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A b s t r a c t : The thermal and e lastic  behaviour of mixed alkali halide system s 

of N aBr-N aCI, KBr-KCI and KI-KBr have been studied em ploying the Rydberg  

potential extending upto next nearest neighbours and including the van der 
W aals interactions. The isothermal bulk m odulus ( B t ) ,  the first and second  
order pressure derivatives (d B r Id P  and d^B jdP^) of isothermal bulk m odulus of 

these system s have been calculated. Com putations have further been extended 

to predict the Gruneisen parameter ( 7 )  and mode Gruneisen parameter (< j)  

using Slater, Dugdale and M cDonald and Free Volum e theories. The results are 
d iscussed  w ith the available interpolation of experimental data.

K e y w o rd s : M ixed alkali halides, Rydberg potential, pressure derivatives of 
bulk m odulus, Gruneisen parameter, mode Gruneisen parameter.
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I. Introduction
Mixed crystals or solid solutions owe their scientific and technological importance 
because of the fact that most of the physical properties they exhibit differ 
significantly from their parent crystals (Kamiyoshi and Nigara 1971, Subbarao 
and Haribabu 1980). The fact that the microhardness of mixed alkali halide 
crystals is much greater than that for the pure or component crystals, makes them 
very suitable materials for use in laser windows. One of the striking behaviours 
of mixed crystals of alkali halides is the appearance of a first order Raman spectrum 
which remains totally absent In the component pure crystals. A considerable 
amount of work regarding the physical properties of mixed crystals has been done 
during last few decades. An up-to-date survey on the physical properties of 
mixed crystals of alkali halides has recently been presented by Sirdeshmukh and 
Shrinivas (1986). There have been several attempts (Kamiyoshi and Nigara 1971, 
Ferraro et al 1970 and Varotsos 1980) to study the physical properties of mixed
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crystals through experiments but theoretical approach based on inter-ionic 
potential has bean quite seanty. The inter-ionic potential model adopted by 
Fancher and Barsch (1969) is very simple as it considers only the overlap repulsion 
between nearest neighbours and completely ignores the van der Waals interactions. 
Such a crude model does not yield with high precision the values of cohesive 
energy even for pure alkali halide crystals (Tosi 1964, Shanker et al 1980 and 
Jain 1983). Several potential functions for short range overlap repulsion have 
been proposed to explain the various thermodynamic and lattice dynamical 
properties of the ionic crystals (Tosi 1964, Catlow et al 1977, Sangster and 
Atwood 1978, Shanker and Kumar 1987) in addition to the classical rigid ion 
approach (Born and Huang 1954).

Rydberg (1931) proposed a short range potential function of the form

^(r) =  X exp( -  r/p) -  pr exp( -  r/p) ( 1)

where, r is the inter-ionic separation at no external pressure, x and p  are the 
constants and p representing the softness parameter for a given diatomic crystal, 
in order to explain the cohesive energy of metals. Rydberg potential which 
remained ignored for a pretty long time differs from all other conventional forms 
in the sense that it not only assumes the repulsive interaction due to the overlap 
of orbital electrons when compressed but also accounts for the attractive inter
action arising from the mutual interaction of the nucleus of one ion w ith the 
orbital electrons of the other ion as pointed out by Dick and Overhauser (1958). 
Gupta and Agrawal (1982) have recently, reviewed Rydberg potential to explain 
a few properties of alkali halides, constraining the potential only upto nearest 
neighbour contribution and omitting the contribution of van der Waals interaction. 
Gupta and Sipani (1990a) extended this potential upto next nearest neighbour 
contributions taking into account the three-body interactions and van der Waais 
dipole-dipole and dipole-quadrupole interaction to study the various thermal and 
elastic properties of pure alkali halide crystals. The method of evaluation and the 
values of the constants x, p  and p appearing in eq. ( 1) are given in detail in our 
earlier work (Gupta and Sipani 1990a) and therefore, need not be repeated. Sipani 
and Gupta (1990b) in their recent communication, have extended the applicability 
of Rydberg potential to study the volume dependence of dielectric constant of 
alkali halide crystals.

In the present work, we have examined the applicability of Rydberg potential
to predict the various thermal and elastic properties of the alkali halide mixed 
crystais extending it upto next nearest neighbours and including the van der Waals 
contributions. The mathematical details of the theory are given in Section 2 and 
the results are discussed in Section 3 of the paper.
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2. Theory

The pseudo unit cell niodel (Chang and M itra 1968) for mixed crystals assumes 
complete randomization of ions and treats all unit cells in the mixed crystal 
identical. For a mixed crystal of A6 and AC mixed in the molar proportions of x 
and ( 1 - x )  respectively, the pseudo unit cell nK>del, maintains its symmetry and 
contains tw o atoms, one of A and the other of a complex hypothetical atom 
x B + (1 -x )C . X-ray diffraction measurements on mixed crystals do indeed confirm 
unique unit cell dimensions throughout the composition range (Ferraro et al 1971 
and Shrinivas and Sirdeshmukh 1986). The expression of lattice energy of the 
pseudo unit cell as a mixed crystal can be written as

m ___«{yZ”e* + ^ ( 0  • xCab +  ( 1 - x)Cac
f“

_S -_  > /x (1 -x ) Cbc_ xDab +  ( 1 - x )Da c _T __ «/x( 1 - x)Dbc 
r« f8

where, the first term on the right hand side of eq. (2) represents the Madelung 
energy, the fourth and sixth terms represent the van der Waals dipole-dipole and 
dipole-quadrupole interactions between the tw o different anions B and C 
respectively. Cbc and Dbc can be taken as the geometric mean of Cbb and Ccc 
and Dbb and Dec. and T— represent the appropriate lattice sums in NaCI 
structure and are given in Tosi (1964). Cab, Cac and Dab, Dac are the dipole- 
dipole and dipole-quadrupole van der Waals coefficients for the component crystals 
respectively, r is the nearest neighbour (cation-anion) distance of the mixed crystal 
calculated from Vegard's law (Vegard 1921)

r = x r i- f - (1 -x ) r ,. (3)
Zen (1956) pointed out that if the difference between r^ and is very small, 
eq. (3 ) is indistinguishable from Retger's rule. We have however, calculated the 
values of r from eq. (3) ignoring the Retger's rule as the later applies strictly to an 
ideal crystal where the volumes are assumed to be additive, ^ufr), representing 
the short-range potential function for a mixed system can be written as

M r ) = x^AB(r) +  (1 -  x)^Ac(r) • (4)
where, ^As(r) and ^ac(<‘) are the repulsive potential function for pure or component 
crystals A*B~ and A'̂ C" respectively.

Rydberg's short-range repulsive interaction for a pure alkali halide crystal 
extended upto second neighbours can be w ritten as

^(r)=ni[A exp

+ £ if  
2 I

X exp

-r » - —
p

1 -p f  exp 1
1 P

/2r+-r
I  -p r' exp ( 2 r . - , y

' P+ r

|2 r_-r ')-p r'e x p |f2r_-r'Vl
( P- 1 p_ )1 (5)
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where n^ and ng are the coordination numbers being 0^=6 and f»a =  12 for NaCI 
structure, r is the inter-ionic separation and r '  is the next nearest neighbour distance. 
The values of r+ and r_, the cation and anion radii respectively, have been taken 
from Sysio (1969), A and /x are constants. The parameters A, and p can be 
evaluated by the method given in Gupta and Agrawal (1982). The values of the 
softness parameter p obey the additivity rule (Shanker and Kumar 1987)

P = p +  +  p -  ( 6 )

Following Born and Huang (’1954), the short-range force constant A can be 
written as

A = ̂ [f '(r)+ ^^ '(r)]= 3 k rB , (7)

where k = 2  for NaCI structure.
Definition of the isothermal bulk modulus provides

which on differentiation w ith respect to P yields 

dP P '

subsequent differentiation of eq. (9) w ith  respect to P renders

d®Br _ P" _ V P " ' V(P")

(8)

(9)

( 10)dP* (P')* ( p y  ( p y

where, P = -* j^ a n d , P' P" and P '"  represent the first, second and third order dv
derivatives of P, w ith respect to volume at constant temperature.

Gruneisen parameter y describing the thermodynamic behaviour of

the crystals was first evaluated by Slater (1939) from the theory of elasticity. His 
expressions for the vibrational velocities are valid only when the solid is under 
zero external pressure. Dugdale and McDonald (1953) derived a more general 
expression for y  by including the effect of pressure. Ur^fortunately, these theories 
do not take into account the variation of Poisson's ratio w ith volume (Pastine 1965). 
Vaschenkq and Zubarev (1963) developed a formulation for y using the free volume 
theory. Recently Migault and Romain (1977) have proposed a unification of these 
theories taking into account the variation of Poisson's ratio w ith the volume and 
evaluated a common formula for y giving

(4-3s)_Vd»(PV*)/dV* 
6 5 d(PV*)/dV (11)
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where P is the pressure at volume V, at absolute zero of temperature arul s 
is the parameter which takes for all solids the value zero in Slater's theory, 
2 4g in DM theory and g in the free volume theory.

The mode Gruneisen parameter q at zero external pressure can be expressed as 
d In y 
dlrTV<1=

( 12)

3. Results and discussion

The potential parameters (A and m) and softness parameter (p+ and P.) for parent 
crystals under consideration are presented in T a b le t. We have used the values 
of van der Waals coefficients from Shanker and Rajoria (1982). The calculated

Table I. C alcu lated  va lu e s of so ftness param eters and p~) a long- 

w ith  the Rydberg potential param eters A and m (appearing in eq. (5 ))  for 

parent crystals.

C ry sta ls
p*
A

p-
k

A

( lO - '" )

P

(1 0 - ' )

N aCI 0 .0 4 1 3 0 .3 9 4 1 .0 7 5 0 .2 5 8

NaBr 0 .0 4 1 3 0 .4 2 2 1 .0 9 0 0 .2 3 4

KCI 0 .0 3 8 5 0 .3 9 4 1 .0 0 3 0 .1 9 6

KBr 0 .0 3 8 5 0 .4 2 2 0 .9 8 5 0 .1 8 2

K1 0 .0 3 8 5 0 .4 4 9 0 .8 3 8 0 .1 3 3

values of nearest neighbour distance (r), isothermal bulk modulus (B,.), first and 
second order pressure, derivatives of isothermal bulk modulus (dBj./dP and d*Bj./dP*), 
Gruneisen parameter (y) and mode Gruneisen parameter (q) for (NaBr)« (N aC I)d -.), 
(KBr), (KCI)d_„ and (K l), (KBr)(i_„ mixed crystals are presented In Tables 2 - 7 .  
The composition dependence of bulk modulus for (KBr),(KCI)(i_,) mixed system 
has been studied by Varotsos (1980a, b). The values predicted using his 
formulation for rest of the systems considered, are found in good agreement 
w ith our calculated values of bulk modulus.

Pastine (1965) for an isotropic solid has considered in the classical range 
of temperature, the Slater's theory to be a valid approximation to the Gruneisen 
parameter provided that the Poisson's ratio is assumed invariable. However, 
this assumption is hardly justifiable for any real solid under hydrostatic stress. 
Dugdale and McDonald (1953) attributed the inexactness of Slater's formula for y 
to the neglect of the theory of finite strain. According to the theory of finite
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strain, the Slater formula is valid for an isotropic solid, provided Poisson's 
ratio is considered as independent of volume. Dugdale and McDonald (1953)

T a b le  2. C a lcu la ted  va lues of nearest neighbour d istance  (r ) , isotherm al bu lk  

m odulus ( B r )  and first and second order pressure derivatives of isotherm al bulk  

~  a longw ith the interpolated experim ental data for (N aB r)x

(N a C I)(i~ x ) m ixed crysta ls .

M olar co n 
centration  
of N aBr 
(% )

r

A
C al
(a)

Bt
(10^»Nm-

C af
(eq 8)

') dBr/dP
Expt

(b)
C a l

(eq. 9)
Expt

(c)

-d^BrldP^
(1 0 -p a ’ O

C al
(eq. 10 )

0
10
17

26

36
46

55

7 0

83

100

2 .8 2

2*837

2.849

2.864

2.881

2 .898

2 .9 1 3

2 .9 3 8

2.961

2 .9 8 9

0 .2 5 9  

0 .2 2 4  

0 .2 1 6  

0 208  

0.201 
0 .1 9 7  

0 .1 9 5  

0 .1 9 6  

0 .1 9 9  

0 .2 1 8

0 .2 3 7

0 .2 3 3

0 .2 3 0

0 .2 2 6

0.222
0 .2 1 8

0 .2 1 4

0 .2 0 7

0.202
0 .1 9 5

4 .4 8

4 .5 9

4 .6 2

4 .65

4 .68

4 .7 0

4 .7 0

4 .69  

4.67  

4 .5 8

5 .38

5 .4 4

2 0 .3

25 .8

27 .3

27 .8

3 0 .5

31 .3

31 .7

3 0 .8

2 9 .5

2 6 .6

(a ) Interpolated using eq. (2 ) from experim ental va lues for parent crysta ls , taken from To si 

(1 9 6 4 ).
(b ) C alcu lated  using  Varotsos (1 9 8 0  a, b) form ula, the experim ental data for parent crysta ls  

given in Sm ith  and C a in  (1 9 7 5 ).

(c )  Roberts and Sm ith  (1 9 7 0 ) .

T a b le  3. V a lu es of Q runeisen  param eter (7) and m ode G runeisen  param eter 

(q )  ca lcu lated  from eqs. (1 1) and (1 2 ) respectively  for (N a B r)v (N a C I)( i-x )  

mixed crysta l using  S later, D ugdale and M cD onald  (D M ) and Free Volum e (F V )  

th eo ries a longw ith  the availab le  experim ental data for parent crysta ls .

M olar co n 
centration  
of N aBr  
(% )

Slater DM FV Expt*
(a)

S later DM FV Expt*
(a )

0
1 0
17

26

36

46

55
7 0

83
100

2 .0 8

2 .13

2 .1 5

2 .1 6

2 .17

2 .1 8  

2 ,1 8  

2 .1 8  

2 .1 7

2 .1 3

1 .7 7

1 .8 0

1.81

1 .82

1 .84

1 .8 5

1 .8 5

1 .8 5  

1.83  

1.80

1 .44

1 .4 6

1 .48

1 .4 9  

1 51

1.51  

1.57

1.51

1 .5 0  

1 .4 8

1.61

1 .64

1 .17

1 .3 6  

1 .38

1 .4 0

1.41

1.41

1 .4 2  

1 39

1 .36

1 .43

0 .7 8

0.88
0 .9 0

0 .9 2

0 .9 4

0 .9 4

0 .9 5

0 .9 2

0.88
0 .9 8

0 .37

0 .4 9

0.51

0 .5 4

0 .5 6

0 .56

0 .56

0 .5 2

0 .4 8

0 .5 4

1 .1 4

1 .4 6

(a) Shanker and Singh (1982).
•The values of y and q have been calculated from the thermoelastic data.



therefore, introduced some corrections to Slater formula providing a better 
approximation for y. Considering the above facts Pastine (1965) presented a

T a b le  4. Calcu lated  va lues of nearest neighbour d istance  (r ) , isotherm al bulk  

m odulus (6 r )  and first and second order pressure d erivatives of isotherm al bulk  

m odulus (dB^/cfP and a longw ith the interpolated experim ental data

for (K B r)x (K C I)( i-x )  mixed crystal.
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M olar co n 
centration  
of KB r ( »)

Bt
(lÔ ^Nm'*) d B x f d P

A

(a)
Cal

(eq . 8)
Expt
(b )

C a l
(e q . 9 )

Expt
(c )

C al
(o q .1 0 )

0 3 .147  0 .1 7 8 0 .1 7 4 4 .5 0 5 .4 6 3 1 .2

6 3 .1 5 6  0.171 0 .1 7 2 4 .5 4 3 4 .2

13 3 .167  0 .1 6 5 0 .1 7 0 4 .5 6 35 .8

38 3 .2 0 4  0 .1 5 4 0 .1 6 3 4 .6 0 3 9 .5

54 3 .2 1 6  0.151 0 .159 4 .6 0 4 0 .2

61 3 .239  0 .1 4 9 0  157 4 .6 0 4 0 .5

71 3 254  0 .1 4 8 0 .1 5 4 4 .6 0 4 0 .5

85 3 .2 7 5  0 .1 4 8 0 .1 5 0 4 .5 8 39 .7

100 3 .2 9 8  0 .1 4 8 0 .1 4 6 4 .6 4 5 .47 4 1 .8

(a) Interpolated using  eq. (2 ) from experim ental va lues for parent crystals taken from T o si

(1 9 6 4 ) .

(b ) C alcu lated using  V arotsos (1 98 0 a , b) form ula, the experim ental data for parent crysta ls
given in Sm ith  and C ain  (1 9 7 5 ). 

(c )  Roberts and Sm ith (1 9 7 0 ).

formulation for y for cubic crystals under hydrostatic pressure taking into account
the effect of variation of Poisson's ratio w ith volume. In addition. Pastine's

T a b le  5. V a lu es of G runeisen  p aram eter ( 0  and m ode G runeisen  param eter (q) 

ca lcu lated  from eqs. (1 1 ) and (1 2 ) , resp ective ly  for (K B r ) 4 K C I ) ( i - x i  using  

S later, D ugdale and M cD o n ald  (D M ) and Free V o lum e (F V ) th eo ries alongw ith  
the ava ilab le  experim ental data for parent crysta ls .

M olar con-
centration  
of K B r (% )

Slater DM FV Expt*
(a)

S late r DM FV Exp t.*
(a )

0 2 .0 8 1 .7 5 1 .4 2 1 .4 9 1 .3 5 0 .8 8 0 .5 0 1 .5 3

6 2 .1 0 1.77 1 .4 4 1 .3 9 0 .9 2 0 .5 4

13 2.11 1 .7 8 1 .4 5 1 .4 0 0 .9 4 0 .5 6

38 2 .1 3 1 .8 0 1 .47 1 .43 0 .9 6 0 .5 9

54 2 .1 4 1 .8 0 1 .4 7 1 .4 2 0 .9 5 0 .5 8

61 2 .1 3 1 .8 0 1 .47 1 .4 2 0 .9 5 0 .57

71 2 .1 3 1 .8 0 1 .4 7 1.41 0 .9 4 0 .5 6

8 5 2 .1 2 1 .7 9 1 .4 5 1 .3 8 0.91 0 .6 3

100 2 .1 5 1 .8 2 1 .4 9 1 .5 0 1 .4 4 0 .9 7 0 .6 0 1 .1 4

fa) Shanker and Singh (1982).
*The values of r and q have been calculated from the thermoelastic data.
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T a b le  6. C a lcu lated  values of neighbour d istance (r ) , isothermal bulk m o dulus  

(B r)  and first and second order derivatives of isotherm al bulk m odulus (dBr/<fP 

and d'^Br/dP®) alongw ith the interpolated experim ental data for {K I)x (K B r )d -x )  

m ixed crysta ls .

M olar co n 
centration  
of Kl (% )

r

Cal
(a)

Bj»
(10“»NmO dBxJdP

Cal
(eq. 8)

Expt
(b)

( 1 0 - ’ p a - ‘ )
Cal

(eq. 9)
Expt
(c)

Cal
(oq. 10)

Expt(d)
0 3 .2 9 8 0 .153 0 .146 4 .6 4 5.47 4 1 .8

10 3 .3 2 2 0 .136 0 .1 4 3 4 .63 44 .5

15 3 .3 3 3 0 .1 3 2 0 .1 4 2 4 .6 6 46 .7

22 3 .350 0 .1 2 8 0 .1 4 0 4 .6 8 48 .8

29 3 .3 6 6 0 .1 2 4 0 .1 3 8 4 .7 0 50 .5

4 0 3 .3 9 2 0 .1 2 0 0 .1 3 4 4 .7 3 52 .7

48 3.411 0 .1 1 8 0 1 3 2 4 .7 4 53.7

60 3.439 0 .116 0 .1 2 8 4.81 58.5

80 3 .4 8 6 0 .1 1 5 0 .1 2 2 4.72 51.5

90 3 .5 1 0 0 .1 1 6 0 .1 1 9 4 .7 0 4 9 .6

100 3 .5 3 3 0.121 0 .1 1 6 4 .6 4 5 .56 44 .8 53 +  15

(a) Interpolated using  eq. (2 ) from experim ental va lues for parent crystals, taken from T o si

(1 9 6 4 ).
(b) C alcu lated  using Varotsos (1 9 8 0 a , b) form ula, the experim ental data for parent crysta ls

given in Sm ith and C a in  (1 9 7 5 ).

(c ) Roberts and Sm ith (1 9 7 0 ).
(d ) Barsch  and Sch u ll (1 9 7 1 ).

T a b le  7. V a lu es of G runeisen  param eter (*y ) and mode G runeisen  parameter (q )

calculated from eqs. (1 1) and (1 2 ) respectively , for (K I)x (K B r)( i_x ) using S later,

D ugdale and M cDonald (D M ) and Free Volum e (FV ) theories alongw ith the

available experim ental data for parent crysta ls .

M olar co n  7 Q

centration Slater D M  FV Expt* Slater DM FV Expt*
of K l (% ) (a) (a)

0 2 .1 5 1 .8 2  1 .4 9 1 .50 1 .44 0 .97 0 .6 0 1 .14

10 2 .1 5 1 .8 2  1 .4 8 1.41 0 .9 4 0 .5 9

15 2 .1 6 1 .83  1 .49 1 .4 2 0 .9 5 0 .5 7

22 2.17 1 .8 4  1.51 1 .43 0 .9 6 0 .5 8

29 2 .1 8 1 .85  1 .5 2 1 .4 4 0 .9 7 0 .5 9

4 0 2 .2 0 1.87  1 .5 3 1 .44 0 .9 7 0 .5 9

48 2.21 1 .87  1 .54 1 .44 .  0 .97 0 .5 9

60 2 .2 4 1 .9 0  1.57 1 .52 1 .06 0 .6 9

80 2 .1 9 1 .8 6  1.53 1 .35 0 .8 7 0 .47

90 2 .18 1 .85  1.51 1 .32 0 .83 0 .4 2

10 0 2 .15 1 .82  1 .49 1 .53 1 .26 0 .7 6 0.341 0 .9 9

(a) Shanker and Singh (1982).
•The values of > and <j have been calculated from the thermoelastic data.

8
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formulation for y was constructed solely from the knowledge of the energy of 
an atom as a function of the lattice parameter at absolute zero I.e . ignoring the 
vibrational energies. It is observed from Tables 3, 5 and 7 that the values of 
Gruneisen parameter y calculated from free volume (FV) theory are comparatively 
in better agreement w ith experiment for pure crystals as it considers the variation 
of the Poisson's ratio w ith volume. The values of mode Gruneisen parameter 
(q) calculated from DM and FV theory are in general, lower while those calculated 
from Slater's theory are comparatively closer to the corresponding thermodynamic 
values. The similar type of conclusions have been reached by Sipani and Gupta 
(1989) while discussing the properties of mixed alkali halide crystals and by 
Gupta and Sipani (1990b) while discussing the similar properties of alkali halide 
pure crystals w ithin the framework of compressible ion theory. We therefore, 
conclude that Rydberg potential is quite suitable to predict the elastic and ther
modynamic behaviour of mixed alkali halide crystals.
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