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Abstract

Nonlinear state space models occupy a predominant position in statistical stud-

ies. They are widely used in various fields such as economics, finance, ecology and

epidemiology. However, such models may be problematic when it comes to statistical

inference, due to the fact that they could be quite sensitive to small variations in

system states and parameters. In this dissertation, we present three estimation pro-

cedures and their respective algorithms for the statistical inference of such nonlinear,

non-Gaussian state space models. Also, simulation studies are carried out to evaluate

the performance of these methods. At the end, we analyze the time series of forest

fire counts that annually occurred in Canada using the proposed methodologies.

Keywords: Nonlinear, State Space Models, Particle Filter, Iterated Filtering, Ap-

proximate Bayesian Computation, Particle Markov Chain Monte Carlo, Forest Fires
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Chapter 1

Introduction

1.1 Background

Since the breakthrough article of Kalman (1960) and the early development in engi-

neering, state space models have become an increasingly significant tool for research in

a wide range of areas in recent years. Some specific examples are biology (Wilkinson,

2011), control (Ljung, 1999), epidemiology (Keeling and Rohani, 2008) and finance

(Tsay, 2005; Hull, 2009). Formally, state space models are also known as partially ob-

served Markov process models, or hidden Markov models. Their constructions usually

are intended to reflect the real world phenomena based on certain physical, chemical,

or economic principles. As in most cases, only noisy or incomplete observations can



1.2 Nonlinear State Space Models 2

be observed, while the latent system states or the parameter spaces generally remain

unknown.

It can be said that, nonlinear state space models are a practical and flexible op-

tion to describe different type of systems. Stochastic dynamical models like nonlinear

state space models can satisfactorily be used under a wide range of potential causal

mechanisms. However, this kind of models lead to many additional complications

in terms of their statistical inference. It may happen that the nonlinear property

invalidates the use of conventional statistical methods. Therefore, in the past decade,

the development of computational methodologies and algorithms has increased sub-

stantially.

1.2 Nonlinear State Space Models

In general, state space models consist of an unobserved stochastic state process, and

an observation process. The implicit state process connects to the observed data via

an explicit, potentially unknown, measurement model.

Now consider a time series of observations {Y1:n : Y1, ..., Yn}, consisting of n obser-

vations made at times t1, ..., tn, and let {X1:n : X1, ..., Xn} denote the state process.

The status of the state at a given point in time is latent and unobservable, and the
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statistical behavior of this hidden process is determined by the density hXn|Xn−1 and

the initial density hX0 . On the other hand, the measurement process is modeled by

the density hYn|Xn .

Figure 1.1: State Space Models Schematic

The whole processes can be depicted as the above Figure 1.1, which shows the

dependence among model variables. Under the Markovian assumption, the model

can be simply expressed as the follows, for all n,

Xn|Xn−1 ∼ hXn|Xn−1 ,

Yn|Xn ∼ hYn|Xn .

Because of the Markovian property of the process and the relationship between

X1:n and Y1:n, we know that for the state process, hXn|X0:n−1,Y1:n−1 = hXn|Xn−1 . More-

over, the measurements Yn depend only on the state at that time, Xn, which is
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hYn|X0:n,Y1:n−1 = hYn|Xn . Let θ be a p−dimensional real-valued parameter, θ ∈ Rp.

The state space structure implies that the joint density is determined by the ini-

tial density, hX0(x0; θ), together with the conditional transition probability density,

hXi|Xi−1
(xi|xi−1; θ), and the measurement density, hYi|Xi(yi|xi; θ), for i = 1, · · · , n. In

particular, we have

hX0:n,Y1:n(x0:n, y1:n; θ) = hX0(x0; θ)
n∏
i=1

hXi|Xi−1
(xi|xi−1; θ)hYi|Xi(yi|xi; θ)

This kind of nonlinear stochastic dynamical systems is widely used to model real

data. In this case, the well known Kalman filter method may not be suitable for the

statistical inference because of its assumptions. Instead, alternative mathematical

procedures to analyze these nonlinear state space models have been proposed. In this

context, many procedures have been proposed in recent years, leading to a prosperous

atmosphere in the research of nonlinear state space models. In this thesis, we focus

on the inference methods for nonlinear state space models. We present the estima-

tion procedures and their algorithms including, iterated filtering (IF), approximate

Bayesian computation (ABC) and particle Markov chain Monte Carlo (PMCMC).
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1.3 Some Review of Literature

Over the past decade, various researchers have made significant contributions to-

wards the development of methodologies for statistical inference for state space models

(Shumway and Stoffer 2006), i.e, partially observed Markov process models (Ionides

et al. 2006; Bretó et al. 2009). Sequential Monte Carlo, also known as particle filter

(Doucet et al. 2001; Arulampalam et al. 2002; Cappé et al. 2007) provides a standard

method to obtain the log likelihood for this kind of stochastic dynamic models. Bretó

et al. (2009), He et al. (2010) introduced procedures whose main feature is that the

full density does not need to be explicitly evaluated and only a simulator is required

for the state space model.

Generally speaking, approaches that work with the full likelihood function are

called full-information methods. On the other hand, approaches not based on the full

likelihood are called feature-based procedures. Each method may be categorized as

full-information or feature-based, Bayesian or frequentist. Both Bayesian (Liu and

West 2001; Toni et al. 2009) and frequentist (Ionides et al. 2006; Poyiadjis et al.

2006) approaches to simulation likelihood-based inference via sequential Monte Carlo

have been proposed. The maximum likelihood approach of Ionides et al. (2006, 2010)

offers a possibility to carry on inference for general nonlinear stochastic state space
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models.

1.4 Organization of Thesis

In this thesis, we focus on the inferential procedures and algorithms for nonlinear

dynamic state space models. We evaluate the performance of these methods through

simulation studies. Also, we conduct a case study applying nonlinear state space

models to the analysis of time series data of annual forest fire counts in Canada.

The structure of this thesis is organized as follows. In Chapter 2, we present four

algorithms for the statistical inference of nonlinear state space models. The first algo-

rithm is intended to evaluate the likelihood, the other three are parameter estimation

procedures. Chapter 3 constructs a nonlinear state space model and explores the

performance of the discussed methods through simulation studies. Chapter 4 illus-

trates the implementation of the model by analyzing the annual numbers of forest

fires through Canada as an application. Finally, summary of the entire research and

some future work is discussed in Chapter 5.



Chapter 2

Methodologies and Algorithms for

Nonlinear State Space Models

Statistical inference for state space models has been an active area of research. Yet,

substantial restrictions or strict hypotheses upon the form of models have to be

placed in advance when it comes to most existing inference methods. In nonlin-

ear, non-Gaussian situations, some methods such as the Extended Kalman filter or

the Gaussian sum filter are proposed to approximate the estimation for filtering and

smoothing problems. However, the accuracy of these approximation, in most situ-

ations, may be an issue. Sequential Monte Carlo (SMC) methods have emerged as

the most popular and successful alternative to the Kalman filter extensions. Many
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variations and elaborations to SMC have been proposed. Below, we will discuss four

procedures and their respective algorithms that can be used for estimation, predic-

tion and forecasting. These procedures are sequential Monte Carlo (also known as

particle filter), iterated filtering (IF), particle Markov chain Monte Carlo (PMCMC),

and approximate Bayesian computation (ABC).

2.1 Sequential Monte Carlo (Particle Filter)

Sequential Monte Carlo (SMC) methods, also known as particle filter, have far-

reaching and powerful applications in modern time series analysis problems involv-

ing state space models. Particularly, they are able to handle those nonlinear, non-

Gaussian state space models, since particle filters algorithms do not rely on local

linearization techniques or functional approximations. Instead, they are based on a

set of simulations, which provides a convenient and attractive approach to computing

the posterior distributions.

In the model we discussed in Section 1.2, we have that Xn|Xn−1 ∼ hXn|Xn−1 and

Yn|Xn ∼ hYn|Xn . Consider the parameter value θ ∈ Θ and define

Xn|(Xn−1 = x) ∼ hXn|Xn−1 ≡ fθ(·|x)

Yn|(Xn = x) ∼ hYn|Xn ≡ gθ(·|x)
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where fθ(·|x) is the transition probability density for some static parameter θ and

gθ(·|x) is the marginal density probability. For the state process {Xn;n ≥ 1}, the

initial density is X1 ∼ πθ(·).

The goal is to perform Bayesian inference conditional on the observations {y1:N =

(y1, · · · , yN)} for N ≥ 1. When θ ∈ Θ is a known parameter, the posterior density

πθ(x1:N |y1:N) is proportional to πθ(x1:N , y1:N). That is πθ(x1:N |y1:N) ∝ πθ(x1:N , y1:N)

where

πθ(x1:N , y1:N) = πθ(x1)gθ(y1|x1)
N∏
n=2

fθ(xn|xn−1)gθ(yn|xn).

If θ ∈ Θ is unknown, we denote π(θ) as the prior density of θ. Then, the posterior

density is proportional to the joint density

π(θ, x1:N |y1:N) ∝ πθ(x1:N , y1:N)π(θ).

The difficulty of statistical inference for nonlinear, non-Gaussian state space mod-

els is that the densities πθ(x1:N , y1:N) and π(θ, x1:N |y1:N) generally do not have a closed

form expressions. Therefore, these densities need to be approximated or evaluated

numerically.

Now we can factorize the likelihood in the following way:

L(θ) = πθ(y1:N)

=
N∏
n=1

πθ(yn|y1:n−1) (2.1)



2.1 Sequential Monte Carlo (Particle Filter) 10

Noted that

πθ(yn|y1:n−1) =

∫
xn

πθ(yn, xn|y1:n−1)dxn

=

∫
xn

πθ(xn|y1:n−1)πθ(yn|xn, y1:n−1)dxn

=

∫
xn

πθ(xn|y1:n−1)πθ(yn|xn)dxn, (2.2)

we have

L(θ) =
N∏
n=1

∫
πθ(xn|y1:n−1)πθ(yn|xn)dxn.

Moreover, we can obtain the prediction formula using the Markovian property as

πθ(xn|y1:n−1) =

∫
xn−1

πθ(xn, xn−1|y1:n−1)dxn−1

=

∫
xn−1

πθ(xn−1|y1:n−1)πθ(xn|xn−1, y1:n−1)dxn−1

=

∫
xn−1

πθ(xn−1|y1:n−1)πθ(xn|xn−1)dxn−1 (2.3)

The filtering formula can be obtained by using the Bayes’ theorem as

πθ(xn|y1:n) = πθ(xn|yn, y1:n−1)

=
πθ(yn|xn, y1:n−1)πθ(xn|y1:n−1)

πθ(yn|y1:n−1)

=
πθ(xn|y1:n−1)πθ(yn|xn)∫

xn
πθ(xn|y1:n−1)πθ(yn|xn)dxn

. (2.4)

Overall, the prediction and filtering formulas give us a recursion. Specifically,

the prediction formula gives the prediction distribution at time n using the filtering
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distribution at time n− 1, and the filtering formula gives the filtering distribution at

time n using the prediction distribution at time n, for all n = 1, 2, · · · , N .

Now denote XF
n−1,j, j = 1, . . . , J as a set of J points drawn from the filtering

distribution πθ(xn−1|y1:n−1) at time n−1 and XP
n,j as points drawn from the prediction

distribution πθ(xn|y1:n−1) at time n by simply simulating the process model: XP
n,j ∼

πθ
(
xn|XF

n−1,j
)

for j in 1 : J .

Having obtained XP
n,j, we can get a sample of points from the filtering distribution

πθ(xn|y1:n) at time n by resampling from
{
XP
n,j, j ∈ 1 : J

}
with weights wn,j =

πθ
(
yn|XP

n,j

)
. In addition, the Monte Carlo methods provide us an approximation to

the conditional likelihood that we obtained from the above. That is

Ln(θ) = πθ(yn|y1:n−1)

=

∫
xn

πθ(xn|y1:n−1)πθ(yn|xn)dxn, (2.5)

can be estimated by

L̂n(θ) ≈ 1
N

∑
j πθ(yn|XP

n,j),

wherever XP
n,j is random sample drawn from πθ(xn|y1:n−1).

Now we can iterate this procedure through the data, one step at a time, alternately

simulating and resampling, until we reach n = N . Then the full log likelihood has
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approximation:

`(θ) = logL(θ)

=
∑
n

logLn(θ)

≈
∑
n

log L̂n(θ). (2.6)

In general, there is a more generic way to express the whole calculation procedure

of particle filter (Andrieu et al. 2010). We aim to yield the estimate, π̂. The procedure

can be summarized in the following steps.

Particle Filter Algorithm

Step 1. At time t = 1, define an importance density v(·) for importance sampling; we

aim to approximate πθ(x1|y1).

a. Draw a sample of J particles Xk
1 = (X1

1 , · · · , XJ
1 ) from vθ(x1|y1).

b. Calculate the normalized importance weights and denote them as W k
1 =

(W 1
1 , · · · ,W J

1 ), where

w1(X
k
1 ) =

πθ(X
k
1 , y1)

vθ(Xk
1 |y1)

W k
1 =

w1(X
k
1 )∑J

m=1w1(Xm
1 )
.
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c. The estimate of πθ(x1|y1) can be calculated by

π̂θ(x1|y1) =
J∑
k=1

W k
1 δXk

1
(x1)

where δx(·) is the Dirac Delta function.

d. Use these particles and weights to resample J new particles from the ap-

proximation, π̂θ(x1|y1).

Step 2. Iteration. At time t = 2, 3, · · · , N − 1, we again use importance sampling to

approximate πθ(x1:t|y1:t).

a. Denote Akt−1 as the index of the parent of particles Xk
1:t at time t−1; draw

a sample Akt−1 ∼ M(·|Wt−1), where Wt = (W 1
t , · · · ,W J

t ) and M(·|p) is

the multinomial distribution with parameter p.

b. Draw a sample Xk
t ∼ v

(
·|yt, X

Akt−1

t−1

)
, and set Xk

1:t =
(
X
Akt−1

1:(t−1), X
k
t

)
.

c. Calculate the normalized importance weights:

wt(X
k
1:t) =

πθ(X
k
1:t, y1:t)

πθ

(
X
Akt−1

1:(t−1), y1:(t−1)

)
vθ

(
Xk
t |yt, X

Akt−1

t−1

)
W k
t =

wt(X
k
1:t)∑J

m=1wt(X
m
1:t)

.

d. The procedure yields the approximation of the posterior density πθ(x1:t|y1:t)
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given by

π̂θ(x1:t|y1:t) =
J∑
k=1

W k
t δXk

1:t
(x1:t)

where δx(·) is the Dirac Delta function.

Step 3. At time t = N , the procedure yields the approximation of the posterior density

πθ(x1:N |y1:N) given by

π̂θ(x1:N |y1:N) =
J∑
k=1

W k
NδXk

1:N
(x1:N).

At the end, the estimate of the likelihood πθ(y1:N) is

π̂θ(y1:N) = π̂θ(y1)
N∏
t=2

π̂θ(yt|y1:(t−1))

where

π̂θ(yt|y1:(t−1)) =
1

N

J∑
k=1

wt(X
k
1:t).
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2.2 Iterated Filtering

Iterated filtering technique is a significant inference method that can maximize the

likelihood obtained by SMC (Ionides et al. 2006, 2011). It’s specially practical to

the state space models. The idea of iterated filtering is that an optimization can

be obtained by taking parameter perturbations into consideration when iteratively

reconstructing the latent states. In terms of the unknown parameter space, stochastic

perturbations are introduced into the method, which can be dynamically used to

search for a suitable parameter estimate.

The main goal of the algorithm is to find the maximum likelihood estimates of

the unknown parameters. As long as a proper procedure iterates with successively

diminished perturbations, the estimating result will converge to the maximum like-

lihood estimate. Ionides et al (2015) improve the iterated filtering algorithm based

on the convergence of an iterated Bayes map, and name the algorithm as IF2. In

general, the IF2 algorithm can be summarized as the following procedure.

Iterated Filtering Algorithm

Step 1. Initialization. Arbitrary starting parameter [θj]0, where j = 1, 2, · · · J with J

as the number of particles; set γ0(·|[θj]0;σm) as the initial perturbation density,
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where m = 1, 2, · · · ,M with M as the number of operation. Let the superscript

F represent filtering recursion and P represent prediction recursion.

Step 2. Iteration. For m = 1, 2, · · · ,M ,

1. Draw a random sample of parameter, [θF0,j]m ∼ γ0(θ|[θj]m−1;σm).

2. Draw a random sample of states [XF
0,j]m ∼ fX0(x0; [θF0,j]m).

3. Iteration. For n = 1, 2, · · · , N ,

a. Draw a random sample [θPn,j]m ∼ γn(θ|[θFn−1,j]m;σm).

b. Draw a random sample [XP
n,j]m ∼ π(xn|[XF

n−1,j]m; [θPj ]m).

c. Calculate weights: [wn,j]m = π(yn|[XP
n,j]m; [θPn,j]m).

d. Draw indices k1:J with P{kj = s} = [wn,s]m/
∑J

u=1[wn,u]m.

e. Let [θFn,j]m = [θPn,kj ]m and [XF
n,j]m = [XP

n,kj
]m.

4. Set [θj]m = [θFN,j]m.

Step 3. After M times iterations, we can obtain the Maximum Likelihood Estimate θ̂M .
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2.3 Particle Markov Chain Monte Carlo (PMCMC)

Particle Markov chain Monte Carlo (PMCMC) is a Bayesian inference method us-

ing full information. It’s proposed by Andrieu et al. (2010) to perform inference

on the unknown parameter vector θ. It targets the full joint posterior distribution

π(θ, x1:N |y1:N). PMCMC methods combine likelihood evaluation via particle filter

with MCMC moves in the parameter space. It works well in nonlinear non-Gaussian

scenarios while the traditional MCMC methods can fail in this specific situation. One

common used PMCMC algorithm is termed as particle marginal Metropolis-Hastings

(PMMH). It plugs the unbiased likelihood estimate obtained by particle filter into

the Metropolis-Hastings update procedure to get the desired posterior distribution

for the parameters (Andrieu and Roberts 2009).

First we take a brief review of the Metropolis-Hastings algorithm, which is one

of the most common MCMC algorithms. It can generate correlated variables from a

Markov chain. Given the target density π(x1:N , y1:N), it is associated with a proposed

density v(·|x).

So the MH algorithm can be summarized as below. Given a target density π(x)

and a proposal density v(·|x), a new Markov chain {X∗m} whose stationary distribution

is π(x) can be generated by the following algorithm:
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Metropolis-Hastings Algorithm

Step 1. Start with an arbitrary x∗0, generate x
′

from v(·|x∗m−1).

Step 2. Compute the probability ρ(x∗m,x
′
) = min

{
1, π(x

′
)v(x∗m|x

′
)

π(x∗m)v(x′ |x∗m)

}
.

Step 3. Set x∗m+1 = x
′

with probability ρ(x∗m,x
′
); set x∗m+1 = x∗m with probability

1− ρ(x∗m,x
′
).

In our state space models, when the parameter θ is unknown, we are interested in

sampling from π(θ, x1:N |y1:N). The PMMH algorithm will focus on jointly updating

θ and x1:N . Given that π(θ, x1:N |y1:N) = π(θ|y1:N)πθ(x1:N |y1:N), a natural choice of

proposal density for an MH update is

v(θ∗, x∗1:N |θ, x1:N) = v(θ∗|θ)πθ∗(x∗1:N |y1:N). (2.7)

So the resulting MH acceptance ratio is given by

A =
π(θ∗, x∗1:N |y1:N)v(θ, x1:N |θ∗, x∗1:N)

π(θ, x1:N |y1:N)v(θ∗, x∗1:N |θ, x1:N)

=
πθ∗(y1:N)π(θ∗)v(θ|θ∗)
πθ(y1:N)π(θ)v(θ∗|θ)

. (2.8)
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The PMMH algorithm can be summarized as the following procedure.

PMMH Algorithm

Step 1. Initialization. Arbitrary starting parameter θ0; run the SMC algorithm with

J particles targeting πθ0(x1:N |y1:N) to obtain the estimates π̂θ0(·|y1:N) and the

marginal likelihood estimate π̂θ0(y1:N); draw a random sampleX0
1:N ∼ π̂θ0(·|y1:N).

Step 2. Iteration. Denote M as the number of operation. For m = 1, 2, · · · ,M ,

1. Draw a parameter θP from the proposal distribution θP ∼ v(·|θm−1).

2. Run the SMC algorithm with J particles targeting πθP (x1:N |y1:N) to ob-

tain the density estimate π̂θP (·|y1:N) and the marginal likelihood estimate

π̂θP (y1:N); draw a random sample XP
1:N ∼ π̂θP (·|y1:N).

3. Calculate the probability ρm = min
{

1,
π
θP

(y1:N )π(θP )v(θm−1|θP )
πθm−1

(y1:N )π(θm−1)v(θP |θm−1)

}
.

4. With probability ρm, set θm = θP , Xm
1:N = XP

1:N , π̂θm(y1:N) = π̂θP (y1:N);

otherwise, set θm = θm−1, X
m
1:N = Xm−1

1:N , π̂θm(y1:N) = π̂θm−1(y1:N).

Step 3. After M times iterations, we will have the samples θ1:M where the posterior

distribution π(θ|y1:N) can be obtained as well as the set of particles Xm
1:M .



2.4 Approximate Bayesian Computation (ABC) 20

2.4 Approximate Bayesian Computation (ABC)

ABC algorithms are Bayesian feature-based methods to evaluate the posterior dis-

tributions through simulations instead of calculations of likelihood functions. They

compare the distance between the observed and simulated data (Pritchard et al. 1999;

Marjoram et al. 2003; Sisson et al. 2007).

Let θ as the parameter vector we are about to estimate in our models. Denote

π(θ) as its prior distribution and x0 as the observed data. Our goal is to obtain an

approximation of the posterior distribution, π(θ|x0). According to Bayes’ Theorem,

we have π(θ|x0) ∝ f(x0|θ)π(θ), where f(x0|θ) is the likelihood of θ given the observed

data x0.

A simple ABC algorithm is called the rejection sampler (Pritchard et al. 1999).

It includes the following steps:

Rejection Sampler Algorithm

Step 1. Sample a candidate parameter θ∗ from a the prior distribution π(θ).

Step 2. Simulate a dataset x∗ from f(x|θ∗).

Step 3. Compare the distance between the simulated data x∗ and the observed data x0
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using a distance function D; and a tolerance ε, if D(x0, x
∗) ≤ ε, then accept θ∗,

otherwise reject.

Step 4. Repeat the above steps until one has a sample {θ∗k} of size M where infer-

ence about π(θ |x) can be done by taking uniform weights W k = 1
M

for k =

1, 2, . . . ,M .

Often times, instead of using the full data set to obtain the posterior distribution,

either because we only have summary statistics or because of the dimension of the

data, we would like to obtain the distribution of the parameters given a set of summary

statistics. For this situation, we define a distance function based on the summary

statistics. These summary statistics are the features of the full dataset. The features,

also called probes (Kendall et al. 1999), are denoted by a collection of functions,

S = (S1, · · · ,Sd), where each Si maps an observed time series to a real number. We

write S = (S1, · · · , Sd) for the vector-valued random variable with S = S(Y1:N), with

hS(s; θ) being the corresponding joint density. Also, the observed feature vector is s0

where s0i = Si(y1:N). The goal of ABC is to estimate the posterior distribution of the

unknown parameters given S = s0. Denote the distance function as ρ and s as the

summary statistics of the simulated data, then we will accept θ if ρ(s0, s) ≤ ε.
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But the acceptance rate of this ABC rejection sampler will be quite low if the

prior distribution vastly differs from the posterior distribution. To solve the problem,

Marjoram et al. (2003) proposed an ABC method based on Markov chain Monte

Carlo. The procedure can be summarized as below:

ABC Algorithm

Step 1. Initialization. Arbitrary starting parameter θ0.

Step 2. Iteration. Denote M as the number of operation. For m = 1, 2, · · · ,M ,

1. Draw a proposed parameter θP from a proposal distribution θP ∼ v(·|θm−1).

2. Sample a dataset xP from f(x|θP ).

3. Compute observed probes s0 and the simulated probes sP .

4. Calculate the probability pm = min
{

1, π(θP )v(θm−1|θP )
π(θm−1)v(θP |θm−1)

I[ρ(s0,sP )≤ε]
}

.

4. With probability pm, set θm = θP ; otherwise, set θm = θm−1.

Step 3. After M times iterations, we obtain the samples θ1:M , as well as the posterior

distribution of parameters.
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2.5 The R Package: POMP

The R package POMP (King et al. 2016) provides a suite of tools for analysis of time

series data based on state space models. It provides a very flexible framework for

statistical inference using nonlinear, non-Gaussian state space models. Many modern

statistical methods have been implemented in this framework including sequential

Monte Carlo, iterated filtering, particle Markov chain Monte Carlo, approximate

Bayesian computation, maximum synthetic likelihood estimation, etc.

POMP is fully object-oriented. A partially observed Markov process model is

represented by an object of class ’pomp’. Methods for the class ’pomp’ use vari-

ous components to carry out computations on the model. A brief summary of the

mathematical notations corresponding to the elementary methods is shown as below:

Table 2.1: A Brief Summary of notations for POMP Models
Method Mathematical terminology
rprocess Simulate from hXn|Xn−1(xn|xn−1; θ)
dprocess Evaluate hXn|Xn−1(xn|xn−1; θ)
rmeasure Simulate from hYn|Xn(yn|xn; θ)
dmeasure Evaluate hYn|Xn(yn|xn; θ)
rprior Simulate from the prior distribution π(θ)
dprior Evaluate the prior density π(θ)
init.state Simulate from hX0(x0; θ)
timezero Initial time t0
time Times t1:N
obs Data y1:N
states States x0:N
coef Parameters θ
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There are many examples illustrated in the package, as well as a large vol-

ume of corresponding R and C codes that are provided with the package. Further

documentation and an introductory tutorial can be found on the POMP website,

http://kingaa.github.io/pomp.



Chapter 3

Simulation Study

Nonlinear state space models can be used to analyze the time series of count data.

One of the applications is to model the number of major (with magnitude 7 or higher

on the Richter scale) earthquakes each year. We use the model from Langrock (2011)

and Zeger (1988), which assumes that the number of earthquakes yt is a conditional

Poisson distributed variable with mean λt. Also, we assume that the mean of λt

follows an AR(1) process,

log(λt)− µ = φ(logλt−1 − µ) + σvt

where vt denotes a standard Gaussian random variable. By introducing xt = log(λt)−

µ and β = exp(µ), we obtain the state space model as below:
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xt+1|xt ∼ N (φxt, σ
2)

yt|xt ∼ P(βext)

where the parameter vector is θ = {β, σ, φ} with the constraints φ ∈ (−1, 1) ⊂ R and

{σ, β} ∈ R2
+. Here, P(λ) denotes a Poisson distributed variable with mean λ. That

is, the probability of k ∈ N earthquakes during year t is given by the probability mass

function (PMF),

P{Yt = k} = e−λ
λk

k!

In this chapter we set up a nonlinear state space model and present the simulation

study of a time series of count data to compare the four methodologies we have

studied: SMC, IF, PMCMC, and ABC.

3.1 Simulation Setup

We use R software to generate the random numbers. Set the parameter vector θ as

θ = {β = 1, σ = 0.1, φ = 0.2} and the initial state as x0 = 1. It leads to the state

process,

xt+1|xt ∼ N (0.2xt, 0.1
2)

and for the measurement process,
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yt|xt ∼ P(ext).

We simulate a time period from 1 to 100, and the nonlinear state space model

generate a series of simulated counts. The plot of simulated counts is shown in Figure

3.1. Since the true value of parameters we set up are small, the largest simulated

outcomes are just 4 and there are lots of zero in this simulation.

Figure 3.1: The Simulated Counts
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3.2 Simulation Analysis

Based on the series of count data we simulated, we can use the iterated filtering

approach to obtain the maximum likelihood estimate of parameters. In R, it can

be used the function named mif in POMP package to obtain the results. Since the

parameters in our model are constrained to be positive, we prefer to transform them

into an unconstrained scale to estimate instead. So we designate the logarithm trans-

formation to the parameters when estimating. In order to improve the computation

efficiency, the foreach R package (Revolution Analytics and Weston 2014) will be used

to parallelize the computations.

We run 10 trajectories, and for each run, the number of iterations is 100, the

number of particles is 2000. The calculation result is shown in Figure 3.2. It shows

that each trajectory converges to an estimate. For the parameter log σ and log φ,

most of runs have different estimations after 100 iterations. But for log β and the

log-likelihood logL, nine of ten runs converges to a really close estimate. Usually, we

will focus on the estimate with the highest estimated log-likelihood.

Specifically, we can take a comparison between the parameter estimates and their

true values. From Table 3.1, we obtain the MLE of parameters as θ̂MLE = {β =

0.949, σ = 0.213, φ = 0.0529}. The log likelihood ˆ̀ estimated by particle filter at
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MLE is -128.39, and its standard error is 0.01.

Table 3.1: Results of Estimating Parameters Using IF2 Algorithm

β φ σ ˆ̀ s.e.
Truth 1.0000 0.2000 0.1000 -128.58 0.01

mif MLE 0.9490 0.0529 0.2130 -128.39 0.01

For the iterated filtering method, we can consider two more cases with other true

values as comparison. In Case Two, we set θ2 = {β = 5, σ = 0.3, φ = 0.5}, and the

MLE obtained by the iterated filtering is θ̂2MLE = {β = 4.97, σ = 0.372, φ = 0.47}

with the log-likelihood -253.91. The result is shown in Table 3.2.

Table 3.2: Results of Estimating Parameters Using IF2 Algorithm in Case Two

β φ σ ˆ̀ s.e.
Truth 5.0000 0.5000 0.3000 -254.61 0.05

mif MLE 4.9700 0.4700 0.3720 -253.91 0.13

Likewise, we set the true values of θ in Case Three as θ3 = {β = 10, σ = 0.5, φ =

0.7}. Correspondingly, we can obtain the MLE as θ̂3MLE = {β = 6, σ = 0.488, φ =

0.61}. The detailed result is shown in Table 3.3.

Table 3.3: Results of Estimating Parameters Using IF2 Algorithm in Case Three

β φ σ ˆ̀ s.e.
Truth 10.0000 0.7000 0.5000 -291.38 0.09

mif MLE 6.0000 0.6100 0.4880 -288.00 0.19

The above shows that the mif procedure can successfully maximize the likelihood

and propose a reasonable parameter estimate.
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In the following methods, we just consider the original values of θ, which is θ =

{β = 1, σ = 0.1, φ = 0.2}. Now the statistical estimation for the unknown parameters

can be carried out by using PMCMC algorithm that we’ve discussed in Section 2.3.

PMCMC is a full-information Bayesian method that it pays large price to run the SMC

algorithm to finally obtain the Metropolis-Hastings acceptance probability. Using

the R function pmcmc in POMP package, we specify a uniform prior distribution on

unknown parameters and set the particles number as 100. We run 5 independent

MCMC chains with 30,000 iterations for each chain. After a mass of calculation, we

can obtain a swam of the posterior parameter estimates.

Table 3.4: PMCMC Quantiles for Each Parameter

2.50% 25% 50% 75% 97.50%

β 0.75109 0.87227 0.9438 1.0096 1.1577
σ 0.01763 0.07494 0.1443 0.2401 0.4551
φ 0.03149 0.14002 0.2813 0.4834 0.8134

Table 3.4 shows the PMCMC quantiles for each parameters, and we use the 50%

quantile as the estimates of unknown parameters. So we can obtain θ̂PMCMC = {β =

0.9438, σ = 0.1443, φ = 0.2813}.

Besides, we can calculate the mean and the standard deviation of paramters β, σ,

and φ. As the Bayesian inference, we can also calculate their naive standard errors

and the time-series standard error from the big volume of posterior parameter sample
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set.

Table 3.5: PMCMC Empirical Mean and Standard Deviation for Each Parameter,
Plus Standard Error of the Mean

Mean SD Naive SE Time-series SE

β 0.9432 0.1031 0.002061 0.007088
σ 0.1679 0.118 0.002358 0.009738
φ 0.3248 0.2244 0.004483 0.034891

Table 3.5 reflects the PMCMC empirical mean and standard deviation for each

parameter, as well as the standard error of the mean. As we know, the true value of

β is 1, while the mean of the posterior distribution of β is 0.9432 and its standard

deviation is 0.1031.

The diagnostic plots for the PMCMC algorithm is shown in Figure 3.3. The trace

plots in the left column show the evolution of 5 independent MCMC chains from

iterations 10001 to 30001. We can see that for β and σ, the five traces are relatively

close, while the traces of φ are very different. In addition, based on the big swam

of posterior estimates, we can also plot the kernel density estimates of the marginal

posterior distributions, which are shown at right. Specifically, the solid vertical line is

the true parameters and the red dashed line is the PMCMC estimates of parameters.
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Figure 3.3: The Diagnostic Plots for the PMCMC Algorithm
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As comparison, we apply the ABC algorithm to obtain the evaluation of unknown

parameters. Since the ABC algorithm use partial features of the data, we need to

designate the probes first. We set up the mean and their autocorrelation function

as their probes. In Section 2.4, we’ve discussed the procedures. Now using the R

function abc in POMP package, we can obtain the posterior parameter estimates

based on partial feature of data. Also, we run 5 independent chains and for each one

the iteration step is 30,000.

Table 3.6: ABC Quantiles for Each Parameter

2.50% 25% 50% 75% 97.50%

β 0.69828 0.82642 0.9063 0.9838 1.1181
σ 0.01692 0.11229 0.2172 0.2828 0.5765
φ 0.02464 0.07618 0.1918 0.5072 0.736

Table 3.6 shows the ABC quantiles for each parameters, and we use the 50%

quantile as the estimates of unknown parameters. So we can obtain θ̂ABC = {β =

0.9063, σ = 0.2172, φ = 0.1918}. Table 3.7 reflects the ABC empirical mean and

standard deviation for each parameter, as well as the standard error of the mean.

Table 3.7: ABC Empirical Mean and Standard Deviation for Each Parameter, Plus
Standard Error of the Mean

Mean SD Naive SE Time-series SE

β 0.9062 0.1107 0.002212 0.01668
σ 0.2311 0.1522 0.003041 0.01853
φ 0.2972 0.2448 0.004892 0.02956
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In addition, the diagnostic plots for the ABC algorithm is shown in Figure 3.4. We

can see that the five chains diverge in different directions, which means the model is

quite sensitive to the parameters. Kernel density estimates of the marginal posterior

distributions are shown at right. These posterior distribution are plot by the posterior

parameter estimates that obtained by ABC algorithm using R. The solid vertical line

is the true parameters and the red dashed line is the ABC estimates of parameters.

Figure 3.4: The Diagnostic Plots for the ABC Algorithm
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Figure 3.5: The Marginal Posterior Distributions of log10 Value of Parameters

In the end, we compare the statistical efficiency between ABC and PMCMC. We

take the log10 value for all the posterior parameter estimates obtained by PMCMC

and ABC. Then We plot their density functions into the same figure.

Figure 3.5 shows the marginal posterior distributions using full information via

PMCMC (solid line) and partial information via ABC (dashed line). Kernel density

estimates are illustrated for the posterior marginal densities of log10(β), log10(σ),

and log10(φ), respectively. It reflects that ABC leads to somewhat broader posterior
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distributions than the posteriors from PMCMC. In some ways, the reason may be

straightforward. Since PMCMC use more information of the data than that of ABC,

PMCMC then should have a more narrow and precise estimate than ABC.



Chapter 4

Application: The Analysis of

Annual Forest Fire Counts in

Canada

4.1 Background

Forest fire is a major environmental problem in Canada. It can cause catastrophic

damages on natural resources and bring serious economic and social impacts. Each

year, there are over thousands of forest fires around Canada, causing the destruction

of large volumes of forest land. Nevertheless, forest fires have also benefits for the
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health of the flora. For example, forest fires have been associated to the control of

spread of beatle trees. According to the statistics from the Natural Resources Canada,

about 7,588 forest fires have occurred each year over the last 25 years. Therefore, it

is necessary to maintain an efficient wildland fire management in order to predict and

manage risks and benefits.

A comprehensive study of forest fire activity would require the analysis of annual

number of forest fires. Often a Poisson model has been employed for the number of

fires, see Dayananda (1977), Mandallaz and Ye (1997). In this work, we consider the

historical recorded data of forest fires as a time series of count data. We propose a

nonlinear state space model to analyze the annual number of forest fires in Canada.

And the statistical inference and estimation for the proposed model is then processed

by the four methodologies that we have discussed in Chapter 2.

4.2 Data Description

The data we analyze consist of yearly total number of forest fires occurred in Canada

from 1970 to 2014. This time series of forest fire counts is collected from the National

Forestry Database (http://nfdp.ccfm.org/dynamic report/dynamic report ui e.php).

We select the reporting agency as Canada, and the reporting item is the number of
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fires in total. This dataset reflects the overall forest fire occurrences in Canada for

each year. Table 4.1 shows the collected data.

Table 4.1: Total Number of Forest Fires

Year Total Fires Year Total Fires

1970 9250 1993 6043
1971 9167 1994 9763
1972 8232 1995 8486
1973 7593 1996 6349
1974 8129 1997 6148
1975 11178 1998 10723
1976 10236 1999 7633
1977 8945 2000 5349
1978 8028 2001 7753
1979 10051 2002 7861
1980 9138 2003 8230
1981 10095 2004 6680
1982 8942 2005 7542
1983 8935 2006 9820
1984 9220 2007 6917
1985 9354 2008 6278
1986 7320 2009 7210
1987 11301 2010 7291
1988 10741 2011 4743
1989 12185 2012 7956
1990 10111 2013 6264
1991 10327 2014 5152
1992 9068
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Figure 4.1: The Trend Plot of the Total Number of Forest Fires

The trend plot of this time series of forest fire counts can be illustrated in Figure

4.1 as above. We can see that in the recent 45 years, the minimum annual number of

forest fires is 4,743, while the maximum number is 12,185. The general tendency of

forest fires is declining though it oscillates each year.

Also, we can plot the histogram of forest fires counts, as shown in Figure 4.2. This

figure shows that the distribution of the historical fires data is slightly left-skewed,

with an average of 8,394 yearly occurrences.
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Figure 4.2: The Histogram of Forest Fire Counts
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4.3 Model Setup

Now we propose a nonlinear state space model to practically simulate and replicate

the real counts generating process of the forest fires. First of all, we consider the state

process. Assuming it is a discrete time process model, let’s denote {Nt, t = 0, 1, 2, · · · }

as the state space. Then the state process can be set as below:

Nt+1 =
rNt

1 + Nt
K

εt, εt ∼ LN (−1
2
σ2, σ2),

where the unknown parameter vector is θ = {r,K, σ} and εt follow a log-normal

distribution. This stochastic model is known as the Beverton-Holt model, which was

introduced in the context of fisheries by Beverton & Holt (1957) . Despite it is a

classic discrete time population model usually applied in ecology or epidemiology,

it might still be able to depict the potential relationships between those transferable

state spaces as a latent state system for the annual count of forest fires. Here r can be

explained as the inherent growth rate, and K is assumed as a quasi-carrying capacity.

We can define the state Nt as the true population size of forest fire counts at Year t.

For the measurement process, let us assume that the observation at time t follows

a Poisson distribution with a parameter size Nt. That leads to the annual observed

number of forest fires yt follows:

yt ∼ P(Nt).
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4.4 Model Simulation

For those state spaces, we established the implied state-generating structure, but the

parameter vector still remains unknown. The difficulties are how to estimate the

latent unknown parameters. According to our observed numbers of forest fire, we can

try a reasonable initial guess for the parameter vector θ = {r,K, σ}, and plot the

simulated states.

Let us assume the initial parameters are θ0 = {r = 1.4, K = 20000, σ = 0.15},

and the initial state value is N0 = 8000. With the process model in place, we can

simulate the state spaces and plot 10 state realizations with the initial parameters.

It is shown in Figure 4.3. Since the measurement model we are considering follows a

Poisson distribution with parameter Nt, it also reflects the simulated annual averages

of forest fires.
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Figure 4.3: 10 Simulated State Realizations Based on the Process Model with the
Initial Parameters
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Figure 4.4: A Comparison Between Simulated State Realizations and Simulated Ob-
servation Realizations

With the measurement model, we can now simulate for the full nonlinear state

space model. The result is shown in Figure 4.4. It is a comparison between the

simulated states and the corresponding simulated observations. From the Figure

4.4, we find those trajectories are similar, which is quite straightforward. Another

plot that shows the relationship between latent states and observed measurements

is illustrated in Figure 4.5. All the points almost fall into a line, which reveals a

property of the Poisson distribution in some ways.
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Figure 4.5: Simulated State Values N v.s. Simulated Observed Numbers of Fire
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Figure 4.6: 10 Simulated Count Trajectories Based on Initial Parameters and the
Actual Observed Number of Fires

To sum up, based on the nonlinear state space model that we have set up as well

as the initial parameters that we have assigned, we can simulate the fitted model

and compare it against the observed data - the total number of forest fires occurred

in Canada. Figure 4.6 shows that our simulated trajectories cover the real data

trajectory, and it exists certain similar shape. That means the initial parameters we

assigned are plausible and the fitted model looks feasible and practical.
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4.5 Model Estimation

Given the initial parameters, we can evaluate the likelihood of the forest fires data

using the particle filter. Since the larger number of particles we use, the smaller

Monte Carlo error but the greater computational burden we have, we decide to run

1000 particles to estimate the log likelihood at the initial guess of parameters θ0 =

{r = 1.4, K = 20000, σ = 0.15}, and the initial state value is N0 = 8000. We can

obtain the log likelihood as -418.6927.

We will use the iterated filtering (Ionides et al. 2006, 2015) to obtain a maximum

likelihood estimate for the real forest fires data. Since the parameters of the model

θ = {r,K, σ} are constrained to be positive, we transform them to a scale on which

they are unconstrained when estimating.

Table 4.2: Results of Estimating Parameters

r K σ ˆ̀ s.e.
Initial Guess 1.40 20000 0.150 -384.21 0.31

mif MLE 1.29 27900 0.172 -383.74 0.63

We replicate the iterated filtering search, and make a careful estimation of the log

likelihood ˆ̀ as well as its standard error at each of the resulting point estimates. And

then the parameter vector corresponding to the highest likelihood is chosen as the

numerical approximation to the maximum likelihood estimates of parameters. The
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resulting estimates are shown in Table 4.2. We can see the estimating parameters of

the nonlinear state space model by maximum likelihood using iterated filtering are

θ̂MLE = {r̂ = 1.29, K̂ = 27900, σ̂ = 0.172}.

Figure 4.7: The Histogram of Log-likelihood at Different Parameter Values. Blue line
represents the Maximum Likelihood Estimate, while pink line represents the initial
guess.

We proceed to carry out 100 replicated particle filters at the initial guess and

the MLE of parameters. A histogram shown as Figure 4.7 is plot to compare the

calculated log likelihood at the two different points. We can see that the median
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of the log likelihoods at the MLE is -406.9707, which is greater than that of log

likelihoods at the initial guess, -412.7548. It means that the MLE is better.

Now we carry out a local search of the likelihood surface using the IF2 Algorithm.

Given a model and a set of data, the likelihood surface is well defined. We set the

starting point as θstart = {r = 1.1, K = 10000, σ = 0.05} and a fixed initial state value

8000. Also, we set a perturbation size of 0.02 and the cooling type as geometric. Then

running R codes, we can obtain the diagnostic plots shown as Figure 4.8.
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Figure 4.8: The Diagnostic Plots of the Local Search of the Likelihood Surface



4.5 Model Estimation 52

In addition, the Figure 4.9 illustrates the geometry of the likelihood surface in a

neighborhood of the point estimate.
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Figure 4.9: A Local Search of the Likelihood Surface

We can also carry out a global search by trying all remotely sensible parameter

vectors that are contained in a large box of parameter space. A starting values vector

is randomly drawn from the box. Then the result of the global search is shown in

Figure 4.10. The best result of this search had a log likelihood of -397.2959 with a

standard error of 0.6764758. A scatterplot is used to visualize the global geometry
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of the likelihood surface. It is shown in Figure 4.11 that gray points are the starting

values and red points are the IF2 estimates. We conclude that optimization attempts

from various starting points converge on a particular region in parameter space.

Figure 4.10: A Global Search of the Likelihood Surface

To get an idea of what the likelihood surface looks like corresponding to the

parameter r and K, we can evaluate the likelihood at a grid of points and visualize

the surface directly. In particular, all points with log likelihoods less than 50 units

below the maximum are shown in gray in Figure 4.12.
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Figure 4.11: A Scatterplot with Starting Values and IF2 Estimates
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Now we specify a prior distribution on unknown parameters and carry out Bayesian

inference. The PMCMC algorithm is applied to draw a sample from the posterior.

Table 4.3 shows the PMCMC quantiles for each parameters, and we use the 50%

quantile as the estimates of unknown parameters. So we can obtain θ̂PMCMC = {r =

1.298, K = 27943, σ = 0.174}. The diagnostic plots for the PMCMC algorithm is

shown in Figure 4.13. The trace plots in the left column show the evolution of 5

independent MCMC chains from iterations 10001 to 30001. Kernel density estimates

of the marginal posterior distributions are shown at right. The solid vertical line is

the initial guess of parameters and the red dashed line is the PMCMC estimates of

parameters.

Table 4.3: PMCMC Quantiles for Each Variable

2.50% 25% 50% 75% 97.50%

r 1.2430 1.2740 1.2980 1.3150 1.3460
σ 0.1386 0.1593 0.1740 0.1854 0.2162
K 27940.00 27940.00 27942.83 27940.00 27940.00
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Figure 4.13: Diagnostic Plots for the PMCMC Algorithm
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Also, we apply the ABC algorithm to obtain the evaluation of unknown param-

eters. Table 4.4 shows the ABC quantiles for each parameters, and we use the 50%

quantile as the estimates of unknown parameters. So we can obtain θ̂ABC = {r =

1.397, K = 19050, σ = 0.1582}. The diagnostic plots for the ABC algorithm is shown

in Figure 4.14. Kernel density estimates of the marginal posterior distributions are

shown at right. The solid vertical line is the initial guess of parameters and the red

dashed line is the ABC estimates of parameters.

Table 4.4: ABC Quantiles for Each Variable

2.50% 25% 50% 75% 97.50%

r 1.1980 1.3230 1.3970 1.4720 1.5660
σ 0.1175 0.1432 0.1582 0.1756 0.2046
K 12710.00 16740.00 19050.00 24240.00 32280.00
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Figure 4.14: Diagnostic Plots for the ABC Algorithm



Chapter 5

Summary and Future Work

In this thesis, we mainly proposed a nonlinear state space model to analyze the annual

forest fires occurred in Canada. This proposed model is different from the traditional

Poisson regression models or Logistic models that are usually applied in the fires

occurrence analysis. It provides a flexibility and reliability to the analysis of the

real forest fires dataset. The difficult part of the proposed model is the statistical

inference and estimation for the unknown parameters. To solve the problems, we

used four numerical methodologies and algorithms, which have been proved to be

feasible and practical in the literature. They are particle filter (also named sequential

Monte Carlo), iterated filtering (IF), particle Markov chain Monte Carlo (PMCMC),

and approximate Bayesian computation (ABC), respectively. All these methods have
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plug-and-play property, which can be easily programmed and run in the R statistical

software using the package POMP.

The paper first provides a brief introduction to the nonlinear state space model.

Then, it takes a focus on the methodologies applied to fit the model and obtain the

parameter estimates. Also, a simulation study is carried out to analyze a series of

simulated counts using the methods. At the end, an analysis of the annual forest

fires using the nonlinear state space model is presented. The unknown parameters of

the model are estimated by using the proposed numerical methods with satisfactory

outcomes.

For future work, we can add a parameter for the measurement process based on

our original model. That means the new measurement process would be P(φNt). Of

course, an additional unknown parameter will bring larger computational costs to our

analysis. Also, we may assume the measurement process follows a Negative Binomial

distribution, considering the over-dispersion situation. Moreover, one may also be

interested in the role of a vector-valued covariate process in explaining the forest fires

data. Then modeling and inference conditional on covariates can be carried out in

the further work as well.
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[5] Bretó C, He D, Ionides EL & King A A (2009). Time series analysis via mechanistic
models. Ann. Appl. Stat., 3, 319-348.
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