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Abstract 

Grasp training is a key aspect of stroke rehabilitation. This thesis explores the suitability 

of Force Myography (FMG) classification for the two-class problem of grasping, regardless 

of grasp-type, versus a lack of grasping, for rehabilitation applications.  

FMG-based grasp detection in individuals with stroke was assessed with a protocol 

comprising of three grasp-and-move tasks, requiring a single grasp-type. Accuracy was 

lower, and required more training data for individuals with stroke when compared to 

healthy volunteers. Despite this, accuracy was above 90% in individuals with stroke.  

FMG-based grasp detection was further evaluated using a second protocol comprising of 

multiple grasp-types and upper-extremity movements, with healthy volunteers. The utility 

of classifying temporal features of the FMG signal was also assessed using Area under 

the Receiver Operator Curve (AUC). Accuracy with the raw FMG signal was 88.8%. At 

certain window configurations, model-based temporal features yielded up to a 6.1% 

relative increase in AUC over the raw FMG signal.  

Keywords:  Activity Monitoring; Force Myography; Functional Activity Tracking; Stroke 
Rehabilitation; Grasp Detection; Wearable Sensors;  
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Glossary 

Activities of Daily Living  Activities required for daily living, such as dressing and 
feeding. 

Area under the Receiver 
Operating Curve 

A measure of classification performance from 0 to 1.  

Classification Accuracy Ratio of correctly predicted samples to total number of 
samples.  

False-negative Datum for which a grasp detection classifier incorrectly 
predicts no grasping when the participant was grasping 
an object. 

False-positive Datum for which a grasp detection classifier incorrectly 
predicts grasping when the participant was not 
grasping an object. 

Grasp-and-move Activity involving a participant grasping an object in 
his/her hand, and moving the object to another 
location.  

Grasping The participant holding an object in his/her hand, 
regardless of the grasp-type or object. 

Lack of grasping The participant not holding any object in his/her hand. 
Interchangeable with no grasping. 

Learned non-use Phenomenon in which a paretic limb further 
deteriorates due to a lack of use.  

Movements-without-grasping The participant engaging in upper-extremity 
movements without an object grasped in his/her hand.  

Musculo-tendinous  Muscle and tendon tissue. 

No grasping The participant not holding any object in his/her hand. 
Interchangeable with lack of grasping.  

Paretic limb A limb with partial paralysis. 

Raw FMG Signal Unprocessed FMG data, in the form of instantaneous 
FMG samples, from multiple sensors.  

Receiver Operating Curve A plot that depicts the classification performance of a 
classifier. Plots the true-positive rate against the 
false-positive rate. 

Signal-to-noise-ratio Ratio of the portion of the signal containing information 
to the portion of the signal containing noise, or 
interference. 

Testing phase The phase during which the performance of a classifier 
model is tested using unseen data.  
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Testing-set Set of unseen data, used to test classifier performance 
during the testing phase.  

Training phase The phase during which a classifier model is generated 
using data in the training-set. 

Training-set Set of input data which has been labelled with the 
appropriate class label. The training-set is used to train 
a classifier during the training phase. 

True-negative Datum for which a grasp detection classifier correctly 
predicts a lack of grasping when the participant was 
not grasping.   

True-positive Datum for which a grasp detection classifier correctly 
predicts grasping when the participant was grasping an 
object. 

Two-class grasp detection 
problem 

The classification problem of detecting grasping, 
regardless of the grasp type used, versus a lack of 
grasping. 
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Chapter 1. Introduction 

1.1. Chapter Overview  

This chapter begins by outlining the motivation for this thesis. Subsequently, the 

specific objectives of this thesis are defined. Finally, a layout of the remaining chapters of 

this thesis is provided.  

1.2. Motivation  

Stroke is one of the most prevalent causes of long-term adult disability [1, 2]. 

Individuals with stroke often experience impairments in the upper-extremity, including a 

reduction in fine motor control [1] and a reduced ability to grasp [3]. These impairments 

contribute to difficulties in performing Activities of Daily Living (ADL), such as dressing, 

feeding, and home management [1], which in turn leads to lack of use and further 

deterioration of the paretic limb [4, 5]. It has been shown that repetitive task-specific 

training helps restore upper-extremity motor control in stoke survivors [6]. However, there 

is increasing evidence that it is necessary to practice hundreds, if not thousands, of grasp 

and release repetitions to optimize hand motor recovery and rehabilitate fine motor control 

after stroke [7, 8]. While a variety of rehabilitation techniques exist, in general, stroke 

rehabilitation is a labor and cost intensive activity, carried out in a one-to-one fashion, with 

a therapist individually guiding the patient through the large number of repetitions of 

functional task practice required for motor recovery [1].  

In Canada, the standard of care involves assessing all hospitalized, acute stroke 

patients, prior to discharge, to identify the appropriate type of rehabilitation intervention for 

the patient. It is estimated that 10% of patients are discharged to long-term care facilities 

[9]. 19% of patients are discharged to rehabilitation facilities within the health-care system 

[9]. Two thirds of patients admitted to rehabilitation facilities continue to require in-person, 
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out-patient, rehabilitation services, or at-home care, subsequent to discharge from the 

rehabilitation facility [10]. 58% of patients are discharged directly to the home environment, 

and rely on out-patient, in-person rehabilitation services, and other self-guided 

rehabilitation programs [9].   

The demand for stroke rehabilitation services is expected to rise. A rapidly ageing 

population is expected to lead to an increase in the incidence of stroke and other 

age-related ailments [11]. Concurrently, a reduction in the mortality associated with stroke 

implies that more individuals will need post-stroke rehabilitation [12]. This increasing 

demand for stroke rehabilitation services, and the labor and cost intensive nature of 

rehabilitation, has resulted in an increase in research on methods to improve the efficiency 

of the rehabilitation process [13]. One such area of research is the creation of wearable 

sensing systems which can assist therapists and patients in monitoring the large amount 

of functional task practice necessary for motor recovery [7, 8]. A device that is capable of 

monitoring and encouraging functional use of the affected limb, in stroke survivors, could 

potentially enhance and optimize the rehabilitation process at multiple stages. 

In the clinic, such a device could keep track of the number of times a patient uses 

their paretic limb functionally in a given period of time, and provide feedback to the 

therapist and patient, without requiring the therapist to constantly monitor the progress of 

the patient. This in turn could increase the efficiency of the in-person rehabilitation 

process. The proposed device could also act as a monitoring tool for the clinician and a 

motivational tool for the patient as part of a home-based rehabilitation program, allowing 

for therapy to continue beyond traditional face-to-face therapy sessions. Enabling 

continued rehabilitation in the home environment presents a number of advantages. 

Firstly, it has been shown that improvement in motor control and functional ability are more 

likely to occur if in-person, clinician-supervised, therapy is supplemented with task practice 

at home [6, 14]. Furthermore, the ability to achieve clinician-supervised rehabilitation in 

the home environment, would optimize the therapists’ utilization of in-person clinical time, 

and ensure that the increasing demands for rehabilitation services [12, 15] continue to be 

met. Finally, the proposed device could also encourage individuals with stroke to continue 

to use their affected limbs as part of ADL. It has been shown that a portion of residual 

impairment after a stroke can be attributed to lack of use, or “learned non-use” [5], of the 
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paretic limb. This lack of use can lead to further deterioration in functional ability of the 

paretic limb [4, 5]. Furthermore, it has been noted that the gains made with patients during 

rehabilitation are often lost post-rehabilitation due to factors such as lack of stimulation, 

encouragement, and an unsuitable physical environment [1]. Hence, continued 

encouragement of functional use of the paretic limb, as part of daily living, could potentially 

preserve functional gains reaped during rehabilitation and avoid the learned non-use 

phenomenon [5].  

A number of sensing technologies have shown promising suitability for the creation 

of devices that detect, track, and encourage functional activity for stroke rehabilitation 

applications. The potential ability for sensing technologies to monitor grasping is of 

especial relevance in rehabilitation applications, given the central role of grasping in 

enabling functional ability [3], and the emphasis placed on grasp training in 

upper-extremity stroke rehabilitation [16, 17]. Two main classes of technologies exist: 

environment-based sensors and body-worn sensors. Environment-based sensors such as 

machine vision and Infra-Red (IR) sensing technologies have been shown to be able to 

effectively track human motion [18]. Suggested applications of this technology range from 

gaming to localized tracking of stroke rehabilitation activity [19]. Despite the affirmative 

results, such devices are excluded from the scope of this thesis. These devices require 

retrofitting of the operating environment, and hence, are not easily deployable in the 

multiple settings in which activity tracking is required in rehabilitation applications. Several 

body-worn sensing technologies have shown similarly promising results in activity 

tracking, and have the benefit of being comparatively portable, and easily deployable in a 

variety of environments. Body-worn technologies include: (i) inertial measurement devices 

[20, 21, 22], such as accelerometers, and Inertial Measurement Units (IMUs), (ii) proximity 

sensing devices using magnetic sensing principles [23], (iii) glove-based devices 

embedded with bend sensors [24], and (iv) Myography methodologies, such as Surface 

Electromyography (SEMG) [25], Acoustic Myography (AMG) [26], and Force Myography 

(FMG) [27]. The benefits and detriments of each of the aforementioned sensing 

technologies are discussed in detail in Chapter 2.  

Amongst these technologies, the use of FMG for activity tracking has been the 

subject of increasing research in recent years. FMG involves monitoring the force, or 
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pressure, at the surface of the limb, as a means to characterize the state of the underlying 

musculo-tendinous complex [27]. The benefits of FMG include: (i) simple signal acquisition 

and processing requirements [28], (ii) ease of set-up and lack of need to place sensors at 

specific anatomical locations [29], (iii) low power consumption requirements [29], and (iv) 

low cost [30]. With the use of appropriate signal processing and machine learning 

techniques, FMG has been shown to be able to: (i) predict grip strength [27], (ii) predict 

single finger forces [30], (iii) detect a variety of grasp-types [28, 29], (iv) detect 

grasp-and-move actions [31], and (v) detect upper-extremity postures of the elbow, 

forearm, and wrist [32, 33]. Amongst these advancements, the potential use of FMG for 

detecting grasping [28, 29, 31] is especially relevant for rehabilitation applications. Given 

that FMG has been shown to be capable of detecting and distinguishing between a variety 

of grasp-types in other applications, it is hypothesized that FMG technology could be 

applied to monitoring and encouraging grasping, in individuals with stroke, for 

rehabilitation applications.  

Despite promising advances in FMG research, several research questions remain 

in order to establish the suitability of using FMG for tracking and encouraging grasping in 

upper-extremity stroke rehabilitation applications. Firstly, the feasibility of acquiring and 

classifying the FMG signal from individuals with stroke with upper-extremity impairments, 

who might ultimately benefit from FMG technology, has yet to be established. Secondly, 

a majority of contemporary FMG grasp detection research has focused on distinguishing 

between various types of grasps (i.e. multi-class problem) in the absence of significant 

upper-extremity movements [28, 29, 34]. The ability to distinguish between a discrete set 

of grasp-types is a necessary feature in human machine interface applications [28, 29, 

34]. However, the presence of grasping, regardless of the grasp type involved, can be 

indicative of functional use of a limb, which is a key goal in stroke rehabilitation [15], in 

order to avoid learned non-use [5].  In stroke rehabilitation applications, FMG-based 

devices will have to detect and encourage grasping instead of a lack of grasping, 

regardless of which of the wide variety of grasp-types necessary to complete ADL [35], 

was used. The accuracy of FMG classification in the “two-class” grasp detection problem 

of grasping, regardless of grasp-type, versus no grasping (i.e. no object in hand), has yet 

to be established. Additionally, in order to be deployed in uncontrolled environments 

outside of the rehabilitation clinic, FMG-based grasp detection will have to be robust in the 
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presence of the upper-extremity movements that are required to complete ADL. Hence, 

further research is required to establish the accuracy achievable with FMG for the above 

defined two-class grasp detection problem, in the presence of upper-extremity movements 

that would be expected as part of ADL. Thirdly, contemporary FMG research has focused 

on the classification of the raw FMG signal, in the form of instantaneous FMG samples 

from multiple channels (i.e. sensors), in order to detect the functional state of the user’s 

limb [29, 31, 32, 36]. The potential utility of feature extraction techniques has yet to be 

investigated. Given the temporal nature of grasping [37], it is hypothesized that the 

identification of a suitable set of temporal features of the FMG signal may improve grasp 

detection accuracy.  

1.3. Thesis Objectives  

Based on these considerations, which are discussed in greater detail in Chapter 

2, this thesis seeks to explore the suitability of using FMG for grasp detection in 

upper-extremity stroke rehabilitation applications. This thesis consists of three main 

objectives.  

Objective 1 is to perform a preliminary investigation on the accuracy of 

FMG-based grasp detection in individuals with stroke, who have upper-extremity 

impairments, in a controlled environment.  

Objective 2 is to perform a preliminary investigation on the accuracy of FMG 

classification for the two-class grasp detection problem, using a variety of grasp-types and 

upper-extremity movements, with healthy volunteers, in a controlled environment. 

 Objective 3 is to perform a preliminary investigation on the utility of classifying 

temporal features of the FMG signal for the two-class grasp detection problem, using a 

variety of grasp-types and upper-extremity movements, with healthy volunteers, in a 

controlled environment.  

It is noteworthy that these three objectives were not fulfilled concurrently. Instead, 

the completion of Objective 1 guided refinement of the work that was conducted to 
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achieve Objective 2 and Objective 3. The extent of the experimental protocol associated 

with Objective 1 was limited to that which was achievable without triggering muscular and 

mental fatigue in participants with stroke. The investigations associated with Objective 2 

and Objective 3 were conducted with healthy volunteers, to allow for a more extensive 

experimental protocol than would have been possible with participants with stroke. 

1.4. Thesis Layout  

The subsequent chapters of this thesis are organized as follows. In Chapter 2, a 

summary of the relevant literature surrounding upper-extremity activity tracking solutions, 

and FMG is provided. Chapter 3 and Chapter 4 describe the two studies that were run as 

part of this thesis. In Chapter 3, the design, execution, and results of the first study, which 

was conducted to meet Objective 1 of this thesis is described. In this study, the feasibility 

of acquiring and classifying the FMG signal from individuals with stroke, with 

upper-extremity impairments, for the purpose of grasp detection, was explored. In section 

3.5, the key observations and findings of the study, which contributed to the definition of 

the second study, described in Chapter 4, are discussed.  

In Chapter 4, the design, execution, and results of the second study, which was 

conducted to meet Objective 2 and Objective 3 of this thesis is reported. In this study, 

the accuracy achievable with FMG classification for the two-class grasp detection 

problem, with a variety of grasp-types and upper-extremity movements, as would be 

expected in daily living, was investigated. Finally, in Chapter 5 a summary of the findings 

of this thesis is provided.  



 

7 

Chapter 2. Literature Review  

2.1. Chapter Overview  

In this chapter, a brief summary of the literature surrounding body-worn sensing 

technology for activity tracking is provided, with emphasis on the key themes of FMG 

research. In section 2.2, an overview of various upper-extremity sensing technologies that 

are alternatives to FMG is provided. Additionally, their benefits and detriments with 

regards to functional activity tracking in stroke rehabilitation applications is discussed. In 

section 2.3, a brief overview of FMG, and its principle of operation is provided. 

Subsequently, in section 2.4, the methodologies and results of contemporary FMG 

research are summarized and potential areas of additional research are identified, a 

subset of which correspond to the objectives identified for this thesis.  

2.2. Upper-extremity Activity Tracking Technology  

2.2.1. Inertial Sensing   

The use of inertial sensing devices, such as accelerometers, for activity tracking is 

well-established. Several commercially available activity tracking systems use inertial 

sensing technology, including medical grade devices such as the ActiGraph WGT3X-BT, 

which is depicted in Figure 2-1 [38]. Inertial sensing devices have been shown to capture 

inertial data associated with arm and hand movement. Advantages of such devices 

include their ease of use, low cost, and relative insensitivity to placement [19]. On the 

other hand, relating the metrics of these devices to functional activity is an active area of 

research [20, 21, 22, 39]. With appropriate signal processing, accelerometer-based 

devices have been shown to provide ratio-metric counts that relate to the amount of 

upper-extremity movement achieved by individuals with stroke [20, 21, 22], and the 

amount of hand-use in older adults [39]. However, such devices are unable to assess the 

functional state of the user’s hand and determine when the user has successfully grasped 

an object. Hence, inertial sensing devices are unable to distinguish functional use of the 
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upper-extremity from non-functional movements, such as shaking or swinging of the arm 

[22].  

 

Figure 2-1: Commercially Available Inertial Sensing Based Activity Tracker. 
Reproduced from [38] 

Given the emphasis placed on functional activity [40] and grasp training [16, 17] in 

rehabilitation, it is desirable for sensing devices to be able to distinguish between 

functional and non-functional movements, by detecting grasping of the hand. Accordingly, 

the remaining technologies discussed in this thesis provide means to detect the functional 

state of the hand. All of the subsequent sensing technologies discussed can be used in 

conjunction with inertial sensing, in order to provide data representative of both hand use, 

and arm and hand movement.  
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2.2.2. Magnetic Sensing 

The use of magnetic sensing systems for detecting wrist and hand movements has 

also been proposed [23, 41]. Such devices use a wrist-worn magnetometer to detect 

relative movement of a magnetic object donned on a different body part, such as a finger. 

Friedman et al. propose one such device comprising of a wrist-worn unit, containing a 

magnetometer and signal processing unit, that senses the relative movement of a 

magnetic beacon, which is embedded in a ring worn on the finger [23]. The device, which 

is depicted in Figure 2-2, has been shown to be capable of detecting fine upper-extremity 

movements including wrist flexion/extension, wrist deviation, and finger flexion/extension 

[23, 41]. The inclusion of an accelerometer within the device provides additional metrics 

relating to arm and hand movement [23]. Advantages of such devices include their 

relatively low cost, portability, and sensitivity to fine upper-extremity movements [19]. 

However, magnetic sensing systems are susceptible to magnetic interference from other 

ferromagnetic materials, such as household electronics, and hence, may have difficulty 

accurately monitoring functional activity in the home environment [19, 23].  



 

10 

 

Figure 2-2: Magnetic Sensing System. Reproduced from [41] 

2.2.3. Sensing Gloves 

Several gloves embedded with sensors for tracking hand postures have been 

developed and successfully evaluated [19, 24]. These devices apply an encoder-based 

approach, by adding bend sensors that measure bending of localized areas of the glove 

as a measure of the degree of flexion or extension of each finger [19].Figure 2-3 depicts 

a commercially available sensing glove [42]. Glove-based devices have been shown to be 

able to detect fine finger movements and gestures of the hand [24]. However, for 

individuals with a limited range of motion and muscle spasticity, such devices can be 

challenging to don [19]. Additionally, the wearing of gloves results in a reduction in palmar 

sensation and may hamper the completion of fine-motor tasks [19].  
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Figure 2-3: Commercially Available Sensing Glove. Reproduced from [42] 

2.2.4. SEMG 

SEMG is a widely used technology for collecting information related to the 

contraction or relaxation of muscles by measuring the electrical activity of the muscles at 

the surface of the skin proximal to the muscle [25]. The use of SEMG in conjunction with 

machine learning techniques for classifying and detecting upper-extremity postures is well 

established [25]. Furthermore, SEMG has been successfully used to detect hand activity 

in individuals with stroke [43, 44, 45]. Lee et al. used SEMG data from individuals with 

stroke to identify six different hand postures [44]. In recent years, commercially available 

SEMG armbands have been introduced, including the MyoTM arm band from Thalmic Labs, 

which is depicted in  Despite these promising results, challenges remain in the use of 

SEMG for unobtrusive monitoring of hand motion. SEMG requires complex signal 

acquisition and amplification hardware, and a high signal sampling rate, with 

correspondingly large computational and power consumption requirements [46]. 

Additionally, given that SEMG is measuring the electrical activity of muscles, its 

signal-to-noise ratio is sensitive to the positioning of electrodes on the surface of the skin, 

as well as skin impedance [47, 48], which may be affected by hair, sweat, and skin creams.  
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Figure 2-4: Commercially Available SEMG Arm Band. Reproduced from [49]  

2.2.5. AMG 

AMG is a complimentary sensing technology to SEMG, that involves transducing 

the acoustic signatures of the vibrations of muscles as they contract [26, 50]. AMG senses 

the acoustic analog of the electrical activity measured by SEMG as muscles contract [26, 

50]. The AMG signal can be transduced using several sensing elements, including 

microphones and accelerometers [50].  AMG has been shown to be sensitive to the force 

of contraction [26, 50], and capable of detecting the functional state of the hand using 

pattern recognition and classification techniques [50].  However, the performance of AMG 

is sensitive to sensor placement, and sensor pressure (i.e. adherence) on the surface of 

the skin [26, 50]. AMG has also been shown to require similarly complex signal processing 

methodologies, associated with large computational requirements, as is used in SEMG 

classification [50].  
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2.3. FMG: Overview and Principle of Operation   

FMG is an alternative sensing technology that involves monitoring the force, or 

pressure, at the surface of the limb, as a means to characterize the state of the underlying 

musculo-tendinous complex [27]. FMG is a relatively new sensing technology, with the 

majority of FMG research taking place from the 1990s to date [23, 27, 29, 30, 32, 33, 34, 

36, 43, 51]. The underlying principle behind FMG is that of monitoring the expansion or 

contraction of muscles by sensing the force exerted by the same muscles onto force 

sensors that are placed normal to the surface of the limb. Figure 2-5 provides an illustrative 

example of an FMG sensing system. A force sensing band is constructed using multiple 

force sensors, embedded into a flexible and conformable back layer. The band is wrapped 

around a user’s working limb, such that the sensors (S1 to S6 in Figure 2-5) are normal 

to, and in close contact with, the surface of the working limb. The muscles within the limb 

expand and contract as the limb is used functionally. This expansion and contraction 

results in the manifestation of forces on the surface of sensors, which are quantified, and 

are termed the FMG signal [27]. The FMG signal has been shown to relate to grip strength 

[27] and single-finger forces [30]. Furthermore, with the use of machine learning 

techniques it has been shown that the patterns of forces in the FMG signal, can be used 

to predict the functional state of the limb, including: (i) detecting hand gestures [29], (ii) 

upper-extremity postures [32], and (iii) repetitions of grasp-and-move tasks [31] in healthy 

participants. 
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Figure 2-5: FMG Principle of Operation 

FMG presents several advantages when compared to alternative upper-extremity 

sensing technologies discussing in section 2.2. In contrast to SEMG, the FMG signal can 

be extracted using off-the-shelf force sensing elements and does not require complex 

signal processing circuitry or high sampling rates, which would increase power 

consumption [29]. Additionally, FMG does not require sensors to be placed at specific 

anatomical points on the body [32], as is required in SEMG and AMG [47]. Given these 

promising results, the use of FMG with machine learning techniques has been investigated 

for several applications, including: (i) human machine interfaces for controlling robots and 

industrial machinery to enhance productivity and safety [52, 53], (ii) human machine 

interfaces for controlling prosthetic devices [51, 54], (iii) human machine interfaces to act 

as an input device to computers and other digital electronics [29], and (iv) tracking specific 

rehabilitation exercises for tele-rehabilitation applications [32, 36]. However, the use of 

FMG to detect and encourage grasping, regardless of grasp-type, in order to encourage 

functional use of the paretic limb, in individuals with stroke, has not been investigated. 

Given the abilities of FMG for detecting a variety of grasp-types, it is hypothesized that 

FMG technology could be capable of monitoring grasping versus a lack of grasping, 
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regardless of grasp-type, in individuals with stroke, in order to achieve functional activity 

monitoring for rehabilitation applications.  

Despite the promising advancements in FMG research, additional research 

questions remain in order to establish the feasibility of using FMG for grasp detection in 

rehabilitation applications. In section 2.4 key research issues relating to FMG-based grasp 

detection are discussed. Additionally, research issues that motivate the objectives of this 

thesis are identified.   

2.4. FMG: Key Research Elements and Progress to Date  

2.4.1. Classifier Training Paradigms 

The goal of classification is to predict, with accuracy, the class (i.e. category) that 

a set of data belongs to [55]. A classifier model is a mathematical function that translates 

a set of input signal data into output data, which represents a predicted class amongst the 

range of available classes [55]. A linear classification scheme employs a linear function to 

separate the data into classes [55]. A non-linear classification scheme seeks a non-linear 

boundary with which to separate data into classes [55]. In a supervised learning paradigm, 

the classifier model is generated with a set of signal data that have been labelled with the 

appropriate class labels; this set of data is termed training data, or the training-set [55, 

56]. During the learning, or training phase, the parameters of the mathematical function(s) 

that constitute the classifier model are iteratively adapted in order to meet the goals of a 

minimization routine, such that, the error between the predicted output of the current 

version of the model, and the target output, specified in the class label, is minimized for 

each datum [55, 56]. In doing so, the model is progressively adapted to reflect the 

relationship between the signal data and the class labels provided [55, 56]. Subsequently, 

unseen data, known as testing data, or the testing-set, are classified with this previously 

generated model [55, 56]. A key goal in classification is the ability to generalize the 

relationship that exists between the signal data and the classes, in order to be able to 

predict the class associated with unseen signal data, which the model was not trained 

with.  
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To date, most FMG research that has focused on upper-extremity tracking has 

focused on supervised learning [29, 31, 32, 36, 57]. While supervised training has yielded 

high accuracy [29, 31, 32, 36, 57], the necessity for an operator, or a secondary sensor, 

to label the FMG data before training, makes the training process a critical step in 

establishing the feasibility of FMG-based functional activity tracking systems. The size of 

the training data required to obtain acceptable accuracy when classifying unseen data, 

and the time associated with collecting the necessary training data will impact the 

feasibility of deploying FMG systems in stroke rehabilitation applications. For FMG to be 

feasible in busy clinical settings, the initial set-up of the device would need to be minimal. 

Hence, an investigation into the effect of training-set size in FMG classification, and 

methods to reduce training-set size requirements, are key research questions.  

Semi-supervised and unsupervised training are two alternative training paradigms.  

In unsupervised training schemes, the classifier model is generated with no labels 

provided, with the goal of building a model that identifies clusters within the data [55]. In 

semi-supervised learning, a classifier model is constructed using a data-set in which some 

samples have been partially labelled with the appropriate class label, while some samples 

remain unlabelled, as is the case in unsupervised learning [58]. The use of unlabelled 

data, in conjunction with labeled data has been shown to increase the accuracy of 

classification over supervised learning, in cases where the labeled training-set is small 

[58]. The use of unsupervised and semi-supervised training paradigms to reduce the 

amount of training data and effort required for device set-up is an untapped area of FMG 

research, and may be a key step in realizing the potential of this technology.  

2.4.2. Acquisition Methodologies  

Several methods of acquiring FMG have been identified, including pneumatic 

sensors, force sensors, and strain sensors. Abboudi et al. fabricated pneumatic 

pressure-sensing systems by creating vacuums in polyethylene bags [51]. The pressure 

exerted on the surface of the bags was measured via pneumatically connected pressure 

sensors. The system demonstrated the ability to adequately acquire the FMG signal [51]. 

However, the sensitivity of pneumatic transducers to temperature and atmospheric 

pressure conditions, and the need to calibrate each sensor [51] makes them less than 
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ideal for wide-spread deployment in activity tracking systems. Furthermore, the thickness 

of these sensors would be prohibitive to the creation of low-profile, discreet, devices that 

can be unobtrusively worn as part of daily use.  

Force Sensitive Resistors (FSRs) are an alternative method of acquiring the FMG 

signal. FSRs are fabricated using a polymer thick film that displays a resistance that is 

inversely proportional to the force that is applied to its surface [59]. The reliability, 

sensitivity, and low thickness of these sensors have led to them being prolifically used in 

FMG research [28, 29, 31, 32, 33, 57]. FSRs have been embedded in bands to be donned 

around a user’s limb, in order to capture the FMG signal by sensing surface forces on the 

working limb normal to the surface of the FSRs [28, 29, 31, 32, 33, 57]. However, the 

tightness or slackness of the band around the user’s limb needs to be controlled in order 

to maintain sufficient adherence of the FSRs to the surface of the limb. A lack of sufficient 

tightness will reduce the effectiveness of the FSRs at detecting forces as the muscle 

expands or contracts, and will adversely impact classification performance [57]. For this 

reason, FSR bands are fabricated using flexible materials, such as foam, in order to 

enhance user comfort while achieving sufficient band tightness and adherence to the 

curvature of the working limb [31, 32].  

Strain sensors are an alternative technology to FSRs that can be embedded into 

stretchable bands to be worn around the user’s working limb. These sensors quantify the 

deformation of the band as a means to detect the volumetric expansion and contraction 

of the working limb [60, 61]. Strain sensors can be fabricated to be stretchable [60], and 

hence, may be able to conform to the expansion and contraction of a user’s limb while 

maintaining adherence with the surface of the limb, which may lead to enhanced user 

comfort. A comprehensive comparison of the performance and reliability of these sensors 

in relation to FSR bands has yet to be conducted. However, the ability for strain sensors 

to be fabricated in a manner that allows them to stretch and conform to the expansion of 

a user’s limb, without losing sensitivity to the FMG signal, makes them a promising 

alternative for FMG sensing, that merits further study.  
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2.4.3. Sensor Placement 

Two main sensing locations have been proposed for FMG-based tracking of the 

upper-extremity: (i) below the elbow, at the forearm [28, 30, 31, 32, 33, 57], and (ii) the 

wrist [29, 62]. Using a band around the forearm to capture the FMG signal is well 

established [28, 30, 31, 32, 33, 57]. The FMG signal has also been shown to be adequately 

extracted at the wrist [29, 62]. Dementyev et al. demonstrated that a wrist donned FMG 

sensing system can achieve accuracies in excess of 80% when classifying six different 

grasp-types [29]. Given the comparative intuitiveness of donning a band on the wrist, as 

opposed to the forearm, characterization of benefits and detriments of acquiring the FMG 

signal at the wrist may prove pivotal in moving the field of FMG-based activity tracking 

forward. 

The use of high-density arrays of FSRs to form an FMG band that covers the entire 

forearm, from below the elbow to the wrist has also been proposed [28]. Li et al. 

demonstrated classification accuracy of 99% at classifying seventeen different 

grasp-types using a high-density FMG array, with 32 sensors, donned on the forearm [28]. 

However, the use of a band that covers the entire forearm may lead to a more obtrusive 

user experience. 

2.4.4. FMG in Individuals with Stroke  

Despite promising results obtained with healthy individuals [28, 29, 32, 34, 36, 57], 

little work has been done to establish the feasibility of FMG for activity monitoring in 

populations with upper-extremity impairments, who might ultimately benefit from this 

technology. Several characteristics associated with individuals with stroke may impact the 

feasibility of FMG in this population. Individuals with stroke have reduced muscular 

strength [63] and greater muscle spasticity [64], which may affect the magnitude and 

quality of the FMG signal. Additionally, movements completed with the stroke affected 

limb have a reduced range of motion, are less smooth, and involve variations in speed 

and acceleration when compared to the less affected limb [65]. These movement features 

of the paretic limb could introduce challenges when detecting grasps in the presence of 

movement in the three-dimensional workspace, and may also increase the amount of 

training data required to accurately classify grasps. Thus, there is a pressing need to 
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evaluate the feasibility of acquiring and classifying the FMG signal from individuals with 

stroke, with upper-extremity impairments, for the purpose of grasp detection. Objective 1 

of this thesis seeks to offer insights into this question.  

2.4.5. Number of Classes and Presence of Upper-extremity 
Movements 

Several studies have established the accuracy of FMG classification at detecting 

and distinguishing between various types of grasps (i.e multi-class problem), in the 

absence of significant upper-extremity movements [28, 29, 34]. Li et al. demonstrated 

classification accuracy of 99% at classifying seventeen different grasp-types using a 

high-density FMG array, with 32 sensors, donned on the forearm [28]. Dementyev at al. 

demonstrated classification accuracy in excess of 80% when classifying six different 

grasp-types using a FMG band, with 15 sensors, donned on the wrist [29]. The results of 

these studies give credence to the concept of using FMG sensing for detecting grasping. 

However, to be useful for activity tracking in take-home rehabilitation settings, an activity 

monitor would need to be able to detect, and distinguish between grasping versus a lack 

of grasping, regardless of which of the wide variety of grasp-types necessary for ADL [35], 

was used.  

Additionally, the grasp detection accuracy achievable with FMG in the presence of 

upper-extremity movements, as would be expected when completing ADL, has yet to be 

established. The FMG signal has been shown to be sensitive to postures of the hand, 

wrist, forearm, and elbow [32, 33]. While the detection of joint positions may be useful in 

some applications, the sensitivity of FMG to joint positions could adversely impact grasp 

detection, as joint positions will vary when the user is grasping and moving an object. 

Variations in joint position and movement trajectories, which would be expected as part of 

daily living, could confound the grasp classification scheme and reduce accuracy. Further 

research is required to ensure the robustness of FMG-based grasp detection, such that, 

it may be eventually used for grasp detection in uncontrolled environments.  

Hence, the accuracy achievable with FMG classification for the two-class grasp 

detection problem, with a variety of grasp-types and upper-extremity movements, as 
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would be expected in daily living, is a crucial unanswered research question. Objective 2 

of this thesis seeks to offer insights into this question.  

2.4.6. Feature Extraction Techniques 

Contemporary FMG research has focused on the classification of the raw FMG 

signal, in the form of instantaneous FMG samples from multiple channels (i.e. sensors), 

in order to detect the grasping of an object [28, 29, 31, 32, 36]. However, the grasping of 

an object is not a discrete, instantaneous action. Instead, it is a multi-stage process [37]. 

The force generated during grasping will increase as the participant first makes contact 

with the object, and then generates additional force in order to be able to grip the object 

securely, and lift the object against gravity [37]. Subsequently, the releasing process 

involves a reduction in force, and the opening of the hand into a relaxed posture [37]. 

Given that grasping involves a force profile that changes over the duration of the grasp, it 

is hypothesized that the temporal sequence of FMG values adjacent in time may provide 

descriptive information on the current grasping state of the hand (i.e. that grasp detection 

with FMG can be represented as a time series problem). 

Traditional machine learning methods, such as the Support Vector Machine (SVM) 

and Neural Network classifiers, use an instance-based method for classification [66]. In 

such methods, the instantaneous classifier output is dependent on the instantaneous 

inputs to the classifier; historical or future inputs do not affect the instantaneous classifier 

output. The use of temporal feature extraction has been shown to increase accuracy in 

applications that involve classifying data that have temporal or sequential dependence, 

such as the classification of SEMG signals [67]. The temporal feature extraction step 

involves calculating parameters (i.e. features) that represent the time series within a 

certain window of data. The calculated features are then provided to the classifier as 

instantaneous inputs [66].  

Given that grasping involves a force profile that changes over the duration of the 

grasp [37], it is hypothesized that temporal features of the FMG signal may provide 

increased grasp detection performance, as is the case in other time series problems [66]. 

The utility of using temporal feature extraction in FMG classification problems is, hence, 
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another potential research question that may substantially increase the applicability of 

FMG-based sensing to rehabilitation activity monitoring. Objective 3 of this thesis seeks 

to provide preliminary insight into the utility of classifying features of the raw FMG signal 

for the two-class grasp detection problem, in the presence of a variety of grasp-types and 

upper-extremity movements.   

2.5. Summary of Literature  

A variety of upper-extremity sensing technologies have demonstrated suitability for 

upper-extremity activity tracking for rehabilitation applications. Amongst these potential 

technologies, FMG has shown promising applicability to upper-extremity activity tracking 

for rehabilitation applications due to the following attributes: (i) simple signal acquisition 

and processing requirements [28], (ii) ease of set-up and lack of need to place sensors 

over specific anatomical locations [32], (iii) low power consumption requirements [29], and 

(iv) low cost [30].   

A significant amount of progress has been made in the field of FMG-based grasp 

detection. Several different signal acquisition methods have been developed, evaluated, 

and continue to be refined [51, 60, 61]. The ability to use FMG to detect and distinguish 

between various grasp-types has been established [28, 29, 34]. A partial list of 

unanswered questions includes: (i) the possibility of using semi-supervised, and 

unsupervised training for FMG-based grasp detection, (ii) the benefits and detriments of 

using strain sensors for acquiring the FMG signal, (iii) the benefits and detriments of 

acquiring FMG at the wrist versus the forearm, (iv) the ability to use FMG for grasp 

detection in individuals with stroke with upper-extremity impairments, (v) the accuracy of 

FMG-based grasp detection for the two-class grasp detection problem, in the presence of 

upper-extremity movements, and (vi) the utility of classifying temporal features of the FMG 

signal for the two-class grasp detection problem, in the presence of upper-extremity 

movements.  

Addressing, all these questions is beyond the scope of thesis. However, the 

objectives of this thesis will offer preliminary insights into: (i) the ability to use FMG for 

grasp detection in individuals with stroke with mild-to-moderate upper-extremity 
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impairments, in a controlled environment (ii) the accuracy of FMG-based grasp detection 

for the two-class grasp detection problem, in the presence of upper-extremity movements, 

in a controlled environment, and (iii) the utility of classifying temporal features of the FMG 

signal for the two-class grasp detection problem, in the presence of upper-extremity 

movements, in a controlled environment. 
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Chapter 3. Feasibility of Using FMG for Grasp 
Detection in Individuals with Stroke 

3.1. Chapter Overview  

This chapter describes the design, execution, and results of a study intended to 

explore the feasibility of acquiring and classifying the FMG signal from individuals with 

stroke, with upper-extremity impairments, for the purpose of grasp detection. The work 

described in this chapter was intended to meet Objective 1 of this thesis. In section 3.2, 

an overview of the study is provided. Section 3.3 and section 3.4 discuss the experimental 

methods and experimental results obtained. In section 3.5, the key observations and 

findings of the study, which contributed to the definition of the second study of this thesis, 

described in Chapter 4, are discussed. 

3.2. Study Overview  

The overall purpose of this study was to investigate the accuracy of FMG-based 

grasp detection in individuals with stroke with upper-extremity impairments, in a controlled 

environment. The experimental protocol comprised of multiple repetitions of 

grasp-and-move tasks. In this preliminary study, the experimental protocol was limited to 

the use of a single object that required a single grasp-type, and a limited task workspace 

in order to avoid mental and muscular fatigue in individuals with stroke. Accuracy was 

investigated by: (i) establishing and comparing the off-line classification accuracy of 

FMG-based grasp detection for participants with stroke, and healthy participants, using 

linear and non-linear classifiers, and (ii) determining and comparing the amount of training 

data necessary to achieve commensurate grasp classification accuracy, in participants 

with stroke, and healthy participants.  
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3.3. Experimental Methods  

3.3.1. Participants  

Experimental data were collected from eight participants with stroke, and eight 

healthy participants, and stored to file for off-line analysis. Inclusion criteria for the 

participants with stroke were: (i) cerebrovascular accident confirmed by MRI or CT scan, 

(ii) chronic stroke (> 12 months post-stroke), (iii) mild to moderate impairment of the paretic 

hand (Chedoke Hand Score > 5) [25], and (iv) poorer performance on the Box & Blocks 

test [26] for the paretic hand compared to the non-paretic hand, indicating residual 

impairment. Healthy participants were a sample of convenience of right-dominant adults, 

with no history of injuries or impairments to their upper limbs. 

3.3.2. Data Collection Devices 

Six commercial off-the-shelf FSRs manufactured by Interlink Electronics [59] were 

embedded into a 40 cm flexible foam band, 4 cm apart from each other, to form a 

force-sensing band to collect FMG data from participants (Figure 3-1). The band was 

positioned around the participant’s working forearm, approximately 8 cm from the 

olecranon, in order to detect FMG signals associated with the functional state of the 

participant’s working hand (Figure 3-2). The band was fastened with Velcro® so that the 

band was tight, but comfortable for each participant. None of the participants reported 

discomfort due to band tightness. To emulate the intended use condition, only the distance 

from the olecranon was specified, and the band could be fastened on any part of the 

forearm musculature (e.g., anterior or posterior). The device was donned on the paretic 

limb for participants with stroke, and donned on the dominant limb for healthy participants. 
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Figure 3-1: Force Sensing Band 

 

 

Figure 3-2: Force Sensing Band on Forearm 

The FMG signal was quantified from the FSRs using a voltage divider circuit. The 

voltage across the sense resistors was sampled between the 0-5 V range at 20 Hz, using 

a National Instruments DAQ Device [68] interfaced with custom LabVIEWTM software, 

running on a Personal Computer (PC). The resulting data acquisition system is 

schematically depicted in Figure 3-3.  
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Figure 3-3: Data Acquisition System 

A coffee cup, weighing 530 g, was selected as the object for all grasp-and-move 

tasks in the experimental protocol. The cup was instrumented with a validation sensor to 

detect when the cup had been grasped. The validation sensor comprised of a 

pressure-sensitive conductive sheet attached to conductive copper tape. The 

pressure-sensitive conductive sheet, which demonstrates a reduction in resistance as the 

applied force increases, was wrapped around the inside of the cup handle. Copper tape 

was attached to the two ends of the sheet and interfaced to the data acquisition system. 

The pressure-sensitive conductive sheet and copper tape on the cup handle were 

wrapped in insulation tape to ensure no other source of conductance or resistance was 

electrically connected to the copper tape. Data from the validation sensor was used to 

label FMG data as corresponding to a grasp or no grasp, which was used to train the 

grasp detection classifier and calculate grasp detection accuracy. The experimenter 

observed the study to ensure that no objects, other than the instrumented mug, were 

grasped by the participant throughout the duration of the experimental protocol. The 

validation sensor, with the insulation tape peeled away to reveal the copper tape and 

pressure-sensitive conductive sheet is depicted in Figure 3-4.  
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Figure 3-4: Internal View of Validation Sensor on Cup Handle 

3.3.3. Experimental Protocol 

The experimental protocol was defined via iterative refinement with the objective 

of collecting the largest possible amount of FMG data corresponding to grasping in the 

presence of upper-extremity movements, without triggering muscular or mental fatigue in 

individuals with stroke. The duration of the protocol was limited to 60 minutes, including 

the execution of functional assessments.  

Participants were seated comfortably in an armless chair with their working hand 

resting on the table in front of them. They were asked to reach for, grasp (i.e. pick up) and 

move a cup in each of the three different planes-of-movement (i.e. superior-inferior, 

medial-lateral, and ventral-dorsal), resulting in three different tasks (Figure 3-5). For each 

task, participants were asked to reach for the cup at the start position, grasp the cup, lift it 

off the table, move it to the end position, place the cup down on the table at the end 

position, and completely release the cup. Subsequently, they were asked to reach for the 

cup at the end position, grasp the cup, lift it off the table, move it to the start position, place 

the cup down on the table at the start position, and completely release the cup, before 

returning their hands to rest on the table in front of them. In Task 1 the end position was 

to the left of the start position, such that, participants moved the cup laterally (i.e. to the 

side).  In Task 2 the end position was the top of a custom shelf, above the start position, 

such that, participants lifted the cup superiorly (i.e. overhead). In Task 3 the end position 
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was ahead of the start position, such that, participants moved the cup ventrally (i.e. 

forward). The target distance for each task was 90% of the maximum active range of 

motion of each participant. The participants were asked to repeat each task, by first 

moving the cup from the start position to the end position, and subsequently moving the 

cup from the end position back to the start position, ten times at a comfortable pace. This 

resulted in twenty grasp-and-move repetitions. In moving the cup from the end position 

back to the start positions, participants also moved the cup in the medial (Task 1), inferior 

(Task 2), and dorsal (Task 3) directions. The described protocol allowed for the collection 

of FMG data corresponding to grasping with the presence of upper-extremity movements, 

in the three planes-of-movement that encompass the majority of space within which we 

perform our daily activities.   

 

Figure 3-5: Task Start and End Positions. White arrow indicates direction of 
motion from start to end position.  

3.3.4. Data Analysis  

Feasibility of FMG grasp detection among individuals with stroke was assessed by 

examining and comparing grasp classification accuracy for participants with stroke and 

healthy participants. As a secondary measure of feasibility, the amount of training data 

necessary for commensurate grasp classification accuracy, in participants with stroke and 

healthy participants, was investigated. Additionally, classification accuracy with linear and 

non-linear classification schemes was also established.  

Data were temporally divided into repetitions to allow for evaluation of the effect of 

training-set size on classification accuracy. Data from the start of a grasp-and-move 

action, to the start of the next grasp-and-move action, were assigned to one repetition, 

based on data from the validation sensor. Each repetition comprised of FMG data (from 
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all six FSRs) corresponding to the grasp-and-move action required to move the cup, and 

the subsequent hand and arm activity corresponding to reaching and other preparatory 

movement (i.e. no grasping). Data corresponding to the reaching and other preparatory 

movement, in-between grasp-and-move actions, were included in order to establish the 

classifiers’ robustness to false-positives (i.e. incorrectly predicting a grasp when the 

participant had no object in hand). The division scheme is depicted in Figure 3-6. Points 

of time labeled as grasp (grasp-and-move action) by the validation sensor are shaded in 

grey, points of time labeled as absent of grasping (reaching and other preparatory 

movement) are not shaded. 

 

Figure 3-6: Repetition Division Scheme. Red arrows demark the division of data into 
repetitions based on the signal from the validation sensor (gray 
shading)  

For the purpose of accuracy analysis, classification output was categorized into 

true-positive, true-negative, false-positive, and false-negative. A true-positive corresponds 

to the classifier correctly predicting grasping, when the participant was grasping the object, 
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as labeled by the validation sensor. A true-negative corresponds to the classifier correctly 

predicting a lack of grasping, when the participant was not grasping (during reaching and 

preparatory motion), as labeled by the validation sensor. A false-positive corresponds to 

the classifier incorrectly predicting grasping, when the participant was not grasping, as 

labeled by the validation sensor. A false-negative corresponds to the classifier incorrectly 

predicting no grasping, when the participant was grasping the object, as labeled by the 

validation sensor. Grasp detection accuracy was then computed as per (eq 3.1); where 

TP is the number of true-positives, TN is the number of true-negatives, FP is the number 

of false-positives and FN is the number of false-negatives. 

For example, a typical participant took approximately 4 seconds to complete a 

repetition (i.e. a grasp-and-move action, and the subsequent reaching and preparatory 

motion leading up to the next grasp-and-move action), resulting in 80 instantaneous 

6-channel samples (sampled at 20 Hz).  Of these 80 samples, approximately 60% (48) of 

the samples would correspond to points of time when the participant was grasping and 

moving the mug, as labeled by the validation sensor. The remaining 40% (32) of the 

samples would correspond to points of time when the participant was not grasping. During 

these points of time the participant could have been reaching for the mug, engaging in 

other preparatory motion, or returning to the neutral position. A 100% accuracy would 

indicate that the classifier was able to correctly identify the aforementioned 48 grasp 

samples as grasp, and the remaining 32 samples as absent of grasping. 

Classification was carried out using a SVM classifier with a non-linear Radial Basis 

Function (RBF) [55] kernel given by expression (eq 3.2). 

K(𝑥1, 𝑥2)  =  𝑒(−𝛾‖𝑥1−𝑥2‖2) (eq 3.2) 

Where 𝛾 is the symbol for gamma, a parameter used to control the fitting behavior 

of the SVM. The LIBSVM library was used off-line in the MATLAB® environment to 

evaluate the accuracy of the RBF-SVM, with default cost and gamma parameters [69]. In 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(eq 3.1) 
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order to evaluate the ease of separation of FMG data, the use of a Linear Discriminant 

Analysis (LDA) classifier was also evaluated using the MATLAB® Statistics and Machine 

Learning Toolbox [70]. Unlike the RBF-SVM that seeks a linear separator in the nonlinear 

feature space, the LDA seeks a linear decision boundary in the data space [55]. The ability 

to use simpler linear signal processing and classification methods would indicate that a 

FMG-based grasp detection system could potentially be more easily embedded into a 

compact and portable, low-power device, that is capable of running independently.  

In order to establish grasp detection accuracy, each data set related to a task for 

a participant (20 repetitions) was divided into training and testing sets, with the 1st to 10th 

repetitions forming the training set and the remaining ten repetitions forming the testing 

set. The training set was used for generating a model for a task for each subject, and the 

testing set was used for model evaluation. Despite the fact that data was divided into 

repetitions to create testing and training sets, data were serially provided to the classifier 

on a unit-time basis (6 instantaneous FSR samples), regardless of the repetition they were 

part of, in order to emulate a real-time classification problem.  

Differences in accuracy between healthy participant and participants with stroke, 

and the LDA and SVM classifiers were compared using t-tests. All analyses utilized an 

alpha of 0.05. 

In order to examine the amount of training data necessary for accurate 

classification, the size of the training-set was varied from one repetition to ten repetitions. 

In all cases, accuracy was determined by classifying data within the fixed-sized testing-set, 

comprised of data associated with ten repetitions. The training-set size required to achieve 

90% accuracy was established for participants with stroke and healthy participants, for 

both types of classifiers. The correlation coefficient between training-set size and 

classification accuracy was also derived for participants with stroke and healthy 

participants.  
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3.4. Experimental Results  

3.4.1. Participants  

The participants with stroke were a mean of 69 years (σ = 6 years) of age, and 

were a mean 9.5 years (σ = 7.2 years) post-stroke (i.e., chronic stroke). The Chedoke Arm 

Score was a mean of 6.75 (σ = 0.71), and the Chedoke Hand Score was a mean of 6.38 

(σ = 0.75), both with a range of 5-7 for all participants with stroke. Paretic side performance 

was 62.1% (σ = 22.3%) of the non-paretic side performance for the Box and Blocks Test, 

indicating residual impairment. Table 3-1 lists the functional measures and characteristics 

associated with the participants with stroke. Healthy participants were a mean of 27 years 

(σ = 7 years) of age. All participants provided informed consent for participation in the 

study.  

Table 3-1: Functional Measures and Characteristics Associated with Participants 
with Stroke 

ID 
Chedoke 

Arm  
Chedoke 

Hand  

Box & 
Blocks 
Paretic 

Side  

Box & 
Blocks 

Non-paretic 
Side 

Paretic 
Side 

Age 
Years 
post 

stroke 

S1 7 7 39 50 R 64 5.5 

S2 7 7 46 53 L 69 5.5 

S3 7 7 48 64 R 62 4.5 

S4 7 5 12 50 L 67 6.4 

S5 7 6 11 28 R 78 14.3 

S6 7 6 33 48 L 76 8.2 

S7 7 7 48 62 R 74 6.1 

S8 5 6 21 44 R 63 25.5 

3.4.2. FMG Grasp Detection (Classification) Accuracy 

Figure 3-7 shows the accuracies associated with grasp detection for both 

participants with stroke and healthy participants using the RBF-SVM and LDA for each 

task. Classification accuracy was lower in individuals with stroke when compared to 

healthy volunteers. Average grasp detection accuracy was 92.6% (σ = 3.20%) and 91.5% 

(σ = 3.20%) across all tasks with participants with stroke using the RBF-SVM and LDA 
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respectively. Average grasp detection accuracy was 96.1% (σ = 1.25%) and 94.1% 

(σ = 3.04%) across all tasks with healthy participants using the RBF-SVM and LDA 

respectively.  

 

Figure 3-7: Classification Accuracy for Each Task 

The lower average accuracies for participants with stroke when compared to 

healthy participants are statistically significant for the RBF-SVM (P = 0.010), and are not 

significant for the LDA (P = 0.071). Differences in accuracy between participants with 

stroke and healthy participants were larger for Task 2 and Task 3 when compared to Task 

1, using both the RBF-SVM (Task 1 = 1.8%, Task 2 = 3.2%, Task 3 = 4.5%) and the LDA 

(Task 1 = 0.6%, Task 2 = 3.0%, Task 3 = 3.1%).  The lower accuracies obtained when 

using the LDA are significant for both participants with stroke (P = 0.006) and healthy 

participants (P = 0.013).  

Figure 3-8 depicts the average accuracies taken across all tasks for training-sets 

of differing sizes for participants with stroke and healthy participants. The accuracies 

associated with each task are depicted in Figure 3-9. The accuracy was dependent on the 
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size of the training-set provided. The correlation coefficients between the number of 

training samples and the accuracy for participants with stroke are 0.9012 (p< 0.001) using 

the RBF-SVM, and 0.8824 (p<0.001) using the LDA. The correlation coefficients between 

the number of training samples and the accuracy obtained for healthy participants are 

0.9616 (p<0.001) using the RBF-SVM, and 0.6532 (P = 0.04) using the LDA. The use of 

four and six repetitions was necessary for achieving greater than 90% accuracy for 

participants with stroke using the RBF-SVM and LDA respectively.  The use of one and 

two repetitions was sufficient for achieving greater than 90% accuracy for healthy 

participants using the RBF-SVM and LDA respectively.  

 

Figure 3-8: Average Classification Accuracy Versus Training-set Size 
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Figure 3-9: Classification Accuracy Versus Training-set Size for Each Task 

3.4.3. Discussion of Results  

The overall objective of this study was to investigate the accuracy of FMG-based 

grasp detection in individuals with stroke with upper-extremity impairments, in a controlled 

environment. FMG-based grasp detection accuracy was evaluated using an experimental 

protocol comprising of three grasp-and-move tasks. Grasp classification accuracy was 

established and compared for participants with stroke and healthy participants, using the 

RBF-SVM and LDA classifiers. The susceptibility of classification accuracy to the amount 

of training-data provided was also investigated.   

Overall, FMG-based grasp detection demonstrated high accuracy of 

approximately 92% with participants with stroke. Grasp detection accuracy was lower for 

participants with stroke when compared to healthy participants, especially when using the 

RBF-SVM. A potential explanation for the lower grasp detection accuracy is the empirically 

observed variability in grasp-types, movement trajectories, and additional compensatory 

mechanisms demonstrated by participants with stroke. This variability may have resulted 

in a more challenging classification problem. Additionally, participants with stroke often 
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had difficulty in grasping and completely releasing the cup at the start and end positions, 

which potentially made classification of those data more challenging.  

As a retrospective analysis step, the correlation between the classification 

accuracy obtained and the severity of impairment, in individuals with stroke, was 

established. The results of this analysis are summarized in Appendix A. No statistically 

significant correlation was established between the severity of impairment, as quantified 

by the Box and Blocks test, and grasp classification accuracy. This result indicates that 

variations in classification accuracy between participants with stroke are not likely due to 

differences in severity of impairment, and could possibly be attributed to the 

aforementioned empirically observed variations in task repetitions, which was more 

pronounced in individuals with stroke, when compared to healthy individuals.  

It is noteworthy that classification accuracies were lower for moving upwards (Task 

2), or forwards (Task 3), when compared to moving laterally (Task 1) for both participants 

with stroke and healthy participants. This suggests that FMG classification may be 

sensitive to movement direction, as would be expected given its sensitivity to 

upper-extremity postures. Additionally, the lower accuracies observed for participants with 

stroke when compared to healthy participants were larger for moving superiorly (Task 2), 

or ventrally (Task 3), when compared to moving laterally (Task 1). A potential explanation 

for this larger difference is that moving superiorly (Task 2), and ventrally (Task 3), have 

been shown to be especially challenging for individuals with stroke [65], which may have 

led to increased variability, and a more challenging classification problem.  The use of a 

linear classification scheme did significantly reduce classifier performance for both 

participants with stroke and healthy participants. However, average grasp detection 

accuracy remained above 90% for both participants with stroke and healthy participants, 

suggesting that linear classification may be adequate for FMG-based grasp detection.  

Grasp detection accuracy was significantly dependent on training-set size in all 

cases. However, a larger training-set size was required to achieve 90% accuracy with 

participants with stroke, when compared to healthy participants. It is possible that a larger 

training-set size was necessary for the classifier to generalize the variability in movement 

trajectories and grip patterns observed in participants with stroke. Despite the reduction in 
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accuracies, the use of a training-set that was 50% the size of the testing-set resulted in 

91.4% (σ = 4.14%) accuracy (Figure 3-8) with participants with stroke, using the 

RBF-SVM. These promising results are preliminary indications of the feasibility of 

deploying FMG-based sensing systems for grasp detection in individuals with stroke in 

clinical settings.  

3.5. Summary and Implications of Results  

In this chapter, the preliminary feasibility of using FMG for detecting grasping in 

individuals with stroke was established by investigating the accuracy of FMG-based grasp 

detection with individuals with stroke, in a controlled environment. The FMG grasp 

detection classifier was able to achieve greater than 90% grasp detection accuracy, with 

a training-set that was 50% of the size of the testing-set. Despite these promising results, 

additional questions with regards to FMG-based grasp-detection remain. Some of the 

observations and results from this study, summarized in this section, were used to refine 

the approach taken to meet Objective 2 and Objective 3 of this thesis.  

The accuracy obtainable when using FMG for grasp detection in the presence of 

upper-extremity movements remains an open question. The protocol executed in this 

study did mandate the collection of data corresponding to grasping while moving in a 

controlled workspace. However, the set of movements mandated in this protocol were 

limited to those which could be accommodated by participants with stroke without the 

onset of fatigue. Results obtained indicate that FMG-based grasp detection may be 

sensitive to movement trajectories. However, the accuracy obtainable with FMG-based 

grasp detection while grasping-and-moving, and moving-without-grasping, in the wider 

three-dimensional workspace has yet to be established. In order to investigate further, the 

experimental protocol in the second study of this thesis, mandated participants 

simultaneously move their hands across all three planes-of-movement for each 

grasp-and-move task completed. This protocol allowed for further investigation into the 

accuracy obtainable with FMG-based grasp detection in the presence of the type of 

upper-extremity movements that may be encountered in daily use.  
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Due to the constraints of onset of fatigue when testing with individuals with stroke, 

the aforementioned protocol was limited to the grasping of a single object, requiring a 

single grasp-type. Despite this, it was empirically noted that individuals with stroke varied 

grasp-types, movement trajectories, and employed a variety of compensatory 

mechanisms for repetitions of the same grasp-and-move action. In order to be practically 

deployable in take-home rehabilitation settings, FMG-based grasp detection systems will 

have to be able to detect and encourage the large variety of grasp-types that may be used 

in daily living. In the second study of this thesis, a protocol that mandated the use of a 

variety of grasp-types and objects was executed, in order to evaluate the capabilities of 

FMG-based grasp detection when detecting the wide variety of grasp types used in daily 

living [35], for the two-class grasp detection problem.  

It was empirically noted that the donning of the FMG band at the forearm was 

problematic due to the upper-extremity movements involved in the protocol. On occasion, 

the band was observed slipping away from the elbow (i.e. distally) as participants 

completed the tasks in the experimental protocol. Hence, the acquisition of the FMG signal 

at the wrist instead of the forearm may prove advantageous from the perspectives of band 

and FMG signal stability, and intuitiveness of donning. Additionally, the presence of wires 

between the FMG band on the forearm and the data acquisition PC was observed to be 

impeding the completion of the tasks specified in the protocol. In the second study of this 

thesis, a wireless FMG band that was donned on the wrist was utilized. It is noteworthy 

that the development of this wireless FMG band was independent work that was not part 

of this thesis.  
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Chapter 4. Two-class FMG Grasp Detection with 
Multiple Grasp-types and Upper-extremity 
Movements 

4.1. Chapter Overview  

This chapter describes the design, execution, and results of a study intended to 

investigate the accuracy achievable with FMG classification for the two-class grasp 

detection problem, with a variety of grasp-types and upper-extremity movements, as 

would be expected in daily living. The work presented in this chapter was intended to meet 

Objective 2 and Objective 3 of this thesis. In section 4.2, an overview of the study is 

provided. Section 4.3 and section 4.4  discuss the experimental methods and experimental 

results obtained. In section 4.5, the key observations and findings of the study are 

discussed. 

 

4.2. Study Overview 

In this study the accuracy of FMG classification for the two-class grasp detection 

problem, in the presence of upper-extremity movements, in a controlled environment was 

investigated. Additionally, the utility of classifying several temporal features of the FMG 

signal for the aforementioned two-class grasp detection problem was explored.  

Based on the observations from the study executed in order to meet Objective 1, 

described in section 3.5, this study sought to evaluate FMG grasp detection with a larger 

variety of grasp-types, and a more substantial amount of upper-extremity movements in a 

controlled environment. In order to allow for a more extensive evaluation of grasp-types 

and upper-extremity movements, via a lengthier experimental protocol, healthy volunteers 

were recruited for this study. The duration of the experimental protocol in this study was 

limited to 150 minutes. Additionally, the FMG signal was acquired at the wrist in an effort 

to yield a more stable donning position and, consequently, a more stable signal. Lastly, 
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the FMG signal was acquired via a wireless device in order to reduce the obtrusiveness 

of the experimental device and minimize impediments to participants’ movements.  

The experimental protocol comprised of grasp-and-move tasks, requiring the use 

of six different grasp types frequently used in daily living, in conjunction with arm and hand 

movements. Data corresponding to movements-without-grasping were also included to 

evaluate robustness to false-positives. Several preliminary candidate temporal features, 

and window configurations, were identified for evaluation. Off-line classification 

performance of raw FMG signal was determined. Subsequently, off-line classification 

performance of candidate temporal features, at various window configurations, were 

determined and compared to that of the raw FMG signal.  

4.3. Experimental Methods 

4.3.1. Participants  

Healthy volunteers, with full upper-extremity functional ability, were recruited for 

the study. Exclusion criteria for participants were: (1) less than 100% upper-extremity 

functional ability, and (2) height greater than allowed for by the experimental protocol.  

4.3.2. Data Collection Device  

The experimental device consisted of a force sensing band embedded with sixteen 

FSRs, and an additional external FSR that was connected by flexible wire to the device’s 

housing. The force sensing band was 28 cm long and 2 cm wide; the center-to-center 

distance between successive sensors on the band was 1.7 cm. The band was donned on 

the participant’s wrist, on the distal side of the styloid process of the Ulna bone (Figure 

4-1). The band was fastened with Velcro® so that the band was tight, but comfortable for 

each participant. None of the participants reported discomfort due to band tightness. In 

the event that the band was longer than the participant’s wrist circumference, the 

remaining length of the band was taped down to the device housing. The additional FSR 

was taped to the participant’s thumb and served as a validation sensor. The validation 

sensor, connected to the device housing, is depicted in Figure 4-2. The signal from the 
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validation sensor was used to label each datum that corresponded to a grasp (i.e. 

whenever force was observed on the thumb due to the grasping of an object). Data from 

the validation sensor served as the class label, for training classifiers and evaluating FMG 

grasp classification performance. Data from the sixteen channel (i.e. sensors) force 

sensing band and validation sensor were sampled concurrently, at 10 Hz, with an AT Mega 

328 Microcontroller, located within the device housing, and wirelessly transmitted to a data 

acquisition PC via Bluetooth. The 10 Hz sampling rate was selected based on 

data-throughput constraints of the wireless communication protocol used for the 

experimental device, and has been shown to be sufficient for FMG-based grasp detection 

[31], as a majority of volitional upper-extremity motion occurs in the 0-3 Hz range [71]. 

Custom LabVIEWTM [72] software was written to collect data from the data acquisition 

device. The software consisted of a communications module that received and logged 

data from the FMG data acquisition device and a graphical user interface that allowed the 

operator to insert a label associated with each round of data collection in the experimental 

protocol. 
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Figure 4-1: Device Donning Position 
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Figure 4-2: Validation Sensor on Thumb for Labelling Data 

4.3.3. Experimental Protocol 

The experimental protocol comprised of multiple repetitions of several 

grasp-and-move tasks. As noted previously, research has shown that the FMG signal is 

sensitive to joint positions of the wrist, forearm and elbow [32, 33], which are expected to 

vary with the varying movement trajectories that are likely to be employed when grasping 

and moving objects in daily use. This phenomenon was also observed in the study 

executed in Chapter 3. In order to explore the limits of FMG grasp detection, the protocol 

was designed to involve simultaneous movement across all three planes-of-movement, 

and the use of joint movement (such as wrist flexion and extension, elbow flexion and 

extension, and shoulder flexion and extension) for task completion. Additionally, to 

evaluate the classifiers’ robustness to false-positives, portions of the protocol required 

movements-without-grasping.  
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Three-dimensional Workspace 

Figure 4-3 shows a model of the three-dimensional workspace created for the 

protocol. The workspace consisted of five shelving units placed on top of a U-shaped 

table. The U-shaped table was 80 cm tall. Four shelving units, 64 cm tall, were positioned 

at the four corners of the workspace. The space below the shelving units (i.e. the surface 

of the table) was accessible. Each shelving unit was used to create two target positions: 

(i) one at the top of the shelf (height above table = 64 cm), and (ii) one at the bottom of 

the shelf (height above table = 0 cm). This created a total of eight target positions 

(positions 1-8 in Figure 4-3). The fifth shelving unit was 32 cm tall (half the height of the 

other shelving units) and was placed in the center of the workspace to create the origin 

position (position 0 in Figure 4-3). The participant was asked to stand in the center of the 

U-shaped table, directly in front of the origin position, and grasp-and-move the objects 

to-and-from the various shelving units on the table. The protocol required the top of the 

target shelves (positions 1, 3, 5 and 7 in Figure 4-3) to be 5 cm above the height of the 

participant’s shoulder, such that, the participant would be required to forward flex his/her 

shoulder above the horizontal to reach the target positions on top of the shelving unit. In 

the event that the participant was too short for this constraint, an adjustable platform was 

provided for the participant to stand on (Figure 4-4). Potential participants who were too 

tall to meet this constraint were excluded from this study. The number of shelves and their 

positions relative to the participant were selected to ensure that participants had to 

simultaneously move their arms across all three planes-of-movement (i.e. 

superior-inferior, medial-lateral, and ventral-dorsal) in order to transport objects 

to-and-from each of the shelves. Figure 4-5 shows the actual workspace created.  
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Figure 4-3: Model of Task Workspace 

 

Figure 4-4: Adjustable Platform 
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Figure 4-5: Actual Task Workspace used for Protocol 

Grasp Types 

Grasp types that are frequently used in ADL were selected for the protocol. Bullock 

et al. monitored the relative frequency of the different grasp-types used by two machinists 

and two housekeepers as part of their daily activities [35]. Seven of the most frequently 

used grasp-types identified by Bullock et al. were selected for evaluation: (i) medium wrap, 

(ii) precision disk, (iii) lateral pinch, (iv) tripod, (v) lateral tripod, (vi) power sphere, and (vii) 

thumb-2 finger. Combined, these grasp-types account for more than 50% of the grasps 

that occurred for the two machinists and two housekeepers in Bullock et al.’s study [35]. 

A specific object was selected for each of the grasp types. The tripod and lateral tripod 

grasp-types were considered identical from the FMG perspective, as they involve identical 

finger positions and are in fact variations of hand orientation in the three-dimensional 

workspace. It is noteworthy that other variants of grasp taxonomy do not distinguish 

between the tripod and lateral tripod grasp-types [73]. Table 4-1 lists the objects selected 
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for each grasp-type. Figure 4-6 to Figure 4-11 depict the objects selected for each 

grasp-type.  

Table 4-1: Objects Used for Each Grasp-type Evaluated 

Index Grasp-type Object 

1 Medium Wrap Drinking Glass 

2 Precision Disk Quarter Bowl 

3 Lateral Pinch Quarter Plate 

4 Tripod / Lateral 
Tripod 

Block from Box & Blocks Test 
[74] 

5 Power Sphere Tennis Ball 

6 Thumb-2 Finger Pencil 

 

Figure 4-6: Drinking Glass for Medium Wrap Grasp-type 
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Figure 4-7: Quarter Bowl for Precision Disk Grasp-type 

 

Figure 4-8: Quarter Plate for Lateral Pinch Grasp-type 
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Figure 4-9: Block for Tripod/Lateral Tripod Grasp-type 

 

Figure 4-10: Tennis Ball for Power Sphere Grasp-type 
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Figure 4-11: Pencil for Thumb-2 Finger Grasp-type 

 

Instructions to Participants  

The protocol consisted of three identical rounds of data collection, each of which 

consisted of grasp-and-move activity, and movements-without-grasping. The number of 

rounds was selected as a compromise between the goal of collecting the maximum 

amount of data possible, while avoiding muscular and mental fatigue in participants. 

Participants were asked to use their dominant hands for all activity. Participants were 

asked to start the protocol with their hand in the neutral position (i.e. hand by their side). 

For grasp-and-move activity, the participant was asked to move his/her hand to the origin 

position (position 0 in Figure 4-3), grasp and lift the object from the origin position, move 

and release the object at one of the target positions (positions 1-8 in Figure 4-3), and to 

return his/her hand to the neutral position (by his/her side). Subsequently, the participant 

was asked to move their hand to the previously used target position (positions 1-8 in Figure 

4-3), grasp and lift the object from the target position (positions 1-8 in Figure 4-3), and to 

move and release the object at the origin position, before retuning his/her hand to the 

neutral position (by his/her side). The participant was asked to repeat this process for each 
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of the target positions starting with position 1 in Figure 4-3, and ending with position 8 in 

Figure 4-3. This resulted in sixteen grasp-and-move actions for each object. It is 

noteworthy that the movement and placement of the objects at the target locations 

required the participant to move his/her wrist, elbow, and shoulder joints, and involved arm 

movement across all three planes-of-movement. This allowed for the evaluation of the 

false-negative rate of FMG-based grasp detection while grasping in the presence of 

upper-extremity movements in the controlled three-dimensional workspace.  

Data corresponding to movements-without-grasping in the three-dimensional 

workspace were collected in-between the grasp-and-move activity for each object. 

Specifically, participants were asked to move their hands to the positions that would 

correspond to the movement involved in the grasp-and-move case, but without grasping 

any object. The participant was asked to move his/her hand from the neutral position, to 

hover over the origin position (position 0 in Figure 4-3), and to then move his/her hand to 

hover over a target position (positions 1-8 in Figure 4-3), before returning his/her hand to 

the neutral position. The participant was subsequently asked to move his/her hand from 

the neutral position to the previously used target position (positions 1-8 in Figure 4-3), and 

then to move his/her hand to hover over the origin position (position 0 in Figure 4-3), before 

returning to the neutral position. The sequence was repeated for each target position, 

resulting in sixteen rounds of movement. Data corresponding to 

movements-without-grasping were included in order to evaluate the false-positive rate of 

FMG-based grasp detection in the presence of upper-extremity movements, which may 

be encountered as part of ADL. The above described movements-without-grasping, and 

grasp-and-move actions, were repeated for each grasp type and object. The entire 

sequence was repeated three times to form the three rounds of data collection. The 

instructions used for each round of data collection are detailed in Appendix B.  
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4.3.4. Data Analysis  

Features Evaluated  

Four basic temporal feature extraction techniques were identified for evaluation:  

(i) Mean Absolute Value (MAV), (ii) Root Mean Squared (RMS), (iii) Coefficients of Linear 

(two degree of freedom) Fit (LF), and (iv) Coefficients of Parabolic (three degree of 

freedom) Fit (PF). These feature extraction techniques derive from two of the several ways 

in which time series can be represented. The MAV and RMS provide a representation of 

the overall magnitude of the data within the feature window. The LF, and PF are methods 

of modeling trends within the data. While more advanced methods of representing time 

series and extracting temporal features exist, the use of these features allowed for clear 

interpretation of the merits of temporal feature extraction for FMG classification, in this 

preliminary study. The specific rationale for evaluating each of these features is as follows.  

 MAV is a representation of the overall FMG activity, for the given channel, within 

the window. The use of an overall representation may lead to a reduction in 

misclassification due to changes in the FMG signal caused by upper-extremity movements 

and other outliers in the data. MAV has been used as a feature in the classification of 

SEMG signals [75], and AMG signals [76]. The MAV for each channel can be calculated 

using (eq 4.1) ; where i is the sample number from 1 to n, n is the window size, and FMGi 

is the ith FMG signal sample for the given channel. 

𝑀𝐴𝑉 =
1

𝑛
∑ |𝐹𝑀𝐺𝑖|

𝑛

𝑖=1
 

(eq 4.1) 

RMS is a representation of the power of the FMG signal for the given channel, 

within the window. RMS may relate to grip strength, which could potentially increase the 

ease of separation of data corresponding to the participant grasping, or not grasping, an 

object. RMS has been shown to be an effective predictor of force of contraction in AMG 

signals [77], and has been used in EMG classification [78].  The RMS for each channel 

can be derived using (eq 4.2); where n is the window size, and FMGk,i is the ith sample of 

the FMG signal for channel k. 
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𝑅𝑀𝑆𝑘 = √
1

𝑛
(𝐹𝑀𝐺𝑘,1

2 + 𝐹𝑀𝐺𝑘,2
2 ⋅⋅⋅  +𝐹𝑀𝐺𝑘,𝑛

2 ) 

 

(eq 4.2) 

LF models the trend and amplitude of the FMG for the given channel, within the 

window. The model may reflect a change in the force exerted by the participant’s 

musculo-tendinous complex and may capture the temporal change in force that occurs as 

the user grasps, and releases an object. The LF is part of a wider class of models that are 

linear in the data space [55]. The use of LF for the preliminary evaluation of temporal 

features for FMG classification allows for easier interpretation of the utility of linear models. 

The LF for each channel can be calculated by computationally applying an error 

minimization routine to the least-squares residual expression in (eq 4.3) to solve for fit 

parameters a and b; where R2 is the residual error term of the fit, i is the sample number 

from 1 to n, and n is the window size, and FMGi is the ith FMG signal sample for the given 

channel. In this study, the fitting routine was carried out using the polyfit function in 

MATLAB® [79].  

𝑅2 = ∑ [𝐹𝑀𝐺𝑖 − (𝑎 + 𝑏𝑖)]2
𝑛

𝑖=1
 

 

(eq 4.3) 

PF builds upon the LF and allows for modeling with three degrees of freedom. The 

additional fit term provided by the PF allows for the modeling of non-linear trends in the 

data within the window. The model may reflect a change in the force exerted by the 

participant’s musculo-tendinous complex and may capture the temporal change in force 

that occurs as the user grasps, and releases an object. The PF has been shown to be an 

effective feature in handwritten character recognition [80]. The PF is part of a wider class 

of models that are non-linear in the data space [55]. The use of PF for the preliminary 

evaluation of temporal features for FMG classification allows for the interpretation of the 

utility of models that are non-liner in the data space. The PF for each channel can be 

calculated by computationally applying an error minimization routine to the least-squares 

residual expression in (eq 4.4) to solve for fit parameters a, b, and c; where R2 is the 

residual error term of the fit, i is the sample number from 1 to n, and n is the window size, 
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and FMGi is the ith FMG signal sample for the given channel. In this study, the fitting routine 

was carried out using the polyfit function in MATLAB® [79].  

𝑅2 = ∑ [𝐹𝑀𝐺𝑖 − (𝑎 + 𝑏𝑖 + 𝑐𝑖2)]2
𝑛

𝑖=1
 

 

(eq 4.4) 

In order to explore the effect of window configuration on the effectiveness of 

temporal feature extraction, each feature extraction technique was run on the FMG data 

using overlapping windows of two sizes: (1) a three sample window (0.3 seconds), and (2) 

five sample window (0.5 seconds). The window sizes were selected based on an empirical 

analysis of the time-scale in which a transition between a grasp and release occurs. In all 

cases, the feature value associated with a single instantaneous FMG sample for a given 

channel was found by transforming data within a window around the instantaneous FMG 

sample. The symmetry of each window was also varied. Each feature was calculated with 

three different symmetries: (1) left justified (i.e. feature value corresponding to the current 

sample depends on the current sample and samples in the window before it), (2) right 

justified (i.e. feature value corresponding to the current sample depends on the current 

sample and samples in the window after it), and (3) centre justified (i.e. feature value 

corresponding to the current sample depends on the current sample and a symmetrically 

equal number of samples before and after it). The feature values were constructed 

sample-by-sample and channel-by-channel. An exemplary feature extraction scheme for 

a center-justified, 3 sample window is depicted in Figure 4-12. These variations in window 

configuration resulted in a total of twenty-four feature sets for evaluation (4 features x 2 

window sizes x 3 window symmetries). Table 4-2 lists the abbreviated names for each 

feature evaluated. Features were named using an {X,Y} suffix, where X denotes the 

number of samples prior to the current sample that are used in the feature transformation, 

and Y denotes the number of samples after the current sample that are used in the feature 

transformation.  
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Figure 4-12: Exemplary Feature Extraction Scheme for Centre-justified, 3 Sample 
Window 
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Table 4-2: Abbreviated Names for Each Feature Type, Window Size, and Window 
Symmetry Evaluated 

Type 
3 Sample Window 5 Sample Window 

Left 
justified 

Centre 
justified 

Right 
justified 

Left 
justified 

Centre 
justified 

Right 
justified 

MAV MAV {2,0} MAV {1,1} MAV {0,2} MAV {4,0} MAV {2,2} MAV {0,4} 

RMS RMS {2,0} RMS {1,1} RMS {0,2} RMS {4,0} RMS {2,2} RMS {0,4} 

LF LF {2,0} LF {1,1} LF {0,2} LF {4,0} LF {2,2} LF {0,4} 

PF PF {2,0} PF {1,1} PF {0,2} PF {4,0} PF {2,2} PF {0,4} 

Feature Evaluation Program 

A feature evaluation program was developed in MATLAB® [81] in order to be able 

to evaluate the off-line classification performance obtained with different features of the 

FMG signal, in comparison to the classification performance of the raw FMG signal. The 

program was based on the wrapper feature evaluation method [82, 83, 84]. In the wrapper 

method, a classifier is trained and tested using each candidate feature in order to 

understand their individual effectiveness for classification purposes. In this study, the 

wrapper method was used to evaluate off-line classification performance of the raw FMG 

signal and each of the twenty-four candidate feature configurations identified. While other 

more computationally efficient methods for feature evaluation and selection exist, the 

wrapper method was chosen as it allows for unambiguous understanding of the 

effectiveness of each feature proposed [82]. The effectiveness of each feature in 

comparison to the raw FMG signal was evaluated using the Area under the Receiver 

Operating Curve (AUC). Receiver Operating Curves (ROCs) plot the true-positive rate 

(sensitivity) against the false-positive rate (1 - specificity) for a classifier [85]. The ideal 

classifier will have a true-positive rate of 1 (i.e. sensitive) and a false-positive rate of 0 (i.e. 

specific), yielding an AUC of 1. The classification accuracy was also calculated for each 

feature, but was not used as a primary measure of the effectiveness of candidate features. 

AUC was chosen as the measure of effectiveness as it is insensitive to the relative 

distribution of the classes within the data, and hence, provides a robust method of 

assessing classification performance when compared to classification accuracy [85].  

Detailed design and implementation details of the feature evaluation program are 

summarized in Appendix C. The program consisted of two run-time stages, as depicted in 

Figure 4-13. In the first stage, features were extracted for all three rounds of data collection 
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for each participant and stored to file for future classification. In the second stage, 

classification performance with each of the extracted features was evaluated for each 

participant. An RBF-SVM, implemented via the LIBSVM library [69] for MATLAB®, was 

used for classification. AUC and accuracy were evaluated in a three-fold cross-validation 

scheme. Classification accuracy associated with each feature was evaluated for each 

round of data collection, for each participant. Specifically, data from a given round was 

classified using a classifier that was constructed with data from the remaining two rounds 

for the participant. For each round, a ten-fold cross-validation scheme within the training 

data was used to determine the optimal cost [69] and gamma [69] for the RBF-SVM via a 

grid search. Combinations of six different cost (cost = 0.01, 0.1, 1, 10, 100, 1000) and six 

different gamma values (𝛾 = 0.01, 0.1, 1, 10, 100, 1000) were evaluated. The optimal cost 

and gamma, found using cross-validation within the training data was then used to for 

classifying the unseen, testing data (i.e. data for the round under evaluation). The same 

process was repeated for the next round of data collection, until all rounds of data 

collection for the participant were evaluated. Subsequently, the average AUC and 

accuracy obtained across three-folds for a given feature and participant was calculated.  

The above process was repeated for each participant. The average AUCs and accuracies 

obtained across all participants for each feature were then calculated. Features that 

resulted in increased AUC when compared to the raw FMG signal were identified. A 

single-tailed, paired samples Student’s t-test with alpha of 0.05 was used to determine if 

the increase in AUC seen due to the use of a particular feature was statistically significant.  
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Figure 4-13: Feature Evaluation Flowchart 
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4.4. Experimental Results 

4.4.1. Participants 

Ten healthy participants were recruited for this study. Participant age, gender, and 

the need for the height adjusting step to meet the protocol’s height restriction, are listed in 

Table 4-3. All participants provided informed consent for participation in the study.  

Table 4-3: Participant Information 

ID Age 
(Years) 

Gender Height 
Adjustment 1 23 Female Yes 

2 22 Female No 

3 27 Female Yes 

4 21 Male No 

5 23 Male No 

6 23 Male No 

7 24 Male No 

8 25 Female Yes 

9 21 Male No 

10 27 Male No 

4.4.2. Feature Evaluation Results  

Figure 4-14 depicts the AUC obtained for the raw FMG signal and for each feature 

evaluated. Figure 4-15 depicts the corresponding classification accuracy obtained for the 

raw FMG signal, and for each feature evaluated. Eighteen of the twenty-four features 

evaluated resulted in higher AUC when compared to the raw FMG signal; eleven features 

produced statistically significant increases in AUC. The AUC, accuracies, associated 

standard deviations, and P-values for the eighteen features that demonstrated increased 

performance are listed in Table 4-4. The raw FMG signal yielded an AUC of 0.819 

(𝜎 = 0.098) and an accuracy of 88.8% (𝜎 = 5.18%). The largest increase in AUC over the 

raw FMG signal was obtained using PF {2,2}, yielding an AUC of 0.869 (𝜎 = 0.061) and 

an accuracy of 90.6% (𝜎 = 4.30%) The increases in AUC (P = 0.011) and accuracy 

(P = 0.031) observed over the raw FMG signal are statistically significant for PF {2,2}.  
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Figure 4-14: AUC for all Features Evaluated 

 

 

Figure 4-15: Classification Accuracy for all Features Evaluated 
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Table 4-4: Features with Increased AUC over the Raw FMG Signal 

Feature 
AUC Accuracy 

P-Value 
Value σ Value (%) σ (%) 

PF {2,2} 0.869 0.061 90.6 4.30 0.011 

LF {0,2} 0.869 0.064 90.9 4.34 0.004 

PF {1,1} 0.867 0.059 90.4 4.71 0.017 

LF {2,0} 0.866 0.069 91.1 4.83 0.007 

PF {0,4} 0.865 0.061 90.4 4.47 0.012 

LF {1,1} 0.865 0.067 90.7 4.78 0.013 

PF {0,2} 0.864 0.064 90.3 4.95 0.023 

LF {2,2} 0.862 0.065 89.9 4.94 0.017 

LF {0,4} 0.860 0.066 90.0 4.56 0.007 

PF {2,0} 0.857 0.057 89.9 3.86 0.050 

LF {4,0} 0.850 0.076 90.2 4.99 0.038 

PF {4,0} 0.847 0.057 89.6 3.29 0.103 

MAV {1,1} 0.835 0.083 88.7 5.18 0.078 

MAV {2,2} 0.834 0.076 86.7 6.67 0.152 

RMS {2,2} 0.829 0.075 86.9 6.73 0.253 

MAV {2,0} 0.826 0.074 87.7 4.79 0.312 

RMS {2,0} 0.824 0.076 87.3 4.59 0.359 

RMS {1,1} 0.823 0.081 88.1 4.97 0.363 

Raw FMG 0.819 0.098 88.8 5.18 N/A 

4.4.3. Discussion of Results 

The first objective of this study was to investigate the accuracy of FMG 

classification for the two-class grasp detection problem, with a variety of grasp-types and 

upper-extremity movements, in a controlled environment.  Classification of the raw FMG 

signal yielded an accuracy of 88.8% (σ = 5.2 %) for the aforementioned two-class grasp 

detection problem.  

The second objective of this study was explore the utility of classifying temporal 

features of the FMG signal for the two-class grasp detection problem, with a variety of 

grasp-types and upper-extremity movements, in a controlled environment. It was 

hypothesized that the identification of a suitable set of temporal features of the FMG signal 

may improve grasp classification accuracy. The MAV, RMS, LF, and PF features all 

yielded increases in AUC when compared to the raw FMG signal at certain window sizes. 
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However, increases seen for the MAV and RMS were not statistically significant and were 

susceptible to window configuration, as increases in performance were only seen at 

certain window configuration. In contrast, LF and PF features yielded increases in 

performance for all window sizes, and yielded larger increases in performance when 

compared to MAV and RMS. Increases in classification performance were statistically 

significant for LF, regardless of the window configuration used. For the PF feature, 

increases in classification performance were significant for all but one window 

configuration. A potential explanation for the superior performance and insensitivity to 

window size of the LF and PF features is the fact that they attempt to model the trends 

within the data window, while the MAV and RMS both calculate an estimate of the overall 

magnitude of the data for the given window. It is possible that the capturing of trend 

information allows for greater ease of separation of FMG data when compared to capturing 

only magnitude information.  

These results suggest that the use of feature extraction techniques that attempt to 

model the FMG data as a linear, or non-linear, time series may yield increased grasp 

detection performance, when compared to feature extraction techniques that attempt to 

capture an overview of the FMG data within the window, and when compared to the 

classification of the raw FMG signal. In addition, results obtained suggest that features 

that model trends within the window are less susceptible to the size, or symmetry, of the 

data window from which the model is generated. It is noteworthy, however, that the use of 

model-based features result in additional feature value(s) for each sample of data on each 

FMG channel, which in turn increases the computation cost of classification. The benefits 

obtained by using this class of features will have to be traded off with additional 

computation time and complexity for the different applications of FMG-based grasp 

detection. The use of an additional degree of freedom in the PF did not significantly 

improve classification performance over the LF despite the additional feature value for 

each sample of data on each FMG channel. This indicates that the use of non-linear 

models may not provide benefit to offset the additional computation cost, when compared 

to linear models. 
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4.5. Summary and Implications of Results  

The scope of this study was limited to establishing the accuracy of classifying the 

raw FMG signal for the two-class grasp detection problem, and investigating the utility of 

classifying a preliminary set of temporal features of the FMG signal for the two-class grasp 

detection problem. Classification of the raw FMG signal yielded an accuracy of 88.8% 

(σ = 5.18 %) for a data-set corresponding to grasp-and-move actions, that required a 

variety of grasp-types and upper-extremity movements, and also contained data 

corresponding to movements-without-grasping. The utility of classifying temporal features 

of the FMG signal was explored by comparing the AUC obtained with raw FMG to that 

obtained with the various types of temporal features evaluated at various window 

configurations. Eighteen of the twenty-four feature configurations evaluated resulted in 

higher AUC when compared to the raw FMG signal; eleven feature configurations 

produced statistically significant increases in AUC. The largest increase obtained was with 

PF, yielding AUC of 0.869 (𝜎 = 0.061), corresponding to a 6.1% relative increase over the 

AUC of 0.819 (𝜎 = 0.098) obtained with the raw FMG signal. The results obtained indicate 

that features that model temporal trends within the data may increase FMG-based grasp 

detection performance. In future studies, the use of a larger set of model-based temporal 

features should be evaluated with FMG data from individuals with stroke, who might 

ultimately benefit from this technology. Additionally, the accuracy of FMG-based grasp 

detection with upper-extremity movements in an uncontrolled environment, such as the 

home environment, should be evaluated.  

 



 

64 

Chapter 5. Conclusions 

5.1. Chapter Overview 

This chapter provides a summary of the findings of this thesis, and an outline of 

potential areas of future research. In section 5.2 the thesis objectives are recalled, and 

their related findings are presented. In section 5.3 future work is suggested.  

5.2. Summary of Objectives and Findings  

This thesis sought to explore the suitability of using FMG for grasp detection in 

stroke rehabilitation applications.  Given the emphasis placed on grasp training in 

upper-extremity stroke rehabilitation [16, 17], a FMG-based device that is capable of 

monitoring and encouraging grasping in stroke survivors could potentially enhance and 

optimize the rehabilitation process. Despite the promising results on FMG classification 

for a variety of applications, additional research questions remained in order to establish 

the suitability of the use of FMG for grasp detection in stroke rehabilitation applications. 

Based on these key research questions, which are summarized in Chapter 2, three 

objectives were identified for this thesis.   

Objective 1 was to perform a preliminary investigation on the accuracy of 

FMG-based grasp detection in individuals with stroke, who have upper-extremity 

impairments, in a controlled environment. In order to meet this objective, a study was 

designed and executed to explore the feasibility of acquiring and classifying the FMG 

signal from individuals with stroke, with upper-extremity impairments, for the purpose of 

grasp detection. The experimental protocol consisted of twenty repetitions of three 

grasp-and-move tasks, using a single object and grasp-type. Experimental data were 

collected from eight individuals with stroke and eight healthy volunteers. FMG 

classification accuracy was found to be lower for participants with stroke when compared 

to healthy participants. Despite this, FMG-based sensing achieved a high accuracy of 

92.6% (σ = 3.20%) for grasp detection with participants with stroke, using a RBF-SVM 

classifier. In order to evaluate the ease of separation of FMG data, the use of a LDA 
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classifier was also evaluated. Classification accuracy was lower with the LDA, when 

compared to the RBF-SVM, for both individuals with stroke and healthy individuals. 

However, average grasp detection accuracy remained above 90%, for both participants 

with stroke and healthy participants, with the LDA, suggesting that linear classification may 

be adequate for FMG-based grasp detection. The effect of training-set size on 

classification performance was also investigated by varying the training-set size for a 

fixed-size testing-set. Experimental results indicate that FMG-based grasp detection 

required more training data to achieve commensurate classification accuracy for 

individuals with stroke, when compared to healthy participants. However, a training-set 

size that was 50% of the testing-set size was sufficient to achieve greater than 90% 

accuracy for individuals with stroke. These promising results indicate that FMG sensing 

may be capable of monitoring grasping in individuals with stroke, with mild to moderate 

upper-extremity impairments. 

Objective 2 was to perform a preliminary investigation on the accuracy of FMG 

classification for the two-class grasp detection problem, using a variety of grasp-types and 

upper-extremity movements, with healthy volunteers, in a controlled environment. 

Objective 3 was to perform a preliminary investigation on the utility of classifying temporal 

features of the FMG signal for the two-class grasp detection problem, using a variety of 

grasp-types and upper-extremity movements, with healthy volunteers, in a controlled 

environment. In order to meet these objectives, a study was designed and executed to 

investigate the accuracy achievable with FMG classification for the two-class grasp 

detection problem, with a variety of grasp-types and upper-extremity movements, as 

would be expected in daily living. The experimental protocol comprised of grasp-and-move 

tasks, requiring the use of the six most frequently used grasp-types, in conjunction with 

arm and hand movements, in a controlled environment. Data corresponding to 

movements-without-grasping were also included to evaluate robustness to false-positives. 

The raw FMG signal yielded an accuracy of 88.8% (σ = 5.18 %) for the two-class grasp 

detection problem. The results obtained provide evidence that the use of FMG 

classification for the two-class grasp detection problem, with a wide variety of grasp-types 

and upper-extremity movements, as would be expected in daily living, may be feasible.  
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The utility of classifying temporal features of the FMG signal was explored by 

comparing the AUC obtained with classification of the raw FMG signal, to the AUCs 

obtained with classification of four candidate temporal features, evaluated at six window 

configurations. Eighteen of the twenty-four feature configurations evaluated resulted in 

higher AUC when compared to the raw FMG signal; eleven feature configurations 

produced statistically significant increases in AUC. The largest increase obtained was with 

PF, yielding AUC of 0.869 (𝜎 = 0.061), corresponding to a 6.1% relative increase over the 

AUC of 0.819 (𝜎 = 0.098) obtained with the raw FMG signal. Furthermore, all model-based 

features evaluated yielded increases in classification performance for all window sizes, 

and yielded larger increases in performance, when compared to features that attempt to 

capture an overview of the FMG data within the window. These results suggest that the 

use of feature extraction techniques that attempt to model the FMG data as a linear, or 

non-linear, time series may yield increased grasp detection performance, for the two-class 

grasp detection problem.  

The results obtained in this thesis provide preliminary confirmation of the suitability 

of using FMG classification for grasp detection in upper-extremity stroke rehabilitation 

applications, and pave the way for further research. FMG classification was shown to be 

effective at detecting grasps in individuals with stroke; achieving accuracy in excess of 

90%, with a training-set size that was 50% of the testing-set size. Furthermore, in healthy 

volunteers, FMG grasp detection was shown to be capable of discriminating between 

occurrences of any of the six most frequently used grasp-types in daily living, versus a 

lack of grasping, in the presence of upper-extremity movements, in the three-dimensional 

workspace. Finally, the use of model-based temporal features of FMG improved 

FMG-based grasp detection accuracy in the two-class grasp detection problem, paving 

the way for investigation into more advanced model-based feature extraction techniques. 

These promising results suggest that FMG based grasp-detection may indeed be suitable 

for monitoring grasping, in individuals with stroke, for rehabilitation applications.   

5.3. Future Work 

The results obtained from the studies executed in this thesis provide preliminary 

affirmation that the use of FMG-based grasp detection for detecting and encouraging 
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grasping in individuals with stroke is feasible. Despite these promising results, additional 

research questions and development challenges remain. A partial list of questions, which 

should be considered for future work, are summarized below.  

5.3.1. Experimental Protocol in an Uncontrolled Environment 

The experimental protocols developed for both studies in this thesis were executed 

in a controlled environment. The protocols mandated a variety of grasp-and-move actions, 

and movements-without-grasping, with the intent of evaluating the robustness of the 

classifier to false-positives and false-negatives. However, an evaluation of FMG sensing 

in an uncontrolled environment, with participants engaging in ADL of their choosing, would 

be a key test for this technology. One method of achieving such a protocol would involve 

video recording participants as they go about completing ADL in the home setting, while 

wearing an FMG band. The output of the FMG classifier can then be compared to the 

occurrence of grasping in the video, by the experimenter.  

5.3.2. Further Evaluation with Individuals with Stroke 

In this thesis, a preliminary investigation suggested that the acquisition and 

classification of the FMG signal in individuals with stroke, with mild-to-moderate 

upper-extremity impairments is feasible. In future studies, a more extensive evaluation of 

the feasibility of FMG classification in individuals with stroke is recommended. The 

accuracy of FMG when classifying FMG signals from individuals with stroke with 

moderate-to-severe upper-extremity impairments, who may be more susceptible to 

learned non-use, has yet to be conducted.  

5.3.3. Further Evaluation of Features of FMG 

In this thesis, the utility of classifying temporal features of the FMG signal for grasp 

detection was investigated. Results obtained suggest that temporal features, that model 

trends of the data within a window, may improve FMG classification performance. In future 

studies, the use of more sophisticated model-based feature extraction methods should be 

evaluated. Additionally, the use of other classes of features, including measures of 
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entropy, complexity, frequency domain characterization, and spatial trend modeling 

should also be evaluated. 

In this thesis, the classification performance with individual features was 

considered. It is possible that the combination of two, or more, features would have 

resulted in increased accuracy. In future studies, the accuracy achievable with a 

combination of feature values resulting from various feature extraction techniques should 

be evaluated. Additionally, the use of feature selection methods to select a partial set of 

the feature values produced by a feature extraction step, in order to increase accuracy, 

should also be evaluated.  

5.3.4. Investigation of Methods to Reduce Training and Set-up 
Time  

In real-world scenarios, FMG activity tracking devices would need to be donned 

and removed as part of daily use. The use of semi-supervised and unsupervised training 

paradigms may reduce the set-up time and effort required upon each donning of 

FMG-based devices. An evaluation of the ability to deploy activity tracking devices with 

minimal set-up is likely to be a pivotal step in their adoption in the field. The ability to 

achieve FMG grasp detection with semi-supervised and unsupervised training paradigms, 

is hence, a recommended future objective.  
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Appendix A.  
 
Correlation Coefficient between Classification Accuracy 
and Severity of Impairment in Individuals with Stroke 

In this section the results of an analysis conducted to investigate the correlation 

between the classification accuracy obtained and the severity of impairment in individuals 

with stroke is described. A high degree of correlation could indicate that FMG 

grasp-detection performance is dependent on the level of impairment in individuals with 

stroke, and potentially limit the application of FMG sensing to a subset of the proposed 

population.  

The correlation coefficient between the classification accuracy and severity of 

impairment, for individuals with stroke, was calculated with an alpha of 0.05. The ratio of 

the Box and Blocks score for the paretic limb to the non-paretic limb was used as a 

measure of impairment, as it provides a more granular scale when compared to the 

Chedoke scale. The scatter plots of the classification accuracy obtained for each task, 

with the SVM and LDA classifiers, versus the severity of impairment are depicted in Figure 

A-1 to Figure A-6. The correlation coefficient between the average classification accuracy, 

across all three tasks, and severity of impairment is 0.4468 (p = 0.2671) for the RBF-SVM, 

and 0.2782 (P = 0.5047) for the LDA, indicating a low likelihood of correlation between 

classification accuracy and severity of impairment.     
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Figure A-1: Scatter plot of SVM classification accuracy versus Paretic: Non-paretic 
Box and Blocks ratio for Task 1  

 

Figure A-2: Scatter plot of SVM classification accuracy versus Paretic: Non-paretic 
Box and Blocks ratio for Task 2  
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Figure A-3: Scatter plot of SVM classification accuracy versus Paretic: Non-paretic 
Box and Blocks ratio for Task 3  

 

Figure A-4: Scatter plot of LDA classification accuracy versus Paretic: Non-paretic 
Box and Blocks ratio for Task 1  
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Figure A-5: Scatter plot of LDA classification accuracy versus Paretic: Non-paretic 
Box and Blocks ratio for Task 2 

 

Figure A-6: Scatter plot of LDA classification accuracy versus Paretic: Non-paretic 
Box and Blocks ratio for Task 3 
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Appendix B.  
 
Instructions to Participants for Protocol in Section 4.3.3 

Instructions are summarized in Table B-1, below.  

Table B-1: Instructions to participants  

Type Grasp Type 

& Object 

Instructions to Participant  

Movement 

without 

Grasping 

N/A Move from neutral to origin position, and then to target 

position before returning to neutral. Subsequently, move 

from neutral to target position, and then to origin position, 

before returning to neutral.  Repeat across 8 target 

locations, resulting in 16 movement actions.  

Grasp and 

Move 

Medium 

Wrap: Glass 

Move from neutral to origin position, grasp and pick-up 

object, move object, place and release object at target 

position, before returning hand to neutral. Subsequently, 

move from neutral to previous target position, grasp and 

pick-up object, move object, place and release object at 

origin position, before returning hand to neutral. Repeat 

across 8 target locations, resulting in 16 grasp and move 

actions. 

Movement 

without 

Grasping 

N/A Move from neutral to origin position, and then to target 

position before returning to neutral. Subsequently, move 

from neutral to target position, and then to origin position, 

before returning to neutral.  Repeat across 8 target 

locations, resulting in 16 movement actions.  
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Type Grasp Type 

& Object 

Instructions to Participant  

Grasp and 

Move 

Precision 

Disk: Bowl 

Move from neutral to origin position, grasp and pick-up 

object, move object, place and release object at target 

position, before returning hand to neutral. Subsequently, 

move from neutral to previous target position, grasp and 

pick-up object, move object, place and release object at 

origin position, before returning hand to neutral. Repeat 

across 8 target locations, resulting in 16 grasp and move 

actions. 

Movement 

without 

Grasping 

N/A Move from neutral to origin position, and then to target 

position before returning to neutral. Subsequently, move 

from neutral to target position, and then to origin position, 

before returning to neutral.  Repeat across 8 target 

locations, resulting in 16 movement actions.  

Grasp and 

Move 

Lateral 

Pinch: 

Quarter 

Plate 

Move from neutral to origin position, grasp and pick-up 

object, move object, place and release object at target 

position, before returning hand to neutral. Subsequently, 

move from neutral to previous target position, grasp and 

pick-up object, move object, place and release object at 

origin position, before returning hand to neutral. Repeat 

across 8 target locations, resulting in 16 grasp and move 

actions. 
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Type Grasp Type 

& Object 

Instructions to Participant  

Movement 

without 

Grasping 

N/A Move from neutral to origin position, and then to target 

position before returning to neutral. Subsequently, move 

from neutral to target position, and then to origin position, 

before returning to neutral.  Repeat across 8 target 

locations, resulting in 16 movement actions.  

Grasp and 

Move 

Tripod: 

Block 

Move from neutral to origin position, grasp and pick-up 

object, move object, place and release object at target 

position, before returning hand to neutral. Subsequently, 

move from neutral to previous target position, grasp and 

pick-up object, move object, place and release object at 

origin position, before returning hand to neutral. Repeat 

across 8 target locations, resulting in 16 grasp and move 

actions. 

Movement 

without 

Grasping 

N/A Move from neutral to origin position, and then to target 

position before returning to neutral. Subsequently, move 

from neutral to target position back, and then to origin 

position, before returning to neutral.  Repeat across 8 target 

locations, resulting in 16 movement actions.  
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Type Grasp Type 

& Object 

Instructions to Participant  

Grasp and 

Move 

Power 

Sphere: Ball 

Move from neutral to origin position, grasp and pick-up 

object, move object, place and release object at target 

position, before returning hand to neutral. Subsequently, 

move from neutral to previous target position, grasp and 

pick-up object, move object, place and release object at 

origin position, before returning hand to neutral. Repeat 

across 8 target locations, resulting in 16 grasp and move 

actions. 

Movement 

without 

Grasping 

N/A Move from neutral to origin position, and then to target 

position before returning to neutral. Subsequently, move 

from neutral to target position, and then to origin position, 

before returning to neutral.  Repeat across 8 target 

locations, resulting in 16 movement actions.  

Grasp and 

Move 

Thumb, 2 

Finger: Pen 

Move from neutral to origin position, grasp and pick-up 

object, move object, place and release object at target 

position, before returning hand to neutral. Subsequently, 

move from neutral to previous target position, grasp and 

pick-up object, move object, place and release object at 

origin position, before returning hand to neutral. Repeat 

across 8 target locations, resulting in 16 grasp and move 

actions. 
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Appendix C.  
 
Design and Implementation of Feature Evaluation 
Program 

In this section, the design and implementation details of the feature evaluation program 

developed for the study in Chapter 4 are described. The high-level algorithmic flow of the 

program is described in section 4.3.4.  

Design Goals and Constraints  

The primary design goal was to create a feature evaluation program that is capable of 

calculating the classification performance associated with the features proposed in section 

4.3.4. An additional design goal was to have the software capable of running on 

off-the-shelf computers with 64-bit operating systems, and a nominal memory size of 

8 GB, such that, the program can be easily deployed for future FMG research.  

Platform Selection  

MATLAB® was selected as the computation platform, due to its native ability to execute 

matrix operations, and the large number of classification and statistical processing libraries 

available. The target platform was a PC running Windows 7 Professional (64-bit) on an 

Intel i7-4700MQ CPU with 2.40Ghz clock speed, and 8 GB of system memory.  

Class Hierarchy  

Figure C-1 depicts the class hierarchy for the feature evaluation software. In this section, 

the data structure, purpose, and associated methods for each class is described.  
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Figure C-1: UML Class Hierarchy for Feature Evaluation Program   

Experiment Class  

The experiment_class is the overarching master class for the entire program, and contains 

all data associated with the study. It consists of ten objects of type participant_class (i.e. 

one for each participant), and one object of type accumulated_results_class.  
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Participant Class 

The participant_class consists of all experimental data associated with an individual 

participant. Each instance of the class comprises three objects of type data_round_class 

(i.e. one for each round of data collection, for the given participant) and one object of type 

participant_results_class.  

Data Round Class 

The data_round_class contains all experimental data associated with a single round of 

data collection, for a single participant. Each instance of the data_round_class consists of 

one object of type raw_data_class, one object of type feature_data_class,and twenty-five 

objects of type feature_results_class (i.e. one for each feature evaluated and the raw FMG 

signal).  

Raw Data Class 

The raw_data_class consists of all FMG and label data collected for a single round of data 

collection, for a single participant. The raw FMG signal data is stored as a single object, 

named FMG, consisting of a two-dimensional array of <16xn> elements, where n is the 

number of samples taken for each of the sixteen FMG channels, dictated by the time the 

participant took to complete the round of instructions. The true label is stored in an object 

named LABEL, which is a <1xn> element array, where n is the number of samples taken 

from the validation sensor during the same period of data collection.  

Feature Data Class 

The feature_data_class stores data associated with all features extracted from the raw 

FMG signal, and the FMG signal as well. Data from the feature_data_class is used to 

evaluate the performance of each of the proposed features, and the raw FMG signal. The 

class consists of a single object of an <mxn> dimensional array, where m is the number 

of dimensions associated with the feature evaluated, and n is the number of samples 

collected during this particular round. The number of dimensions, m, ranges from sixteen 

to forty-eight, for the four features selected for evaluation in this study.    
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Feature Results Class 

The feature_results_class is responsible for storing performance data associated with a 

single feature, for a particular round of data collection, for a particular participant. The 

class consists of multiple objects including: (i) a <6x6> array of floating point numbers that 

stores the AUCs associated with the grid-search for cost and gamma (named 

grid_search_AUCs), (ii) an integer that stores the optimal cost (named cost), found during 

the grid search, for this participant and round, (iii) an integer that stores the optimal gamma 

(named gamma), found during the grid search, for this participant and round, (iv) the AUC 

associated with the feature for this round (named test_auc), and (v) the accuracy 

associated with the feature for this round (named test_acc).  

Participants Results Class 

The participants_results_class is meant to store the classification performance associated 

with all evaluated features, for a given participant. An instance of the class contains four 

<1x25> floating point arrays: the average AUC (named auc), the standard deviation in 

AUC (named auc_sd), the average accuracy (named acc), and the standard deviation in 

accuracy (named acc_sd) associated with each feature, across all three rounds, for a 

given participant.  

Accumulated Results Class 

The accumulated_results_class is meant to contain all data associated with the 

classification performance for all evaluated features, across all participants. The 

accumulated_results_class is populated after the performance of a given feature has been 

evaluated for all participants (see Figure 4-13). An instance of the class contains four 

<1x25> arrays of floating point numbers for: (i) average AUC for each feature (named 

auc), (ii) standard deviation related to average AUC for each feature (named auc_sd), (iii) 

average Accuracy for each feature (named acc), (iv) standard deviation related to average 

accuracy for each feature (named acc_sd).  
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Source Code 

This section includes the source code for all classes, functions and scripts that constitute 

the feature extraction program. Source code is presented in the form of code snippets. 

When necessary, files have been split into multiple snippets. Table C-1 provides a list of 

all files in the feature extraction program, and identifies the associated code snippets.  

Table C-1: Summary of files (organized alphabetically) 

File Name File Type Purpose Code 
Snippets  

accumulate_results Script Script that populates the 
accumulated_results_class 
object, using data from the 
participant_results_class, 
once all classification has 
been completed.  

1 

accumulated_results_class Class 
Definition 

Class definition for the 
accumulated_results_class. 

2 

classify Script Script that loops through 
the three rounds of data to 
determine the three-fold 
cross-validation accuracy 
associated will all features 
evaluated.  

3-6 

config_class Class 
Definition 

Class definition for the 
config_class. 

7 

configuration Script Script with configuration 
parameters for software 
(e.g. number of 
participants) 

8 

data_round_class Class 
Definition 

Class definition for the 
data_round_class. 

9 

evaluate_features  Script Contains nested loops that 
loop through all 
participants, for each 
feature being evaluated.  

10 

experiment_class Class 
Definition 

Class definition for the 
experiment_class. 

11 
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File Name File Type Purpose Code 
Snippets  

extract_features Script Contains loop that 
successively calls feature 
extraction functions for 
each round of data 
collection.  

12 

feature_data_class Class 
Definition 

Class definition for the 
feature_data_class. 

13-15 

feature_results_class Class 
Definition 

Class definition for the 
feature_results_class. 

16 

format_data Script Script that is responsible 
for importing experimental 
data, splitting data into 
rounds, and normalizing 
the signal from the 
validation sensor.  

17 

go_to_data_folder Script Script that switches 
MATLAB directory to a pre-
specified data folder, such 
that the program can save 
extracted feature data to 
the file system (see Figure 
4-13). 

18 

grid_search Script Contains nested loops that 
evaluate the performance 
of various cost and gamma 
values to determine the 
optimal cost and optimal 
gamma for the given round 
and participant.  

19 

main Script Execution start point. Loop 
that extracts features is 
within this script  

20 

participant_class Class 
Definition 

Class definition for the 
participant_class. 

21 

participant_results_class  Class 
Definition 

Class definition for the 
participant_results_class.  

22 
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File Name File Type Purpose Code 
Snippets  

raw_data_class Class 
Definition 

Class definition for the 
raw_data_class. 

23 

return_to_main_folder Script Script that returns MATLAB 
directory to the folder in 
which all functions/script 
code is stored. See 
(go_to_data_folder). 

24 

temporal_features_0_2 Function 
Definition 

Definition for function to 
extract all feature types 
with widow {0,2}. 

25 

temporal_features_0_4 Function 
Definition 

Definition for function to 
extract all feature types 
with widow {0,4}. 

26 

temporal_features_1_1 Function 
Definition 

Definition for function to 
extract all feature types 
with widow {1,1}. 

27 

temporal_features_2_0 Function 
Definition 

Definition for function to 
extract all feature types 
with widow {2,0}. 

28 

temporal_features_2_2 Function 
Definition 

Definition for function to 
extract all feature types 
with widow {2,2}. 

29 

temporal_features_4_0 Function 
Definition 

Definition for function to 
extract all feature types 
with widow {4,0}. 

30 

 



 

93 

 

Code Snippet 1 – accumulate_results 

 

Code Snippet 2 – accumulated_results_class 



 

94 

 

Code Snippet 3 – classify (snippet 1 of 4) 

 



 

95 

 

Code Snippet 4 – classify (snippet 2 of 4) 

 



 

96 

 

Code Snippet 5 – classify (snippet 3 of 4) 

 

Code Snippet 6 – classify (snippet 4 of 4) 



 

97 

 

Code Snippet 7 – config_class  

 

Code Snippet 8 – configuration 
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Code Snippet 9 – data_round_class 

 

Code Snippet 10 – evaluate_features 

 



 

99 

 

Code Snippet 11 – experiment_class 



 

100 

 

Code Snippet 12 – extract_features 



 

101 

 

Code Snippet 13 – feature_data_class 
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Code Snippet 14 – feature_data_class (snippet 1 of 2) 
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Code Snippet 15 – feature_data_class (snippet 2 of 2) 
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Code Snippet 16 – feature_results_class 
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Code Snippet 17 – format_data 

 

Code Snippet 18 – go_to_data_folder 
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Code Snippet 19 – grid_search 
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Code Snippet 20 – main 

 

Code Snippet 21 – participant_class 
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Code Snippet 22 – participant_results_class 

 

Code Snippet 23 – raw_data_class 

 

Code Snippet 24 – return_to_main_folder 
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Code Snippet 25 – temporal_features_0_2 
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Code Snippet 26 – temporal_features_0_4 
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Code Snippet 27 – temporal_features_1_1 
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Code Snippet 28 – temporal_features_2_0 
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Code Snippet 29 – temporal_features_2_2 
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Code Snippet 30 – temporal_features_4_0 
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