels and 43
slices. Five b0-images and 30 diffusion-weighted images with b-value of 1000 s/mm2 were
acquired with varying directions. Acquisition time was about 3 minutes.

Anatomical brain tissue segmentation and parcellation

MP2RAGE flatImg scans were segmented into brain tissue classes (GM including cortical and
subcortical structures, WM and cerebrospinal fluid) based on single voxel signal intensity and
probabilistic tissue location priors from the publicly available neonate brain atlas by Shi et al.
[43] using SPM software [44]. The obtained probabilistic maps were thresholded empirically
to obtain binary tissue masks. The GM volume was subdivided into 90 anatomical ROIs, i.e.
45 per hemisphere, according to the Shi atlas. Each ROI was dilated in order to reach the
GM-WM border, and possible holes and discontinuities in the ROI masks were corrected
using mathematical morphology operations. An expert neuroradiologist reviewed the interme-
diary mask images at each processing step. S1 Fig shows the resulting anatomical brain masks
for the 9 subjects. The MP2RAGE flatImg volumes were linearly registered to the first B0 vol-
ume in order to bring the brain tissue masks into the diffusion space.

Diffusion MRI processing and brain connectivity estimation

Diffusion-weighted MRI volumes were registered to the first B0 scan (rigid-body transforma-
tion, 6 degree of freedom) to correct for head motion. Next, these images were corrected for
eddy current distortions using the FSL eddy correction software [45]. Tensor based recon-
struction of diffusion information was performed using the dtirecon tool from Diffusion
Toolkit [46], with the gradient table updated for the rigid-body registration performed earlier.
Whole brain tractography was performed using the deterministic streamline algorithm imple-
mented in the Connectome Mapping Toolkit [47,48] and using standard parameters. 32
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streamlines were initiated in each WM voxel and propagated along the two opposite directions
given by the local tensor orientation. Streamlines propagation was stopped if one of the follow-
ing criteria was met: (i) touching the WM-GM boundary, or (ii) angle between diffusion direc-
tions in neighbouring voxels larger than 60 degrees. Fibers shorter than 6 mm and fibers not
reaching the WM-GM border were discarded. Note that due to variability in head size, no
stopping criterion was used for the maximal fiber length. Each reconstructed fiber trajectory
reaching the WM-GM interface represented an anatomical connection between the corre-
sponding pair of GM regions. Finally, structural connectivity matrices representing subject-
wise brain networks were constructed by counting the number of streamlines connecting each
pair of cortical and subcortical regions. For all analyses, we used a group-representative con-
nectivity matrix computed by considering only the connections present for at least 50% of the
subjects (excluding intra-ROI connections) and averaging the corresponding connection
weights. This arbitrary group threshold was chosen based on previous work showing that a
threshold between 50 and 60% yielded the best approximation of the number of existing con-
nections and an acceptable balance between elimination of false positives and prevention of
false negatives [49].

WM and GM maturation parameters

In this study, we used two MRI measures reflecting maturation related changes in cerebral
microstructure, namely the Apparent Diffusion Coefficient (ADC) and the T1 relaxation time
(T1). ADC corresponds to the mean diffusivity, which reflects the level of diffusion restriction.
In the brain ADC is a biomarker of maturation as it decreases with age [50,51] and reflects
changes in axonal diameters and packing as well as myelination [52]. T1 relaxation changes
with the concentration of macromolecules and lipids and therefore is also a marker of brain
maturation and myelination [40,53,54]. The MP2RAGE sequence enables rapid, robust and
high resolution of maps of T1 relaxation as described in [42,55]. ADC maps were computed
from reconstructed DTI data using Diffusion Toolkit dtirecon function. Next, average ADC
and T1 values were computed for each GM ROI, and for each WM connection between pairs
of GM regions by averaging the voxel-wise scalars along the connecting streamline trajectories.
Mean ADC and T1 values were calculated over (i) voxels belonging to each GM ROI, and (ii)
WM connections incident to this ROI. In order to account for partial volume effects, GM vox-
els whose value differed by more than one standard deviation from the ROI mean were dis-
carded from the analysis. From the 4005 possible ROI pairs, we restricted our analysis to the
group wise connectivity matrix described in the previous section yielding a total of 450 con-
nected and 3555 unconnected ROI pairs. Pearson correlation analyses were used to assess the
relationship between ADC and T1 values in ROIs and over their incident WM connections.
ROIs were sorted into four different groups according to the function-related GM maturation
sequence described in the literature: group SUB included the subcortical structures (Basal Gan-
glia, the Thalami, the Amygdala and the Hippocampus), Group PRIM comprised primary sen-
sory and motor cortices, Group SEC secondary processing areas and Group TER higher order
tertiary areas (S2 Table).

Maturation random walk model

A computational random walk model [56] was used to simulate the evolution of the brain tis-
sue’s maturation as a particle walking along the structural brain pathways. Starting in one of
the primary sensory cortex regions (rolandic operculum, calcarine cortex, postcentral gyrus,
paracentral lobule, heschl gyrus), a particle travels from one ROI (network vertex) to another
along anatomical connections (edges) of the brain network. The weight wij of an edge
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connecting two vertices i, j of the brain network is equal to the normalized number of stream-
lines connecting the two vertices (i.e., the number of streamlines connecting vertices i and j
divided by the overall number of connecting streamlines resulting from the tractography algo-
rithm). In our computational model, the probability of moving from a vertex i at time point t
to a vertex j at time point t+1 is proportional to the weight wij of the edge (i,j). Furthermore,
particles are not allowed to travel back to the previous region (no-back walk). Formally, if the
walk is at vertex i at time t, the probability of taking a step along one of the edges attached to i
is pij à

wij=X
k2Nt

i
wik

, with Nt
i set of neighbours of vertex i, excluding the vertex situated at

the previous step t-1. We considered the number of particle transits through each GM region
or WM connection, at each step of the random walk, as a score of local maturation. Random
walks were initiated in each one of the ten primary cortex, and propagated for ten random-
walk steps (RWSs). This process was repeated 1000 times for each seeding area, and mean GM
and WM maturation scores were computed. Finally, spatiotemporal maturation patterns
yielded by each seeding area were summed, illustrating whole brain maturation scores. For
each RWS, the relationship between experimental ADC and T1 values on the one side, and
total brain maturation scores on the other side, was assessed with a Spearman’s correlation
analysis.

Results

Structural connectivity properties

Fig 1A represents the weighted group connectivity matrix for the 9 subjects, which has a den-
sity (percentage of non-zero entries) of 11.2% and no disconnected nodes. The colorbar indi-
cates the number of streamlines for each connection. Fig 1B shows the connection length
distribution for the connectivity network.

Maturation biomarkers in GM and WM

In the first part of our study, we separate the 90 GM ROIs into 4 function-related groups:
group SUB (n = 12, n number of ROIs) corresponds to subcortical nuclei, group PRIM
(n = 12) represents the primary sensory and motor cortices, group SEC (n = 34) secondary
processing areas and group TER (n = 32) higher order tertiary areas (S2 Table). Connection
distribution among these groups is represented in Fig 1C. Subgroups SUB and SEC display
connections to all other subgroups, while subgroup PRIM mainly connects to SEC and sub-
group TER to all other groups but PRIM, which is anatomically meaningful.

The distribution of mean ADC (top row) and T1 (bottom row) values in the 9 subjects is
depicted for each group of ROIs in Fig 2A (left). We observe that ADC and T1 in the SUB
group are lower than in the PRIM group, which in turn are lower than in the SEC and TER
group and the latter have the highest values. A non parametric Jonckheere-Terpstra permuta-
tion (JT) analysis [57] confirms a significant ordered difference in these ADC (JT = 9.1,
p⇡ 0.0) and T1 (JT = 7.5, p< 10−10) values. We also perform this analysis for the WM tracts
incident to each ROI by computing the average over the incident connections (ADC: Fig 2A
right, top, T1: Fig 2A right, bottom) and observe a comparable ordered increase in ADC
(JT = 7.4, p< 10−10) and T1 (JT = 5.7, p< 10−5) across groups. Furthermore, significant corre-
lation analyses demonstrate that ADC (r = 0.67, p< 10−10, Fig 2B top) and T1 (r = 0.84,
p< 10−10, Fig 2B bottom) values in GM and WM are highly interdependent. Yet, this correla-
tion was not present after randomization [58] of the connectivity matrix (ADC: r = -0.06,
p = 0.56; T1: r = -0.006, p = 0.95).
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A Pearson’s correlation analysis further shows that mean ADC of pairs of GM ROIs are cor-
related to the average values along the connecting WM tract (r = 0.53, p< 10−10, Fig 2C top).
This is also the case for the T1 relaxation time (r = 0.77, p< 10−10, Fig 2C bottom). To account
for possible proximity effects, analyses are reproduced on two subgroups of connections: long
(> mean connection length, c = 179, c = number of connections) and short (< mean connec-
tion length, c = 271), yielding comparable results for ADC (long: r = 0.58, p< 10−10; short:
r = 0.49, p< 10−10, S2 Fig) and T1 relaxation time (long: r = 0.79, p< 10−10; short: r = 0.75,
p< 10−10, S3 Fig).

Taking a step further, we compare two groups of pairs of GM ROIs, those that are con-
nected through a WM tract (450 pairs) and those that are not (3555 pairs). A Pearson’s correla-
tion analysis outlines a significant correlation in ADC between GM ROI pairs if a structural
link is present between them (r = 0.34, p< 10−10), while no association can be found if no con-
nection is present (r = 0.03, p = 0.06). T1 relaxation time yields comparable results (connected:

Fig 1. Connection properties. A: Weighted groupwise connectivity matrix including 450 connections present
for ! = 50% of the subjects. Color coding indicates the number of streamlines. ROIs are ordered per
hemisphere (right: top, left: bottom) according to the atlas by Shi et al. [43]. Fro: frontal; Li: limbic; Oc:
occipital; Pa: parietal; Te: temporal cortex and G: basal ganglia. B: Length distribution of the 450 connections.
C: Connection repartition between the different groups. SUB in black, PRIM in dark gray, SEC in gray, TER in
light gray.

https://doi.org/10.1371/journal.pone.0177466.g001
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r = 0.25, p< 10−5; not connected: r = 0.009, p = 0.7). These results are reproduced at the sin-
gle-subject level (S3 and S4 Tables).

Modeling maturation

In the second part of our study, we investigate possible mechanisms driving brain tissue matu-
ration and the role of WM connectivity by means of a random walk model [56]. We consider
the number of particle transits through each GM ROI or WM connection at each RWS as a
score of local maturation. We observe that simulated maturation for ROIs (Fig 3: blue) and
their incident connections (Fig 3: red) correlate negatively with the ADC values from our
experimental data (Fig 3: box). Highest Spearman correlations between number of particle
transits and ADC values are reached at early RWSs (ROIs: r = −0.75, p< 10−10 at RWS 2; inci-
dent connections: r = −0.68, p< 10−10 at RWS 1) and decrease progressively through the simu-
lation. Correlation with T1 values shows a similar pattern (ROIs: r = −0.43, p< 10−3 at RWS 1;
incident connections: r = −0.46, p< 10−4 at RWS 1).

As a validation, we perform the same analysis (i) using the same structural WM network,
starting with a random sample of 10 GM regions as seeds and (ii) using a randomized struc-
tural network with preserved node degree distribution, starting from the same sensory areas.
Both these randomization were repeated 50 times (50 random seedings and 50 network ran-
domizations). In the first case, simulated maturation values showed no (ROIs, S4 Fig left) or
weak (incident connections, S4 Fig right) correlation with the experimental data. In the second

Fig 2. ROIs and incident connections. A: Distribution of ADC [10í6 mm/s2] (top) and T1 [ms] (bottom) values for each ROI group and the
incident connections. B: Scatterplot for ADC (top) and T1 (bottom) in ROIs and their incident connections, for all ROIs. Pearson’s correlation:
ADC r = 0.67, p � 10í10; T1 r = 0.84, p � 10í10. Groups: SUB (n = 12) in black (diamonds), PRIM (n = 12) in dark gray (circles), SEC (n = 34)
in gray (stars), TER (n = 32) in light gray (squares). C: Correlation between mean ADC [10í6 mm/s2] (top) and T1 [ms] (bottom) of GM ROI
pairs and average ADC value along the connecting WM tracts (ADC: Pearson r = 0.54, p � 10í10, T1: Pearson r = 0.77, p � 10í10; n = 450).

https://doi.org/10.1371/journal.pone.0177466.g002
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case, simulated maturation values showed weaker (ROIs, S5 Fig left) and no (incident connec-
tions, S5 Fig right) correlation with the experimental data.

Simulated maturation values for ROIs and connections increase over progressive RWSs of
the random walk, following an expected ordered pattern: areas from group PRIM have higher
values than group SEC and further than group TER, which show the lowest values (Fig 4). This
trend is confirmed by a JT analysis for each RWS (S5 Table). As expected, these differences
lessen as the simulation reach later RWSs (decreasing JT statistics).

Note that subcortical areas were excluded from the correlation analysis, since on one side
our random walk model exclusively explores the role of sensory input in network mediated
maturation, and on the other side subcortical areas do not mature all at once [12,59,60] and
their role in the maturation process is uncertain. This was also valid for the thalami, despite
their known key role in the propagation and gating of sensory signals to primary sensory
regions [61], because of their particular connection network. The various thalamic nuclei have
heterogeneous connections to different cortical areas (including primary sensory, but also ter-
tiary cortices), involved in information processing [62] and poor intra-thalamic connections.

Fig 3. Modelled maturation scores projected on a standard brain surface for four representative simulated time points (RWSs):
ROI in blue (top), connections in red (bottom). Box: Experimental data (ADC [10í6 mm/s2]) on brain surface and Pearson’s
correlations with modelled maturation scores for RWS 1–10. The RWS with the best correlation is represented by a star.

https://doi.org/10.1371/journal.pone.0177466.g003
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Hence, considering all thalamus nuclei as one ROI would imply creating an artificial hub.
Although this is often done in adult structural and functional connectivity studies, it does not
properly reflect functional anatomy, especially at early developmental stages, as all thalamo-
cortical connections do no mature at the same time.

Discussion

Relation between GM and WM development

Our findings support a strong relationship between maturation of cortical areas and their
underlying WM axonal circuits. The analysis of two MRI-based indicators of brain tissue mat-
uration, namely ADC and T1 [36,39], reveals hierarchical increasing maturation levels from
subcortical structures, to primary areas, to cortices involved in secondary and tertiary brain

Fig 4. Histograms and brain surface plots for experimental ADC [10í6 mm/s2] values (left) and modelled maturation
scores (right, four key RWSs) in ROI groups. Top: ROIs; bottom: incident connections. Highest Pearson’s correlations are
indicated with a star for the corresponding RWS (and colour).

https://doi.org/10.1371/journal.pone.0177466.g004
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functions. A similar pattern is observed in the WM connections incident to these areas, sug-
gesting a link between cortical maturation, long-range brain connectivity and WM
myelination.

Our results are in agreement with the function-related maturation sequence previously
described for GM structures in dissection studies where primary areas develop earlier than
association and higher order processing areas [5,9,10]. Early studies examining WM myelina-
tion reported comparable findings [12,13]. However later research describes myelination as
following a spatial rather than a functional and connectional gradient [14,15,39].

Early connectivity studies investigate the co-variation between cortical morphology mea-
sures (e.g., cortical thickness, surface area) in different brain regions and report highly orga-
nized correlation patterns, coinciding with the presence of underlying gross anatomical tracts
[63–65]. These findings were reproduced in a developmental approach by Raznahan and col-
leagues who showed that cortical thickness measures for different brain regions belonging to
the default mode network and one task oriented network can be predicted from well-described
patterns of cortical functional and WM interconnectivity [66]. The existence of a strong rela-
tionship between GM and WM maturation is also supported by evolutionary studies. For
example, Barton and Harvey highlight that the coordination of brain anatomical changes fol-
lows known patterns of structural connectivity [67].

Despite these encouraging results, explicit reports on the relationship between maturation
parameters in GM and WM remain few and their results inconsistent. Cortical ADC is related
to ADC in the underlying WM regions in one primary, two secondary and one tertiary brain
region [68]. But a whole-brain investigation of cortical thickness and myelin content did not
highlight such a relationship [69].

Compared to these findings, the strength of our study lies in the joint assessment of early
stages of GM and WM maturation over the whole cerebrum at the level of (i) single structures
and (ii) subsystems consisting of pairs of GM regions and their anatomical link. We show that
ADC and T1 values in GM areas are consistently related to values along the axonal fiber bun-
dles connecting them. Others, using a T2-based MRI sequence and DTI, noted a comparable
relation for functional subsystems in temporal [70] and pre-frontal [71] regions. Additionally,
a recent study showed a correlation between decrease in cortical thickness (interpreted as mat-
uration) in frontal cortical regions and increase in fractional anisotropy in the WM tracts initi-
ated from these regions, in school-age children [72]. These results point out a strong
interdependence between the development of GM structures and the underlying WM connec-
tivity network. Correlation analyses indicate that GM areas are not developing independently.
Indeed we observe that ADC and T1 in GM regions connected through an anatomical link are
highly related. On the same line, correlations of T2-measures [70] and cortical thickness
[63,66] were reported in connected cortical regions involved in language processing and in
two functional networks. Furthermore, shared expression signatures for genes involved in
neuronal development and axon guidance also seem to depend on structural connectivity in
different regions of the rat brain [73]. Altogether, this points to an important role of structural
WM connections during the cortical maturation process.

A connectivity-based model for brain maturation

A large body of evidence suggests that sensory-driven neural activity plays a key role in
shaping the maturation of GM and WM cerebral structures at the cellular level ([74], for a
review). Neural signals, be they initially endogenous and later on exogenous, are relayed hier-
archically through thalamo-cortical pathways from primary receiving areas to higher order
processing regions [75,76]. Together with our findings on the interplay between GM and
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WM maturation, this suggests that the connectivity network conveys signals implicated in
maturation processes.

This work proposes a simple random-walk model to explore the role of the WM network
on the aspects of the maturation process that are mechanistically related to sensory inputs. In
our model, maturation particles (i.e., random walkers) are initiated in cortical sensory areas
and left to diffuse across the WM network. A similar computational approach was recently
used to mimic viral-like spreading of neurodegenerative diseases across the structural WM
network [77,78]. Indeed we observe that simulated GM and WM maturation scores reproduce
experimental early maturation patterns, and they increase hierarchically in time following
function-related developmental patterns reported in literature [5,9,10].

The idea that tissues’ maturation could progress in a hierarchical fashion from lower-order
sensory-receiving areas to the yet immature higher-order areas in their vicinity was already
proposed by Guillery [79]. Our findings suggest that the WM connectivity backbone could
play a key role in relaying maturation signals. It is realistic to think that during early develop-
ment, the callow brain network mainly conveys coherent sensory information to higher pro-
cessing areas, which would promote the maturation of related axonal pathways and connected
GM regions. In line with this, connections between lower level unimodal regions strengthen
before connections towards association areas, and further on to higher order processing
regions [80]. Altogether, the progression of maturation from lower order areas to higher pro-
cessing regions simulated with our model resembles the evolution of GM density measures
between 5 and 20 years reported by Gogtay [81]. Finally, numerous studies on prematurity
support the concept that WM connectivity is critical for the development of connected cortices
and its lesion leads to histological disorganization of connected GM areas [82–84].

Technical limitations

The main limits of this study are related to the characteristics of the investigated population,
particularly the small sample size and the prematurity condition. On one side, premature birth
is associated with delayed and altered microstructural development of cortical GM [85] and
WM circuitry ([86], for a review). On the other side, these changes vary with gestational age
and diffuse aggressions (e.g., nutrition, infection), which are common in this population [87].
We argue that the effects pursued in this study are coarse macroscopic maturation changes
outweighing subtle inter-population differences and should also be observable in prematurely
born children with ‘cerebral low-risk’, scanned at term equivalent age as in normal term born
kids. Consistently, subject-level analyses reproduce group-level findings, excluding the pres-
ence of outliers in our cohort.

Imaging neonates is both technically and ethically challenging. First, scanning normal term
newborns is ethically debatable, reason why we focused on prematurely born babies who
deserve through their condition an MRI examination. Second, scans had to be done without
sedation, increasing the chance of motion artefacts. Additionally, tissue contrasts in neonatal
brain differ notably from those of adult brains [88]. This difference can have an impact on
image processing steps. In this work, we performed careful quality checks and post-processing
motion correction of our data. However, we did not quantify mean relative frame-wise dis-
placement between interspersed non-weighted diffusion volumes as has been done by others
[89], but outlier rejection was performed by a senior pediatric neuroradiologist who checked
all sequences visually during acquisition and had the ones with movement artifacts repeated.
Six subjects were excluded because of poor data quality due to excessive motion during scans.

Another limitation of this study concerns the estimation of tissue maturation levels using
MRI. Variations in MRI signals result from multiple and inter-dependent cellular processes
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[90], making the mapping between MRI parameters and cellular maturation processes chal-
lenging. ADC and T1 measures relate to multiple neurobiological aspects of the maturation
process. ADC measures intra- and extra-cellular water mobility, which is influenced by
dendritic arborization, axonal packing and myelin sheath thickness, while T1 provides infor-
mation about lipid and macromolecules concentration associated with myelination
[36,39,60,91,92]. Accordingly, a combination of these MRI parameters is well suited for the
study of brain maturation in vivo [93]. Furthermore, partial volume effects and cortical
ingrowing axons may contribute to the cortical ADC and T1 values in areas located at the
interface between cortical GM and subcortical WM. We limited these effects by excluding GM
voxels with ADC and T1 values differing by more than one standard deviation from the ROI
mean from the analysis. For a more accurate estimation of the tissues maturation level,
advanced MRI sequences tailored to WM microstructural investigation [94] are needed. How-
ever, these methodological approaches are still in their early stage and the applicability to new-
borns remains difficult due to the long acquisition time.

In order to limit the scanning time, a DTI sequence was chosen for this study. It is well
known that the combination of DTI and deterministic tractography could under-estimate the
degree of inter-regional connectivity between ROIs linked by complex and long WM trajecto-
ries [95,96]. However, this rather conservative approach limits the number of retrieved false
positive connections [96] and seems well-suited for the correlation and random-walk analyses
performed in the present study [97]. Indeed, this study concentrates on uncovering coarse
macroscopic maturation mechanisms and does not attempt to provide a precise description of
these.

Finally, we compared our random walk model with experimental MRI biomarkers from a
single age only. The relatively coarse developmental steps of the model, along with the early
developmental stage of the studied population could explain higher correlations at early
RWSs. Still, although qualitative observations demonstrate a clear link with developmental
patterns described in the literature, extension of this study to control populations across life-
span could yield further biological insights into neurodevelopmental mechanisms.

Supporting information

S1 Fig. Anatomical ROI masks for all 9 subjects. The same transverse (first column), sagittal
(second column) and coronal (third column) are displayed. Color-coding reflects single ROIs
and corresponding ROIs for each hemisphere are displayed in the same colour.
(EPS)

S2 Fig. Correlation between mean ADC [10−6 mm/s2] of GM ROI pairs and average ADC
value along the connecting WM tracts (Fig 2C top) for short connections (< mean connec-
tion length, c = 271, c = number of connections): Pearson r = 0.49, p< 10−10; and long con-
nections (> mean connection length, c = 179): Pearson r = 0.58, p < 10−10.
(EPS)

S3 Fig. Correlation between mean T1 [ms] of GM ROI pairs and average ADC value along
the connecting WM tracts (Fig 2C bottom) for short connections (< mean connection
length, c = 271, c = number of connections): Pearson r = 0.75, p < 10−10; and long connec-
tions (> mean connection length, c = 179): Pearson r = 0.79, p < 10−10.
(EPS)

S4 Fig. Maturation simulation null model (1): Correlation between experimental and sim-
ulated data for 50 random seedings (random sampling of 10 regions from all possible

Exploring the role of white matter connectivity in cortex maturation

PLOS ONE | https://doi.org/10.1371/journal.pone.0177466 May 17, 2017 12 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177466.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177466.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177466.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177466.s004
https://doi.org/10.1371/journal.pone.0177466


ROIs): ROIs (left), incident connections (right).
(EPS)

S5 Fig. Maturation simulation null model (2): Correlation between experimental and sim-
ulated data for 50 randomizations of the structural network with preserved node degree
distribution: ROIs (left), incident connections (right). Note that the simulations starts from
the same sensory areas as the original maturation simulation.
(EPS)

S1 Table. Subjects’ characteristics: sbj indicates subject number; GA, gestational age; BW:
birthweight; M, months; IVH, intraventricular hemorrhage grading according to Papile
[98] on cerebral ultrasound (3 infants presented with IVH: 2 with grade I and 1 with bilat-
eral grade II). Not shown here, only one infant (Sbj 3) presented with a small unilateral cere-
bellar hemorrage. PVL indicates periventricular leucomalacia grading according to L. de Vries
[99] on cerebral ultrasound. MDI and PDI are mental and psychomotor developmental indices
from Bayley Scales of Infant Development II edition, norm mean (SD) is 100 (15). The values
obtained are consistent with expected findings of good evolving preterm babies. All these
babies had a normal neurological exam at term equivalent age (TEA). According to the Kido-
koro score [100,101] only 2 infants had a mildly abnormal score (5 and 7) wheareas all others
presented with a normal score (1–3). Values are presented in mean ± SD, except for the Kido-
koro score⇤ (median and range).
(DOCX)

S2 Table. ROI allocation for each group (for one hemisphere). Note that the ROI distribu-
tion is symmetric between both hemispheres.
(DOCX)

S3 Table. ADC [10−6 mm/s2] single subject’s values.
(DOCX)

S4 Table. T1 [ms] single subject’s values.
(DOCX)

S5 Table. Non parametric Jonckheere-Terpstra permutation analysis (JT) for four key ran-
dom walk steps (RWSs).
(DOCX)
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