Theoretical analysis of the cylindrical-rectangular patch microstrip antenna in a compressible plasma

Jaswant Singh, Abhınav Dincsh, K B Sharma* and Raj Kumar Gupta
Deparment of Electrical Engmeerng. Malaviya Regional Engoneering College Jaipur-302 017, Indıa

Recesved 2 March 1992, acrepted 25 August 1902

Abstract

Radialion from a cylindrical - rectangular patch microstrip antenna in a compressible plasma is treated as a boundary value problem. The antemna is excited by d coaxial line The field distribution on the patch in determined by using cavity model of the analysis A lenearised hydrodynamic theory of plavma and vector wave lunction technique are used to deduce the expressions for electromagnetic and elecirodsoustic component of the far field, radiated power and radiation conductance of the antenna in compressible plasma. Numerical and graphical results are presented to illustrate the effect of plasma on radidton charactenstics of the antenna in TM T_{10} mode of excitation.

Keywords : Microstrip antenna, radidtoon properties, plasma

PACS Nos. : $41,10,11 v, 4735+1,52.40 \mathrm{l} \cdot \mathrm{d}, \mathrm{k} .440 \mathrm{O}$

1. Introduction

A number of applications require antennas conforming to a non-planar surlace. Primary amongst these are requirements for scanning antennas on arceaft, missiles or satellite, where aerodynamic drag is reduced for a llush mounted geometry and for conformal arrays on cylindrical or hemispherical surlace that provide some coverage advantage. Microstrip patch antennas are casily contormed to their mounting surlace, have small volume and light weight, which make them well-suted to aerospace applications [1, 2].

An antenna mounted on space vehicle encounters high density ionzed gas layer partucularly during their re-entry voyage [3]. It is a well known fact that when an antenna is immersed in an ionized medium, electroacoustic waves are also generated in addition to electromagnetic waves. These electroacoustic waves change the radiation properties of the antenna to a great extent [4-6].

In this paper, a theoretical analysis of a than cyliritrical-rectangular patch microstrip antenna in compressible plasma medium is presented. The far field expressions for radiation lields, radiated power and radiation conductance in electroacoustic (EA) and electromagnetic (EM) modes are obtained. The well established hydrodynamic theory of plasma and vector

[^0](C) 1993 IACS
wave function technique are used to derive expressions. The results are computed and ploued for different values of refractive index of plasma parameter.

2. Formulation of the problem and basic equations

The plasma in which the antenna under investigation is placed is assumed as isotropic, homogencous, lossless, and compressive medium of infinite extent. The antenna assumed to be brased to space potential so that there is no sheath formation around the antenna. Due to their relatively higher mass, the elfect of ions has been neglected and plasma is assumed as a contunuum of one component (electrons) fluid. Further, it is assumed that there is no static electric or magnetic field present so that the electroacoustic (EA) and electromagnetic (EM) modes are decoupled.

Considering these inital assumptions for plasma medium, and taking $\exp (\jmath \omega t)$ time variation, the basic equations which governs the present system are as follows [7]:
$\nabla \times E+J w \mu_{0} I I=-M$
$\nabla \times I I \quad J w \varepsilon_{(0)} E=J-n_{(0)} C^{\prime} V$
$J w m n_{0} V+n_{0} c E+m v_{0} \quad V n_{1}=0$
$\nabla\left(n_{0} v\right) \quad l w n_{1}=0$
where,
$J=$ electric current density,
$M=$ magnelic current density,
$m=$ electron mass .
$e=$ clectron charge,
$n_{0}=$ average electron charge density,
$n_{1}=$ vartation in electron charge density,
$V^{\prime}=$ mean electron velocity,
$v_{0}=$ r.m.s. thernal velocily of electron (phase velocity of EA waves).
Here, it is to be noted that in the case of incompressible plasma, the term mvo ${ }^{2} \nabla n_{1}$ occurring in eq. (3) is absent [8].

The geometry and co-ordinate system of the cylindrical-rectangular patch microstrip antenna immersed in a plasma medium are shown in Figure l. The dimension of the straight edge is $2 b$ and that of the curved edge is $2(a+h) \theta_{1}$ where ' a ' is the radius of the cylunder and 2θ, is the angle substanded by the curved edge. The thickness of the substrate is ' h ' and the relative permittivity is ε_{r} The region between the patch and cylindrical ground plane is considered as a cavity bounded by electric wall on the top and bottom, and by magnetuc wall on the side. For ' h ' much smaller than wavelength, only TM modes are assumed to be excited. Using cylindrical coordmates and following the usual cavity model approximation, the electric field inside the Gavity is assumed to have only $E \rho$ component
which is independent of ' ρ '. Source free electric field satisfies the wave equation.

$$
\begin{equation*}
\left(\frac{1}{\delta^{2}} \frac{\delta^{2}}{\delta \phi^{2}}+\frac{\delta^{2}}{\delta z^{2}}+k^{2}\right) E \rho=0 \tag{5}
\end{equation*}
$$

Figure 1. Geometry and coordinate system of the cylindncal-rectangular microstrip antenna in plasma
For a thin substrate satisfying $h \ll a$ we can further assume $\rho=a+h$ in eq. (1). Using this approximation, the eigen functions of E and eigen values of k satısfying the magnetic wall condition are given as [9],

$$
\begin{align*}
& E \rho=E \cos \left\{\frac{m \pi}{2 \theta_{1}}\left(\phi-\phi_{1}\right)\right\} \cos \left\{\frac{n \pi z}{2 b}\right\} . \tag{6}\\
& k^{2}=E \cos \left(\frac{m \pi}{2(a+h) \theta_{1}}\right)^{2}+\left(\frac{n \pi}{2 b}\right)^{2} . \tag{7}
\end{align*}
$$

The expressions for the resonant frequency is

$$
\begin{equation*}
f_{n m}=\frac{c}{2 \sqrt{\varepsilon_{r}}}+\left\{\left(\frac{. m}{2(a+h) \theta_{1}}\right)^{2}+\left(\frac{n}{2 b}\right)^{2}\right\}^{1 / 2} \tag{8}
\end{equation*}
$$

Using the initial assumptions and basic cquations in plasma and following the method described in [10], the general far field expressions of electric, magnetic and velocity fields in expressions of electric, magnetic and velocity fields in cylindrical coordinates are obtained as

$$
\begin{aligned}
E_{r}= & \int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty}\left\{-J a_{n} \Gamma H_{n}^{\prime}(\Gamma r)+\frac{n w \mu_{0}}{r} b_{n} H_{n}(\Gamma r)\right\}\right. \\
& \left.+\sum_{n=-\infty}^{\infty}\left\{C_{n} \Gamma_{n} H_{n}^{\prime}\left(\Gamma_{p} r\right)\right\}\left(\frac{e}{w^{2} m \varepsilon}\right) \exp (J n \phi)\right] \exp (-J L z) d L, \text { (9) }
\end{aligned}
$$

$$
\begin{aligned}
& E_{\phi}=\int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty}\left\{\frac{n L}{r} a_{n} \Gamma H_{n}(\Gamma r)+J w \mu_{0} \Gamma b_{n} H_{n}^{\prime}(\Gamma r)\right\}\right. \\
& \left.-\exp (J n \phi)+\left(\frac{J e}{w^{2} m \varepsilon}\right) \sum_{n=-\infty}^{\infty}\left\{\frac{n}{r} C_{n} H_{n}\left(\Gamma_{p} r\right)\right\}\right] \exp (-J L z) d L,(10)
\end{aligned}
$$

$$
E_{\xi}=\int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty}\left\{\Gamma^{2} a_{n} H_{n}(\Gamma r)\right\} \exp (J n \phi)-\left(\frac{J e}{w^{2} m \varepsilon}\right)\right.
$$

$$
\left.\sum_{n=-\infty}^{\infty}\left\{L C_{n} H_{n}\left(\Gamma_{p} r\right)\right\} \exp (J n \phi)\right] \exp (-J L z) d L
$$

$$
\begin{equation*}
H_{r}=\int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty}\left\{\frac{-n k e^{2}}{\mu_{0} w r} a_{n} I I_{n}(\Gamma r)-J L b_{n} \Gamma b_{n} H_{n}{ }^{\prime}(\Gamma r)\right\} \exp (J n \phi)\right] \tag{12}
\end{equation*}
$$

$\exp (-J L z) d L$,
$\mathrm{H}_{m}=\int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty}\left\{\frac{-J k e^{2}}{\mu_{0} w} \Gamma a_{n} H_{n}{ }^{\prime}(\Gamma r)+\frac{n L}{r} b_{n} \Gamma H_{n}(\Gamma r)\right\} \exp (J n \phi)\right]$

$$
\begin{equation*}
\exp (-J L z) d L \tag{13}
\end{equation*}
$$

$H_{\xi}=\int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty}\left\{\Gamma^{2} b_{n} H_{n}^{\prime}(\Gamma r)\right\} \exp (J n \phi)\right] \exp (-J L z) d L$,
and $\quad V_{r}=\int^{\infty}\left[\left(\frac{e}{w m}\right) \sum_{n=-\infty}^{\infty}\left\{L a_{n} \Gamma H_{n}{ }^{\prime}(\Gamma r)\right\} \operatorname{cxp}(J n \phi)\right.$

$$
\begin{align*}
& +\frac{J \mu_{0} e}{m r} \sum_{n=-\infty}^{\infty}\left\{n b_{n} H_{n}(\Gamma r)\right\} \exp (J n \phi) \\
& +\frac{J \varepsilon_{0}}{w m n_{0} \varepsilon} \sum_{n=-\infty}^{\infty}\left\{C_{n} \Gamma_{\rho} H_{n}^{\prime}\left(\Gamma_{\rho} r\right) \exp (J n \phi)\right] \exp (-J L z) d L . \tag{15}
\end{align*}
$$

In these expressions, a_{n}, b_{n} and c_{n} are arbitrary coefficients, $H_{n}(z)$ and $H_{n}{ }^{\prime}(z)$ are the Hankel function of second kind and its derivative of order n and argument (z) respectively. The functions Γ and Γ_{p} are given as

$$
\begin{align*}
& \Gamma=\left(k e^{2}-L^{2}\right) \tag{16}\\
& \Gamma_{p}=\left(k p^{2}-L^{2}\right) \tag{17}
\end{align*}
$$

where $L=k e \cos \theta$ or $k p \cos \theta$, $k e$ and $k p$ are propagation constant for EM and EA modes respectively and defined as $k e=k_{0} A, k p=\left(c / v_{0}\right) k e$ and $A=\left(1-w p^{2} / w^{2}\right)^{1 / 2}$
where, k_{0} is free space propagation constant, A is refractive index of plasma medium (plasma parameter), $w p$ is angular plasma frequency.

3. Evaluation of radiation field

To delernine the coefficients (a_{n}, b_{n} and c_{n}), we compare the tangential field computed from above expressions at $r=a$ with the assumed field on the surface of the cylinder and putting acoustic velocity component (V_{r}) equal to zero at the surface of the cylinder. The values a_{n}, b_{n} and c_{n} are obtained as

$$
\begin{gather*}
a_{n}=\frac{B_{1} e C_{3} e \bar{E}_{\phi} e+\left(B_{2} e C_{1} e-B_{1} e C_{2} e\right) \bar{E}_{2} e}{2 \pi\left[B_{1} e\left(A_{2} e C_{3} e-A_{3} e C_{2} e\right)-B_{2} e\left(A_{1} e C_{3} e-A_{3} e C_{1} e\right)\right]}, \tag{18}\\
b_{n}=\frac{\left(A_{3} e C_{1} e-A_{1} e C_{3} e\right) \bar{E}_{\phi} e+\left(A_{1} e C_{2} e-A_{2} e C_{1} e\right) \bar{E}_{2} e}{2 \pi\left[B_{1} e\left(A_{2} e C_{3} e-A_{3} e C_{2} e\right)-B_{2} e\left(A_{1} e C_{3} e-A_{3} e C_{1} e\right)\right]}, \tag{19}\\
C_{n}=\frac{1}{C_{3 p}}\left\{\frac{E_{2 p}}{2 \pi}-\frac{B_{1 p} C_{3 p} A_{3 p} \bar{E}_{\phi p}+A_{3 p}\left(B_{2 p} C_{1 p}-B_{1 p} C_{2 p}\right) \bar{E}_{q p}}{2 \pi\left\{B_{1 p}\left(A_{2 p} C_{3 p}-A_{3 p} C_{2 p}\right)-B_{2 p}\left(A_{1 p} C_{3 p}-A_{3 p} C_{1 p}\right)\right]}\right\},(20
\end{gather*}
$$

where $A_{1} e, B_{1} e, C_{2} e$ etc. are functions of θ and ϕ and values of these are given in appendix A. $\bar{E}_{\phi} e, \bar{E}_{\ell} \ell$ etc. are Fouricr transforms of the aperture fields. The values of these arc finally obtained as

$$
\begin{align*}
& \bar{E}_{2}(n, L)=\frac{E_{0} b}{2 \pi}\left[1-(-1)^{n} \exp (-2 j b L)\right] I_{1} \tag{21}\\
& \bar{E}_{\varphi}(n, L)=\frac{E_{0} b}{2 \pi a}\left[1-(-1)^{m} \exp \left(-2 j n \theta_{1}\right)\right] I_{2} \tag{22}
\end{align*}
$$

where, $\quad I_{1}=\int_{-2 b}^{0} \cos \left(\frac{m \pi \phi}{2 \theta_{1}}\right) \exp (-\operatorname{In} \phi) d \phi$,

$$
\begin{equation*}
I_{2}=\sum_{0}^{2 \theta_{1}} \cos \left(\frac{n \pi z}{2 b}\right) \exp (-J L z) d z \tag{24}
\end{equation*}
$$

The values of $\bar{E}_{2} e$ or $\bar{E}_{z p}$ can be obtained by putting $L=k e \cos \theta$ or $L=k p \cos \theta$ respectuvely in cq. (21). Similarly the values of $E_{\phi c}$ or $E_{\phi p}$ can be obtained from eq. (22).

Using these values of a_{n}, b_{n} and c_{n}, making suitable manipulations and transforming the expressions from cylindrical to spherical coordinates, the EM mode and EA mode far rone fields in plasma medium are oblaned as follows :

For EM mode .

$$
\begin{align*}
& E_{\theta}=\frac{-2 j}{r_{0}}\left(k e^{2} \sin \theta\right) \exp \left(-\jmath k e r_{0}\right) \sum_{n=-\infty}^{\infty} a_{n} j^{n} \exp (\jmath n \phi), \tag{25}\\
& E_{\phi}=\frac{-2 j w \mu_{0}}{r_{0}}(k e \sin \theta) \exp \left(-j k e r_{0}\right) \sum_{n=--\infty}^{\infty} b_{n} j^{n} \exp (j n \phi), \tag{26}\\
& H_{\Theta}=\frac{-2 \mu}{r_{0}}\left(k e^{2} \sin \theta\right) \exp \left(-j k e r_{0}\right) \sum_{n=-\infty}^{\infty} b_{n} j^{n} \operatorname{cxp}(j n \phi), \tag{27}\\
& E_{\phi}=\frac{-2 \jmath}{w \mu_{0} r_{0}}\left(k e^{2} \sin \theta\right) \exp \left(-j k e r_{0}\right) \sum_{n=-\infty}^{\infty} a_{n} j^{n} \exp (j n \phi), \tag{28}
\end{align*}
$$

For EA mode

$$
\begin{equation*}
E_{r, \prime}=\frac{2 e k p}{w^{2} m \varepsilon r_{0}} \exp \left(-\jmath K_{p} r_{0}\right) \sum_{n=-\infty}^{\infty} C_{n} n^{n} \exp (\jmath n \phi) . \tag{29}
\end{equation*}
$$

Figure 2. Vanation of EM inode field patcrin factor witim plasma parameter in : $\theta=90^{\circ}$ plane.

Using eqs. (25) to (29), the power pattern factors for EM and EA mode computed for TM_{10} mode of the excitation. The computations are done for a case taking resonant frequency 10 GHz , dielectric constant of substrate $\left(\varepsilon_{r}\right)=2.5$, thickness of the substrate $(h)=0.159 \mathrm{~cm}$ and radius of cylinder $(a)=1.12 \mathrm{~cm}$.

Figure 3. Vanation of EM mude field pattem factor with plasina parameter in $\phi=90^{\circ}$ plane.

Figure 4. Electroacoustic mode field patlerns in $\phi=90^{\circ}$ plane.

The pattern factor in EM mode is computed for three values of refractive index of plasma (plasma parameter) i.e. $A=1.0$ (free space, $A=0.6$ (plasma) and $A=0.2$ (plasma). The results are plotted in Figures 2 and 3 for $\theta=90^{\circ}$ and $\phi=90^{\circ}$ planes.

The electroacoustic mode pattern factor is computed for $A=0.6$ and $\phi=90^{\circ}$. A representative EA mode pattern are plotted for 20° interval (45° 七 65°) in Figure 4.

4. Radiated power and radiation conductance

The radiated power through upper half-space is found by integrating the complex Poynting vector over a large hemispheric surface. Thus radiated power in EM mode is defined as [5]

$$
\begin{equation*}
P e=\frac{A}{2 Z_{0}} \int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left[E_{\theta}^{2}+E_{\phi}^{2}\right] r_{0}^{2} \sin \theta d \theta d \phi, \tag{30}
\end{equation*}
$$

where Z_{0} is frec-space impedance.
Similarly the radiated power in EA mode is defined as [5]

$$
\begin{equation*}
P_{p}=\frac{A}{1-A^{2}} \frac{v_{0}}{c} \frac{1}{Z_{0}} \int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left(E_{r_{0}}\right)^{2} r_{0}^{2} \sin \theta d \theta d \phi \tag{31}
\end{equation*}
$$

Putting the values of $E_{\boldsymbol{\theta}}, E_{\phi}$ and $E_{r o}$ in cqs. (30) and (31), the values of $\mathcal{P}_{\boldsymbol{c}}$ and P_{p} are computed using Simpson's rule of integration for different values of plasma parameter.

The radiation conductance in EM and EA modes are defined as

$$
\begin{equation*}
G e=\frac{2 P e}{V_{0}^{2}} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
G p=\frac{2 p_{p}}{V_{o}^{2}} \tag{33}
\end{equation*}
$$

where V_{0} is the edge voltage.
Using the values of $P e$ and $P p$, the values of G_{e} and G_{p} are computed for different values of plasma parameter. The results arc plotted in Figure 5.

5. Results and discussions

As shown in Figures 2 and 3 and Table 1, a considerable effect of plasma is noted on the beam width of the cylindrical-rectangular microstrip antenna. The variation in beam width with plasma parameter is not uniform in $\phi=90^{\circ}$ and $\theta=90^{\circ}$ planes. In $\theta=90^{\circ}$ plane the beam width is increased as the plasma parameter is decreased. On the other hand, it is decreased in $\phi=90^{\circ}$ plane as the plasma parameter is decreased. Further, greater variation in the beam width is noted in case of $\theta=90^{\circ}$ plane.

A different performance of the antenna is also for the radiation in end-fire direction in $\phi=90^{\circ}$ and $\theta=90^{\circ}$ planes. A lower powes level of the antenna in the end-fire direction is

Table 1. Main features of the EM mode radiation patuems.

Plasma parameter A	Beam widh		Reduced power level in end fire direction (In dB)		Back lobe level $(\ln d B)$	
	$\phi=90^{\circ}$	$\theta=90^{\circ}$	$\phi=90^{\circ}$	$\theta=90^{\circ}$	$\phi=90^{\circ}$	$\theta=90^{\circ}$
1.0	100°	96°	-16.8	-9.2	-14.0	-14.1
0.6	96°	140°	- 20.4	-4.2	-9.0	-8.9
0.2	80°	$160{ }^{\circ}$	-27.5	-3.5	-3.4	-3.4

noted in $\phi=90^{\circ}$ plane, which is further reduced as the plasma parameter is decreased. While in $\theta=90^{\circ}$ plane the better radiation performance in the end-fire direction is further improved as the plasma parameter is decreased.

Figure 5. Variacion of radation conductance with plasma parameter in EM and EA modes.
The back lobe level of the antenna is almost same in both planes. Further, it is increased in both planes as the plasma parameter is decreased.

The EA mode pattern of the antenna shows a large number of lobes in a short angle range. A similar behaviour of the patterns is noted for other angle ranges, hence a representative pattern is plotted in Figure 4.

The radiation conductance of the antenna is varied differently with plasma parameter in EM and EA modes. In the EM mode the radiation conductance is decreased while in EA
mode it is increased for lower values of plasma parameter. The conductance in both modes have same values approximately at $A=0.68$.

The above discussed changes in the radiation characteristics of the antenna in plasma medium arc observed due to the different propagation constants in different conditions.

In EM mode patterns, the propagation constant depends on the plasma frequency which depends on plasma density. Therefore, for different plasma frequencies, different radiation patterns (beam width, side lobe, back lobe, etc.) are obtained.

In EA mode pattern, the large number of lobes is obtained. As indicated by Freeston and Gupta [11], this is due to the factor $c / v_{\mathrm{o}}\left(k_{p}=c / v_{\mathrm{o}} k e\right.$.) which occurred in the arguments of Hankel's functions of second kind and their derivatives in the expression for c_{n} in eq. (16).

In case of radiation resistance, as the plasma frequency reaches closer to source frequency, more power gocs in EM mode. That is why the power radiated in EM mode reduces as refractive index of plasma is reduced. This ultimately results in decrease in radiation conductance in EM mode and increase in radiation conductance in EA mode when the refractive index decreases.

6. Conclusions

The radiation properues of the cylindrical-rectangular patch microstrip antenna are predicted in the plasma medıum. A significant effect of plasma is noted on radiation patterns, radiated power, and radiation conductance of the antenna. The radation conductance of the antenna in EM mode is decreased due to the fact that as the plasma frequency increases more power goes in the EA mode.

Finally, the study is very useful for aerospace applications as this antenna can be casily flush mounted on the cylindrical surfaces of the acrospace vehicles.

Acknowledgment

The authors are indebted to Indian Space Research Organisation, Bangalore for providing the project grant and senior rescarch fellowships to JS and AD. The authors also gratefully acknowledge the useful suggestions given by Dr C L Arora, Head, Department of Physics, MREC, Jaipur and Dr V K Saxena, Department of Physics, Unıversity of Rajasthan, Jaipur.

References

[^1]
Appendix A

$$
\begin{align*}
& A_{1}=\frac{e L}{w m} \Gamma H_{n}(\Gamma a) \tag{A-1}\\
& B_{1}=\frac{j e \mu_{0}}{a m} n H_{n}(\Gamma a) \tag{A-2}\\
& C_{1}=\frac{j \varepsilon_{0}}{w m \eta_{0} \varepsilon} \Gamma_{p} H_{n}^{\prime}\left(\Gamma_{p} a\right) \tag{A-3}\\
& A_{2}=\frac{n L}{a} \Gamma H_{n}(\Gamma a) \tag{A-4}\\
& B_{2}=j w \mu_{0} \Gamma H_{n}^{\prime}(\Gamma a) \tag{A-5}\\
& C_{2}=\frac{j e n}{w^{2} \operatorname{ma} \varepsilon} H_{n}\left(\Gamma_{p} a\right) \tag{A-6}\\
& A_{3}=\Gamma^{2} H_{n}(\Gamma a) \tag{A-7}\\
& B_{3}=0 \tag{A-8}\\
& C_{3}=\frac{-j e L}{w^{2} m \varepsilon} H_{n}\left(\Gamma_{p} a\right) \tag{A-9}
\end{align*}
$$

[^0]: * Present address : Depanment of Physics, S S Jam Subodh Collcge, Japur, Jndia

[^1]: [1] K R Carver and J W Mink 1981 IEEE Trans AP-29 1
 [2] R E Munson 1974 IEEE Trans AP- 2274
 [3] R L Fante 1967 Radıo Scı 287
 [4] K M Chen 1964 Proc IEE 1111668
 [5] 11. Freestion and R K Gupta 1978 Proc IEE 118633
 [6] Jaswant Singh and R K Gupta 1991 I Inst Elect and Telecomm. Engg. 37285
 [7] J Carlun and R Mittra 1967 Radıo Sct 21327
 [8] K M Chen 1965 Radıo Scı 69D 243
 [9] C M Krowne 1983 IEEE Trans AP-31 194
 [10] J R Wail 1966 IEEE Trans AP- 14360
 [11] R K Gupta and IL Frecston 1973 Int. J Elecironacs 34545

