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SUMMARY 
 

 

The subject of teacher competences or knowledge has been a key issue in mathematics 

education reform. This study attempts to identify and analyze teacher competences 

necessary in the orchestration of a problem-centred approach to dynamic geometry 

teaching and learning. The advent of dynamic geometry environments into classrooms 

has placed new demands and expectations on mathematics teachers.  

 

In this study the Teacher Development Experiment was used as the main method of 

investigation. Twenty third-year mathematics major teachers participated in workshop 

and microteaching sessions involving the use of the Geometer’s Sketchpad dynamic 

geometry software in the teaching and learning of the geometry of triangles and 

quadrilaterals.  Five intersecting categories of teacher competences were identified: 

mathematical/geometrical competences, pedagogical competences, computer and 

software competences, language and assessment competencies. 

 

KEY WORDS:  

Dynamic geometry environments, dynamic geometry software, Geometer’s Sketchpad, 

pre-constructed sketch, dragging, animation, freehand tools, geometry, Teacher 

Development Experiment, Problem-Centred Approach, deductive reasoning, van Hiele 

levels of geometric thought, presentation sketch, teacher competencies, Structure of 

Observed Learning Outcome, prestructural understanding, unistructural understanding, 

multistructural understanding, relational understanding 
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CHAPTER 1 
 

BACKGROUND AND OVERVIEW OF THE STUDY 
 

"The irony is that the more successful the computer has been in competing with 

human acts, the more we come to appreciate the importance of extra-logical dimensions 

of human agency." Stephen Brown, Towards Humanistic Mathematics Education. 

 
1.1 Introduction 

 

This chapter outlines the background to the study from a global perspective, which is 

then localized to the developing world of which Zimbabwe is a part. The problem under 

investigation is stated, research questions are posed, and aims and objectives are outlined. 

The research design, significance of the study and some key terms are clarified.  

 

The computer revolution epitomizes a revolution in the way we think and the way we 

express what we think (Abelson and Sussman in Cuoco and Goldenberg, 1996:31). 

Mathematics education has not been insulated from this revolution. If anything, the 

revolution has profound ramifications on the way we express and represent what we think 

in mathematics and, consequently, the way we should teach and let children experience it. 

In fact, the very relevance of the school as preparation place for life after school can be 

questioned if that society‟s workplace and homes have more information and 

communication technology (ICT) than the school itself. 

 

The traditional teaching of plane geometry has largely been dominated by ruler-and-

compass methods of teaching and learning which produced static geometrical artifacts 

thereby limiting the flexibilities in shape variety and orientation. Experimentation with 
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variations largely remained in mental imagery, thus making the subject accessible only to 

a few students. The introduction of dynamic geometry environments (DGE‟s) into the 

classroom in the past decade or so has changed this praxis and students can now 

experiment with shape and space in real time through inbuilt dragging and animation 

modalities. Traditional teaching approaches of chalk-and-talk consequently appear to be 

less effective and teachers are challenged to develop new competencies and 

conceptualizations in geometrical teaching and learning since a new relationship emerges 

between the teacher, the computer, the DGE and the student on the one hand and 

geometric subject matter on the other. The earlier teachers and students can be exposed to 

the new software tools, therefore, the better. 

 

However, Wessels (2001b:3) points out that technology by itself is worthless. Jenson & 

Williams (1992:243) echo the same sentiment when they state that technology by itself is 

no panacea and, in fact, initially complicates rather than simplifies a teacher‟s life in the 

classroom. In further concurrence, Cuoco and Goldenberg (1996:15) observe that 

computers are often used badly, as a sort of electronic flashcard, which does not 

creatively tap the capabilities of either the computer or the learner. Hence there is 

consensus that merely placing computers in the hands of teachers and students will not 

automatically transform the teaching and learning of geometry. Yet if creatively used, 

computers can be a catalyst for change and innovation in the way mathematics is taught 

and learnt. Goldenberg (1999:209) reiterates this hypothesis when contending that any 

lure of technology is merely a technique toward the goal of good thinking, and not a 

substitute to the goal itself. This is an incisive observation to be noted by teachers. 
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According to Hoyles and Noss (1994:716), formal geometry has not been a significant 

part of the mathematics curriculum in the United Kingdom (UK) since the early 1970‟s, 

even the word „geometry‟ has gone out of style and replaced by „shape and space‟. The 

obsolescence of school geometry has been similarly felt in Zimbabwe and South Africa. 

Wessels (2004:70) confirms that geometry was one of the „poor relatives‟ in the field of 

mathematics, and it is only in the past five years (in South Africa) that its „status‟ has 

improved. He further adds that the majority of high school learners simply did not 

understand it, nor did the teachers who were supposed to teach it.  In Zimbabwe, at 

General Certificate of Education (GCE) Ordinary Level, the attempt to infuse modern 

mathematics topics in the early 1980‟s pushed geometry to a fringe where only 

(geometrical) results were emphasized without due care to conceptual understanding and 

the development of deductive reasoning. Statements like „state without proof‟ or „no 

proof required‟ became commonplace punctuation marks of the syllabus. At GCE 

Advanced Level, and beyond, geometry is virtually absent in the Zimbabwean syllabi. In 

the primary school curriculum geometry is a relatively latecomer as there was more stress 

on arithmetic until the 1970s Therefore, it is likely that, in their practice, many 

mathematics teachers experience gaps of geometric knowledge.  

 

According to Hoyles and Noss (1994:716) the idea that at last we can play around with 

geometrical ideas in an intuitive and dynamic way is exciting enough, and the possibility 

that this kind of activity might somehow lead to a more radical and widespread 

understanding of geometry is just too tantalizing to ignore. However, there might still be 

a background of poor teaching being a major cause of the alienation of students from 

geometry. Wessels (2001c:3) points out that one reason why Euclidean geometry 

education is a complete disaster in South African schools is because it is badly taught. 
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Van Niekerk (1997:112) argues that one problem in the attempt to transform geometry 

instruction is that the majority of South African mathematics teachers are poorly trained. 

The situation is hardly different in Zimbabwe where, despite an appreciable increase in 

the number of qualified secondary school mathematics teachers since independence, the 

Ordinary Level pass rate is still a far cry from the ideal, and mathematics remains one of 

the least popular subjects in the curriculum, and thus dropped by students at the first 

opportunity. In arguing for the possible introduction of non-Euclidean geometry in the 

school syllabus Fish (1996:8) concurs with Wessels and Van Niekerk when she laments 

that not all teachers are competent to teach even the mathematics prescribed in the current 

syllabus. It is obvious that teachers cannot teach topics they themselves have little 

knowledge of. In the same vein, teachers cannot be reasonably expected to effectively use 

DGEs unless they themselves are familiar with their technical, mathematical and 

pedagogical constraints and affordances.     

 

 

1.2 Problem statement 

 

 

This study is motivated by the realization that we live in an increasingly computer 

ubiquitous society, yet the average Third World mathematics teacher is barely computer 

literate. The scarcity of computers in Third World homes and classrooms exacerbates the 

fear of technology, or techno phobia, even in pedagogical circles to such a degree that, 

where available, computers pass more as office word processing technology than as 

potential vehicles for innovative mathematics education orchestration.  

 

Even in the first world, Cangelosi (1996:218) concedes that „some teachers are reluctant 

to apply computer technology in their teaching only because they are not comfortable 
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with the software‟. Jenson & Williams (1992:240) similarly acknowledge that it is not 

until teachers have had the time and training to appropriate and orchestrate this new 

technology that they feel comfortable in being creative with its use. The sooner teachers 

of mathematics are acquainted with the new technology then, the better for the 

community because teachers are invidiously expected to teach the new generation how to 

fit into the global information age of the 21
st
 century.  

 

There is possibly a need to explore a number of starting points from which to stimulate 

interest and foster confidence in the use of DGEs in mathematics teaching. In this study 

third (final)-year mathematics major teachers were targeted as one possible starting point 

in the identification and analysis of what might be pre-requisite teacher competences for 

enhancing students‟ understanding of the geometry of triangles and quadrilaterals in a 

Sketchpad Dynamic Geometry Software (DGS) environment.  

 

The purpose of this study was to identify and analyze pre-requisite teacher competences 

in the execution of a problem-centred approach to dynamic geometry. Dynamic geometry 

in the form of such DGEs such as Cabri and Geometer’s Sketchpad is a recent 

phenomenon and its spread to disadvantaged parts of the developing world is rather slow 

suggesting the need for more conscious effort. Research of this nature should add to the 

much-needed direction to decisions that need to be made not just in the identification 

process but also in the nature, content and context of development of such a repertoire of 

competencies. The question is: What mathematical, linguistic, pedagogical or 

technological competences are identifiable and analyzable among (pre-service) teachers 

of mathematics, as necessary for them to be proficient with the new technological tools? 

In answering this question the following sub questions provide a lead 
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 To what extent is the teacher‟s knowledge of geometry a prerequisite in 

supporting a PCA to dynamic geometry? 

 What is the nature and scope of pedagogical competencies that support a 

PCA to dynamic geometry? 

 How do language competencies support a PCA to dynamic geometry 

teaching and learning? 

 What proficiencies does a particular DGS such as Sketchpad demand in  

the teaching and learning of dynamic geometry? 

 Which assessment competencies or strategies are suitable in evaluating 

students‟ progress in a DGS environment? 

 

1.3 Aims and objectives of the research 

The aim of this study was to identify and analyze teacher competencies in a problem-

centred approach to the teaching and learning of dynamic geometry. To achieve this aim 

the following objectives were identified: 

 To undertake a literature review to identify teacher competencies required 

in a problem-centred approach to dynamic geometry teaching 

 To justify the TDE as a suitable method of investigation complemented by 

a pre-test, a questionnaire, a group interview and integrated case studies in the 

identification and analysis of teacher competencies in a PCA to dynamic 

geometry. 

 To describe the nature and content of teacher competencies identified in 

the investigation. 

 To draw up deductions, conclusions and recommendations on the nature 

and scope of teacher competencies compatible with a PCA to dynamic geometry. 
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To describe the nature of integration of identified competencies that could serve a 

problem-centred approach to dynamic geometry 

 

It is noted and emphasized from the outset that the study was not about the 

developmental aspect, but rather on the identification and analysis. As such the 

developmental trajectory fell beyond the scope of the investigation.   

 

1.4 Research design  

1.4.1 1.4.1 The Literature Study 

A Dialog search was done at the University of South Africa library with Professor 

Wessels using the following descriptors: „geometer‟s sketchpad‟ or „dynamic geometry‟ 

or „cabri‟ in English language, „mathematics teacher‟ and „cognition‟, „constructivism‟, 

„Cooney‟ and „Boaler‟. The aim of this literature study was to come up with a tentative 

list of competencies for further empirical analysis 

 

The research was also supported by two visits made to the University of South Africa. 

The first involved advice and guidance from my supervisor, a presentation of the 

proposal to the Masters and Doctoral committee members of the Faculty of Education. 

The second consisted of a presentation at a seminar in the presence of visiting Professor 

John Olive of the University of Georgia, Athens, an authority in the problem-centred 

approach to the teaching of mathematics, and the use of Geometer’s Sketchpad software.  

 

1.4.2 Empirical Approach 

The research was done mainly in the form of a Teacher Development Experiment (TDE) 

with sample(s) drawn from third (final)-year mathematics majors of the Diploma in 
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Education (Primary) course at a Zimbabwean polytechnic with a Teacher Education 

Faculty. The polytechnic is an associate college of the University of Zimbabwe, which is 

the awarding institution of the Diploma. Eligibility for selection for the study was 

determined by voluntary participation in a pre-test, which was followed by sampling.  

Teachers‟ responses to tasks undertaken during the workshop sessions were analyzed. 

Lesson observations were used as competence identification strategies during the 

microteaching sessions and further analyses of responses to tasks were made. Eventually 

mini-projects (see 4.5.1) were compiled and a structured group interview (4.5.3) was 

conducted to get feedback from participants as to what they considered to be prime 

technological and pedagogical competencies a new group should be acquainted with. 

 

1.5 The significance of the study 

Currently there is worldwide acceptance of the potential of DGS environments to enrich 

mathematical learning and improve student achievement. Jenson & Williams (1992:232) 

point to the fact that research has shown that DGEs offer students the opportunity not 

only to develop more positive attitudes towards mathematics and a better self concept, 

but also to assist them to achieve higher scores in basic operations and problem solving. 

The problem-centred approach is receiving increasing attention worldwide as a learner-

centred strategy in the teaching and learning of mathematics. In a problem-centred 

approach students construct their own understandings through problem solving. Hence a 

problem-centred approach is compatible with a constructivist view of learning. 

According to Chavunduka and Moyo (2003:101), constructivism as a learner-centred 

approach is increasingly attracting attention from researchers even in Zimbabwe. To the 

researcher, this project was an opportunity to gain more experience in and insight into the 

use of the Geometer’s Sketchpad in interaction with teachers meeting the software for the 
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first time. Participants would benefit from an experience with the software and possibly 

be inspired to introduce ICT in their mathematics teaching careers. Once completed 

research results could be shared with the mathematics education community and 

hopefully the polytechnic might also accede to the formal infusion of ICT into the 

teaching and learning of mathematics. Curriculum designers, policy-makers, textbook 

authors, and researchers might also find some of the ideas in this report useful. 

 

1.6 Clarification of some terminology 

1.6.1 The meaning of teacher competencies 

In this study teacher competencies are taken to embody teacher knowledge and beliefs, 

abilities and skills in orchestrating mathematics instruction in an integrated way. 

 

1.6.2 The meaning of dynamic geometry environments (DGEs) 

DGE is the acronym for Dynamic Geometry Environments, which are computer-aided 

micro-worlds for the teaching and learning of geometry. They are interactive 

environments where the computer is the tool. The student can manipulate the 

constructions made through the software dynamically. Examples of such micro-worlds 

include Logo, Geometric Supposer, Cabri and Sketchpad. 

 

1.6.3 The meaning of dynamic geometric system or software (DGS) 

DGS is the acronym for Dynamic Geometry System or Software and refers to particular 

dynamic geometry application software such as Geometer’s Sketchpad or Cabri with 

dynamic capabilities afforded by the software design. 

 

1.6.4 The Geometer’s Sketchpad (GSP) dynamic geometry software 



                                                                   10 

This is the Dynamic Geometry® Software for Exploring Mathematics (GSP4), scientific 

version, used in this study and refers to Version 4.05 of the software, which at the time 

was the latest. The software was designed by Nicholas Jackiw (2001) and published by 

Key Curriculum Press Technologies Emeryville, CA, USA. 

 

1.6.5 The meaning of geometry  

In this study geometry is taken to be the mathematics of shape and space, which 

traditionally incorporates Euclidean geometry but is not limited to it. Non-Euclidean 

geometries can also be identified in examples like spherical, elliptical, and hyperbolic 

geometries and, more recently, there has been growing interest in transformation, fractal, 

turtle, analytical and vector geometries. In this study the school geometry to be covered is 

predominantly Euclidean on account that geometrical objects in the application software 

appear to be predominantly constrained within Euclidean geometry axioms, definitions 

with plenty room for dynamic transformations. 

 

1.6.6  The Problem-Centred Approach (PCA) 

The problem-centred approach can be defined as an approach, which has as its focus the 

development of problem solving skills of both routine and non-routine problems and real 

life situations within a mathematical framework. The emphasis is on learning 

mathematics through learner-centred, reality-based problem solving, individually or in 

small groups.  

 

1.6.7 The meaning and purpose pre-constructed dynamic sketches 
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Pre-constructed dynamic sketches are pre-made sketches that may, but need not be, web-

based. Someone has constructed them with a specific mathematical content in mind and 

placed particular constraints. 

 

1.6.8 Dragging and animation tests of a construction 

The dragging paradigm is a feature of the DGS, which enables the users to drag a part or 

whole of a geometric object and manipulate it as they wish. Animation is an alternative to 

the drag test, and sets the selected parts of the construction in motion at variable speeds 

and dynamically models possible positions and shapes of figures that maintain the 

relationships used during construction. 

 

1.7 Progress of the investigation 

The rest of this research report will be discussed as follows: 

 

Chapter 2 will review literature related to the van Hiele Theory, the problem-centred 

approach, teacher competencies in general, classroom experiences in DGEs,. Specific 

studies which require specific skills or competencies in students and teachers, or 

otherwise, will be referred to and findings summarized.  

 

Chapter 3 will deal in greater detail with the research design, and the instruments used to 

answer the research questions.  

 

Chapter 4 will describe the data processing beginning with an overview of statistical 

procedures and results.  
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In Chapter 5 the research findings will be put into perspective with what is known about 

teacher competences in and outside a problem-centred approach to dynamic geometry. 

Each result will be interpreted and limitations of the study stated. The chapter will 

conclude with recommendations and motivation for further research directions. 

CHAPTER 2 

 

REVIEW OF RELATED LITERATURE 
 

“Let no-one unversed in geometry enter here.” Motto over the door of Plato‟s Academy 

(Eves,1976:87). An Introduction to the History of Mathematics. 

 

2.1 Introduction 

 

The problem of teacher knowledge or competencies has been studied from various 

traditional settings as well as selectively and disparately in reformed classrooms or 

situated cognition contexts. In this chapter, characteristics and thought levels of the van 

Hiele theory are discussed in the context of geometry learning. The five instructional 

phases are also briefly alluded to. The role of language in the theory is highlighted. The 

SOLO model is briefly described as a viable instrument for measuring teachers‟ 

competencies.  The Problem Centred Approach (PCA) is discussed in terms of its socio-

constructivist underpinnings, problematization of subject matter, open-ended learning, 

and most importantly, learning through problem solving in a realistic context. An 

overview of research on teacher knowledge and skills is sketched out in general outline. 

Various classifications of teacher know-how are described, compared and evaluated 

revolving around the work of Cooney (1994,1999), Lappan and Theule-Lubienski (1994), 

McDougall (2001), Schulman (in Cooney, 1994), Bromme (in Cooney, 1994) and Philip, 

Flores, Sowder and Schappelle (1994). Thereafter, specific instances within the dynamic 

geometry set up are reviewed. This strategy is predicated on the understanding that the 

concept of teacher knowledge/competencies is a multifaceted one. Studies involving the 
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development of deductive reasoning (or proof) are well documented by de Villiers 

(1996,1998,1999), Marriotti (2001a, 2001b), Leung and Lopez (2002). Studies involving 

problem solving in DGE are also examined in the works of Hoyles and Noss (2001), 

Hannafin and Scott (1998), and Hollerbrands (2003). Classroom interaction patterns are 

reflected upon in the studies by Straesser (2001), Laborde (2001a) and Jackiw and 

Sinclair (2002), De Villiers (1991,1999, 2004), and Govender and de Villiers (2002).  

 

2.2 The van Hiele theory 

Van Hiele (1986: 39 – 47) distinguishes five different thought levels in the learning of 

geometry numbered from 0 to 4, but which have since been re-numbered 1 to five in the 

American convention that has become the international one. These levels can be 

summarized as follows: 

 

2.2.1 Level 1: Visual (Recognition) 

Students identify and operate on shapes and other geometrical objects according to their 

appearance. They recognize figures as a whole and they identify, name and compare 

using the reasoning of the type „it looks like‟, without explicitly considering the 

properties. For example it is a rectangle because it looks like it.  

 

2.2.2 Level 2: Descriptive (Analytical) 

Students now recognize and characterize shapes by their properties and relationships 

among components (parallelism, number of sides, equality, regularity, angularity and 

perpendicularity). They see figures both as a whole and as a sum of experimentally 

established properties. Students do not see relationships between classes of figures. For 

example, it is a rectangle because opposite sides are equal and all angles are equal. 
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2.2.3   Level 3: Informal deduction (abstract/relational) 

Students are able to logically classify families of shapes, can form abstract definitions, 

distinguish between necessary and sufficient conditions for a concept, and can handle 

class inclusion and equivalent definitions of a concept. They can give informal argument 

for their deductions and can follow some formal proofs given by the teacher or textbook. 

For example, if a rectangle has all its sides equal, then it is a square.  

 

2.2.4 Level 4: Formal deduction 

Students understand the role of the different elements of axiomatic systems (axioms, 

definitions, undefined terms, and theorems). They are now capable of performing formal 

proofs. For example, proving that if a quadrilateral has opposite sides equal, they its 

opposite angles are equal (compare 4.3.2.2). 

 

2.2.5 Level 5: Rigor (mathematical) 

At this level students reason formally about postulational systems and can now study 

geometry in the absence of reference models. The aim of their reasoning is the 

establishment, elaboration and comparison of axiomatic systems of geometry. For a 

example, Euclidean and non-Euclidean geometries (compare 1.6.5). 

 

2.2.6 Properties of the levels 

According to Usiskin (1982) the van Hiele has five properties. The first is the „fixed 

sequence‟ property by which „a student cannot be at van Hiele level n without having 

gone through level n – 1‟ (Usiskin, 1982:5). The second property is of „adjacency which 

states that the object of perception at level n – 1 becomes the object of thought at level n.  
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„Distinction‟ is the third property which states that level n requires a re-organization or 

reinterpretation of knowledge acquired at level n – 1. Land (1990:29) refers to this as „the 

perception of a new structure complete with its own symbols.‟ The fourth identified 

property is of „separation‟ attesting that two persons reasoning at different levels cannot 

understand each other (Usiskin, 1982:5). In this connection, de Villiers (1999:11) notes 

that according to the theory, the main reason for the failure of the traditional geometry 

curriculum is that it is presented at a higher level than those of the students. The fifth 

property was identified as „attainment‟ implying that the progress from one level to the 

complete understanding of the next is more a function of instruction than age or 

maturation and five learning phases are delineated as inquiry/ information, directed 

orientation, explicitation, free orientation and integration. 

 

2.2.7  A critique of the van Hiele theory 

According to Pegg and Davey (1991:10) the ideas of van Hiele, have been the catalyst for 

much of the renewed interest in the teaching of geometry during the 1980‟s, evolving 

largely as a reaction to the deficiencies perceived in the views of Piaget. It can further be 

noted that the van Hiele level theory has been studied even outside geometry by Land 

(1990) in algebra (exponential and logarithmic functions) and Nixon (2002) in higher 

arithmetic (sequences and series), and the existence of levels has been validated. 

 

However, there are studies that have raised questions about some characteristics of the 

theory. While van Hiele (1986:49) specifically identified discontinuity between levels as 

the most distinctive property of the levels of thinking, the autonomy of the levels does not 

seem to be as distinct. Burger and Shaughnessy (1986:45) state that they failed to detect 

the discontinuity and found instead that the levels appear dynamic rather than static and 
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of a more continuous nature than their discrete descriptions would lead one to believe. 

Students may move back and forth between levels quite a few times while they are in 

transition from one level to the next. Fuys, Geddes and Tischer (1988) also found a 

significantly sized group of students who made some progress toward level 2 with 

familiar shapes such as squares and rectangles, but encountered difficulties with 

unfamiliar figures. They concluded that progress was marked by frequent instability and 

oscillation between levels.  Gutierrez, Jame and Fortuny (1991:250) also found that the 

levels were not as autonomous in that people do not behave in a single, linear manner, 

which the assignment of one single level would lead us to believe. They identified 

students who could be coded 100%, 85%,  40% and  15% for levels 1, 2, 3 and 4 

respectively implying that students develop more than one level at the same time. In other 

words, van Hiele‟s broad statements are not as black and white as they are often 

portrayed .(Pegg and Davey, 1998:114) (compare 4.2.3) Is it the level of the student or 

the level of response that should matter? The SOLO (Structure of Observed Learning 

Outcome) taxonomy has been proposed as a more realistic model for assessing and 

classifying students‟ responses in geometry and mathematics in general (Biggs, 1996, 

Pegg & Davey, 1998, Pegg 2003). 

 

Apart from the foregoing, other observations on the van Hiele theory have been that it 

was postulated specifically in the context of 2-D geometry, and not in 3-D and dynamic 

contexts. Although van Niekerk (1997) has shown its applicability in 3-D contexts, de 

Villiers (1994:17 has shown that dynamic geometry contexts can facilitate the grasping of 

class inclusion even as early as level 1.  Treffers (1987:245) also points out that the van 

Hiele theory was proposed at a time when geometry was not part of the primary school 

curriculum in the Netherlands. He further concedes that the theory lacked clarity about 
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how to shape concretely the phenomenological exploration at the first level, and which 

didactical acts should be performed to raise pupils as efficiently as possible from one 

level to the next. Even van Hiele (1986:47) himself has doubted the existence or 

testability of levels higher than the fourth and considered them as of no practical value. 

Be that as it may, Usiskin (1982:6) commends the van Hiele theory „for its elegance, 

comprehensiveness and wide applicability.‟ The implications for teachers are that 

whereas the van Hiele theory explains geometric thought development from a 

macroscopic perspective, there could be variations to be considered when a closer look is 

taken at the microscopic level. 

 

2.3 The SOLO model 

According to Pegg (2003:240) SOLO is a general model of intellectual development and 

aims at classifying outcomes and not students. That is, in line with the Developmental-

based Assessment and Instruction (DBA) philosophy the emphasis is on giving weight to 

„what the student knows, understands and can do‟ (ibid. p. 238).  Three levels of 

performance are identified as unistructural understanding (focusing  on the domain or 

problem using one piece of information leading to inconsistency), multistructural (using 

two or more pieces of information without any relationship between them and hence 

inconsistencies may still exist) and relational understanding (wherein all information is 

now available and there is no inconsistency). Sometimes a fourth level is employed 

referred to as pre-structural in which the response is deemed to be below the target mode. 

SOLO postulates that all learning occurs in one of five modes of functioning namely the 

sensori motor, ikonic, concrete symbolic, formal and post formal. In the terminology 

there is clear reminiscence of Piaget‟s stages of intellectual development. Biggs (1996) 

argues convincingly for the suitability of SOLO in the assessment performance in higher 
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education. Taking a cue from Biggs, this study uses the SOLO criteria to assess teacher 

competencies and how they are integrated to achieve effective learning in a problem- 

 centred approach to dynamic geometry teaching. 

 

 

2.4 The problem-centred approach 

The problem-centred approach is compatible with the emergent constructivist view of 

knowledge and learning. The genetic epistemology of constructivism argues that 

knowledge cannot be independent of the knower and commits itself to the view that 

knowledge is first an individual construction and secondly a social construction (Ernest, 

1996:343). In other words, constructivism locates mathematical knowledge in the 

knower, as an individual (subjective) experience and as a shared (objective) experience.  

 

Teachers are therefore encouraged to create learning opportunities (tasks) that enable 

students to construct their own understandings, individually and collaboratively since 

there is no one-to-one mapping from teaching to learning but active construction of 

knowledge by students themselves, according to emergent categories derived from social 

interaction, not from observation of the teacher teach (Biggs, 1996:73). The problem-

centred approach as proposed by Murray, Olivier and Human (1993:73) reaffirms that 

students construct their own mathematical knowledge irrespective of how they are taught.  

In apparent support of this posture, Simon and Schifter (1994:331) contend that learners 

construct understandings, as they attempt to make sense of their experiences, each learner 

bringing to bear a web of prior understandings, unique with respect to content and 

organization. The bottom line then, is to allow students to construct their own 

understandings by creating an environment conducive to effective problem solving. 
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The problem-centred approach is also consonant with Freudenthal‟s (1983:46) objection 

to giving students ready-made mathematics. Mathematics is viewed as a human activity 

that students must engage in a way similar to the genetic development of the subject. In 

similar vein, Hiebert, Carpenter, Fennema, Fuson, Human, Murray Olivier and Wearne   

(1996:12) are of the view that in a problem-centred approach instruction should make he 

subject problematic by allowing students to wonder why things are, to inquire, to search 

for solutions and resolve incongruities. Such a spirit dovetails conveniently with the 

historical development of the subject. In retrospect, Bereiter (1992:342) argues that all 

high level scientific knowledge is problem-centred rather than referent-centred. This 

challenges both curriculum and instruction to begin with problems, dilemmas and 

questions for students and implies that teachers should develop problem-posing skills.  

The dynamic geometry environment offers expanded opportunities for problem posing, 

exploration and experimentation. 

 

The central role of the teacher in a problem-centred approach becomes one of designing 

or selecting and posing tasks that “link with students‟ experiences and for which students 

can see the relevance of the ideas and skills they already possess” (Hiebert et al, 

1996:16). In further support the Netherlands the Realistic Mathematics Education (RME) 

project refers to rich context problems of which the problem situation is experientially 

real to the student and can serve as anchoring points for the re-invention of mathematics 

by students themselves (Gravemeijer & Doorman, 1999:111). In other words, the 

problems must be within the zone of proximal development of the students as advocated 

by Vygotsky (1978) by being reasonably difficult to challenge and foster creativity, yet 

not discourage. This sounds plausible and compatible with the van Hiele concerns about 

the level of language and geometrical difficulty (compare 2.2.6). 
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Problems should also be amenable to multiple solution strategies, or be open-ended, 

extensible, and generalizable (Erickson 1999, Schoenfeld, 1994). The dynamic geometry 

environments offer ample opportunities for open-ended exploration, which promotes 

originality and transferability of knowledge to real world problem solution. Rather than 

stereotype, this promotes creativity in the development of solution strategies. In a 

comparative study of students in an open-ended learning situation (Phoenex Park) versus 

students in a textbook oriented environment (Amber Hill), Boaler (2000:117) concludes 

that students develop different conceptions about what it means to have and to use 

mathematical knowledge. While students at Phoenex Park (who engaged in open-ended 

projects at all times) developed more conceptual and flexible forms of knowledge, those 

at Amber Hill (where mathematics was taught using a traditional text book approach) 

appeared to have spent time in their mathematics classrooms failing to learn! The finding 

is an instructive eye-opener for teachers to cultivate an open-ended learning culture in 

their classrooms (compare rhombus construction exercise in 4.3.2.2).  

 

 

2.5 Generic studies- synthesis of literature surveyed 

 

Cooney (1999:163) refers to the growing topicality of the notion of teacher knowledge by 

noting that it is being recognized as an increasingly complex phenomenon because 

effective teaching involves more than being mathematically competent. In the light of the 

NCTM standards Lappan and Theule-Lubienski, in Cooney (1994:609), conclude that the 

role of mathematics teacher education is to enable teachers to 1) choose worthwhile tasks, 

2) orchestrate classroom discourse, 3) create a learning environment that emphasizes 

problem solving, communication, and reasoning and 4) develop teachers‟ ability to 

analyze their teaching and student learning. These appear to predominantly mathematical, 

pedagogical and linguistic competencies.  
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Taking a cue also from the Standards, McDougall (2001:35) proposes a four-level rubric 

to measure ten dimensions of teacher competence identified as 1) program scope 

(algorithms vs. sequentially more connectedness), 2) inclusion of all students in all 

mathematics lessons, 3) student tasks (particular procedure vs. multiple solution 

strategies), 4) discovery (transmission model vs. student thinking), 5) teacher‟s role (sole 

expert vs. creation of mathematics community) 6) use of manipulatives and tools, 7) 

student-student interaction (isolated work vs. learning from peers) 8) student assessment 

(end-of week tests vs. real life, multi-level performances) 9) teacher‟s conception of 

mathematics as a discipline (fixed body vs. changeable math) and 10) student confidence 

(achievement vs. conceptual understanding). Teachers‟ conformity with philosophy of 

the NCTM standards (which advocate a reformed mathematics classroom discourse) was 

measured on a four-point scale with the two extremes forming the ends of a continuum. 

These competencies seem again to be largely pedagogical. Technology and assessment 

competences are mentioned in passing without a major stress, but constitute important 

additional dimensions. Teachers‟ conceptions about mathematics appear to have received 

greater emphasis than knowledge of mathematics itself. 

  

For mathematics teachers to achieve the NCTM standards, Lappan and Theule 

(1994:253), on the one hand, identify three domains of knowledge enabling one to choose 

worthwhile tasks, orchestrate discourse, create an environment for learning, and analyze 

teaching and student learning: knowledge of mathematics, knowledge of students and 

knowledge of the pedagogy of mathematics. These appear to be important pillars of 

teacher know-how. Knowledge of students, links up well with the van Hiele theory‟s 

emphasis on thought levels. (compare 4.6.2, and 4.2) On the other hand, Schulman (in 
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Cooney, 1994:610) classifies teacher knowledge into seven domains: 1) knowledge of 

subject matter, 2) pedagogical content knowledge, 3) knowledge of other content, 4) 

knowledge of the curriculum, 5) knowledge of learners, 6) knowledge of educational 

aims, and 7) general pedagogical knowledge. There appears to be reiterations of 

mathematical and pedagogical content knowledge in this classification. Furthermore, 

knowledge of curriculum and educational aims can be embedded in pedagogical 

knowledge. Technology is conspicuous by its absence. 

 

From yet another perspective, Bromme (in Cooney, 1994:610) proposes a topology of the 

teacher‟s professional knowledge that includes 1) content knowledge about mathematics 

as a discipline, 2) school mathematical knowledge, 3) philosophy of school mathematics, 

4) pedagogical knowledge, 5) subject-matter-specific pedagogical knowledge and, 

cognitive integration of knowledge from different disciplines. The first three categories 

could be combined under mathematical knowledge. Ability to integrate knowledge from 

different disciplines, appears an important addition on this list, which acknowledges the 

integrated nature of knowledge (compare with Bereiter in 2.3), and is thus compatible 

with the problem-centred approach.  However, technological literacy is still absent. 

 

In a study by Phillip, Flores, Sowder and Schappelle (1994) four teachers were identified 

as “extraordinary” teachers of mathematics. Data gathered from interviews, tests on 

content knowledge, discussions during a series of seminars, and lesson observations were 

used in summarizing characteristics of these teachers under a) their mathematical 

preparation and their content knowledge of mathematics b) their conceptions about 

mathematics, about learning, about teaching, about the roles of teachers and of students, 

and about the assessment of learning, and c) their teaching practices. There is 
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considerable buttressing of mathematical content knowledge and a new dimension of 

teacher beliefs and social ethos of the classroom. Within the three areas, though, the 

following characteristics were identified: deep commitment to teaching, personal 

ownership of change within the classrooms, a high degree of reflectiveness, active 

participation in professional development activities, thorough understanding and 

knowledge of school mathematics, integrating mathematical content knowledge with 

teaching practice, viewing mathematics as a foreign language and encouraging students 

to conjecture and explore, focusing on conceptual understanding, and viewing the 

teacher‟s role as one of guide, not sole authority.  Reflectiveness appears an important 

additional ability or competence, which teachers can develop or cultivate even in a PCA 

approach to dynamic geometry. Encouraging students to conjecture and explore is 

particularly instructive in a dynamic geometry environment. 

 

2.6       Studies involving dynamic geometry environments (DGEs) 

2.6.1 Re-orientation 

The categorizations and differentiations in the previous section seem to have been framed 

at from a holistic or generic perspective of mathematics education. This study aims at 

localize the analysis to a DGE environment and this section attempts to re-focus attention 

in that direction. 

 

2.6.2 Development of deductive reasoning 

Leung and Lopez (2002) contend that theorem acquisition and deductive proof have 

always been core elements in the study and teaching of Euclidean geometry. They argue 

that the advent of DGE enables students to experiment through different dragging 

modalities on geometrical objects they construct, and consequently infer properties about 
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the geometrical artifacts (compare 2.5.10). They discuss the case study of two secondary 

school students (aged 16) who submitted a Cabri proof by contradiction of a theorem on 

cyclic quadrilaterals, and conclude that their construction motivated a visual – cognitive 

scheme on observing proof in DGE and how this scheme might fit into the theoretical 

construct of cognitive unity of theorems. If teachers could create conditions that permit 

construction, conjecturing, experimentation and verification, then students could be 

engaged in genuine mathematical activity and not just prefabricated mathematics.  

 

Mariotti (2001a) describes a long-term teaching experiment carried out with students 

from 9
th

 to 10th grades in different classes and schools. She examines how geometrical 

constructions in Cabri can constitute the key to accessing the idea of theorem by helping 

students to move from a generic idea of justification toward a formal proof. She 

concludes that the evolution should not be expected to be simple and spontaneous. In 

stead the evolution is a product of sustained instructional effort that engages students in 

sense making just as the van Hiele theory suggests (compare 2.2, 4.3.2.2and 4.4.4). 

 

2.6.3 Reappraising the role of proof in dynamic geometry environments 

Although Laborde (2001b:155) argues the case for the dual nature of proof as meant for 

both validating the truth of a statement and for convincing others of the validity, there are 

alternative views. De Villiers (1991, 1996, 1998, 1999, 2002, 2004) consistently and 

persistently reappraises the role of proof as verification and conviction. He argues that 

whereas traditionally the function of proof has been seen almost exclusively in terms of 

its verification function (conviction or justification), the advent of dynamic geometry and 

its convincing power pushes the conviction function of proof to a triviality. He further 

argues that explanatory, discovery, systematization, intellectual challenge and 
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communication functions of proof in situations where conviction already exists, may not 

only make proof potentially more meaningful to students (compare 2.5.2), but in such 

cases is probably more intellectually honest (de Villiers, 1991:12). 

The convincing power of dynamic geometry environments also prompts challenges to 

find deductive proofs, not to clear doubt that would already have been cleared by the 

software, but to satisfy a deeper need for understanding (compare 4.3.2.2 and 4.4.4). In 

other words, in dynamic geometry contexts conviction can, in fact, precede and motivate 

proof given that direct contact with the phenomenon is even more convincing than a 

proof, since one sees it all happening right before one‟s eyes (De Viliers, 2002:5). In a 

creative application of modeling of a real world problem using pre-made sketches Water 

1.gsp and Water 2.gsp Mudaly (2002) reports that students were enormously surprised to 

discover that the perpendicular bisectors of all triangles were concurrent and they wanted 

an explanation in order to understand and satisfy some innate curiosity around the reason 

for the result. In a sense the capabilities of a dynamic geometry environment compel 

teachers to take a second look at the role of proof as a matter of urgency.  

 

2.6.4 Problem solving in a dynamic geometry environment 

In a study involving six groups of six students from three different schools, Healy and 

Hoyles (2001) explored the role of software tools in geometry problem solving and how 

these tools, in the interaction with activities that embed the goals of teachers and students 

mediate the problem solving process. Through an analysis of successful student responses 

they concluded that dynamic software tools cannot only scaffold the solution process but 

can also help students move from argumentation to logical deduction. However, from an 

analysis of responses of less successful students they found that software tools that 

cannot be programmed to fit the goals of the students might, in fact, prevent them from 
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expressing their (correct) mathematical ideas This is an important conjecture, which the 

teacher has to be alert to in a DGE. It calls for a keen eye on individual differences in 

learning styles (compare 4.2.3). 

 

After controlling for ability in a Sketchpad environment, Hannafin and Scott (1998) 

investigated the effects of 8
th

 grade students‟ working memory capacity, preference for 

amount of instruction, spatial problem-solving ability and school mathematics grades on 

two achievement measures, along with recall of factual information and conceptual 

understanding. They found, on the one hand, that learners who reported a relatively low 

preference for amount of instruction scored higher than their high-preference counterparts 

on the conceptual understanding test items.  They also found that high achievers in school 

grades scored higher than students with lower grades on the factual recall test items but 

not on conceptual understanding items.  On the other hand low achievers in school 

mathematics performed relatively better in these nontraditional mathematics activities, 

suggesting that open-ended dynamic geometry learning environments could improve 

student achievement (compare 2.3) and thus reach out to a greater number of students.  

 

Hollerbrands (2003) investigated the nature of students‟ understandings of geometric 

transformations, which included translations, reflections, rotations and dilations in 

Sketchpad. In a seven-week instructional unit, students‟ conceptions of transformations as 

functions were analyzed and results suggest that understanding of key concepts such as 

domain, variable and parameters, relationships and properties of transformations were 

critical in developing deeper understandings. Problem-solving ability was enhanced.  

 

2.6.5 Development of geometric thought in DGEs 
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Choi-Koh (1999) investigated a secondary school student‟s development of geometric 

thought using the PM van Hiele (1986) model and the Geometer’s Sketchpad software. 

During a 21-hour study, the author used clinical interviews to determine the students‟ 

predominant level of geometric thought and to gain insight into the developmental 

process of geometric reasoning. Ordered from the simplest to the most complicated, four 

learning styles: the intuitive, analytical, inductive and deductive were identified in terms 

of symbol, signal, and implicatory properties.  The author concluded that the use of active 

visualization with the dynamic software facilitated the movement from symbol to signal 

and to an implicatory character.  This suggests teachers should be skilled to identify 

students‟ varying thought levels so that they adjust their teaching to address the 

concomitant variations in reasoning styles (compare 2.5.3). 

 

Lehrer and Chazan (1998) investigated the interactive roles of subject matter, teacher, 

student and technologies in promoting understanding of geometry and space. They came 

to the conclusion that geometry and spatial visualization in school should not be 

compared or limited just to Euclidean geometry. This is instructive in the light of the 

emergence of other geometries as alluded to earlier (compare 1.6.5). The geometry of 

triangles and quadrilaterals is amenable to transformational and fractal manipulation 

(compare 4.3.3, 4.4.1 and 4.4.2 ).  

 

 

2.6.6 Classroom interaction patterns in DGEs 

Straesser (2001) analyses how the use of DGEs might influence traditional geometry and 

its teaching and learning. The author highlights changes in the interactions between 

geometry, the computer tool, the DGEs and the human user in the teaching and learning 
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of geometry. The conclusion reached is that DGEs deeply change geometry if it is taken 

as a human activity integrating the use of modern Information and Communication 

Technology (ICT). Hence there is concurrence with Freudenthal‟s (1991) view of 

mathematics as an organizing activity. In other words DGE enable teachers to engage 

students in the activity of doing geometry with expanded opportunities for reinvention. 

Laborde (2001a), designer of Cabri software, examines the discrepancy in France 

between the institutional support for the use of technology in mathematics learning and 

its weak integration into teacher practice. He then identifies and analyses the possible 

integration, over a 3-year study, in the design of teaching scenarios based on Cabri-

geometre for high school students. The analysis concludes that the role played by the 

technology moved from being a visual amplifier or provider of data to that of being an 

essential constituent of the meaning of tasks, thus affecting the conceptions of the 

mathematical objects that the students might construct.  The implication is that the 

teacher in a DGE has to be sensitive to the manner in which the DGE affects the 

understanding and interpretation of geometrical objects and artifacts (compare 4.3.21). 

 

In a proposal for a whole class view of micro-world design involving 29 grade 9 students, 

Jackiw and Sinclair (2002) illustrate that the design not only has practical benefits in 

terms of classroom and time management but also develops social interactions conducive 

to educative learning experiences. This suggests flexibility in presentation styles 

depending on the number of PCs available and/or the stage of the lesson (compare 4.6.3). 

 

2.6.7 A redefinition of the teacher’s role in a DGE 

Marriotti (2001b) carried out a long term teaching experiment with 9
th

 and 10
th

 grades to 

clarify the role of Cabri in the teaching and learning process. Assuming a Vygotskian 
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perspective, the author focused attention on the social construction of knowledge, the 

semiotic mediation of cultural artifacts and the functioning of specific elements of Cabri 

as instruments of semiotic mediation. The presence of the computer and of the particular 

DGS were found to represent a perturbation element in the internal context of the teacher 

in that the teacher had to elaborate a new relationship to mathematical knowledge which 

links it to the computer in general and the DGS in particular. The teacher has to adapt his 

role of mediator taking into account the new elements offered by the DGS. This suggests 

allowing students to work in small groups and share findings, justifications and 

communication as a community of learners, thus in concert with the PCA approach.   

 

2.6.8 Problems with teacher experience and adaptability 

In a 2 week-mixed design study involving 12 grade 7 students Hannafin, Burruss & Little 

(2001) examined teacher and student roles in, and reactions to, a student-centred 

instructional program, using Sketchpad. The authors found that the teacher had difficulty 

relinquishing control of the learning environment even though she had agreed to do so. 

Students, however, liked their new (found) freedom and expressed greater interest in the 

subject material. The PCA to dynamic geometry calls for a de-rolling from the traditional 

caricature of the teacher as sole authority, or teaching as telling. 

 

In examining opportunities to explore and integrate mathematics with the Geometer’s 

Sketchpad, Olive (1998) presents examples from elementary-, middle- and high school 

where teachers, have been using Sketchpad. Apart from illustrating the potential for 

creative student explorations the author also illustrates potential problems such as 

understanding the difference between “drawing” and “constructing”, “demonstration vs. 

proof”, and pedagogical problems of teachers‟ lack of experience with Sketchpad. In a 
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PCA to DGEs, teachers consequently have an obligation to acquaint themselves 

thoroughly with the software features and capabilities (compare 4.6.2). 

 

2.6.9 Teachers’ understanding of geometrical definitions 

In a study of student teachers‟ constructive evaluation of definitions in a Sketchpad 

context, Govender and De Villiers (2002) found that after interaction with the software, 

the teachers appeared to have developed a deeper understanding of the arbitrary nature of 

definitions, to have improved ability to select correct alternative definitions of a rhombus 

and to have improved the ability to improve a given definition from incorrect to 

uneconomical (van Hiele level 2) and to an economical one with necessary and sufficient 

conditions (van Hiele level 3 competence)(compare 4.2.1).  In a study involving the 

systematization of the isosceles trapezoid, de Villiers (2004), found that students 

preferred a deductive economical definition from which it was easy to deduce the other 

properties of the concept. He described such a definition as constructible in the sense of 

allowing one to directly construct the object being defined in Sketchpad. 

 

2.6.10 The centrality of the drag test 

Goldenberg and Cuoco (1998) examine the effects on teaching and learning of the 

dragging paradigm and at the way students perceive figures because of the defaults built 

into the drag mode. Cuoco and Goldenberg (1996:17) argue that this capability of DGEs 

offers students the metaphor of the physics of mathematics. DGEs like Sketchpad and 

Cabri II, it is argued, offer students the opportunity to experiment with mathematical 

objects just as they might tinker with mechanical objects. Roschelle and Jackiw 

(2000:782) also contend that the dragging paradigm allows students to move fluidly 

between open-ended and goal directed modes of inquiry. The central idea of dragging 
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implies that if relationships have been set up among points, lines and circles, they are 

preserved even when one of the basic components of the construction is dragged (Hoyles 

and Noss, 1994:716). The dragging paradigm thus casts into sharp relief the difference 

between a „drawing‟ and a „construction‟, which both teachers and students must come to 

grips with (Finzer and Bennet, 1995:428). Sinclair (2003:290) points to the advantage 

that dragging enables reasoning about invariant properties and to provide evidence about 

the validity of conjectures. Understanding of the dragging mode and its logic seems to be 

a critical issue. Teachers are thus challenged to appreciate the logic behind the drag test 

(or animation), what makes a construction a figure, what remains invariant in the 

hierarchy of dependencies, and why. 

 

2.7 An interpretative summary 

From the literature review, mathematical/geometrical know-how stands apart as an 

indispensable competence as the following phrases gleaned from the survey suggest: 

knowledge of geometry, (content) knowledge of school geometry (subject matter), 

conception of mathematics as a discipline, knowledge from different disciplines (other 

content), mathematical preparation, and knowledge of the philosophy of school 

mathematics. Pedagogical competencies are also quite predominant as the following 

phrases suggest: pedagogical content knowledge, creating an environment that 

emphasizes problem-solving, orchestrating classroom discourse, knowledge of students 

(students‟ level of geometric thought), choosing worthwhile tasks amenable to multiple 

solution strategies, teachers‟ ability to analyze their own teaching, conceptions about 

learning, teaching, roles of the teacher and students, classroom culture (inclusion of all 

students in lessons), problem posing skills, and open-ended learning.  Language 

competencies are ominously implied by the following terms: communication and 
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reasoning, social construction of knowledge, language specific to a particular van Hiele 

level, viewing mathematics as a foreign language, geometric terms for geometric objects 

and processes, proof as communication and ability to follow instructions in tasks.  

 

Assessment competencies are suggested by the following host of phrases: student 

assessment¸ assessment of learning, ability to express descriptions and definitions of 

shapes and geometric processes, open-ended assessment questions, monitoring, 

alternative assessment strategies (journals, portfolios) the varieties of the van Hiele tests 

and/or level descriptors, the SOLO taxonomy and so on. Also hugely implied is a whole 

new complexion of computer and software competencies that DGEs foist into the 

classroom in terms of: new geometrical meanings, new interaction patterns, paradigm 

shifts in the functions of proof, dynamic experimentation and problem solving, 

conjecturing and drag testing, animation and several other validation methods,  

 

A significant characteristic that can be conjectured about these competency categories is 

that they intersect and overlap considerably. Examples of such overlaps are knowledge of 

curriculum (which is both mathematical and pedagogical content knowledge, if not also 

directly related to assessment), choice of worthwhile tasks (mathematical content and 

pedagogical level of challenge), Sketchpad terminology (both software and linguistic, 

even geometric) re-conceptualization of proof (which straddles both deductive reasoning 

in geometry, software and linguistic competencies.)  

 

The intersection of the competence categories appears to extend even beyond two sets. 

For example a reconceptualization of proof seems to permeate geometrical, software and 
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linguistic domains, and multiple problem solutions seem to span all categories. Figure 2.1 

summarizes the competencies and their conjectured relationship.  

 

 

Figure 2.1: A synthesis of competencies from the literature survey 

 Assessment

competencies

Computer and   

       software

competencies

   Linguistic

competencies

  Pedagogical

competencies

  Geometrical

competencies

 

 

This study attempts particularization in the context of a problem-centred approach to the 

teaching and learning of dynamic geometry. The next chapter describes the research 

methods and instruments used in this study to verify the efficacy of the tentatively 

identified competencies. 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

“If I were to prescribe one process in the training of men which is fundamental to success 

in any direction, it would be thoroughgoing training in the habit of accurate 

observation.” Eugine G. Grace 

 

3.1 Introduction 

 

 

This chapter outlines the research methodology used in this study, the supporting 

theoretical background to and the actual implementation. The research used the Teacher 

Development Experiment (TDE) approach as the main method of investigation and 

multiple sources of information – the pre-test,  videotape, a teacher questionnaire and a 

structured group interview at the end. The theoretical framework of the TDE is sketched 

out in some detail with regards to its constructivist origins, relationship with the teaching 

experiment methodology, reflexive generation of theory from practice and its multi-tiered 

nature. The target population is described in broad terms before participants‟ 

characteristics are given in detail with regards to level of course being undertaken, entry 

qualifications and mathematics curricula offered. The geometric content for this study is 

delineated and justified.  Finally the data gathering process is outlined and divided into 

five phases each of which is described in considerable detail. As stated earlier, (compare 

1.3) the research was not, however, about how teacher competences develop. Rather it 

sought to identify and analyze teacher competencies without reference to the 

developmental process itself. Hence the developmental aspect fell beyond the scope of 

the investigation. 
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3.2 Theoretical framework of the Teacher Development Experiment 

 

 

Apart from the review of related literature, this study used a Teacher Development 

Experiment (TDE) approach as the main method of investigation. Simon (2000:337) 

states that the TDE builds directly on the emergent perspective „articulated by Cobb and 

his colleagues – the constructivist perspective on conducting teaching experiments with 

teachers‟. Three shifts are delineated as constituting the emergent perspective. The 

central metaphor of students as „processors‟ is displaced by that of students acting 

purposefully in an evolving mathematical reality (Sfard in Cobb, 2000:307). The second 

shift relates to an increased acknowledgement of the social and cultural aspects of 

mathematical activity (Cobb, 2000:308). These aspects have been elaborated upon in the 

articulation of the theoretical underpinning of the problem-centred approach in the 

previous chapter.  

 

The third shift pertains to the relationship between theory and practice. Traditionally, 

theory has been seen to stand apart from and above the practice of learning and teaching 

mathematics. Teachers have been positioned as consumers of research findings generated 

from ivory towers located away from the classroom. In contrast to this subordination of 

practice to theory, the emergent perspective emphasizes a reflexive relationship wherein 

theory is seen to emerge from practice and to feed back to guide it (Cobb, 2000:308).  In 

other words, the TDE is in keeping with the research philosophy of generating theory 

from practice, or the description of “what is possible‟ (Fennema, 1981:vii). Wessels 

(2001a: 2) reaffirms this stance by pointing out that the building of theories or theorizing 

is one fundamental value or significance of research in mathematics education. The same 

can be hypothesized about mathematics teacher education.  In fact, TDE allows 

researchers to generate increasingly powerful schemes for thinking about the 
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development of teachers in the context of teacher education (Simon, 2000:338). A 

knowledge base is needed then, that will guide the creation of novel effective teacher 

education programs. Such a base must include, in the first instance, the identification and 

analysis of aspects of teacher knowledge and skills that support a problem-centred 

approach to dynamic geometry.  

  

In short, the term teacher development experiment is an attempt to distinguish it from the 

teaching experiment while recognizing the teaching experiment as the central building 

block of the methodology (ibid. p. 336). It has the dimensions of a multi-tiered 

experimental approach in that it takes as its objects of study, a teaching learning complex 

which encompasses three levels of participants: the researcher/teacher educator, the 

teacher and the students, and then two levels of curricula: teacher education curricula and 

the mathematics students‟ curricula. 

 

 

Due to resource and logistical constraints, in this study, the student teachers were 

engaged in peer teaching. This limitation will be borne in mind in the interpretation of 

findings. The belief is held, though, that microteaching is a legitimate means for 

identifying  and analyzing teacher skills while on college campus.  

 

3.3 Sampling procedures for the group of learners 

 

 

After seeking permission from college authorities, a notice was displayed on campus 

inviting volunteer final year mathematics majors to register with the researcher for 

possible selection to participate in the training to teach mathematics using computers. 

Those interested were invited to write a pre-test in order to be eligible for selection. 

Thirty-nine students turned up. Using a table of random numbers, a first sample of ten 
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(10) students was selected and placed on a five-week program acquainting them with the 

geometry of triangles and quadrilaterals using Geometer’s Sketchpad software. After the 

initial five weeks another sample of ten third year student teachers was selected. 

 

3.4 Description of participants 

This investigation took place in an all black but multilingual class of third (final) year 

Diploma in Education (Primary) student teachers at Joshua Mqabuko Nkomo 

Polytechnic‟s Teacher Education Faculty. The student teachers were mathematics majors 

who had between zero and ten years temporary teaching experience prior to joining 

college and five terms (twenty months) teaching practice (attachment) experience. The 

teachers were taught in English, a second language to all of them. 

 

3.5 Geometric content covered in study 

The geometric topic chosen as most suitable for the empirical study was to do with 

triangles and quadrilaterals. There were two main reasons for this decision. First, in terms 

of the „family of triangles‟ and the „family of quadrilaterals‟, there is a rich variety 

(scalene, isosceles, right-angled and equilateral triangles, quadrilaterals include squares, 

rhombuses, rectangles, parallelograms, kites, and trapezia). This variety lends difficulties 

to many a student in terms of identification, description, definition and classification. The 

second reason was, as noted earlier, that the material fitted well within the syllabus.  

 

3.6 Data gathering processes 

3.6.1 Phase 1- Pre-testing and selection of participants 

A pre-test was administered to 39 interested student teachers in the Mathematics major 

class week prior to the commencement of the study (week 1). The objective of the pre-
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test was to ascertain would-be participants‟ current level of geometrical knowledge and 

estimate their van Hiele levels of geometric thought. Definitions of shapes in the pre-test 

would be classified as Non-standard  (with a van Hiele level 3 weighting of 120%), 

Economical (100%), Uneconomical (50%), Very uneconomical (10%), Incorrect (0%), 

Unknown (0%). A participant scoring an average of 60% and above in the eleven shapes 

(triangles and quadrilaterals) would be deemed to be operating at van Hiele level 3 with 

respect to definitions). A score below would suggest the participant is operating at van 

Hiele level 2 or below. Table 3.1 outlines descriptions of the various levels of definitions 

as employed in this study. 

CATEGORY OF 

DEFINITION 

DESCRIPTION 

Non-standard Correct economical definition not usually found in textbooks 

Correct economical Definition containing only necessary and sufficient conditions 

Correct uneconomical Definition containing one extra true property which is not 

necessary  

Correct but very 

uneconomical 

Definition containing two or more true but unnecessary 

properties 

Incorrect definitions Definition containing necessary but insufficient conditions or 

definition containing both necessary and false properties or 

definition containing no correct property 

Unknown  Unstated definition 

Table 3.1 Categories of geometrical definitions 

 

Furthermore, the pre-test sought to establish how much knowledge, if at all, the 

participants had of the problem-centred approach, the meaning of dynamic geometry, and 

the difference between a „drawing‟ and a „figure‟ or „construction‟. (see Appendix A) 

 

3.6.2 Phase 2 – Introduction to Computers and Geometer’s Sketchpad. 

In this phase, the start of the TDE, participants were expected to gain preliminary 

experience with computer hardware components viz: Central Processing Unit (CPU), the 

monitor, the keyboard and the mouse. It was an opportunity to explain that there are two 
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types of software, namely systems software and application software. Geometer’s 

Sketchpad falls under the latter type (see videotape 1). 

 

After the introduction to computers the teachers would be introduced to the Geometer’s 

Sketchpad software by working through several tours in the Geometer’s Sketchpad 

workshop and learning guides to acquaint them with the software features and monitor 

their geometrical competencies.  Teachers‟ were observed and assisted during sessions 

and their answer sheets were later analyzed in terms of how successfully they managed to 

carry out the instructions of the construction/geometrical tasks.   

 

3.6.3 Phase 3 – Micro-teaching phase as extension of the TDE 

The purpose of this phase of the TDE was to observe teachers in action, ascertain their 

levels of preparation, presentation, geometrical confidence, proficiency in Sketchpad 

skills, ability to involve students and monitor their participation and progress, ability to 

manage time as well as integration of skills in the didactic process. The phase began with 

the selection of a further group of 10 teachers who joined the initial group as tutees. The 

earlier group of students would become the leader teachers and take turns in pairs to 

prepare and deliver lessons in subsequent sessions. Pre-made sketches would be used in 

the form of triangles centres, proofs of Pythagoras‟s Theorem, similarity and congruency 

proofs for triangles, angles in a triangle (compare 4.4.1, and 4.4.2). Transformations and 

dynamic translation tasks would be embarked on. The kaleidoscope and tessellations 

would be constructed while the distances in an equilateral triangle sketch would be 

investigated (compare 4.4.3 and 4.4.4).  

 

Teachers were observed in areas listed in Table 3.2 with the weightings shown.  
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# Criterion being observed %Wt    Score obtained 

 P       U      M     R 

1 Level of teacher preparedness  15     

2 Mastery of Sketchpad skills 10     

3 Presenter - teacher interaction 5     

4 Teacher – teacher interaction 10     

5 Presenter whole class interventions 5     

6 Time management 5     

7 Mastery of mathematical content 15     

8 Monitoring of participants‟ progress 10     

9 Conclusion 5     

10 Performance of participants 10     

 Overall impression on integration of skills 100%  

 

 

 

 

 

   

Table 3.2 Lesson observation criteria 

  

In the second sub-phase even some of the teachers who had only recently joined would 

have the opportunity to prepare and present their own lessons (compare 4.4.4). Whole 

class discussions would be encouraged as a way of wrapping up lessons. Throughout 

phases 2 and 3 the camera men would be encouraged to ask teachers to explain how they 

had executed their tasks, what geometry was involved, how the figures behaved under 

drag or animation, what problems they had faced and how they had overcome them 

(compare 4.4.1). The video recording arrangement was in keeping with Simon‟s (2000) 

recommendation that recording of sessions in the TDE should be accompanied by 

videotaping. These recordings and their transcriptions are deemed essential for both 

ongoing and retrospective analyses. 

3.6.4 Phase 4 – Mini-projects, questionnaire and group exit interview 

Six teachers had the opportunity to write their mini-projects, exercises of their own 

design on a geometric topic of their choice within the stable of triangles and 

KEY:   P -  Prestructural understanding – very little understanding 

 U - Unistructural Understanding – focus on one aspect   

 M - Multistructural Understanding – focus on a number of aspects  

 R – Relational Understanding – understanding of applications 
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quadrilaterals  (compare 4.6.1). The objective of these was to encourage creativity in the 

design of activities and create an awareness of alternative techniques (compare 2.7). All 

participants in the research project would later respond to a questionnaire (compare 

4.6.2), which sought biographical details as well as participants‟ experiences with the 

software (see Appendix B). To wind up, a group interview (compare 4.6.3) was 

conducted to establish from the participants‟ first hand experiences what they considered 

or deemed to be critical competences for a new group of teachers to be proficient in to 

teach dynamic geometry using the Sketchpad software effectively from a problem-

centred perspective (see Appendix C for structured interview questionnaire used).  

 

3.7 Conclusion 

 

This chapter has attempted to justify the Teacher Development Experiment as a viable 

method of investigating teacher competencies. The use of a pre-test has also been 

justified as a means of determining the geometric thought levels of the teachers.  

Indications as to what instruments would be used for data collection and for what 

competencies have been made. The results of this investigation are presented and 

analyzed in the next chapter. 
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CHAPTER 4 

 
DISCUSSION OF DATA PROCESSING AND RESEARCH DEVELOPMENTS 

 
“I have yet to see any problem, however complicated, which when you looked at it in the 

right way did not become still more complicated”. Paul Anderson, New Scientist. 

 
4.1 Introduction 

 

 

In this chapter, data from various data gathering procedures are presented, processed and 

analyzed. First, pre-test results are presented and analyzed to ascertain teachers‟ entry 

knowledge of school geometry as well as their mathematical language, the PCA and 

dynamic geometry. Teachers‟ geometrical knowledge was further analyzed in the  

workshop sessions of the Teacher Development Experiment introducing them to 

Sketchpad. In the process Sketchpad skills necessary to teach dynamic geometry were 

also noted and analyzed as they occurred in the tasks. In the microteaching sessions 

teachers‟ abilities to prepare and present effective dynamic geometry lessons from a 

problem-centred perspective were investigated and analyzed in terms of the nature of the 

tasks, teacher‟s role, interaction patterns, classroom culture and the attainment of 

objectives (see Table 3.2). In the last phase of the investigation teachers‟ abilities to 

design their own tasks in Sketchpad were investigated, their own views about their 

Sketchpad experiences were sought through the questionnaire and a group interview.    

 

4.2 Pre-test results 

4.2.1  Overview 

The aim of Section A of the pre-test was to ascertain teachers‟ knowledge of school 

geometry and to determine, if possible, their current level of geometric thought in terms 

of the van Hiele theory in order to select tasks within their level of understanding as far 
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as possible.  Section B sought to ascertain teachers‟ knowledge, if at all, of the problem-

centred approach and dynamic geometry. The results of the pre-test administered are 

summarized in terms of recognition, description and definition of shapes and processes as 

well as class inclusion and language competencies of those students who participated in 

the study for enhanced relevance to the experimental group characteristics. 

 

4.2.2 Recognition, description and definition of shapes and processes  

On the surface, the results showed that the teachers had a fairly strong background of 

geometric knowledge and this was expected from a mathematics major class. From an 

item-by-item analysis, it was evident that the teachers could identify the plane shapes and 

their properties, which is a Van Hiele level 2 geometric competence (compare 2.2.2).   

 

With regards to descriptions/definitions of shapes, according to table 3.1 criteria, the 

following results were obtained for 16 teachers who later took part in the study. 

    Table 4.1:  Categorization of pre-test definitions given by 16 participants  

What lacked ominously was economy of descriptions/definitions in spite the fact that 

questions stressed that the messages would be by telephone or telegram. For example, 

Definition of 

Shape Type 

Non-

standard 

 

Correct 

economical 

Correct un-

economical 

Correct    but      

very 

uneconomical 

Incorrect 

definition 

Unk

now

n  

Isosceles Δ 0 3 12 0 1 0 

Right Δ 0 11 4 0 1 0 

Equilateral Δ 0 1 10 3 1 0 

Scalene Δ 0 8 8 4 1 0 

Rhombus  0 1 5 5 4 0 

Square  1 3 9 2 1 0 

Rectangle 0 2 9 3 2 0 

Kite  0 1 2 1 12 0 

Parallelogram  0 1 8 3 4 0 

Trapezium  0 7 3 2 4 0 

Cyclic 

quadrilateral 

0 0 3 0 12 2 
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Teacher X defined an isosceles triangle as „a triangle with two sides equal and two angles 

equal‟. Once two sides are equal then the condition is necessary and sufficient. Similarly 

once two angles are equal the condition is necessary and sufficient. That is, the two 

conditions are equivalent and deductively derivable one from the other by the theorem 

proving process involving congruency. (compare 4.3.2.2). Recognizing definitions as 

equivalent is van Hiele level 3 competence (compare 2.2.3).  

 

Figure 4.1 summarizes the pre-test knowledge of definitions of the 16 teachers.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Bar graph of pre-test knowledge of shape definitions by type and 

shape out of 16 participants. 

 

The results seemed to suggest that most of the participants were only at Van Hiele level 2 

(compare 2.2.2) where they know the properties but cannot relate them to each other to 

establish necessity, sufficiency and economy. Using the key in Figure 4.2 below Table 

4.2 estimates the Van Hiele levels of the 16 teachers in a scaling system analogous to that 

used by Gutierrez et al (1991:249).  
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Van Hiele level 1 Lower                              (VH1L:     0 ≤  x  <  10)% 

 Van Hiele level 1 Intermediate                    (VH1M:    10 ≤ x  < 20)% 

 Van Hiele level 1 Higher                             (VH1H:  20  ≤  x  <  30)% 

 Van Hiele level 2 Lower                              (VH2L:      30 ≤ x < 40)% 

 Van Hiele level 2 Intermediate    (VH2M:    40 ≤ x  < 50)% 

 Van Hiele level 2 Higher     (VH2H:  50  ≤  x  <  60)% 

 Van Hiele level 3 Lower     (VH3L:   60 ≤  x  <  70)% 

 Van Hiele level 3 Intermediate    (VH3M:   70 ≤ x  <  80)% 

 Van Hiele level 3 Higher     (VH3H: 80  ≤  x  < 100)% 

  

Figure 4.2: Key to estimating the van Hiele levels 
 

 Table 4:2 Estimated van Hiele levels for definitions per participant in the study 

The results suggested that 12 out of 16 participants were at Van Hiele level 2, three at 

level 1 and one at level 3, hence the geometrical competencies (compare 2.6) were not, 

after all, as high as expected when quality of definitions was factored in.  Figure 4.3 

below gives examples of definitions of each level as found in the pre-test responses.  
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1 100 50 50 50 30 100 50 0 0 0 0 460 41.8 2M 

2 100 50 50 50 30 0 0 0 30 0 0 310 28.2 1H 

3 100 50 50 50 0 100 50 0 0 0 0 400 36.4 2L 

4 50 50 50 50 30 30 30 30 30 30 30 410 37.3 2L 

5 50 50 50 50 0 50 50 0 50 80 0 450 40.9 2M 

6 100 50 50 50 50 100 50 0 100 100 0 650 59.1 2H 

7 100 50 50 50 0 30 50 0 50 100 0 480 43.6 2M 

8 100 50 50 50 100 100 30 0 50 0 0 530 48.2 2M 

9 0 0 0 0 30 30 30 0 0 100 0 190 17.3 1M 

10 50 30 30 30 30 30 30 30 30 30 0 320 29.1 1H 

11 100 50 50 50 30 30 50 0 30 50 0 430 39.1 2L 

12 100 100 100 100 30 100 50 0 30 30 0 640 58.2 2M 

13 100 50 50 50 0 50 30 0 0 0 0 330 30.0 2L 

14 120 100 50 100 30 100 30 100 30 100 50 810 73.6 3M 

15 100 50 50 50 30 50 50 30 30 100 0 540 49.1 2M 

16 50 100 50 100 0 50 30 0 0 100 0 480 43.6 2M 

  1320 880 780 880 420 950 610 190 460 840 80 7410 673.6   

 82.5 55 48.8 55 26.3 59.4 38.1 11.9 28.8 52.5 5  42.1  
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Figure 4.3: Example definitions in each category 

The definitions of the right triangle, and the square appeared to be among the most 

understood while those of the kite and the cyclic quadrilateral were the least. The 

teachers‟ level of understanding of geometrical definitions had to be bone in mind when 

selecting tasks as the van Hiele theory suggests (compare 2.2.6). Teachers thus have to be 

sensitive to their students‟ level of geometric understanding. 

 

 

 

 

 

Non-standard definition of a square: 

 

A quadrilateral with equal diagonals bisecting at right angles. (Improvised) 

 

Correct economical definition of a square 

 

A quadrilateral with all sides equal and all angles equal to 90º each. Teacher 14. 

 

Correct uneconomical definition of a square 

 

A quadrilateral with all sides equal, all angles equal, and opposite sides parallel 

Teacher 15. 

 

Correct but very uneconomical definition of a square 

 

A square is a quadrilateral with all sides equal, four lines of symmetry, all angles are  

 

equal, interior angles add up to 360º.  Teacher 10. 

 

Incorrect definition of a rectangle (with necessary but insufficient properties) 

A rectangle is a quadrilateral with opposites equal and its diagonals do not bisect at 

right angles Teacher 2 

 

Incorrect definition of a parallelogram (both correct and incorrect properties) 

A parallelogram  is a quadrilateral with 2 pairs of parallel sides, and four angles, 

which are equal. Teacher 1.  

 

Incorrect definitions of a cyclic quadrilateral  

A plane shape drawn with a line joining the first and last point without angles.  

Teacher 11 

 

There is no shape called a cyclic quadrilateral. Teacher 13. 

 

A circle drawn inside a four-sided shape. Teacher 6.   
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4.2.3 Understanding of class inclusion  

The purpose of the class inclusion questions was to check teachers‟ grasp of class 

inclusion, which is van Hiele level 3 competence when mastered. Defining quadrilaterals 

in terms of some other quadrilaterals appeared to be problematic to a number of teachers. 

Table 4.3 below summarizes the findings by definition type as defined in Table 3.1. 

A rhombus in 

terms of the  

parallelogram 

0 5 4 2 2 3 

 

Table 4.3:  Understanding of class inclusion in definitions of quadrilaterals by 

other  quadrilaterals 

 

There were no examples of non-standard definitions. However, the definition of the 

square as a rectangle elicited the highest number of economical definitions followed by 

the square as a rhombus and the rhombus as a parallelogram. The rectangle as a 

parallelogram elicited the highest number of incorrect responses followed by the square 

defined in terms of the rhombus. The rhombus as a parallelogram was the least known. 

Once again this was a reminder of the inadequate van Hiele levels reached.  

 

Using the key in Figure 4.2 yet again the class inclusion van Hiele levels of 16 

participating teachers were estimated as shown in Table 4.4 below.  

Definition of 

Quadrilateral 

                                                      

Non-

standard 

 

Correct 

economical 

Correct 

un-

economical 

Correct    but      

very 

uneconomical 

Incorrect 

definition 

Unkno

wn  

A square in 

terms of the 

rectangle 

0 6 3 3 1 0 

A square in 

terms of the 

rhombus 

0 5 2 3 5 1 

A rectangle in 

terms of the 

parallelogram  

0 3 1 1 9 2 
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1 100 100 0 100 300 75 3M 

2 50 0 50 50 150 37,5 2L 

3 50 0 0 0 50 12,5 1M 

4 0 0 0 0 0 0 1L 

5 50 30 30 30 140 35 2L 

6 50 100 0 100 250 62.5 3L 

7 100 100 0 100 300 75 3M 

8 100 50 100 50 300 75 3M 

9 100 50 0 0 150 37.5 2L 

10 30 30 50 30 140 35 2L 

11 30 0 0 50 80 20 1H 

12 0 30 0 0 30 7.5 1M 

13 30 50 100 0 180 45 2M 

14 100 100 100 100 400 100 3H 

15 30 0 0 30 60 15 1M 

16 100 0 0 100 200 50 2H 

 920 640 430 740 2730 682.5  

 57.5 40.0 26.9 46.3  42.7  

 

Table 4:4 Estimated class inclusion van Hiele levels for each participant 

 

 

The results showed 5 teachers operated at van Hiele level 1, 6 at van Hiele level 2 and 5 

at Level 3 with respect to class inclusion. There were thus more individual differences, 

which the leader teachers would have to take into account. These differences were quite 

surprising.  If a teacher operates at level 1 with respect to class inclusion but is at level 2 

with respect to quality of definitions what geometric level can we ascribe as typical? If 

the teacher professes complete ignorance of the existence of a cyclic quadrilateral but is 

aware of the other quadrilateral types and triangles what level can we ascribe to her? 

These are vexing questions for the van Hiele theory (compare 2.2.7). 

 

4.2.4 Understanding of geometrical language and relationships between properties 

Thirty-five (35) out of thirty-nine (39) teachers could not describe how to construct the 

in-circle and the circumcircle of a triangle. They could not state correctly which 
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properties had to be made use of in order to come up with the correct constructions. 

Understanding relationships between properties is a van Hiele level 3 competence and the 

gap in the teachers‟ knowledge was not expected since these two triangle circles are part 

of the Ordinary Level syllabus passed by all of them. Could it be conjectured that 

students can attain and lose a particular van Hiele level ability? This is another vexing 

question about the van Hiele theory and lends more credence to the oscillation hypothesis 

proposed by Fuys, Geddes and Tischer (1998) (compare 2.2.7).  

 

Furthermore, some answers as to how one could construct the inscribed and 

circumscribed circles suggested expressive language difficulties (compare 2.7). For 

example, one teacher wrote: „to draw an in-circle, bisect the angles and where the lines 

meet, draw the circle‟. Another wrote: „bisect the sides and where the lines meet draw a 

circle‟. In both cases there was an intuitive understanding of what has to be done but 

limited verbalization of the processes. Figure 4.4 below shows these circles. 

 

Circumcircle

Incircle

Figure 4.2 The Incircle and the circumcircle

The circumcenter  is the point of concurrency

(intersection) of the perpendicular bisectors of

the three sides. It's called the "circumcenter"

because it's the center of the circumcircle, the

circle that perfectly circumscribes the triangle.

The  incenter is the point of concurrency (intersection) 

of the three angle bisectors. It's called the "incenter"

because it's the center of the incircle, the circle that 

perfectly inscribes the triangle.

Choose Incenter  or Incenter and incircle  from the Custom Tools menu (the 
bottom tool in the Toolbox). Then click the three vertices of the triangle you wish 
to construct. You can click on existing points, other objects, or in blank space.

Circumcenter

Incenter

 

Figure 4.4 The incircle and the circumcircle of a triangle 
 

Language as a barrier also manifested itself in teachers‟ attempts to express relationships 

between properties.  Examples below illustrate this dilemma. 
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Teacher Y: 

This response apparently evidenced the teacher‟s inability to distinguish between a 

„perpendicular bisector‟ and „an angle‟ which could a conceptual error, a discrepancy 

between the concept name and the concept image.   

 

Teacher W:  

From this response it was apparent that the meaning of „bisect‟ was not understood as 

sufficient division of the whole into two halves. This appeared to be a redundancy error 

akin to lack of economy in definitions (compare 4.2.2 and 4.2.3).  The second language 

factor, in combination with the technical nature of geometrical language needed further 

investigation. The former is not highlighted in the Van Hiele level theory and the PCA, 

but left implied. Steffe and Thompson (2000:277) emphasize that in the teaching 

experiment it is the job of the teacher-researcher to continually postulate possible 

meanings that lie behind students‟ language and actions. Language competencies seem to 

be extremely necessary (compare 2.4 and 2.7).   

 

4.2.5 Knowledge of PCA and dynamic geometry 

From responses of the sample groups the following elements of the problem-centred 

approach were identified: The teacher‟s role was characterized as in the box below.   

 

 

 

 

 

 

 

 

Characterization of the teacher’s role  

. 

„The relationship between the perpendicular bisector of the base of an 

isosceles triangle and the angle at the apex is that the two are equal‟. 

 

The bisector bisects the angle into two equal angles. 

 

 He/she is there to facilitate and monitor proceedings 

 He/she prepares problems (tasks) for  students to work out 

 He/she is the advisor 

 He/she finds relevant and necessary material to help the child solve the 

problem 

 He/she should facilitate the learning process, etc 
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Students‟ roles identified included the following 

 Students should do the bulk of the work, i.e. the child-centred approach 

working together discussing and sharing ideas 

 The student‟s role is to work out the problem 

 The student devises his own means to come up with the solution 

 The child is there to find the solution 

 Pupils strive to get the answer to the problem in groups  

 Pupils will be result oriented and work the problem through discovery. 

 The PCA considers the interests of the students 

                                    Characterization of the students’ role 

From these sets of the responses it appeared most of the teachers were aware or guessed 

correctly that the problem centred approach required the active involvement of the learner 

in the solution process. However, in terms of classroom culture the responses focused on 

group work and student-to-student interaction per se. Respect for each learner‟s solution 

efforts or contribution was a missing detail. Teachers thus showed prestructural 

understanding of the PCA approach (compare with SOLO criteria in Table 3.2).  The 

most frequently mentioned disadvantage of the PCA was that it is time consuming or 

time wasting. Dynamic geometry was virtually an unknown entity to all the participants. 

 

4.3 Introduction to computers and Geometer’s Sketchpad software 

4.3.1 Getting used to the computer. 

After the session introducing the initial sample/group of participants to computers there 

was considerable excitement as the teachers could have the hardware pieces and their 

functions. This was the commencement of the TDE (compare 3.6.3).  

 

4.3.2 Overview of mathematical tasks and software features in them  

4.3.2.1 Constructing a square:  Source(s) – Guided Tour 1 in Jackiw (2002:16-20) 

In this first workshop session of the TDE teachers learnt about Sketchpad’s basic tools 

and how to construct segments using the point and line tools and the segment tool on its 
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own (freehand tools); circles using the compass tool or segment and compass tools, how 

to select and drag objects; how to construct points at the intersection of two geometric 

objects; perpendicular and parallel lines, how to save Sketchpad documents and how to 

backtrack the construction process, using the undo command. These were basic software 

skills that were distinctly a constituent meaning of the geometrical objects they construct. 

  

From this activity there were signs that inadequate knowledge about what Sketchpad 

action to take next can stall the progress of a lesson. Apart from the use of the tools per 

se, this session/tour also brought to light new meanings. The point tool draws a point, 

which is not a point but a very small circle that can even be shaded or coloured. The 

compass tool drew a circle in a dragging manner that is remotely related to the circular 

motion of the traditional compass. It seemed helpful to first let students use other 

construction methods from the construct menu, viz circle by center and point, and circle 

by centre and radius, which apparently carry more resemblance to the use of the compass.  

 

The straightedge tool on the other hand re-affirmed what is often not emphasized enough 

in paper and pencil geometry: the difference between a line and a line segment. The on-

screen display of a line emphasized its infinite length stretching from one end of the 

screen to the other. The ray, a term borrowed from physics, was illustrated in Sketchpad 

as having a source and direction and extending beyond the screen without reference to 

any magnitude, a discrepancy to be noted in the integration of knowledge from other 

disciplines (compare 2.5 and 2.8).  The construction of perpendicular and parallel lines in 

Sketchpad required the selection of both a segment and a point through which the line 

must pass. This seemed to accord well with the Euclidean definitions of parallel and 

perpendicular lines.  
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4.3.2.2 A Theorem about quadrilaterals (source:  Jackiw (2002:21 – 24)) 

The Sketchpad objectives of this tour were to construct a polygon using the segment tool, 

to label a geometric object‟s, to measure lengths and angles, to construct the midpoint of 

a line segment, and to create captions to accompany a sketch (compare 2.8 and 5.2.3). Of 

didactical value was that „discovering a theorem for themselves or actively exploring its 

consequences can make a huge difference in students’ level of recall‟ (Jackiw, 2002:5). 

Teachers explored and conjectured in readiness for deductive reasoning and proof later 

(compare 2.6.2 and 2.6.3). The theorem is illustrated in Figure 4.5 below. 

F

F

 

    

 

  Figure 4.5 A theorem about quadrilaterals 

Participants were encouraged to record their conjectures. Rorisang gave the responses in 

the box  below. She correctly reasoned that because the opposite sides of the mid-point 

quadrilateral were always equal then it must be a parallelogram, which was a necessary 

and sufficient condition from which the equality of opposite angles and parallelism of  

 

 

 

 

 

 

1. The opposite sides of the inside quad are equal 

2. If a point (vertex) is dragged to form a concave quad the inside shape (quad) still 

has 2 opposites equal. 

3. If the outside quad is dragged and formed into a crossed quadrilateral the  

opposite sides remain equal 

4. If it is dragged to form a convex the opposite sides remain equal. 

5. Therefore the inside quadrilateral will always be a parallelogram. 

 

  Rorisang’s responses to the midpoint quadrilateral task 

When the midpoints of the sides of a quadrilateral are connected, the resulting shape 

is always a………….           
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sides could be derived deductively (compare 2.6.7 and 4.2.2). Similarly the parallelism of 

opposite sides is a necessary and sufficient condition for a quadrilateral to be a 

parallelogram and the equality of angles and equality of opposite sides can be derived 

deductively (see Cases 1 and 2 below).  

B    C  

Given AB=DC, BC=AD 

RTP: That ABC= ADC,         

BAD= BCD, and AD//BC, AB//DC.     A           D  

Construction: Join AC 

Procedure:      ABC       CDA (AB=DC, BC=AD, AC=CA, thus SSS case) 

Hence  ABC=  ADC,   ACD =  CAB (thus AB//DC, by alt s rule) 

=  ACB = CAD (thus BC//AD, by alt s rule)  

Case 1: Given that opposite sides are equal       

 

Given quadrilateral ABCD, where AB//DC, AD//BC (opposite sides //) 

RTP: That Opposite sides are equal, and opposite angles are equal. 

Construction: Join AC                  B           C 

Procedure:           

 ACB =  CAD (Alt   s) 

 BAC =  ACD (Alt   s) and      A          D    

AC= CA 

Hence  ACD   CAB, (ASA)     

Thus AD=BC, AB=DC, and opposite angles are equal 

 Case 2: Given that opposite sides are parallel 
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It therefore appears necessary for teachers to be aware of the mutual interdependency of 

properties and how these can be connected through short deductive chains of argument, 

which is Van Hiele level 3 competence which is a prerequisite for formal deduction.   

 

4.3.2.3 Attempts to construct other quadrilaterals 

In a free response exercise to construct other quadrilaterals, Nathan presented the piece of 

work below.     

 1. Constructing a rectangle   2. Constructing a square 

           6,28 cm           4.03 cm  

                 - opposite sides are equal                          - all sides are equal         

- all the angles are 90º        - all the angles are 90º

 3.69 cm      4.03 cm  

       

 

3. Constructing a rhombus  

           

A                                                                                                                                                                                                                                                                                                                                                                                                                                                                

7.00cm  -all the sides are equal, opposite angles are equal,                                       

             -angle BAD = 103,77 , angle BCD = 103,77  

                        7,00cm             -angle CBA = angle ADC= 76,23     

         

Exercise 

 

a) A rectangle is a parallelogram with all the angles at right angle and 2 

opposite sides equal. 

b) A square is a parallelogram with all sides and angles equal. 

c) A rhombus is a parallelogram with all sides equal.     

 

    Nathan’s piece of work   

An analysis of the work showed that the teacher „created‟ or „formed‟ the quadrilaterals 

rather than construct them using their properties (compare 4.3.2.1). Starting with a 

parallelogram the teacher dragged it into a rectangle and this maintained parallelism and 

equality of opposite sides implying that a rectangle to be a special case of a parallelogram 

(with all angles equal). Proceeding to the square, the teacher manipulated the rectangle 

and adjusted it until it became a square of sides 4,03 cm and eventually concluded that a 

a)             - opposite sides equal           
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square is a parallelogram with all sides and angles equal. In this way, a better 

understanding of class inclusion (van Hiele level 3) appeared to have been facilitated by 

Sketchpad in the same way as noted by de Villiers (1994:17).  Sinclair (2003:300) also 

concurs by pointing out that when using dynamic software a student can inadvertently 

create a special case by dragging, something that is not possible with the generic case that 

teachers and textbooks often use. The formation of a rhombus similarly began with a 

parallelogram which was manipulated to form equal sides of 7 cm each and led to the 

conclusion that a rhombus is a parallelogram with all sides equal this time. Thus again 

class inclusion was facilitated by the Sketchpad capabilities (compare 4.2.3). An open-

ended exploration in constructing rhombi (in Jackiw, 2002:5) ended without any of the 

teachers managing to come up with a single method. This was possibly first, due to time 

constraints and, secondly, also because coming up with different construction methods 

requires full Van Hiele Level 3 understanding (to see the inter-relationship between 

properties), and as seen above (compare 4.2.2 and 4.2.3) many of these teachers had not 

attained that level. The presenter had to demonstrate a method using reflecting two sides 

of an isosceles triangle as shown in Figure 4.6 below. 

Figure 4.6 Rhombus construction example

Construction steps for the rhombus

Step 1: Use segment tool to construct line AB

Step 2: Rotate segment AB through 45  about B

Step 3: Construct segment AC

Step 4: Mark segment AC as mirror.

Step 5: Reflect  ABC on AC

Step 6: Hide AC, and label image of B as D 

C

D

A

B

 

Observations made were that the rhombus constructed was a rigid one. That is, the 

construction procedure over-constrained it to acute opposite angles of 45  each and 
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obtuse opposite angles of 135  which were then maintained at those sizes whatever 

dragging or animation was done. The presence of multiple solution strategies enabled 

teachers to try different solution routes thus promoting creativity (compare 2.4). In the 

end, though, it also emerged that there are possibilities of over-constraining, flexibly 

constraining or under-constraining a construction as alluded to by Key Curriculum Press 

(2002:78). This is a unique feature of Sketchpad, to be borne in mind when their students 

engage in open-ended explorations of constructions. Awareness of these software 

constraints might be an essential constituent of software competencies (compare 5.2.3).  

 

4.3.2.4 Triangle Centers.gsp sketch 

The first activity on triangle centres entailed the construction of circumscribed and 

inscribed circles, the orthocentre and the centroid. Below are Rorisang‟s responses.  

 

 

 

 

 

 

 

                       Figure 4.7: Rorisang's triagle centres 

centroidinscribed circlecircumscribed circle

 

Centroid:  circle constructed by using the midpoints of the triangle  

 

Incentre: The second constructed circle was an incircle using the angle bisectors 

Circumcentre: The third was the orthogonal centre constructed by bisecting the 

midpoints of the angle at 90 . 

 

The diagrams in Figure 4.7 were used to illustrate. 

                              Rorisang’s triangle centres 
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Below are Tichaona‟s responses.        

            

            

            

            

            

         

 

Just as in the pre-test (compare 4.2.4) there was evidence of language difficulties in 

describing the construction process accurately. Rorisang appeared to confuse „circle‟ with 

„centre‟ which confusion could have lead to misunderstandings as to which concept was 

precisely being referred to. The term „bisecting the midpoints of the angle at 90 ‟ 

appeared to be referring to the angle bisector. Nonetheless the diagrams drawn by 

Rorisang showed intuitive understanding of the inscribed and circumscribed circles but 

not the centroid. 

 

Tichaona, on the other hand, was not clear as to what the triangle midpoints had to be 

joined to, to form medians point of concurrency is the centroid. His definition of the in-

centre in terms of where the angle bisectors meet and then touching midpoints of the 

triangle suggested some lack of close attention to sentence meaning or syntax. Similarly, 

for angles to bisect one another at 90  showed inability to terminologically separate the 

„perpendicular bisector‟ from „angles‟ (compare 4.3.2.2). On Sketchpad skills it was 

noticed that the Sketchpad construction of the midpoint of a line did not show the arcs, 

which are a common emphasis in ruler-and-compass contexts. GSP4 could not construct 

the intersection of more than two geometrical objects (compare 4.3.2.3). 

1) We first drew a centroid at (and) found by joining the mid-point p/center after 

weight of the triangle 

2) This is the centre of the in-centre where angle bisectors meet they touch the 

midpoints 

3) The circumcentre meaning angles bisect one another at 90 . 

        Tichaona’s triangle centers (see photocopy of original) 
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After several sessions, Tichaona was able to come up with the descriptions below. 

 

            

            

            

            

            

            

                               

Tichaona’s triangle centres (see photocopy available) 

An analysis of Tichaona‟s second set of responses seemed to imply that if teachers could 

be reflective and critical thinkers then they might significantly improve the way they 

express their mathematical ideas and consequently ascend to higher Van Hiele thought 

levels. The terminology in the construction sub-menus seemed to have contributed to 

more accurate descriptions of geometrical objects and processes (compare 4.2.2). 

j

Incircle

Circumcircle

Figure 4.8: Triangle centers.gsp sketch and custom tool use

The centroid is the point of concurrency (intersection) 

of the three medians of a triangle. A median  connects 

a vertex with the midpoint of the opposite side.

Choose Centroid from the Custom Tools menu (the bottom tool in the 

Toolbox). Then click the three vertices of the triangle you wish to construct. 

You can click on existing points, other objects, or in blank space.

Orthocenter

Centroid
Incenter

Circumcenter

Centroid

 

 

a) The in-centre is found by joining/constructing perpendicular bisectors of the 

three sides. It is the circumcentre, which, gives the circumscribed circle. 

b) The incentre is found by joining the angle bisectors of the three angles. It gives 

the incentre, which gives the inscribed circle. 

c) Dropping perpendicular lines from the vertices forms the orthocentre. 

d) The centroid is found when we join the vertex and the midpoint (opposite) 

then is called the centroid.  

 

When you drag the triangle the centre change 

 

Incentre, circumcentre and centroid are always in a straight line when the triangle 

is moved (dragged) by the vertex the segment formed is called the Euler segment. 

The orthocentre sometimes moves out(side) of the centre (triangle). 
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This ability could also be cultivated among their students as an effort towards continuous 

precision in mathematical descriptions more so if they worked as a community of 

practitioners or learners. The software capabilities could be a contributory factor to 

improved reflective ness.  Sketchpad skills practiced in the third session of triangle 

centres were of opening pre-constructed sketches, their respective pages and the use of 

custom tools. Figure 4.8 shows Triangle Centers.gsp sketch (also see videotape 2). 

 

4.4 Selected micro-teaching sessions of the TDE 

4.4.1 Triangle.gsp pre-constructed sketch  

The aim of this phase was to observe teachers in action (compare 3.6.3) to ascertain their 

levels of preparation, presentation (confidence in geometrical and Sketchpad skills, 

student-to-student interaction, teacher interventions, time management and general lesson 

flow. The phase began with one of the teachers in the first group, Nathan, taking the class 

through congruency theorems in the Triangles.gsp multipage pre-made sketch. By then, 

a second group of participants had joined. Congruency theorems were new material at the 

TDE sessions although being part of the Ordinary Level syllabus. 

Figure 4.9a AAA (Angle, Angle, Angle) similarity case

Given three angles, what triangles

are possible?

Drag points A and B in the triangle.

Does the triangle maintain its shape and size?

How many triangles can be formed given three angles?

Will any three angles make a triangle?

The first two angles determine the third.

Givens:

B (drag)A (drag)

 

The construct of congruency plays a central role in many geometrical proofs and could 

scaffold participants to a higher van Hiele levels (3) (compare 2.2.3, 2.2.4, 2.6.2, 2.6.3, 
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2.6.5 and 4.3.2.2). In the first case, which is similarity, (Figure 4.9a), all six groups were 

able to notice that the triangle maintained its shape but not its size  (see Table 4.5 below). 

Question in AAA similarity case Yes No 

Does the triangle maintain its shape? 6 0 

Does the triangle maintain its size? 0 6 

Will any three angles make a triangle? 3 3 

  Table 4.5 Responses to the triangle similarity case (AAA) 

However, when it came to the number of triangles that could be formed given three 

angles four (4) groups gave „one‟, one (1) gave „two‟ and one (1) gave „three‟ as their   

answers. This suggested some confusion between „one shape‟ and „one triangle‟ and the 

notion of „one figure‟ in Sketchpad, which can be varied but retaining its properties. No 

group acknowledged the existence of an infinite number of similar triangles as possible. 

On whether any three angles could make a triangle, one group was alert enough to notice 

that it would be the case only if the sum of the angles was 180º. Three (3) groups just 

gave „yes‟ as an answer without elaborating and the remaining two gave „not always‟ and 

„not possible because some angles might be more than 180 ‟ respectively.   

AngleAngle

Side

Figure 4.9 b ASA (Angle, Side, Angle) congruency case  

Given two angles and the side between

them, what triangles are possible?Givens:

Try to connect the points labeled C in the broken triangles.

Can you make triangles that aren't congruent?

A

BA

AB B

CC
C C

 

In the ASA congruency case (Figure 4.9b) five groups realized that the triangle formed 

by joining points „C‟ would always be congruent  (see Table 4.6 below). 

“They can make a triangle provided 3 angles add up to 180 .  
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Angle SideSide

Figure 4.9c SAS (Side, Angle, Side) congruency case

Given two sides and the angle between

them, what triangles are possible?

Try to connect the points labeled B in the broken triangles.

Can you make two triangles that aren't congruent?

Givens:

C

B (drag)

A

B (drag)

A

A CABA

C

 

In the SAS congruency case (Figure 9c) five(5) groups correctly indicated that no pair 

non-congruent  triangles could created by joining  points „B‟ (see Table 4.6). Some 

teachers took the initiative to test their conjectures by measuring and one group said it 

was impossible to construct non-congruent triangles „because the angles wont change‟. 

Side Side Angle

Figure 4.9d SSA (Side, Side, Angle) congruency case 

Given two sides and the angle not between

them, what triangles are possible?Givens:

Try to connect the points labeled B in the broken triangles.  

Can you create two non-congruent triangles?

A

A B A C

A C

BB

C

B B

 

In the SSA congruency case (Figure 4.9d) five groups out of six gave the wrong answer 

of „yes‟ suggesting this was a less familiar case to most of the teachers (see Table 4.6 

below). 
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Side Side Side

Figure 4.9e SSS (Side, Side, Side) congruency case

Given three side lengths, what triangles

are possible?
Givens:

Try to connect the points labeled B in the broken triangles.

Can you make triangles that aren't congruent?  

A

A B A C
C B

A

B

C

B

C

B
B

 

 In the SSS congruency case three (3) groups correctly gave „no‟ as an answer, two 

wrongly gave „yes‟ as an answer (see Table 4.6). The last group simply stated that „the 

points „B‟ can‟t merge‟. In other words some limitations with the sketches were that the 

points to be merged would not merge using the MERGE POINTS command. Instead, 

points B would coincide rather than merge or connect.  

Congruency case and question Yes No Other 

ASA case – Can you make triangles that aren‟t congruent?  5 1 

SAS case - Can you make triangles that aren‟t congruent? 1 5  

SSA case - Can you make triangles that aren‟t congruent?  5  1 

SSS case - Can you make triangles that aren‟t congruent? 2 3 1 

                     Table 4.6 Teacher performance in the congruency tasks 

Although the teacher-leader‟s role was a passive one in that he lacked confidence (see 

Table 4.7), the fact that the participants worked autonomously in groups appeared to have 

led to a higher level of participation and achievement in tasks than in previous individual 

work and this seemed to corroborate the importance of letting students explore and 

conjecture collaboratively (compare 2.4 and 2.6.6). For example, Border‟s group was not 

sure as to what congruency meant, and they quickly checked with the group nearest to 

them to confirm. After the consultation, they then concurred to say it meant „the same‟, 

but later adjusted to „equal‟, which was more accurate (see videotape 3).  However, one 
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group, which had no member from the first group to assist them with computer skills, 

described their first experience as having been a „nightmare‟. This suggested that whereas 

basic computer skills might appear trite to experienced users, there could be obstacles for 

new users (compare 2.6.6 and 4.6.2)  Teachers might need to be patient with their 

students as they introduce dynamic geometry in their classes.  

 

4.4.2 Pythagoras.gsp presented by Qhubekani 

This task sought to consolidate teachers‟ ability to consolidate teachers‟ ability to use 

pre-made sketches in Sketchpad. In using pre-made sketches, though, teachers needed to 

adopt a critical mind. The labeling of Puzzled Pythagorean squares as „a‟, „b‟ and „c‟ as 

shown in Figure 4.10 could have been a source of perturbations in some teachers in that it 

appeared to contradict the algebraic version of the theorem yet in essence it expands it by 

giving it a geometric meaning in terms of area. 

                                 Figure 4.10 Puzzled Pythagoras

a

b

c

Press Split Into Pieces  to split the colored square into five pieces.

Then rearrange the pieces to fit them in squares a and b of the figure to the right.

Rearrange them again so they fit in square c.

What does this demonstrate?

Merge them back together, drag  A, B and C to change the size and shape 

of the triangle, and repeat the experiment.

Split Into Pieces

Merge Back Together

C A

B

 

From the participants‟ responses, however, the visual proofs of the theorem opened doors 

to analytic and deductive reasoning (compare 2.6.5 on progression from intuitive, to 
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analytical, inductive and deductive reasoning, and 2.6.4 on role progression of a DGS 

from being a visual amplifier to an essential constituent meaning of tasks). Puzzled 

Pythagoras was apparently most straightforward. Overall, the visual proofs were elegant 

and teachers appreciated compare (compare 4.5.2).  

 

Being familiar geometric content, (at least for the Behold and Puzzled Pythagoras 

sketches), the teacher leader‟s confidence in presentation was markedly upbeat and 

teacher-to-teacher interaction was considerably evident. Time was well managed and 

participants‟ progress closely monitored. The teacher-leader‟s advance preparation 

contributed to the effectiveness of presentation (see Table 4.7).  

 

4.4.3 Transformations, kaleidoscope, tessellations 

These activities were of mathematical and aesthetic value. The animations revealed the 

modeling power of Sketchpad.  Besides offering practice in transformational geometry of 

triangles and quadrilaterals, the activities taught how to merge points to circles. The 

teacher leaders Andrew, Tichaona and Gibson also prepared in advance. During the 

lesson activities, they and their partners took time to move around and check the progress 

their peers were making. They would interject the whole class only as and when 

necessary (compare with Towers‟ teacher interventions in 5.2.4). Andrew had the most 

timely and well calculated interventions. At the end of their lessons, they would wind up 

with a whole class discussion. Lively discussions took place during the lessons and peers 

actively consulted the next group when they all got stuck (see Table 4.7). One teacher, 

Bernard, was able to produce the tessellation and kaleidoscope in Figure 4.11 below: 
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Figure 4.18 a)

Tesselation with

animated points

  

 

 

4.4.4 Distances in an equilateral triangle by Ian (Source, De Villiers, 1999: 23-26) 

A peer who belonged to the second group of teachers prepared for this activity and 

involved the use of the pre-made sketch Distances.gsp. Opening of pre-made sketches in 

Sketchpad was no longer a major hurdle. with the next group that would have succeeded. 

a

a

a

h(1)

h(3)

h(2)

h(2) = 3.10 cm

h(3) = 2.30 cm

h(1) = 1.85 cm

show distance sum

hide distance sum

show small triangles

P

 
Figure 4.12 Distances in an equilateral triangle. 

 

 

Nathan and his partner responded to this activity as shown in text box below. The 

shipwreck survivor story that provided the background to this problem couched geometry 

in a realistic context (compare 2.4 on realistic mathematics education).  

Figure 4.11 Bernard’s tessellations and kaleidoscope (saved in Sketchpad) 
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All the groups managed to work through the main task and this suggested effective time 

management by Ian. The mathematical value of the task lay in the careful guidance of 

teachers into deductive reasoning (proof) and the steps were easily followed. However, 

teachers had problems in organizing a formal explanation. The value of Sketchpad was 

that the teachers and their students could first check the classical theorem experimentally 

under the continuous change capabilities of the software before developing a deductive 

explanation (proof).- a Van Hiele level 4 activity (compare with Mariotti  in 2.6.4 ). 

 

4.5 Statistical summary of microteaching results 

The meanings of the SOLO assessment criteria used to evaluate teachers‟ performance 

(compare Table 3.3) are summarized in Table 4.7 below being an adaptation from Pegg 

(2003:243) (compare 2.3). 

1. The sum of h1, h2 and h3 does not change no matter what point you drag P 

as long as it is within the triangle. 

2. The sum ofh1, h2 and h3 does not change irrespective of the extent of the 

dragging. 

3. Outside the triangle the sum of lengths of h1, h2 and h3 increases. 

4. The sum of h1, h2 and h3 is always constant as long as P is always in the 

triangle because when P is dragged around the length one h increases while 

the other h  is reduced. 

5. They are always equal increasing the length of one leads to the increase of 

the other two. 

6. Area =  ½ ah. 

7. A = ½ ah1, + ½ah2 + ½ah3 = ½ a(h1, + h2 + h3) 

8. Total area = = ½ap =  ½ a (h1, + h2 + h3) 

9. It is an equilateral triangle with all the sides being equal. 

10. The sum of the distance that is h1, h2 and h3 is equal to the total     altitude 

of the triangle. 

11. Q5 – the sides were not going to have been labeled the same letter since 

they are not equal 

Q6 - ½ ah was not going to work 

Q7 – adding the 3 areas would not give the total of the whole triangle  

Q8 – the sum of the small triangles would have not given to the bigger one 

Q9 – the sum of h1, h2 and h3 is not equal to P. 

Q10 – the sum of the distances is not equal to the total height.   

 

  Responses from Nathan’s group (see Appendix E for the task) 
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 P- Prestructural The preparation and performance is below the target level of 

understanding. Pre-structural responses represent very little use of 

relevant aspects of competencies 

 

 U- Unistructural The teacher focuses on the lesson objectives, but focuses on some 

and not all ingredients of a problem-centred approach to classroom 

discourse and so may be inconsistent 

 

 M- Multistructural Two or more aspects of the problem-centred approach are used 

without adequate perception of relationships between them. No 

integration occurs. Some inconsistency may be apparent. 

 

 R- Relational Most of the data are now available, with each piece woven into an 

overall mosaic of relationships. The whole lesson delivery has 

process has a coherent structure. No inconsistency is present within 

the presentation aspects. 

   

Table 4.7 Descriptions of four performance levels in the SOLO Model adapted to 

microteaching assessment 

 

Eight participants who prepared for and presented microteaching lessons  are included in 

this analysis. Seven out of eight appeared well prepared for their lessons as they had 

spent quite some time in the preceding session to prepare with a partner.  

# Criterion observed %Wt         

1 Presenter preparedness  15 U M R M R R M R 

2 Mastery of Sketchpad skills 10 U U R M M U M R 

3 Presenter – teacher 

interaction 

5 U U M M U M M M 

4 Teacher – teacher interaction 10 M U U M R M M M 

5 Presenter whole class 

interventions 

5 U P U M M M M M 

6 Time management 5 M M R M U R U M 

7 Mastery of geometrical 

content 

15 P U M M U U U M 

8 Monitoring of participants‟ 

progress 

10 P U U M M M R U 

9 Conclusion of lesson 5 P U M M U R U U 

10 Participants‟ performance 10 M M M M M U M U 

 Overall impression on 

integration of skills 

100% 
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 Table: 4.8 Assessment results for 8 leader teachers’ lesson presentations 
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The eight topics covered in these sessions were: Similarity and Congruency Theorems 

(Nathan), Triangle centers (Rorisang), Introducing Transformations (Andrew), 

Tessellations (Gibson), Pythagoras Theorem (Qhubekani), Distances in an Equilateral 

Triangle (Ian), Kaleidoscope (Tichaona) and Angles (Bekithemba). Tables 4.8 and 4.9 

summarize the performances according to proficiency levels described in Table 4.7. 

# Criterion observed %Wt   Score obtained 

P       U      M     R 

1 Level of teacher preparedness  15  1 3 4 

2 Mastery of Sketchpad skills 10  3 3 2 

3 Presenter - teacher interaction 5  3 5  

4 Teacher – teacher interaction 10  2 5 1 

5 Presenter whole class interventions 5 1 2 5  

6 Time management 5  2 4 2 

7 Mastery of geometrical content 15 1 4 3  

8 Monitoring of participants‟ progress 10 1 3 3 1 

9 Conclusion of lesson 5 1 4 2  

10 Participants‟ performance 10  2 6  

 Overall impression on integration of skills 100%     

Table: 4. 9 Summary of results for 8 leader teachers’ lesson presentations 

 

As already, noted, presenter preparation was generally satisfactory (78%). Teacher 

participation in all lessons was generally satisfactory both in terms of on-task, as well as 

discussion with peers (68%). Time was generally well managed (70,5%), except for a few 

instances like in the Kaleidoscope (Tichaona) and Tessellations (Gibson) lessons, where 

the construction processes were long but participants were patient and eager to see the 

end results.  

 

Leader teachers felt more confident when they had previously succeeded in carrying out 

constructions (Tichaona, Qhubekani, Bekithemba, Ian, and Gibson) but were less 

confident when the level of geometry involved was difficult (54%). Most teachers (5 out 
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of 8) were not able to wrap up their lessons very confidently possibly because of lack of 

confidence with the geometrical aspects (average score of 57%).  

 

# Criterion observed % % % % % % % % % 

1 Presenter 

preparedness  

50.5 70.5 90.5 70.5 90.5 90.5 70.5 90.5 
78.0 

2 Mastery of Sketchpad 

skills 

50.5 50.5 90.5 70.5 70.5 50.5 70.5 90.5 
68.0 

3 Presenter – teacher 

interaction 

50.5 50.5 70.5 70.5 50.5 70.5 70.5 70.5 
63.0 

4 Teacher – teacher 

interaction 

70.5 50.5 50.5 70.5 90.5 70.5 70.5 70.5 
68.0 

5 Presenter whole class 

interventions 

50.5 20.5 50.5 70.5 70.5 70.5 70.5 70.5 
59.3 

6 Time management 70.5 70.5 90.5 70.5 50.5 90.5 50.5 70.5 70.5 

7 Mastery of 

geometrical content 

20.5 50.5 70.5 70.5 50.5 50.5 50.5 70.5 
54.3 

8 Monitoring of 

progress 

20.5 50.5 50.5 70.5 70.5 70.5 90.5 50.5 
59.3 

9 Conclusion of lesson 20.5 50.5 70.5 70.5 50.5 90.5 50.5 50.5 56.8 

10 Participants‟ 

performance 

70.5 70.5 70.5 70.5 70.5 50.5 70.5 50.5 
65.5 

 Overall impression 

on integration of 

skills 
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The overall ability to integrate skills was also still at its infancy and that could be 

attributed to the small number of opportunities for presentation. Table 4.11 below shows 

the weighted scores per attribute per leader-teacher who presented. The results are 

symbolized back to the SOLO proficiency levels.  One teacher performed at the pre-

structural level, one at unistructural and the rest (six) at multistructural levels of 

integration of skills. No teacher operated at the relational level of skill integration. 

Key:  P – 0 < x ≤ 40%, U – 40 < x ≤ 60%, M – 60 < x ≤ 80%, R- 80 < x ≤ 100%  

Class centres: P - 20,5     U – 50,5    M – 70,5    R – 90,5 

 

  Table 4.10 Average presenter performances as percentages 
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Criterion observed Wt         

Presenter preparedness  15% 7.6 10.6 13.6 10.6 13.6 13.6 10.6 13.6 

Mastery of Sketchpad skills 10% 5.1 5.1 9.1 10.6 10.6 7.6 7.1 13.6 

Presenter – teacher interaction 5% 2.5 2.5 3.5 3.5 2.5 3.5 3.5 3.5 

Teacher – teacher interaction 10% 7.1 5.1 5.1 7.1 9.1 7.1 7.1 7.1 

Presenter whole-class 

interventions 

5% 2.5 1.0 2.5 3.5 3.5 3.5 3.5 3.5 

Time management 5% 3.5 3.5 4.5 3.5 2.5 4.5 2.5 3.5 

Mastery of geometrical content 15% 3.1 7.6 10.6 10.6 7.6 7.6 7.6 10.6 

Monitoring of progress 10% 2.1 5.1 5.1 7.1 7.1 7.1 9.1 5.1 

Conclusion of lesson 5% 1.0 2.5 3.5 3.5 2.5 4.5 2.5 2.5 

Participants‟ performance 10% 7.1 7.1 7.1 7.1 7.1 5.1 7.1 5.1 

Impression on integration of 

skills 

100 

% 
41.5 

P 
50.0 

U 
64.5 

M 
67.0 

M 
66.0 

M 
64.0 

M 
60.5 

M 
68.0 

M 
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                    Table 4.11: Microteaching skill integration results 

The results were not surprising as the teachers were only getting acquainted with the 

dynamic geometry software and the related teaching approaches. 

 

4.6    Mini-projects and questionnaire responses 

4.6.1 Results and analysis of Mini-projects 

The purpose of the mini-projects was to assess whether teachers were able to create or 

prepare their own presentation sketches and explain them clearly.  This ability appears 

important in adapting tasks to students‟ level of geometric thought as implied by the van 

Hiele theory (compare 4.2.1) The teacher ought to be a reservour of activities beyond 

reliance on textbooks. Sketchpad’s capabilities afford the teacher the creative potential, 

which can be extended to the students themselves to reduce over dependency on the 

teacher and the textbook in mathematical knowledge creation (compare teacher‟s role in 

2.4 and the view of mathematics as an activity again, in 2.4). 
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P''1

P'1

P1

MUSHONGA TICHAONA

TRANSFORMATIONS:Construct a any shape then reflect the shape using a

mirror line.Then make the mirror line your translation vector to translate the

shapes.

Perimeter P''1 = 9.98 cm Perimeter P'1 = 9.98 cm

Perimeter P1 = 9.98 cm
Area P''1 = 4.22 cm2

Area P'1 = 4.22 cm2

Area P1 = 4.22 cm2

D C

E
F

           

           Figure 4.13 Tichaona’s saved sketch (available on floppy)   

Starting with a parallelogram, Tichaona drew a segment and marked it both as a 

translation vector and as a mirror. A combination of two translations and a reflection 

followed by dragging produced the dynamic shape in the Figure 4.14. 

  

    Perfect      Tagu       squirts gsp.
         CONSTRUCTIONS   AND  PROOFS

a. Construct  a  square  CDEF  .

b. Mark  one  of  its  midpoints  G .

c. Construct  a  triangle  interior  CGF .

d. Name  the  triangle  CGF  [Isosceles]  

     -CG=FG because the lines meet at G the midpoint of CF.

     -angle GCF=GFC.

e. What  name  can  you  give  to  triangles CDG  and  FGE /  

    [Right-angled  triangles]      -GEF=GDC= 90" .

f.   Area  of  the  square  = 18.85 

    -area  of  triangle  CGF = 9.42

    -area  of  triangle  CDG = area  of  triangle  FGE = 4.71

                        Ratio  of  areas

 1.             area  of  a  square                         

                   area of  triangle CGF                = 18.85     =1 : 2
                                                                            9.42       

2.           area  of  a  square          18.85        =    1: 4    
            area  of  tr iangle  CDG   =    4.71                                   

 Translation of triangle CGF as proof of areas.
3.     Translate  triangle  CGF  through  the  vector  CD  .

4.     Divide   the  translated  triangle  by  the  line  GG.

5.   Explain  why  triangle DGG= CDG =GEF /

6.   How certain are you now, that  the area of 

         triangle CGF is 1/2 that of the square CDEF?    

Area F'FG = 4.71 cm2

F'

G'

G
E

D

C
F

 

    Perfect      Tagu       squirts gsp.
         CONSTRUCTIONS   AND  PROOFS

a. Construct  a  square  CDEF  .

b. Mark  one  of  its  midpoints  G .

c. Construct  a  triangle  interior  CGF .

d. Name  the  triangle  CGF  [Isosceles]  

     -CG=FG because the lines meet at G the midpoint of CF.

     -angle GCF=GFC.

e. What  name  can  you  give  to  triangles CDG  and  FGE /  

    [Right-angled  triangles]      -GEF=GDC= 90" .

f.   Area  of  the  square  = 18.85 

    -area  of  triangle  CGF = 9.42

    -area  of  triangle  CDG = area  of  triangle  FGE = 4.71

                        Ratio  of  areas

 1.             area  of  a  square                         

                   area of  triangle CGF                = 18.85     =1 : 2
                                                                            9.42       

2.           area  of  a  square          18.85        =    1: 4    
            area  of  triangle  CDG   =    4.71                                   

 Translation of triangle CGF as proof of areas.
3.     Translate  triangle  CGF  through  the  vector  CD  .

4.     Divide   the  translated  triangle  by  the  line  GG.

5.   Explain  why  triangle DGG= CDG =GEF /

6.   How certain are you now, that  the area of 

         triangle CGF is 1/2 that of the square CDEF?    

Area F'FG = 4.71 cm2

Area CDEF = 18.85 cm2

Area CGF = 9.42 cm2

Area CDEF = 18.85 cm2

C
F

 
Figure 4:14 Perfect’s saved sketch (available on floppy) 
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An analysis of the sketch showed that Perfect went a long way to elaborate the processes 

involved and to „prove‟ or show that CGF was isosceles and its area half that of the 

square CDEF. He made provision for his students to explain why DGG‟≡ CDG. He 

thus envisaged the need for his students to participate actively. However, Perfect „proved‟ 

empirically rather than deductively and did not notice that the congruency of CDG and 

FEG would have helped him come up with a deductive proof of the isosceles ness of 

CGF and congruencies would follow from the isometric nature of translation. 

# It has been proven that this formula can be used to find the area of any

  quadrilleteral with parrallel sides.                                                                    

# Below is an example to proove this :                                                              

~ In the rectangle GHIJ it is proven this way :                                                   

~ 1/2(GH+IJ)*HI just gives the same answer as that of multiplying the     

   length and the width as illustrated on the rectangle.                                   

~ This formula works on all quadrilleterals with parallel sides.

# The area of a trapezium is half sum of parrallel lines multiplied by height

# This formula have been illustrated on the trapizium ABCD                         

# The area therefore of the trapizium is : 1/2(AB+CD)*BE as shown on the 

  figures below the trapezium.                                                                                

AREA OF A TRAPEZIUM by Nathan

1

2
m AB+m CD m BE = 14.98 cm2

m GH+m IJ 1

2
 = 5.00 cm

m JG = 2.99 cm

m IJ = 5.00 cm

m HI = 2.99 cm

m GH = 5.00 cmm BE = 2.99 cmm CD = 7.01 cmm AB = 2.99 cm

A B

CD

G H

IJ
F E

 

m GH m HI = 14.96 cm2

# It has been proven that this formula can be used to find the area of any

  quadrilleteral with parrallel sides.                                                                    

# Below is an example to proove this :                                                              

~ In the rectangle GHIJ it is proven this way :                                                   

~ 1/2(GH+IJ)*HI just gives the same answer as that of multiplying the     

   length and the width as illustrated on the rectangle.                                   

~ This formula works on all quadrilleterals with parallel sides.

m GH+m IJ 1

2
m JG = 14.96 cm2

m GH+m IJ 1

2
 = 5.00 cm

 
    Figure 4.15 Nathan’s piece of work (saved on floppy diskette) 

 



                                                                   74 

Figure 4.2.3 above shows Nathan‟s presentation, which again centred on empirical rather 

than deductive evidence but made important observations. This showed that the 

availability of measurement capabilities in Sketchpad might easily be used as proof rather 

than empirical evidence and teachers might have to guard against this temptation by 

asking their students to go beyond and find an explanation for their discoveries. In this 

connection de Villiers (1999:24) emphasizes that further exploration is Sketchpad can 

only confirm the conjecture‟s truth without providing an explanation. Furthermore, 

students become creators of their own geometry which accords well with the problem-

centred approach and the constructivist tenets (compare with Freudenthal in 2.3).   

 

4.6.2 Analysis of questionnaire responses  

The teachers who participated in the study returned sixteen (14) questionnaires. Twelve 

(12) male and 2 female participants responded. Ninety-four percent (94%)had a highest 

mathematical qualification of GCE Ordinary level prior to joining college (compare 3.4). 

Only one had attempted „A‟ level but failed. Two participants had received training in 

computers and held a one-year National Certificate in Computer Programming and the 

other had done an introductory course.  All of them were new users of Sketchpad. 

 

Table 4.12 below summarizes the importance participants attached to Mathematics.  

Unimportant Important Very Important No Response 

0 0 14 0 

Table 4:12 Importance attached to mathematics by participants. 

All respondents responded to this question and regarded mathematics as very important 

in life. This was expected of a mathematics major class, yet at the same time it was an 

important starting point on the road to effective mathematics teaching.  
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On why they chose mathematics as a major subject Table 4.13 shows reasons and number 

of respondents mentioning them and Figure 4.10 represents in pie chart form. 

Reason for Choosing Mathematics as Main Subject No. of Responses 

Intellectual challenge  5 

Development of critical thinking, problem solving and creativity 3 

Previous record of success in mathematics/favourite subject 6 

Increased job opportunities 2 

Table 4:13 Reasons for choosing mathematics as a major subject at college  

Figure 4.16: Reasons for majoring in mathematics 

31%

19%

37%

13% Intellectual challenge

 problem solving

favourite subject

Increased opportunities

 

All fourteen returned questionnaires had responses to this question and three respondents 

gave two reasons each. Previous record of success in mathematics seemed to make the 

subject a favourite and this appeared the most frequently given reason – 6 out of 17 (37 

%). This was followed by the intellectual challenge offered by the subject (31%). All 

categories put together appeared to be fundamental reasons justifying the inclusion of 

mathematics in the curriculum hence the teachers were well disposed. Six (6) out of 

fourteen (14) respondents (50%) described their early experiences with the Geometer’s 

Sketchpad as having been difficult in the following words: „a total nightmare‟, „very 

complicated and confusing‟, „difficult and quite confusing‟, „full of confusion‟, „a few 

problems in following‟, „rather difficult‟ and „experienced difficulties‟. This suggests that 

teachers have to sympathize with the early difficulties their students might meet. It also 
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partly explains why teachers themselves can be reluctant to introduce microworlds into 

their own classrooms even where the technology exists (compare 1.1 and 1.2). Tables 

4.14 and 4.15 show the importance respondents attached to the activities in respect of 

mathematical content and Sketchpad capabilities. The visual proofs of the Pythagoras 

Theorem were rated the most memorable geometrical demonstration in Sketchpad. The 

kaleidoscope was rated the most memorable software capability. 

 

 

 

 

 

 

 

 

 

 

On the one hand this pointed to an increased awareness of the affordances of Sketchpad, 

and on the other, it reminded of the importance of users to keep the mathematical 

objectives in the foreground. Table 4.16 below shows responses to the question requiring 

respondents to state two ways in which to check the accuracy of a construction.  
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       Table 4.16 Methods of checking the accuracy of a construction 

Activities in  

frequency rank 

order 

No of 

responses 

Pythagoras 8 

Keleidoscope 5 

Transformations 3 

Triangles 1 

Quadrilaterals 1 

Table 4.14 Importance of 

Sketchpad Activities in terms  

of Mathematical content 

Activities in  

rank order 

No of 

responses 

Keleidoscope 5 

  Triangles 3 

Pythagoras 2 

Tessellations 1 

Quadrilaterals 1 

Distances in an 

equilateral Δ 

1 

Varignon 1 

Table 4:15 Importance in terms 

of Sketchpad capabilities 
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Eleven (11) out of 14 respondents (79%), cited dragging as one method of checking the 

accuracy of a construction. Nine (9) out of 14 respondents (64%) cited animation as 

another test of a drawing or figure. This was an indication that teachers had become 

accustomed to the drag test and animation (compare 2.6.7 and 2.6.8). Measurement was 

cited by 3 out of 14 (21%) respondents and appeared to be a major detractor (compare 

2.6.3 and  4.6.1). Other incorrect answers included „rotating‟ which was a bit off tangent.  

 

Table 4.17 summarizes respondents‟ rating of the importance of taking into account the 

learners‟ current level of geometrical understanding. All respondents who answered this  

Unimportant Important Very Important No Response 

0 0 10 4 

Table 4:17  Importance attached to teacher’s knowledge of students’ current 

level of geometric/mathematical understanding 

 

item felt it was very important for the teacher to take into account the students‟ current 

level of geometric understanding when teaching. This was consistent with the letter and 

spirit of the van Hiele theory (compare 2.2.6) and the problem centred approach 

(compare 2.3). Four respondents did not answer this question. Table 4.13 below shows 

the importance attached to advance lesson preparation. All participants who responded to 

Unimportant Important Very Important No Response 

0 0 9 5 

Table: 4.18 Importance attached to advance lesson preparation 

 this item rated advance preparation as very important. Five respondents did not answer 

this item and these were mainly those that had not participated in any lesson presentation. 

Seven (7) of those participants who had the opportunity to present lessons further 

expressed the rationale to prepare in advance as shown in the responses below:  
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The importance of preparation was thus adequately appreciated (compare 4.5). 

 

4.6.3 Analysis of group exit interview 

Ten participants attended the group exit interview, which sought to ascertain the nature of 

skills or abilities any new group of participants had to be acquainted with in four 

categories. The categories were computer literacy, Sketchpad pedagogical skills, and 

assessment strategies. The majority of participants felt that beginning with orientation in 

the use of the computers would be of immense benefit to a new group. Those who had 

joined the study mid-stream expressed disappointment that they took too long to get to 

know how to go about the computer and thus felt constrained and frustrated in the early 

stages of their participation (compare 4.6.1). Members strongly recommended that any 

new users be familiarized with the tools and menus of Sketchpad as early as possible. A 

majority (9 out of 10) of the participants felt that working in mixed ability groups was 

more beneficial than in individual isolation or ability grouping (compare 4.4.1). One 

participant proposed the whole class approach as occasionally ideal depending on the 

stage of the lesson (compare 2.6.4). In terms of assessment strategies the participants felt 

that the laboratory worksheet approach suited the computer environment for assessment 

of progress during and after the lesson (formative). Ability to draw up an activity, or own 

worksheet for one‟s students was considered suitable as a summative evaluation strategy 

(compare 4.6.1). 

- I had little experience in using the computer 

- One gets more experience with the computer 

- To have knowledge of operation at one‟s fingertips 

- To explore and discover more before presentation 

- As one prepares one encounters problems which one rectifies in advance 

- To discover and scrutinize issues that students might need further clarity on 

- So as to know what has to be done in the lesson 

Rationale for advance lesson preparation 
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4.7 Conclusion 

In this chapter, findings of the investigation were presented and analyzed.  It was 

observed, in the process, that teacher competencies in a problem-centred approach to 

dynamic geometry teaching have a multidimensional character and complexity. Results 

from the pre-test were presented and analyzed in terms of teachers‟ geometrical 

knowledge (mathematical) language competencies, and knowledge and skill in the us e of 

the PCA approach as well as dynamic geometry. This constituted the first phase of the 

investigation and shed light on the level of geometrical understandings of the teachers in 

terms of the van Hiele theory.  The second phase of the investigation focused on the 

analysis of the TDE workshop sessions introducing the teachers to computers and 

Geometer’s Sketchpad capabilities. Teachers‟ geometrical and language competencies 

were further scrutinized in the DGE environment.  

 

The microteaching phase of the TDE was analyzed in terms of knowledge of subject 

matter, effectiveness of preparation for lessons and, student-student interaction and 

teacher-student interactions, and the advantages and disadvantages of pre-made sketches. 

The results of the mini-projects, prepared by some participants and saved onto diskettes 

were analyzed in terms of strengths and areas of improvement. The results of 

questionnaires and exit group interview were discussed in respect of the viability of 

alternative assessment strategies, and experiences with Sketchpad, which a new group of 

teachers would have to be inducted into.  

 

 In Chapter 5 findings, recommendations, limitations and conclusions will be presented. 
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CHAPTER 5 

 

 

FINDINGS, RECOMMENDATIONS, LIMITATIONS AND CONCLUSION 

 

“It is teaching, not teachers, that must be changed” Stigler & Hiebert, The Teaching 

Gap: Best Ideas from the World’s Teachers for Improving Education in the Classroom. 

 

5.1 Introduction 

 

In this chapter the findings on the nature and content of identified teacher competencies 

are synthesized. The multifaceted nature and character of teacher competencies in a DGS 

environment demands a balancing act and purposeful integration for teachers to be 

proficient in the execution of a problem-centred approach to dynamic geometry teaching. 

From this study five categories of teacher competencies that must be integrated can be 

identified: namely mathematical competencies, language competencies, computer and 

software competencies, pedagogical and assessment competencies. A simplistic model 

for integration is proposed and recommendations are made to a cross-section of 

mathematics education stakeholders. The limitations of this study are spelt out so that the 

results and conclusions are interpreted as cautiously as possible. 

 

5.2 The nature of identified competencies  

5.2.1 Geometrical competencies 

From the pretest results and Sketchpad activities it was evident that the mastery of school 

geometry is imperative if teachers are to perform effectively in their dynamic geometry 

classrooms (compare 2.7). In this connection, the study reaffirms Cangelosi‟s (1996:405) 

observation that „mathematics and the teaching of mathematics are inextricably 

interrelated… the two are indistinguishable in mathematics education‟. Teachers cannot 

be expected to teach mathematical content they have little understanding of even in a 
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DGE environment. Teachers ought to prepare their lessons in advance as well as 

continually refresh themselves in the content they have to teach in order to be 

geometrically competent (compare 4.4.1, 4.4.2, 4.4.3 and 4.6.1). 

 

In the topic covered, the teachers‟ understanding of properties of triangles and 

quadrilaterals appeared reasonably adequate (compare 4.2.2). The relationship between 

properties appeared a little problematic, especially in terms of necessity, sufficiency and 

equivalence (compare 4.2.3). Redundancy, or lack of economy was evident in definitions 

and descriptions, suggesting that teachers have to be aware of the adequacy, sufficiency 

and equivalence of some properties and definitions as pointed out by de Villiers (2004). 

Relationships between properties or geometrical objects also seemed to be problematic. 

Class inclusion was also difficult to grasp suggesting that the teachers were not yet at 

Van Hiele level 3 where class inclusion is expected to have developed (compare 4.2.3). 

 

5.2.2 Language competencies 

Language plays a central role in mathematics, and teachers are obligated to describe 

geometrical processes, figures and properties by their correct terminology. In a second 

language scenario it was evident that teachers had difficulty in expressing themselves 

accurately and correctly (compare 4.2.2, 4.2.4, 4.3.2.2, and 4.3.2.4). It was not surprising 

given that the various types of triangles and quadrilaterals have no mother tongue 

equivalents because the indigenous languages are not technically at par with the language 

of instruction, English.  The van Hiele theory attaches a lot of importance to language.  

 

The mathematics teacher in a dynamic geometry environment also has to contend with 

the jargon of the computer and the application software.  Linguistic competence thus goes 
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beyond the naming of geometrical concepts and description of geometrical processes. It 

extended to a constellation of computer and Sketchpad terms like „menus‟, „tools box‟, 

„submenus‟, „quick menu‟, „drag test‟, „custom tools‟, „action buttons‟, „animate‟, 

„marquee‟, „highlight‟, „selection arrow‟, „text palate‟, „dialogue box,‟ „caption‟,  

„parents‟ and „children‟. There is a host of terms whose meaning in Sketchpad and 

computer environments is detached from their ordinary and colloquial use.  It is thus 

essential that teachers come to terms with the terminology in order to bridge the 

discrepancies in meaning when their students get involved. The differences between a 

„line‟, „ray‟ and a „segment‟, or „circle by point and centre‟, and „circle by point and 

radius‟, and the like have their Sketchpad meanings which need mastering or 

familiarization with pencil and paper equivalents that they are meant to represent.  

 

5.2.3 Computer and software competencies 

A working knowledge of Sketchpad constraints and affordances appeared mandatory. 

This study showed that inadequate skill in operating the software‟ could be an obstacle. 

Making constructions that pass the drag test was a baseline skill that determined whether 

one had a „drawing‟ or a „figure‟ (compare 4.3.1). Knowledge that relationships used in 

the construction are maintained was necessary and essential in the understanding of its 

properties and related theorems (compare 2.6.2). Ability or inability to open a pre-made 

sketch could mean a whole world of a difference between use and non-use of the 

software sketches yet pre-made sketches can save valuable time (compare 4.3.2.4, 4.4.1 

and 4.4.2). The fact that they are already pre-constructed for the user implies a gain in 

time management and more focus on geometry. Awareness of possibilities of suitably 

constraining, under-constraining or over-constraining appeared essential (compare 

4.3.2.3) Furthermore, that the teacher and the student can make adjustments and their 
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own notes suggests a flexibility of pre-made sketches which teachers could capitalize 

upon (compare 4.4.1 and 4.4.2). 

 

However, it was noted in this study that the teacher has to adopt a critical attitude when 

using pre-made sketches in order to correct any errors and/or extend their usefulness in an 

open-ended manner or to suit the particular level of the students‟ knowledge of geometry. 

In other words, continuous exploration of the software appeared to be an essential 

attribute for the Sketchpad user to cultivate (compare 4.4.1 and 4.4.2).  The fact that there 

were pre-made sketches does not stop the teacher from preparing his/her own 

presentation sketches or adapting these sketches to suit his/her teaching style or for the 

attainment of other objectives (compare 4.4.3, and 4.6.1). Hence ability to prepare one‟s 

own tasks means that the teacher does not become a slavish user of the textbook. Rather 

he/she becomes a curriculum designer or curriculum maker and could do so with the 

active participation of his/her students (compare 2.4 and 3.2). 

 

Just as Goldenberg (1996) and Wessels (2001b) warn that technology by itself is no 

panacea (compare 1.1), teachers also have to be aware of its strengths and weaknesses in 

order to use it profitably.  In other words, not only should computers be used effectively, 

but also their availability should not mean a complete abandonment of traditional paper-

and-pencil procedures.  Computers should be viewed as a supplement, rather than a 

wholesale substitute for the ruler and compass, lest the meaning of the straightedge and 

compass tools in the software lose their historical origin (compare 4.3.2.1). 

Understanding definitions and class inclusion can be greatly facilitated by a DGE 

(compare 2.6.7 and 4.3.2.3) yet oneness of a figure or shape under drag or animations 

assumes a new meaning (compare 4.4.1).     
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5.2.4 Pedagogical competencies 

 Knowledge of students 

Knowledge of the students‟ current level of geometric thought appears essential in that 

geometric content presented should be in tandem with the students‟ level of 

understanding. In the van Hiele theory we see that if material/geometry is presented at a 

level higher than that of students, then they would not understand (compare rhombus 

constructions 4.3.2.2 and 2.2). 

 

 Classroom management techniques 

Tasks prepared or selected must take into account the availability of PCs. In a laboratory 

situation in this study, not all interested students could be enrolled simply because of 

limited numbers of PCs and classroom space. Sharing of a PC by too many students may 

be counter-productive.  When students work in small groups, however, there is room for 

student-student talk, and consequently more opportunities to debate and speak 

mathematically are availed (compare 4.4.1). Like in foreign language learning, the 

student has an expanded opportunity to read, write, listen to and speak mathematics 

within the community of learners. This accords with Freudenthal‟s (1991:15) observation 

that reading mathematics and listening to it is also mathematics.   

 

 Teacher intervention 

This study indicates that in a laboratory situation the teacher might have to concentrate 

more on preparing laboratory work sheets that can take the students along and have them 

record their observations as they go at their own pace. It might be better for the teacher to 

assist groups by talking to them as a group. Whole class interventions appear to be less 

effective, if not disruptive, when students are still progressing at different stages. It might 
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in fact be easier if the teacher waits for an SOS call and assist only help from peers has 

failed (compare 2.6.6, 2.6.7, 4.3.2.4 and 4.4.4). This discovery is consistent with Towers‟ 

(1999:200-202) categorizations of modes of teacher interventions into shepherding 

(extended stream of interventions) which is least desirable, inviting (suggesting a new 

potentially fruitful avenue of exploration), which is more desirable, and rug-pulling (a 

deliberate shift of the student‟s attention to something that confuses), which is compatible 

with the problem-centred approach. In this study, though, participating teachers initially 

seemed to be keen to get approval or help from the researcher or teacher leader of the day 

instead of their peers.  Once the culture of consulting peers took root there was more 

teacher-to-teacher consultation, discussion and debate (compare 4.4.1) leading to high 

levels of learner participation.  The laboratory situation demands that the teacher be 

aware of a changed seating arrangement and social ethos or ecology in that the teacher 

talks to the students‟ backs. Hence lecturing or talking are best replaced by letting 

students do mathematics (compare 2.6.4, 2.6.6 and 4.4.1). 

  

5.2.5 Student assessment competencies  

In a problem-centred approach the teacher chooses or designs tasks that facilitate learning 

by conjecture, experimentation and insight.  Mathematics is viewed as a human activity 

of mathematizing or organizing everyday matter from a mathematical perspective 

(Freudenthal, 1991:14). In similar vein, Sinclair (2003:291) highlights that by affording 

students the opportunity to verify, conjecture, generalize, communicate, prove and make 

connections, dynamic geometry enables them to learn to notice, to pose questions, and to  

use change to investigate relationships. 
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Formative assessment requires monitoring of progress made by students in the activities 

as they work and follow their answer sheets closely, or as they conjecture, experiment 

and test. Asking students to explain their observations helps them to assess mathematical 

communication skills. Backtracking a student‟s construction through the „undo‟ submenu 

or showing „all hidden‟, „parents‟ and „children‟ can help validate a construction over and 

above the drag test and the animation capabilities. The fact that students also get quick 

feedback from the computer itself means the teacher fundamentally has a new 

companion- an interactive assessment assistant which he/she can take advantage of.  

(compare 2.6.8, 2.8 and 4.3.2.1). Of significance is the fact that merely being able to state 

facts by rote is no indication of the level of thought of the student (Pegg, 1991:13).  

 

Sketchpad has tremendous potential for project work and if students could be allowed to 

exercise their creativity, then it would be a welcome shift away from traditional 

assessment practices in mathematics (geometry).  There is consequently a compelling 

case for teachers to acquaint themselves with alternative assessment strategies that DGEs 

offer (compare 4.5.1).  The fact that the students can prepare their worksheets and 

sketches on the computer, and save them in the computer, lends further credence to the 

alternative assessment drive. In support, Ellerton & Clarkson (1996: 2002) suggest 

practical tests student constructed test items, student self-assessment, student journals, 

and mathematics profiles. 

  

5.2.6  Integration 

Mere possession of the foregoing competencies cannot constitute good mathematics 

teaching. How these competencies are integrated, is a matter of individual teacher‟s art 

and craft competency. There is, however, a balancing aspect as well as a proficiency of 
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execution dimension both of which might depend on experience and expertise in the PCA 

and in using the DGE environment. In this study such integration could be likened to a 

pentagonal kaleidoscope animated, with the motion epitomizing the integration process. 

In this study, language competencies manifested themselves in multiple forms suggesting 

that it might be futile to consider these in isolation from geometrical or disciplinary 

competence, computer and software competencies or assessment. The mediational role of 

language also cuts across the PCA approach in that well documented tasks with clear 

operational instructions can enable discovery learning and/or learning through problem 

solving. Students also communicate and negotiate understandings among themselves, and 

with the teacher, through the mediational role of language. Additionally, disciplinary 

competence without the appropriate descriptive and symbolic role of language would be 

less meaningful. In short there appears to be mutual interdependence of all the identified 

competencies, which makes the pentagonal kaleidoscope model fairly plausible. 

 

5.3 Recommendations 

The following recommendations are made as a sequel to findings in this study. 

  

(1) Pre-service and in-service courses for introducing teachers to dynamic geometry 

environments should take into account strengthening and solidifying their knowledge of 

school geometry just as in the traditional ruler-and-compass environments. However, 

close attention might have to be paid to skills in the use of the tool that has replaced paper 

and pencil technology. If exposed to an environment with computers and the relevant 

software, teachers can adapt to the new demands and exhibit considerable competencies 

in the orchestration of the hardware and software. 
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(2) The new interaction patterns between the teacher, the computer and the student 

seem to suggest that teachers be assisted to adjust from the tradition of following text 

books slavishly. The medium of the computer, beckons the teacher and student to be 

independent designers of their own exploration and learning/teaching activities. Teachers 

are expected to prepare or select tasks that allow students to work independently but 

meaningfully. The interactive nature of the DGEs suggests that the teacher‟s role changes 

more to that of facilitator and progress monitor of how the student and the computer have 

negotiated meaning with one another and among other students. Hence the PCA appears 

a suitable approach in such environments and is thus highly recommended. 

 

(3) The role of language in a problem-centred approach to dynamic geometry 

environments requires more attention as the student now has to grapple with 

mathematical and software terminology over and above the second language used for 

instruction. The dilemma language poses thus has three sides to be considered by 

mathematics educators, curriculum designers, examiners and researchers alike. The 

design of teacher preparation and in-service materials should thus factor the three-

dimensional language vector into the equation. 

 

(4) The changed medium of instruction implies that teachers be equipped with 

alternative assessment methods. This challenges mathematics teacher educators, 

curriculum designers, examiners and policymakers to change their mindsets and 

accommodate the new found technology, just as the non-programmable calculator was  

admitted into the examination room. 
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(5) Given the prohibitive cost of computers from a Third World economic point of 

view, it is unlikely that there will be many enough individual mathematics teachers in the 

personal possession of computers or laptops any day soon.  Institutional support should 

thus be considered as a pragmatic starting point for equipping teachers with the new 

technological competencies. This study has demonstrated this feasibility. Hence policy 

makers should seriously consider establishing and stocking up mathematics computer 

laboratories both at tertiary institutions and in the schools.  

 

(6) This study points directions towards encouraging the use of  the TDE as part of 

the developmental research agenda. Mathematics teacher education institutions are 

implored and challenged to make dynamic geometry courses part of their official 

curricula in order to access a larger number of mathematics teachers to benefit yet a 

larger number of students. 

 

5.4 Limitations of the study 

(1) This study was conducted as a extracurricular effort. It meant additional time had 

to be invested in an already congested teacher education curriculum of the polytechnic 

even though the mathematical or geometric content fitted within the mathematics 

education syllabus. There were, therefore, considerable time constraints. 

(2) The study involved microteaching as a method of teacher preparation where peer 

teaching takes place. Interpretations of the findings should take this fact into account as 

resources did not permit an actual school situation to be enacted or equipped to satisfy 

conditions for investigation. 
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(3) The study focused on the computer laboratory situation as it was believed to have 

opportunities for more hands on minds on experiences with the software for a greater 

number of teachers than whole class presentations using an overhead projector. 

(4) It is further noted that in this study there was no opportunity to conduct clinical 

interviews, which would have yielded more insight into the teacher‟s ways of thinking. 

5.5 Conclusion 

Teacher education in Zimbabwe has not yet embraced widespread exposure of pre-

service teachers to modern technology in general. Efforts at in-service level remain 

sporadic too. The teaching of mathematics, let alone dynamic geometry, is still largely an 

untried and untested college curriculum possibility. Even where available computers are 

used more for commercial courses and communication purposes than the teaching of 

mathematics or other teacher education subjects. This study will hopefully contribute 

towards the advocacy for integrating information and communication technology into 

teacher education as a starting point in reaching out to the students in the schools to make 

mathematics more accessible to a greater majority (compare 3.6.4) 

This study leaves un-answered, the question of how the identified teacher competencies 

can be developed thus inviting further research in that direction. The investigation has 

confirmed that teacher competencies in a problem-centred approach are a complex 

matrix. In trying to prioritize the competences, it appears there can be no substitute for a 

teacher to be mathematically competent, first and foremost. Pedagogical competencies 

would appear to come next. Language and software competencies would appear to be the 

tools by which geometry has to be attacked, expressed or represented. Assessment 

practices need to be more innovative and take into account the evolution in tools. 
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APPENDICES 

 

Appendix A – Pre-test 

 

Section A 

 
1. Name the four types of triangles shown below. Write your answer in the box  

provided 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  How would you, over the phone (or via telegram) explain what the triangles in 

Question 1 are? (Try to keep your description as short as possible, but ensure that 

the person has enough information) 

 a)…………………………………………………………………………………… 

 b)…………………………………………………………………………………… 

 c)…………………………………………………………………………………… 

 d)…………………………………………………………………………………… 

3. Describe how you would make the following construction 

 a) A circle inscribed in a triangle……………………………………………... 

 ………………………………………………………………………………………

b) A circle passing through all vertices of a triangle (circumcircle)………….. 

 ……………………………………………………………………………………… 

4. How would you, over the phone (or via telegram), explain what the following 

quadrilaterals are? 

 a) A rhombus is a quad with………………………………………………….. 

 ……………………………………………………………………………… 

 b) A square is a quad with ……………………………………………………. 

  ……………………………………………………………………………… 

 c) A rectangle is a quad with………………………………………………….. 

  ……………………………………………………………………………… 

 

 d) A kite is a quad with………………………………………………………. 

  ……………………………………………………………………………… 

a) b) 

c) d) 
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 e) A parallelogram is a quad with ……………………………………………. 

  ……………………………………………………………………………… 

 f) A trapezium is a quad …... ………………………………………………... 

  ……………………………………………………………………………… 

 g) A cyclic quad is…………………………………………………………….. 

  ……………………………………………………………………………… 

5. How many lines of symmetry does each of the following shapes have? 

 a)  Parallelogram…………b) kite………………….. c) rectangle……………. 

 d) Square………………...e) rhombus………………f)trapezoid…………….. 

6. Complete the following definitions of some quadrilaterals by some quadrilaterals. 

 a) A square is a rectangle with ………………………………………………….… 

 b) A square is a rhombus with…………………………………………………….. 

 c) A rectangle is a parallelogram with……………………………………………. 

 d) A rhombus is a parallelogram with…………………………………………….. 

7.  What can you say about the intersection of the diagonals of the following shapes? 

 a) A square: i)……………………………………………………………………… 

         ii)……………………………………………………………………… 

 b) A rectangle i)…………………………………………………………………… 

            ii)……………………………………………………………………. 

 c) A rhombus i)……………………………………………………………………. 

            ii)……………………………………………………………………. 

8. What can you say about adjacent and/or opposite angles of the following shapes? 

 a) Cyclic quadrilateral…………………………………………………………….. 

 b) Parallelogram…………………………………………………………………… 

 c) Isosceles trapezoid……………………………………………………………… 

9. What is the relationship between the angles of a square and the diagonals? 

 …………………………………………………………………………………….. 

10.  What is the relationship between the perpendicular bisector of the base of an 

isosceles triangle and the angle at the apex?……………………………………….. 

 ……………………………………………………………………………………... 

Section B 

11.  What do you understand about the problem-centred approach in relation to the 

teacher‟s role, student‟s role, classroom culture, mathematical tasks and 

mathematics learning? 

……………………………………………………………………………………… 

……………………………………………………………………………………… 

………………………………………………………………………………………

. ……………………………………………………………………………………… 

……………………………………………………………………………………… 

12.  State one advantage and one disadvantage of the problem-centred approach. 

 ……………………………………………………………………………………… 

 ………………………………………………………………………………………

13. What do you understand about dynamic geometry? 

 ………………………………………………………………………………………

14. What is the difference, if any, between a drawing and a figure? 

 ……………………………………………………………………………………… 
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Appendix B 

 

QUESTIONNAIRE TO PARTICIPANTS 

 

Kindly answer the following questions as accurately as possible to facilitate further data 

analysis in the research project on the teaching of dynamic geometry from a problem 

centred approach. These are largely biographical questions and information obtained 

shall be for research purposes only.  

 

Name of participant: ……………………………………………  Age………… 

Highest Mathematics Examination passed…………………………  Year……….. 

Highest Mathematics Examination attempted……………………… Year………… 

Teaching experience accumulated before joining college:  Years……… Months……... 

Level of mathematics taught prior to joining college    Duration 

…………………………………………………………   ……………… 

…………………………………………………………   ……………… 

Level of mathematics taught during Teaching Practice   Duration 

………………………………………………………..   ……………… 

………………………………………………………..   ……………… 

Level of computer literacy prior to start of project: State qualification obtained, if any, or  

indicate what computer packages you are familiar with if at all    ………………………... 

Why did you choose mathematics as your major subject………………………………… 

…………………………………………………………………………………………….. 

How important is mathematics in life? Unimportant/Important/Very Important 

What were your early experiences with the Geometer‟s Sketchpad?……………………… 

……………………………………………………………………………………………… 

Which activity would you consider to have been most informative in terms of Sketchpad  

usage?………………………………………………Why?...……………………………… 

……………………………………………………………………………………………… 

Which activity would you consider to have been most informative in terms of 

mathematical content?………………………………………………Why?...…………… 

……………………………………………………………………………………………… 

What lesson did you help prepare for and/or present?…………………………………... 

……………………………………………………………………………………………… 

How did you feel like during and after the presentation?………………………………….. 

……………………………………………………………………………………………… 

How did you involve your „students‟ during the lesson if you presented?………………… 

……………………………………………………………………………………………… 

How important was it to prepare for the lesson? Unimportant/Important/Very Important 

Why?………………………………………………………………………………………. 

State at least two ways in which one can check the accuracy of a construction in 

Sketchpad?…………………………………………………………………………………

…………………………………………………………………………………………….. 

How important is it to know your students‟ current level of geometrical knowledge 

before teaching new content? Unimportant/Important/Very Important 
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Appendix C 

 

STRUCTURED GROUP INTERVIEW  SCHEDULE 

 

A. Computer Skills 

 

How would you rate the importance of computer skills? 

 

Which skills would you consider among the most important in order to get along with the 

Sketchpad Software?  

How would you open the Sketchpad Software? 

 

B. Sketchpad Skills 

Which tools would you want a new group of teachers to be familiar with at the earliest 

opportunity? 

Which tools did you find difficult or confusing to use at the beginning? 

Which menus would you want new users to be familiarized with as a matter of priority? 

How would you assist a new user to open a pre-made sketch in Sketchpad? 

 

C. Pedagogical Skills 

Which would you consider to be the most suitable grouping strategy in a Sketchpad 

laboratory environment? 

Why do you think the strategy is more effective than others? 

 

D. Assessment Strategies 

How would you assess your students‟ progress during and after the lesson in a Sketchpad 

environment? 

What kind of summative (end-of-term) assessment procedures would you use? 
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Appendix D 

 

VIDEO –TAPE RECORDINGS 

 

Video Tape 1 – Introduction to computers and Geometer‟s Sketchpad 

 

Video Tape 2 - Workshop sessions familiarizing participants with Sketchpad 

- First lesson by participant (Congruency theorems) 

 

Video Tape 3- Microteaching sessions by participants except for last which was 

misplaced, and should have been in Video tape A 

 

Video Tape 4 - Exhibition at a local Town Agricultural Show. 
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Appendix E – Distances in an Equilateral triangle  task 

  (Adapted from De Villiers, 1999:23-26) 

 

Distances in an     Names:_______________________  

Equilateral Triangle) 

A shipwreck survivor manages to swim to a desert island. 

As it happens, the island closely approximates   C 

the shape of an equilateral triangle. She soon 

discovers that the surfing is outstanding on  

all three of the island‟s coasts. She crafts a    

surfboard from a fallen tree and surfs every 

day. Where should she build her house so that 

the sum of the distances from her house to all  

three beaches is as small as possible? (She visits  

each beach with equal frequency.) Before you  

proceed further, locate a point in the triangle at      A       B  

the spot where you think she should build her house. 

 

 

Conjecture 

 

   1.  Open the sketch Distances.gsp.  Drag point P to experiment with your sketch. 

 

Q1 Press the button to show the distance sum. Drag point P around the interior of the 

triangle. What do you notice about the sum of the distances? 

 

 

 

 

Q2 Drag a vertex of the triangle to change the triangle‟s size. Again, drag point P 

around the interior of the triangle. What do you notice now? 

 

 

 

 

Q3 What happens if you drag P outside the triangle?  

 

 

 

 

 

Q4 Organize your observations from Q1-Q3 into a conjecture. Write you conjecture 

using complete sentences. 

 

 

 

All sketches 

referred to in  

this booklet can be 
found in 

Sketchpad\Teach 

ing Mathematics 

(Sketchpad is the 

folder that  

contains the 
application itself) 
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Distances in an Equilateral Triangle (continued) 

Explaining 

a

a

a

h(1)
h(3)

h(2)P

 

You are no doubt convinced that the total sum of the distances from point P to all three 

sides of a given equilateral triangle is always constant, as long as P is an interior point. 

But can you explain why this is true? 

 

Although further exploration in Sketchpad might succeed in convincing you even more 

fully of the truth of your conjecture, it would only confirm the conjecture‟s truth without 

providing an explanation. For example, the observation than the sun rises every morning 

does not explain why this is true. We have to try to explain it in terms of something else, 

for example, the rotation of the earth around the polar axis. 

 

Recently, a mathematician named Mitchell Feigenbaum made some experimental 

discoveries in fractal geometry using a computer, just as you have used Sketchpad to 

discover your conjecture about a point inside an equilateral triangle. Feigenbaum‟s 

discoveries were later explained by Lanford and others. Here‟s what another 

mathematician had to say about all this:    

 

  Lanford and other mathematicians were not trying to validate 

  Feigenbaum’s results any more than, say, Newton was trying 

 to validate the discoveries of Kepler on the planetary orbits. In  

both cases the validity of the results was never in question.  

What was missing was the explanation. Why were the orbits 

 ellipses? Why did they satisfy these particular relations?… 

there’s a world of difference between validating and explaining. 

 

  - M. D. Gale (1990), in The Mathematical  

Intelligencer, 12(1), 4. 

 

Challenge 

Use another sheet of paper to try to logically explain your conjecture from Q4. After you 

have thought for a while and made some notes, use the steps and questions that follow to 

develop an explanation of your conjectures. 
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Distances in an Equilateral Triangle (continued) 

   2.  Press the button to show the small triangles in your sketch. 

 

Q5 Drag a vertex of the original triangle. Why are the three different sides all labeled 

a? 

 

 

Q6 Write an expression for the area of each small triangle using a and the variables 

h1, h2 and h3. 

 

 

Q7 Add the three areas and simplify your expression by taking out any common 

factors. 

 

 

Q8 How is the sum in Q7 related to the total area of the equilateral triangle? Write an 

equation to show this relationship using A for the area of the equilateral triangle is 

always constant. 

 

 

 

Q9 Use your equation from Q8 t explain why the sum of the distances to all three 

sides of a given equilateral triangle is always constant. 

 

 

 

Q10 Drag P to a vertex point. How is the sum of the distances related to the altitude of 

the original in this case? 

 

 

 

Q11 Explain why your explanation in Q5-Q9 would not work if the triangle were not 

equilateral. 

 

 

 

Present Your Explanation  

 

Summarize your explanation of your original conjecture. You can use Q5-Q11 to help 

you. You might write your explanation as an argument in paragraph form or as a two –

column proof. Use the back of this page, another sheet of paper, a Sketchpad sketch, or 

some other medium. 
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Further Exploration 

 

1. Construct any triangle ABC and an arbitrary point P inside it. Where should you 

locate P inside it. Where should you locate P to minimize the sum of the distances 

to all three sides of the triangles? 

 

2.  a.  Construct any rhombus and an arbitrary point p inside it. Where should 

you  locate P to minimize the sum of the distances to all four sides of the 

rhombus? 

 

b. Explain your observation in 2a and generalize to polygons with a similar 

property. 

 

3. a. Construct any parallelogram and an arbitrary point P inside it.  

Where should you locate P to minimize the sum of the distances to all four 

sides of the parallelogram? 

 

b. Explain your observation in 3a and generalize to polygons with a similar 

property. 
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