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Abstract

High frequency surface wave radar (HFSWR), operating at frequencies between 3 and

30 MHz, has long been employed as an important ocean remote sensing device. These high

frequency (HF) radars can provide accurate and real-time information for sea state mon-

itoring and hard-target detection, which is greatly beneficial for planning and executing

oceanographic projects, search and rescue events, and other commercial marine activities.

Ideally, in HFSWR operation, the radio waves may be coupled with ocean waves and prop-

agate along the curvature of the ocean surface with ranges well beyond 200 km. However,

during transmission, a portion of the radar radiation may travel upwards to the ionosphere

from the transmitting antenna. This may be partially reflected back to the receiving anten-

nas directly (vertical propagation) or via the ocean surface (mixed-path propagation). This

ionospheric clutter may significantly impact the performance of HFSWR. Furthermore, the

high intensity and random behaviour of the ionospheric spectral contamination of radar

echoes make the suppression of this kind of clutter challenging.

In this thesis, comprehensive theoretical models of the ionospheric clutter are investi-

gated. The physical influences of the ionospheric electron density on HF radar Doppler

spectra are taken into account in the ionospheric reflectioncoefficient. Next, based on pre-

vious modeling involving the scattering of HF electromagnetic radiation from the ocean

surface and a first-order mixed-path propagation theory, the second-order received electric

field for mixed-path propagation is derived for a monostaticradar configuration. This is

done by considering the reflection from the ionosphere and scattering on the ocean surface

with second-order sea waves. Then, the field integrals are taken to the time domain, with

the source field being that of a vertically polarized pulsed dipole antenna. Subsequently, the
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second-order received power model is developed by assumingthat the ocean surface and

the ionosphere may be modeled as stochastic processes.

The ionospheric clutter model including a pulsed radar source is further investigated for

the case of vertical propagation for a monostatic configuration and mixed-path propagation

for a bistatic configuration.

Next, a theoretical mixed-path propagation model is developed by involving a frequency-

modulated continuous waveform (FMCW) radar source.

In order to investigate the power spectrum of the resulting ionospheric clutter and its

relative intensity to that of the first-order ocean clutter,the normalized ionospheric clutter

power is simulated. Numerical simulation results are provided to indicate the performance

of the ionospheric clutter under a variety of radar operating parameters, ionospheric condi-

tions and sea states.
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Chapter 1

Introduction

1.1 Research Rationale

With the rapid development of marine-related enterprises,a significant challenge is to ob-

tain accurate and comprehensive oceanographic information to support operations on the

ocean. The complex and varying ocean conditions significantly affect the operational ef-

ficiency and safety of marine activities. Moreover, ocean state information would highly

benefit the physical oceanography community [1].

High frequency surface wave radar (HFSWR) is a shore-based remote sensing system

used to measure temporal and spatial ocean surface properties. Its successful application

for sea state monitoring is based on the underlying relationship between radar sea-echo

Doppler spectra and ocean surface characteristics [2]. Thetransmitted signals in the high

frequency (HF) band (3 - 30 MHz) interact strongly with the ocean waves of decametric

wavelengths. The highly conductive ocean surface allows the HF radiation to propagate

along the curvature of the air-water interface to ranges well beyond 200 km [3, 4] depend-
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ing on the actual operating frequency and power. The backscattered signals potentially

contain significant information regarding the ocean dynamic characteristics. Therefore, by

analysing the received Doppler spectra, various sea parameters, including surface current

fields, wave directions, significant wave height, and wind velocities may be extracted from

the radar returns [5–7]. These attributes make HFSWR an attractive tool for the remote

sensing of sea state parameters. Aside from ocean parameters, HF radar is also used to

determine the position, speed, and track of hard targets such as ships and icebergs.

The performance of HFSWR in an ocean environment may be impacted significantly

by the existence of the ionosphere [8, 9]. The ionosphere surrounds the earth at a height

of 50 to 500 km and protects the earth from the sun’s dangerousradiation (extreme ultra-

violet and X-ray). In the ionosphere, gases are ionized intofree electrons and ions by

intense solar and cosmic radiation. The ionosphere is oftencharacterized as consisting of

several stratified layers due to different levels of ionization. These layers are denoted as

D (at altitudes between 50 to 90 km), E (90-150 km) and F (150-500 km). Additionally,

the Sporadic-E (Es) layer is an erratically occurring layerthat forms at E-region heights

at higher electron density levels [10]. Due to their differing air and electron densities,

the various layers have different effects on electromagnetic waves propagating within or

through them. For example, because of high air density and low electron density of the

D layer, the HF radio waves at lower frequencies (3-6 MHz) maybe absorbed by the D

layer via high collision frequencies between the electronsand neutrons, and those at higher

frequencies may penetrate through it and be partly reflectedor refracted by the E layer. In

contrast, the F layer with low air density and high electron density is able to entirely reflect

HF radio waves [11]. More specifically, the maximum frequency of the radio wave reflected
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by a layer at vertical incidence, referred to as the layer critical frequency, is a function of the

electron density. The relationship between the layers’ critical frequencies and the heights

at which signals are reflected from different layers can be found in a vertical incidence

ionogram, which is obtained by an ionosonde [12]. The maximum frequency that can be

reflected at oblique incidence from a particular layer is related to both the incidence angle

and the layer critical frequency. During the day time, HF signals may be attenuated due

to the existence of the D layer or reflected by higher layers. At night, the D and E layers

virtually disappear since the solar radiation is blocked bythe Earth. Then, HF signals

arriving at the F layer may be reflected toward the ground withlow losses, and sometimes

HF signals are reflected from the Es layer before reaching theF layer. This characteristic

has been utilized for long distance HF skywave communication. On the other hand, it may

cause ionosphere clutter problems for surface wave radar.

Ideally, in HFSWR operation, it is desirable that the radio waves propagate horizontally

along the ocean surface. However, due to constraints on antenna design and operational

features, sometimes including complicated ground plane characteristics and wind-induced

antenna motion, a portion of the radio waves is radiated upwards to the ionosphere. Under

certain conditions, partial upward-radiated signal energy may then be reflected back from

different ionospheric layers to the receiving antennas directly (vertical reflection) or via the

ocean surface (ionosphere-ocean or mixed-path propagation). The two feasible propagation

paths for the ionospheric clutter are shown in Figure 1.1. Itshould be noted that the term

“mixed-path” in this thesis refers to a combination of ionosphere reflection and ocean scat-

tering, which is different from its earlier meaning of land-sea transitions in surface wave

propagation (e.g., [13]). When scattering from the ionosphere with dynamic electron den-
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Figure 1.1: Propagation paths for ionospheric clutter.

sity irregularities, the returned echoes may be significantly spread in Doppler and range.

This clutter may contaminate significant portions of the range-Doppler spectra and seri-

ously impair the remote sensing capabilities at a range beyond 200 km or target detection

performance beyond 300 km [14].

The left column of Figure 1.2 provides two examples of radar range-Doppler spectra

based on data collected by a HFSWR operating at 4.1 MHz at CapeRace, NL, Canada on

August 29, 2000 at 18:00 coordinated universal time (UTC) and August 30, 2000 at 02:00

UTC, respectively [15]. The right column of Figure 1.2 givesthe corresponding ionograms

obtained by the ionosonde located within a kilometer of the HFSWR at Cape Race. As

shown in Figure 1.2(a), the radar range-Doppler spectrum involves ionospheric clutter from

the Es layer at range bins from 100 to 125 km. The corresponding ionogram in Figure 1.2(b)

displays an intense Es layer appears at a height of roughly 100 km and may reflect the radio

waves with frequencies from 2 to 7 MHz. The ionospheric clutter due to vertical reflection

appears in an interval of 5 to 10 km at the nearer range of the ionospheric clutter (100 to

4



110 km). The ionospheric clutter due to mixed-path propagation, involving the additional

propagation along the sea surface, appears at further rangebins (110 to 125 km). This Es

layer ionospheric clutter reduces the performance of HFSWRat these ranges [16]. Figure

1.2(c) contains the F layer ionospheric clutter occurring from 310 to 330 km. This agrees

with the ionogram shown in Figure 1.2(d), indicating that the radio wave with frequency of

4.1 MHz at vertical incidence is reflected at a height of 310 km. The separate traces of the F

layer are associated with the F layer ordinary and extraordinary waves due to the existence

of the Earth’s magnetic field. The absence of E-layer clutterabove 3.5 MHz allows the

radar to have longer range detection performance. Specifically, radar echo Doppler spectra

at particular ranges involving ionospheric clutter due to (a) vertical reflection and (b) mixed-

path propagation are shown in Figure 1.3(a) and (b), respectively. These spectra were

collected by an HF radar installation at Cape Race, Newfoundland, on January 6, 2002 at

20:00 UTC. The radar frequency was 4.1 MHz. In Figure 1.3(a),the continuum surrounding

“−0.31 Hz” is due to direct reflection of the transmitted signal fromthe overhead F-layer

ionosphere with a height of 230.8 km and the peak at “0.2 Hz” isthe Bragg peak of the

sea clutter. The power of the reflection from the F-layer is spread over a Doppler region

of about 1 Hz. At ranges beyond 200 km, the Bragg sea-clutter components are relatively

small compared with the F-layer reflection. Although the peak magnitude of ionospheric

clutter due to mixed-path propagation in Figure 1.3(b) is relatively lower than that due to

vertical reflection, the former is strong enough to contaminate the first-order sea clutter.

Furthermore, this ionospheric clutter is subject to diurnal and seasonal variations as a result

of temporal and spatial variations of the atmospheric layers [3].

For successful sea-state monitoring and target detection,HFSWR systems require target
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(a) (b)

(c) (d)

Figure 1.2: Radar range-Doppler spectra (a), (c) based on the data collected at Cape Race,

NL, Canada on August 29, 2000 at 18:00 UTC and August 30, 2000 at 02:00 UTC, respec-

tively, and their corresponding ionograms (b), (d) [14].
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signals to be well separated from clutter in range and Doppler. Therefore, to improve

the performance and the reliability of an HFSWR system, particularly during night time

operation, it is necessary to find methods to distinguish theunwanted signals from the

received ocean scatter. In addition to understanding the clutter in order to mitigate its

effects on ocean Doppler spectra, this knowledge may also provide a valuable source for

investigating the characteristics of the ionosphere itself [17].

The major focus in this thesis is on exploring how the ionosphere affects the propagation

of the transmitted HF signals and the ionospheric clutter characteristics in the Doppler

spectra of the radar echoes in the context of ocean remote sensing. A comprehensive model

of the radar received power density incorporating ionospheric clutter from mixed-path and

vertical propagation modes is developed. This work may leadto a better characterization of

the ionospheric clutter at HF and provide theoretical foundations for enhanced suppression

schemes.

1.2 Literature Review

This section reviews some of the previous work addressing the unwanted ionospheric clutter

in the context of HFSWR. Research efforts have generally taken one of two approaches:

developing ionospheric clutter suppression methods, or modelling the ionospheric clutter.

1.2.1 Methods for ionospheric clutter suppression

While not the primary focus of this thesis, a brief discussion on ionospheric clutter suppres-

sion is warranted for the sake of completeness.
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Based on the mechanism of ionospheric reflection, the intensity of ionospheric clutter

is sensitive to the radar operating frequency. If the operating frequency is increased beyond

the critical frequency of a particular ionospheric layer, the upward HF signal will not be

reflected back to the ground [18]. However, for long-range sea state measuring and ship

detection, it is desirable to operate the radar at lower HF frequencies, since there will be

more surface-wave attenuation at higher frequencies. Thus, there is a tradeoff in applying

frequency agility to evade the interference. In order to improve the reliability of an HFSWR

system, several approaches have been exploited to mitigatethe influences of the ionospheric

clutter.

Several adaptive processing techniques [19–22] are developed by employing horizontal

or vertical dipoles as auxiliary antennas to take on the roleof coherent sidelobe cancellers.

These techniques may adaptively control the amplitude and phase of the signal from each

array element in order to nullify interfering signals and maintain the response in the di-

rection of the desired signal. In [19], Leong presented a method employing four auxiliary

horizontally polarized antennas (HPA), configured in the form of two separate crosses, to

form an adaptive system with the vertically polarized antennas (VPA) of a HFSWR system.

The horizontally polarized components received by the HPAscan be used to estimate the in-

terference component received by the VPAs. A subtraction ofthis estimate from the outputs

of the VPAs can then result in interference cancellation. Leong derived adaptive weights to

optimally suppress interference. However, in practice, sea echo from the horizontal direc-

tion and the ionospheric clutter from the zenith direction cannot be easily separated by this

method. Therefore, the adaptive filtering process may lead to simultaneous weakening of

the target signal.
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Further efforts were made in [23] to investigate the angularspectrum characteristics of

ionospheric clutter and to deduce the signal-to-clutter processing gain from this information

by various adaptive receive antenna array configurations. In particular, it is shown that

by using a planar two-dimensional (2-D) array, the radar candistinguish high-elevation

ionospheric clutter signals from low-elevation surface target echo, such as sea echo. These

methods involved additional antennas and relied on a large array aperture or a 2-D array

configuration, making the radar system more complicated andreducing its applicability

when the size of the test site is limited.

Other researchers have applied a signal processing technique called space-time adaptive

processing (STAP) algorithms. This is an effective way to use training samples to adapt

its algorithms to specifically suppress the ionospheric clutter component. The concept of

STAP was proposed by Brennan and Reed in the 1970s [24]; in theDoppler-angle domain

it has been mainly exploited to suppress homogeneous and nonhomogeneous clutter for

airborne radar systems [25]. STAP involves a two-dimensional filtering technique using a

phased-array antenna with multiple spatial channels. Coupling multiple spatial channels

with a pulse-Doppler waveform leads to the name “space-time”. Applying the statistics

of the interference environment, an adaptive STAP weight vector may be formed. This

weight vector is then applied to the coherent samples received by the radar to deal with the

interference problem.

In HFSWR systems, STAP has recently been adopted to counter sea clutter in ship-

borne radar systems [26] and to suppress ionospheric clutter in shore-based radar systems.

Giuseppe Fabrizio and his colleagues at the Defence Scienceand Technology Organization

in Australia focused on the development of the adaptive coherence estimator (ACE) and
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its variant, the spatial adaptive subspace detector (ASD) [27], for over-the-horizon (OTH)

radar systems. The ACE and ASD tests satisfy the constant false alarm rate property. This

property is used to determine the power threshold above which any return can be consid-

ered to originate from a target with a particular probability. However, the techniques are

susceptible to unwanted signals present in the test cell butnot in the reference cell. Such

signals can cause masking of desired signals and preclude their detection. Recently, Fab-

rizio and Farina proposed a generalized likelihood ratio test (GLRT) detector to address

this issue [28]. However, the implementation of the GLRT requires exact knowledge of the

parameters of the interference.

Saleh and his colleagues [29, 30] in Canada, and Li and Zhangetal. [31, 32] in China

analyzed a group of STAP algorithms. These include the jointdomain localized (JDL),

the direct data domain (D3), hybrid, as well as a newly proposed fast fully adaptive (FFA)

algorithm. JDL is a dimension-reduced version of STAP, which features low computational

cost and high performance in homogeneous clutter suppression. Especially for clutter with

distribution independent with the desired signal, JDL is highly effective. In HFSWR, it

is always difficult to obtain enough training data for JDL. The D3 and hybrid techniques

are STAP algorithms used for suppressing non-homogeneous clutter. These algorithms

suffer from high computational cost and poor real-time performance for HFSWR due to the

requirement of long coherent integration time and a large space-time dimension. FFA is

presented in [30] and tested based on a Cape Race data set provided by Defence Research

and Development Canada. This algorithm is able to exploit the entire space-time data set

with limited training and with low computation load, but theissue of how to divide the

space-time region into rectangular sub-matrices is still under investigation.
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These existing signal processing techniques for mitigating ionospheric clutter require

a tradeoff between computation load and the homogeneity of the sample support needed

to train the adaptive filters. Furthermore, these techniques are usually more suitable for

processing the steady or slowly varying disturbances of theionospheric clutter than for

dynamic applications. These motivate the research reported in this thesis.

1.2.2 Overview for ionospheric clutter modeling

A second approach to alleviating the ionospheric clutter problem involves describing the

complicated physical scattering mechanisms based on a well-defined mathematical model.

This model should explain the interactions of the radar signals and the ocean waves, and,

additionally, it must address how the ionosphere affects the received signal. Such a model

might then suggest how the ionospheric clutter might be analytically characterized within

the radar echo spectrum. Due to the highly non-stationary characteristics of the ionosphere

which vary widely with time of day, season, temperature, andlocation, modeling the iono-

spheric clutter is challenging. The level of ionization andthe electron density are functions

of both elevation and solar radiation intensity. As a resultthe electron density of the iono-

sphere, and consequently the characteristics of the ionospheric clutter, vary with elevation

as well as time of day, season, and sun-spot activity.

For his Ph.D. thesis in 2000, Fabrizio introduced a space-time statistical model of nar-

rowband signals reflected by different ionospheric layers and developed a parameter esti-

mation technique to fit measured data into the model [33]. First, he derived a mathematical

expression for the received signal-fields reflected by a constant structure of the irregular

ionosphere at a time instant. This rough plasma surface was replaced by a series of flat
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“phase screens” in theX-Y plane. Then, he determined the statistical properties of the

wavefield received on the ground in terms of the space-time autocorrelation of the time-

varying irregular ionosphere. This model is shown to be valid for the cases with a coherent

pulse interval (CPI) shorter than a few seconds. For longer CPIs, he assumed the iono-

spheric reflections as a random process with a Gaussian representation and proposed hy-

pothesis tests to evaluate this statistical model. One should emphasize that the parameters

of the ionospheric model were experimentally validated from the field data collected at the

Jindalee radar site operated by the Defense Science and Technology Organization (DSTO)

in Australia. There was no guarantee that this model will be applicable to other HFSWR

systems. Furthermore, this model does not involve the process of sea surface scattering

via the ionosphere-ocean path, which can be significant for coastal HFSWR and should be

considered.

Riddolls [34] introduced a geometric optics model, which was extended from the sky-

wave model proposed by Coleman [35]. The scattered wave fieldwas expressed in terms of

a line integral of the refractive index fluctuations by simultaneously accounting for group

delay, direction of arrival, location, and Doppler shift. He used a ray tracing model and

treated ionospheric irregularities as perturbations of a “quiescent” path solution without ir-

regularities. Finally, he built the relationship between the phase power spectrum for the

signal received in the horizontal plane and the spectral density of the electron density irreg-

ularities within the ionosphere. This model was recently implemented by Ravanet al. [36]

to develop a spatial-temporal phase spectrum of HF signals reflected from the ionosphere

vertically or obliquely. However, the model did not providethe received power spectral

density of the ionospheric clutter and also did not involve sea scattering via the ionosphere-
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ocean path.

Walsh and Gill of the radar group at Memorial University in Canada laid a solid theo-

retical foundation for analyzing the monostatic and bistatic HF radar cross sections of the

sea surface scattering for oceanic remote sensing [37–39].The radar cross section is used

to describe the physical mechanism of the sea surface to reflect radar energy. These first-

and second-order models were derived using the general Maxwell equations to solve for

the received electric fields, and then the received power density and the radar cross section

are obtained through a series of Fourier transformation andstatistical analysis. The models

have been proven to be efficient in algorithms used for extracting ocean parameters from

HFSWR data. Based on this theory, the first-order model has been extended to mixed-path

ionosphere clutter modelling for a pulsed radar [40,41]. Inthese references, the effect of the

ionosphere on the radio waves travelling within it was assumed to be a Gaussian process.

However, the spectral density of this process was simplifiedto a uniform or exponential

distribution without experimental verification, which maynot be sufficient for describing

the practical ionospheric conditions. The methodology of Walsh’s mixed-path model is in-

troduced in details in Section 1.2.3. In this thesis, it willbe modified by considering more

practical ionospheric conditions.

Comprehensive characteristics of ionospheric clutter areanalysed by Chan [42]. His

report includes various types of ionospheric clutter whichwere identified based on time-

series mode and Doppler mode data collected at Cape Race, Newfoundland, Canada in

2003. The characteristics were catalogued in terms of the range, azimuth, frequency, and

Doppler. The information provided in that report may be usedfor evaluating and testing the

derived model of ionospheric clutter.
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1.2.3 Review of Walsh’s mixed-path propagation theory

The analysis of the mixed-path propagation was conducted based on the previous mod-

eling involving the scattering of HF electromagnetic radiation from the ocean surface.

Barrick [43] was the first to derive a complete radar cross section model for investigat-

ing the interaction between HF radar waves and ocean waves. It should be noted that the

Bragg scatter mechanism in his techniques are simply accounted for by Dirac delta func-

tion, which is not the case in real radar Doppler spectra. Srivastava and Walsh [44] first

addressed the Bragg peak broadening phenomenon by studyingthe mechanism of electro-

magnetic wave scattering at the boundary of two different media. Their analysis proceeded

directly from Maxwell’s equations and these solutions showed the boundary conditions

were generated naturally from the initial formulation as auxiliary equations. Walsh and his

colleagues [37, 45] further applied this basic approach to develop a variety of cross sec-

tion models for different practical situations of ocean surface propagation and scattering.

The mixed-path propagation is one of the applications, which is addressed by additionally

involving the scattering of the HF radio waves from the ionosphere.

For the case of ionospheric clutter returning to the receiving antennas via ionosphere-

ocean mixed-path propagation, the derivation begins from the rough surface scattering in-

tegral equation found in Eq. (46) of [37] as

E+
0n −∇ε · ∇(E+

0n)
xy∗ F (ρ)

e−jkρ

2πρ

=(ẑ −∇ε) · F−1
xy [2uFxy( ~E

z−

s )e−z−u]
xy∗ F (ρ)

e−jkρ

2πρ
,

(1.1)

whereE+
0n is the received electric field normal to the rough surface immediately above the

surface,ε(x, y) is the surface roughness profile at position(x, y),∇ε is the surface gradient,
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xy∗ is a two dimensional(x, y) convolution,ρ =
√

x2 + y2 is the planar distance variable,

F (ρ) is the Sommerfeld surface attenuation function,k is the electromagnetic wavenumber,

ẑ is the unit vector in thez (vertical) direction,Fxy is a two dimensional(x, y) spatial

Fourier transform,F−1
xy is the inverse transform operator,u =

√
K2 − k2, K2 = K2

x +K2
y ,

Kx andKy are spatial Fourier transform variables, and~Ez−
s is the incidence electric field of

the primary source vector evaluated in the planez = z− < ε(x, y). This equation describes

the process of the radio waves scattering at sea surface point (x, y) and propagating on the

sea surface for a distance ofρ, and gives the relationship between the incidence and received

electric field.

The general form of the primary source field~Es at a point (x, y, z) in free space is

defined as [46]

~Es(x, y, z) ≡ TsE( ~Js(x, y, z))
xyz∗ G0(x, y, z), (1.2)

where, ~Js is the primary source current density of the transmitting antenna,TsE( ~Js) =

1
(jωε0)

[∇(∇ · ~Js) + k2 ~Js],
xyz∗ is three dimensional(x, y, z) spatial convolution,G0 =

e−jkr

4πr

is the Green’s function, andr =
√

x2 + y2 + z2 is the three dimensional radial distance

variable. Taking the two dimensional (x, y) spatial Fourier transform of Eq. (1.2), the

integral form of the source field at the planez = z− is given as

~Es(z
−) = ez

−u

∫

z′
TsE(z

′)
e−z′u

2u
dz′. (1.3)

The expression2uFxy( ~E
z−

s )e−z−u in Eq. (1.1) becomes

2uFxy( ~E
z−

s )e−z−u = 2 lim
z→0+

∂

∂z
Fxy( ~Es). (1.4)

16



Substituting Eq. (1.4) into Eq. (1.1) yields

E+
0n −∇ε · ∇(E+

0n)
xy∗ F (ρ)

e−jkρ

2πρ
= (ẑ −∇ε) · 2 lim

z→0+

∂

∂z
( ~Es)

xy∗ F (ρ)
e−jkρ

2πρ
. (1.5)

The ẑ component of the source term may be further simplified to

Eszs = Fxy

[

2 lim
z→0+

∂

∂z
( ~Es) ∗ F (ρ)

e−jkρ

2πρ
ẑ

]

=

∫

z′
TsEz(z

′)
e−z′u

u+ jk∆
dz′,

whereEszs is defined to denote thez component of the incidence field in planez = 0

resulting from the given radar source,∆ is the ocean surface impedance, and the subscript

z indicates thez component of the vector field. Thus, Eq. (1.1) becomes

E+
0n −∇ε · ∇(E+

0n)
xy∗ F (ρ)

e−jkρ

2πρ
= Eszs −∇ε · 2 lim

z→0+

∂

∂z
( ~Es)

xy∗ F (ρ)
e−jkρ

2πρ
. (1.6)

To first orderE+
0n may be approximated by a Neumann series as

E+
0n ≈ Eszs +∇ε · [∇(Eszs)− 2 lim

z→0+

∂

∂z
( ~Es)]

xy∗ F (ρ)
e−jkρ

2πρ
. (1.7)

The first termEszs is the solution for a smooth surface, i.e.,∇ε = 0. The remaining terms

represent first-order scattering because of surface roughness. Thus, the first-order electric

field normal to the rough surface immediately above the surface for a source field~Es is

denoted by(E+
0n)1 as

(E+
0n)1 = ∇ε · [∇(Eszs)− 2 lim

z→0+

∂

∂z
( ~Es)]

xy∗ F (ρ)
e−jkρ

2πρ
. (1.8)

In the following, the primary source is specified to be an elementary dipole. The far-

field free-space electric field~ET , which is observed atP (R, θ, φ), due to such a source

located at the origin is given by

~ET = Eθθ̂ = jC0 sin θ
e−jkr

4πr
θ̂, (1.9)
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where(r, θ, φ) are the spherical coordinate variables with

r =
√

x2 + y2 + z2 =
√

ρ2 + z2, θ̂ = − sin θẑ + cos θẑ.

In addition,C0 =
η0∆l
c

ωI(ω) is the dipole coefficient for an antenna of length∆l carrying a

currentI whose radian frequency isω and wavenumber isk in free space where the intrinsic

impedance isη0.

In order to proceed with the mixed-path propagation, an elevated source will be con-

sidered over a plane lossy earth. The original treatment andsolution of the problem of

determining the radiated fields from this rather simple source over a plane lossy earth was

given by Sommerfeld [47]. However, Sommerfeld’s solution was written in terms of com-

plex integrals, which are quite difficult to evaluate. The commonly accepted asymptotic

solution for the electric field~ET , which may be found in modern texts addressing the issue

of elevated sources above a lossy earth, e.g. [48], may be written in a simplified form for

the present purposes as

~ET = jC0

{

sin θ1
e−jkR1

4πR1
θ̂1 +RV sin θ2

e−jkR2

4πR2
θ̂2 − (1− RV )F (ρ, z)

e−jkR2

4πR2
[ẑ + bρ̂]

}

.

(1.10)

The geometry of the elevated dipole source over a lossy planeearth is shown in Figure 1.4

and various terms of Eq. (1.10) are illustrated. It should benoted that the source dipole has

been elevated atz = h and its “image” is located atz = −h. Rv is the Fresnel reflection

coefficient for a vertically polarized plane wave andF (ρ, z) is the Sommerfeld attenuation

function. Both of these parameters are functions of the ground relative permittivityǫr,

conductivityσ, and the frequencyω. The constantb depends on the ground parameters.

The first term in Eq. (1.10) is referred to as the direct field, i.e., the source dipole
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Figure 1.4: Vertical Dipole over Lossy Plane Earth.

radiated electrical field in the absence of earth. The other two terms represent the fields

due to earth interactions. Certain special cases are of interest. If the earth is perfectly

conducting,Rv → 1 and the field~E then consists of the first two terms only. Interpreting

Eq. (1.10) in relation to Figure 1.4, if the observation point P is on the surface, then

E = 2Es for this case, whereEs is the electrical field from the source dipole. If the

earth has finite conductivity and both the source dipole and the observation pointP (ρ, z)

approach the surface (h, z → 0+), thenRv → −1 andθ1, θ2 → π/2, and the first two terms

in Eq. (1.10) cancel. In general, for good conducting surfaces such as the ocean, theρ̂

component is much smaller than theẑ component of the surface wave. On the other hand,

if the observation pointP is far removed from the surface, the third term in (1.10) may be

neglected and the field~E can be taken to consist of the first two terms only. The effect of
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the earth is then

Eearth = jC0Rv sin θ2
e−jkR2

4πR2
θ̂2. (1.11)

It should be noted that the reflection coefficientRv is a function of the observation point

P coordinates through its dependence on the reflection angle,i.e., Rv = Rv(x, y, z, h).

This implies thatRv can be treated as any other function. For example, it may be Fourier

transformed.

In order to apply the above result to the case of the mixed-path propagation, the plane

earth is replaced with the ionosphere reflection layer. The geometry of the mixed-path

propagation is shown in Figure 1.5. TheX-Y plane indicates the ocean surface and the

observation pointP is at(x, y, 0+) on the surface. The primary source transmitting antenna

is taken to be a vertical dipole at the origin (0, 0, 0+). Assuming the ionosphere to be a

reflecting plane at a heightz = H/2, the propagation path from the transmitting antenna

up to the ionosphere and back to the rough ocean surface couldbe considered as a straight

line from an elevated source at (0, 0,H), which is the image of the original source. Note

thatθi is the reflection angle,ρ is the range of the surface wave path,R is the range of the

free-space path andR + ρ is the total path of the mixed-path propagation.

The resulting electric field representing the ionospheric effect atP (x, y, 0+) is given as

~Ei = jRiC0 sin θi
e−jkR

4πR
θ̂, (1.12)

whereRi is the effective ionospheric reflection coefficient (IRC), which represents the iono-

spheric effect on the propagation of the radio waves.

In order to determine the first-order scattered surface field(E+
on)1, ~Ei given by Eq.

(1.12) will be substituted for~Es in Eq. (1.8). Moreover, the terms2 limz→0+ ∂ ~Ei/∂z and
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Figure 1.5: Scattering geometry for ionosphere-ocean return.

∇xy(Eizs) in Eq. (1.12) are evaluated as

2 lim
z→0+

∂ ~Ei

∂z
∼ kC0Ri sin θi cos

2 θi
e−jkR

2πR
ρ̂,

∇xy(Eizs) ∼ −kC0Ri sin
3 θi

e−jkR

2πR
ρ̂.

Then the first-order electric field is given as

(E+
0n)1 ∼ −kC0[(∇ε · ρ̂)Ri sin θi

e−jkR

2πR
]
xy∗ F (ρ)

e−jkρ

2πρ
. (1.13)

Referring to Figure 1.5, Eq. (1.13) may be written in integral form as

(E+
0n)1(x, y) ∼− kC0

(2π)2

∫ ∫

S

(∇ε · ρ̂)(x1, y1)Ri(x1, y1) sin[θi(x1, y1)]F (ρ2)

· e
−jk(R1+ρ2)

R1ρ2
dx1dy1,

(1.14)

whereR1 =
√

ρ21 + h2, ρ1 =
√

x2
1 + y21, ρ2 =

√

(x− x1)2 + (y − y1)2.

In the monostatic case, for which the transmitting and receiving antennas are co-located

and the observation point (x, y) is at the origin (0,0), it can be inferred from Figure 1.5
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thatρ = 0 andρ2 = ρ1. Upon transformation from Cartesian to polar coordinates (ρ1, θ1),

(1.14) then simplifies to

(E+
0n)1mo ∼− kC0

(2π)2

∫

ρ1

∫

θ1

(∇ε · ρ̂1)(ρ1, θ1)Ri(ρ1, θ1) sin[θi(ρ1)]F (ρ1)

· e
−jk(R1+ρ1)

R1

dθ1dρ1,

(1.15)

where the subscript “mo” denotes the monostatic case. The limits of integration will be

determined from the region of the scattering surface. The quantities associated with the

ocean and ionosphere surfaces are represented using subscripts ‘o’ and ‘i’, respectively.

Here, the rough surface profileε will be eventually assumed to be that of the ocean

surface. As in [37–39], the sea surface, which is assumed to be a stochastic process, may

be represented by a general Fourier form as

ε(x, y) =
∑

~Ko

P o
~Ko
ej

~Ko·~ρ, (1.16)

whereP o
~Ko

is the Fourier coefficient for a surface component whose wavevector is ~Ko,

which is taken to be a continuous parameter. Of course, in reality, the sea surface is time-

varying and will introduce an additional parametert in (1.16). However, in the interest of

simplicity and because any surface time variation will be ona considerably longer time

scale than electromagnetic propagation times, this temporal variation is not immediately

introduced.

The ionospheric reflection coefficientRi depends on both position and frequency, i.e.,

Ri = Ri(x, y, ω) [40]. For simplicity, the zero-order reflection coefficientat the radar oper-

ating frequencyω0 will be considered. A continuous parameter stochastic model will also

be assumed for this zero-order ionosphere reflection coefficient Ri(x, y, ω0). This seems

reasonable sinceRi certainly depends on the parameters of the ionosphere, e.g., ionospheric
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electron densities. These will have certain average valuesdepending on geophysical con-

ditions, but there will be point-to-point variations whichmay well be viewed as random.

It is then to be expected thatRi will have random variations with respect to the surface

observation point (x, y), in particular, relating to phase. Furthermore, the electron densities

and, therefore,Ri may very well have a low-frequency time variation profile. This can be

incorporated in the same fashion as the temporal variation in ε, but, again, the time scales

will be very much longer than electromagnetic propagation time scales and so may be in-

cluded later. Of course, both the ocean surface and ionospheric reflection coefficient time

variations will impact the observed Doppler frequencies ofthe received electromagnetic

signal. With these considerations in place, the ionospheric reflection coefficientRi(x, y)

for the ionosphere may be written in Fourier form, analogousto (1.16) for the ocean, as

Ri(x, y) =
∑

~Ki

P i
~Ki
ej

~Ki·~ρ, (1.17)

whereP i
~Ki

is the Fourier coefficient of the ionosphere reflection coefficient for a component

whose spectral wavenumber isKi.

The integral with respect toθ1 in (1.15) is evaluated asymptotically by the well-known

stationary phase technique [49]. The stationary points forθ1 for the technique is shown to

be the same direction as that of the vector sum~Ks = ~Ki + ~Ko [45]. The direction of this

sumφs corresponds to the radar look direction for monostatic case.

Theρ1-integral in (1.15) is solved approximately by incorporating a pulsed radar source.

The frequency-domain antenna currentI in the electric field equation (1.15) is specified as

a gated sinusoidal signal with pulse widthτ0 and frequencyω0. The time-domain version
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of this current may be written as

i(t) = I0e
jω0t [h(t)− h(t− τ0)] , (1.18)

whereI0 is the current amplitude andh(t) is the Heaviside function. For a given timet, the

radial extentρ1 of the surface from which scatter contributes to the received signal at time

t is limited by the Heaviside function. In order to incorporate this time-domain current,

Eq. (1.15) is inverse Fourier transformed with respect to the frequencyω. After a series of

derivations (see [41]), the expression of the received electric field in Eq. (1.15) becomes

(E+
0n)1mo(ρs) ∼− j

k2
0η0∆lI0
(2π)3/2

e−jπ/4ej2k0(ρs+
∆ρs
2

)e−jk0(ρ0+R0)
F (ρ0)

R0
√
ρ0

sin θ0

·
∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki

~Ko · ~Ks

K
3/2
s

ejKsρ0∆ρSa[
∆ρ

2
{Ks − k0(1 + sin θ0)}],

(1.19)

whereρs = ct
2
− cτ0

4
is defined as the apparent surface range,∆ρs = cτ0

2
is the apparent

range resolution,Sa(· · · ) is the sampling function with the usual form ofsin(· · · )/(· · · ),

ρ0 represents the range between the radar and the center point of the scattering patch on

the ocean surface,R0 is the range of the skywave from the radar to the center point of this

scattering patch, and∆ρ is the range resolution of the patch.

Equation (1.19) is an estimate of the electric field intensity at the receiving antenna for

a single transmitted pulse of a time pulsed radar. In the caseof a Doppler radar, a time

series of such pulses is transmitted and the return is recorded. This record is then analyzed

to extract useful information regarding the time variationin the targets being interrogated.

Here, in order to incorporate the required temporal variability of the sea surface profile

ε and the ionosphere reflection coefficientRi, (1.16) and (1.17) need to be modified by
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including the time variablet as

ε(x1, y1, t) =
∑

~Ko,ωo

P o
~Ko,ωo

ej(
~Ko·~ρ+ωot),

Ri(x1, y1, t) =
∑

~Ki,ωi

P i
~Ki,ωi

ej(
~Ki·~ρ+ωit).

The frequenciesωo of the ocean waves andωi of the ionospheric irregularities are assumed

to be small, so that time variations during the collection time for a single pulse may be

considered to be negligible. Thus, only pulse to pulse variations are considered.

The received power spectral density (PSD) is taken to be the Fourier transform of the

autocorrelation function of the time-varying received electric field and is derived as [41]

Pi1(ωd) =
Ar

2η0

(k2
0η0∆l|I0|)2
(2π)2

|F (ρ0)|2
R2

0ρ0
sin2 θ0(∆ρ)2

∫

~Ko

∫

~Ki

∫

~ωo

∫

~ωi

·
(

~Ko · ~Ks

K
3/2
s

)2

So( ~Ko, ωo)Si( ~Ki, ωi)δ[ωd − (ωo + ωi)]

· Sa2
[

∆ρ

2
{Ks − k0(1 + sin θ0)}

]

d ~Kod ~Kidωodωi.

(1.20)

whereAr is the receiving antenna effective area,ωd is the observed “Doppler” frequency,

and the ensemble average of the random Fourier coefficients may be written as

〈P o
~Ko,ωo

P i
~Ki,ωi

(P o
~Ko,ωo

)∗(P i
~Ki,ωi

)∗〉 = So( ~Ko, ωo)Si( ~Ki, ωi)d ~Kod ~Kidωodωi,

and where∗ represents complex conjugation, andSo( ~Ko, ωo) andSi( ~Ki, ωi) are the spectral

densities of the ocean surface and the ionosphere, respectively. This PSD equation contains

an integration over all spatial wavenumbers and temporal frequencies for both the ocean

wave spectrum and the spectral representation of the ionospheric reflection coefficient.

In the case of the ocean surface, the linear dispersion relation between the frequencyωo
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and wavenumberKo of individual gravity wave components is written as

ωo =
√

gKo tanhKod, (1.21)

whereg is the usual acceleration due to gravity, andd is the water depth. Recalling that

the phase speed of the wave isωo

Ko
, Eq. (1.21) indicates that waves with longer wavelengths

(λo = 2π/Ko) will travel at higher speeds. When the water is sufficientlydeep, (typically,

in oceanographical measurements, whend ≥ λo/4 [50]) so thattanh(Kd) ≈ 1, a “deep

water” approximation to the dispersion relationship may begiven as

ωo =
√

gKo. (1.22)

The deep water approximation is often valid for HF radar operation and this equation will be

employed throughout the remainder of this work. Then, the spectral density incorporating

the “linear” dispersion relation for first-order gravity waves is typically cast as

So( ~Ko, ωo) =
1

2

∑

m=±1

So(m~Ko)δ(ωo +m
√

gKo), (1.23)

wherem = ±1 corresponds to wind driven ocean waves moving parallel or anti-parallel to

the radar look direction. Typically, the directional oceanspectrumSo( ~Ko)may be expressed

as the product of a non-directional spectrum,So(Ko) and a normalized directional factor,

D(θ ~Ko
) as

So( ~Ko) = So(Ko)D(θ ~Ko
), (1.24)

whereD(θ ~Ko
) is normalized [51] as

∫ 2π

0

D(θ ~Ko
)dθ ~Ko

= 1.
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The Pierson-Moskowitz (PM) non-directional spectrum [52]is selected to represent the

ocean wave spectrum for a fully developed sea as

So(Ko) =
0.0081

2K4
o

e
−0.74( g

KoU2 )
2

, (1.25)

whereU is the speed of the surface wind measured at 19.5 m above the ocean surface.

D(θ ~Ko
) is chosen to be a cardioid directional distribution for the directional ocean wave

height spectrum of a wind driven sea [53] as

D(θ ~Ko
) =

4

3π
cos4

(

θ ~Ko
− θ~U
2

)

, (1.26)

whereθ~U is the dominant direction of the surface wind. Thus, the spectral density of ocean

surface waves becomes

So(m~Ko) =
0.0081

2K4
o

e
−0.74( g

KoU2 )
2

·
[

4

3π
cos4

(

θ ~Ko
+ (1−m)π

2
− θ~U

2

)]

, (1.27)

In the case of the ionosphere, it is assumed in [41] that the ionosphere reflecting layer

has only a constant horizontal velocity. Thus the spectrumSi( ~Ki) is non-directional. Then,

the spectral density for the ionospheric reflection coefficientSi(K) has been assumed to be

generally representable by a uniform or exponential distribution model in [41], but these

models may not adequately describe the behaviour of the ionosphere. Thus, the spectrum

of the ionospheric reflection coefficient needs to be furtherinvestigated.

1.3 The Scope of the Thesis

In this thesis, theoretical models of the ionospheric clutter are established based on the

foundations of the mixed-path propagation theory developed by Walsh [40]. The thesis is

organized as follows:
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In Chapter 2, the physical influences of the ionospheric electron density on HF radar

Doppler spectra are taken into account in the ionospheric reflection coefficient (IRC) model.

The relationship between the IRC and the electron density irregularities within the iono-

sphere layers is derived based on an layered ionospheric model [11].

In Chapter 3, by considering the reflection from the ionosphere and second-order scat-

tering on the ocean surface, the received electric field involving mixed-path propagation for

a monostatic radar configuration is derived from Walsh’s mixed-path propagation theory. In

this case, the reflected signals from the ionosphere may be scattered back to the receiver by

one second-order ocean wave (hydrodynamic effect) or two first-order ocean waves (elec-

tromagnetic effect) [54]. Then, the field integrals are taken to the time domain, with the

source field being that of a vertically polarized pulsed dipole antenna. Subsequently, the

second-order received power spectral density model is developed by assuming the ocean

surface and the ionosphere are stochastic processes.

In Chapter 4, the derived ionospheric clutter model for a pulsed radar source is fur-

ther investigated for the case of vertical propagation for amonostatic configuration and for

mixed-path propagation when using a bistatic configuration.

In Chapter 5, a theoretical model of the mixed-path propagation is developed by involv-

ing a frequency-modulated continuous wave (FMCW) radar source.

In order to investigate the power density spectrum of this ionospheric clutter and its

relative power density to that of the average first-order ocean clutter peak, the normalized

ionospheric clutter power density is simulated. Numericalsimulation results are provided

to demonstrate the performance of the ionospheric clutter under a variety of ionospheric

conditions and sea states.
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Chapter 6 summarizes the fundamental conclusions reached from the work presented in

the previous four chapters of this thesis. Based on the questions generated by the present

analysis, several suggestions for future research are alsoprovided.

The research described in this thesis has been published in five refereed scholarly jour-

nal papers as listed below.

1. J. Walsh, E. W. Gill, W. Huang, and S. Chen, “On the Development of a High Fre-

quency Radar Cross Section for Mixed Path Ionosphere-oceanPropagation”,IEEE

Trans. Antennas Propag., vol. 63, no. 6, pp. 2655-2664, 2015.

This paper provides an overview of Walsh’s mixed-path propagation method (Section

1.2.3) and numerical simulations (Section 2.4).

2. S. Chen, E. W. Gill, and W. Huang, “A High Frequency SurfaceWave Radar Iono-

spheric Clutter Model for Mixed-Path Propagation with Second-Order Sea Scatter-

ing,” IEEE Trans. Antennas Propag., 2016. (in press, DOI: 10.1109/TAP.2016.2618538)

This paper provides the analysis of the mixed-path propagation with second-order sea

scattering (Chapter 3).

3. S. Chen, W. Huang, and E. W. Gill, “A Vertical Reflection Ionospheric Clutter Model

for HF Radar Used in Coastal Remote Sensing,”IEEE Antennas Wireless Propag.

Lett., vol. 14, pp. 1689-1693, 2015.

This paper provides the analysis of the vertical ionospheric clutter (Section 4.2).

4. S. Chen, W. Huang, and E. W. Gill, “First-Order Bistatic High Frequency Radar

Power for Mixed-path Ionosphere-Ocean Propagation,”IEEE Geosci. Remote Sens.
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Lett., 2016. (in press, DOI: 10.1109/LGRS.2016.2618855)

This paper provides the analysis of the mixed-path propagation for bistatic radar con-

figuration (Section 4.3).

5. S. Chen, E. W. Gill, and W. Huang, “A First-Order HF Radar Cross Section Model

for Mixed-Path Ionosphere-Ocean Propagation with an FMCW Source,” IEEE J.

Oceanic Eng., vol. 41, no. 4, pp. 982-992, 2016.

This paper provides the analysis of the mixed-path propagation with FMCW radar

source (Chapter 5).
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Chapter 2

A Model for the Ionospheric Reflection

Coefficient

2.1 Introduction

The ionospheric reflection coefficient (IRC) is used to describe the ionospheric effects on

the propagation of a radio wave, which is the electric field strength ratio of the reflected

wave to that of the incident wave. It is fundamentally related to ionospheric electron den-

sity irregularities [55]. For each ionospheric layer, there is a quiescent ionospheric electron

density with random spatial irregularities. These irregularities may lead to the shifting

and spreading of the clutter signal in the range and Doppler domains [56]. Radar signals

backscattered from these irregularities can be very intense and may be considered to vary

randomly with surface observation positions. Efforts to mitigate the influence of these sig-

nals require knowledge of the probability distribution forthe IRC, which is a function of
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the electron density irregularities, and investigation ofthe Doppler shift and spread that

the ionospheric clutter introduces in the radar echoes. Thespectral density for the IRC

Si( ~Ki, ωi) has been previously assumed to be representable by a uniformor exponential

distribution model [40,41], but these may not adequately describe the behaviour of the iono-

sphere properly [57]. The spectral density of the IRC is basically related to the irregularities

of the electron density. Thus, this parameter should be determined based on the practical

ionospheric irregularity model rather than by assuming a simple uniform or exponential

distribution. In order to make the ionospheric clutter model more physically meaningful,

this spectral density should be determined from the properties of the ionosphere itself.

In this Chapter, the propagation of the HF radio waves withinthe ionosphere is investi-

gated. Then, the IRC expression is modified from that used by Walsh [41] to be related to

the ionospheric electron density irregularities. Finally, a typicalin-situ distribution for the

electron density is incorporated into the derived spectraldensity function of the IRC.

2.2 The Propagation of Radio Waves within Ionosphere

The ionosphere contains high densities of free electrons and ions. Thus, it can affect the

properties of electromagnetic waves that are propagated within or through it. The spatial-

temporal phase spectrum of signals reflected from the bottomof the ionosphere in the pres-

ence of ionospheric irregularities is investigated through a geometric optics approach. A

dispersion relation for the HFSWR pulse as it propagates in the ionosphere is given in [58]

as

n2 =
c2k2

ω2
= 1−

ω2
p

ω2
, (2.1)
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wheren is the refractive index,c is the speed of light,ω is the radar frequency,k is its wave

number, andωp is the electron plasma frequency, defined as

ω2
p =

e2Ne

ǫ0m
, (2.2)

wheree is the charge of an electron,ǫ0 is the permittivity of free space,m is the mass of an

electron, andNe is the electron density.

The ionosphere will be considered to be a layer-stratified plasma of sub-layers as illus-

trated in Figure 2.1. The electron density of each sub-layerincreases with altitude and the

refractive index decreases. When the radio waves propagatein the ionosphere, their direc-

tion and velocity are changed according to the Snell’s law. The trajectories of the radio

waves are refracted away from the normal for upward propagation from slice to slice as

shown in Figure 2.1. When the angle of refraction is90◦, the ray will start to be completely

Figure 2.1: Refraction of a radio wave in the ionosphere.

internally reflected back to the earth by the boundary, the angle of incidence then being the
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critical angle. Applying Snell’s law to the geometry in Figure 2.1 gives

sin θi
sin 90◦

=
nk

1
. (2.3)

Eq. (2.3) indicates that the ray will be reflected back to the earth at the stratum whose

refractive index numerically equals the sine of the incidence angle at the point of entrance to

the ionosphere, i.e.nk = sin θi. Now the electron densityNe is assumed to be continuously

changing and linearly related to the altitudez, and independent of the horizontal coordinate.

As shown in Figure 1.2 (d), the measured electron density profile is a parabola-shape curve

for the F-layer from 290 to 500 km. However, from the same figure it may be observed

that for radio wave frequencies under approximately 5 MHz, it makes sense to simplify the

relationship between the electron density and the height asbeing linear from the bottom of

the F-layer to approximately 350 km. For higher radio wave frequencies, it would be better

to apply more realistic electron density profiles, such as a parabola-linear composite model

or the international reference ionosphere [10]. Then the refractive index may be written in

the form [36]

n2(ω, z) = 1− cos2 θi
z

z0
, (2.4)

where, for our purposes,z = 0 is at the bottom of the F-region ionosphere, which is

approximately 200 km above the ground, andz = z0, the height where total reflection

occurs, is determined by the radio frequency. The total reflection effects may be accounted

for by an integral over a volume of refractive index fluctuations [59].
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2.3 Derivation for the Spectral Density of the IRC

2.3.1 Representation of the IRC

For the case of the ionospheric clutter, the electric field ofan HFSWR signal reflected by

the ionosphere to the ocean surface is considered. The free space radiated far electric field

at a pointP (r, θ, φ) from an elementary dipole source located at the origin is given in Eq.

(1.9). In Cartesian coordinates, the total phase accrued bythe signal from the radar to the

pointP (x, y, z) (i.e. P (r, θ, φ)) may be written as

−kr = −k(ρ1 sin θ + z cos θ), (2.5)

whereρ1 = x cosφ + y sin φ is the projection ofR1 onto theX-Y plane (see Figure 1.5).

When the radio wave passes through themth layer of the ionosphere with a thicknesszm,

the change in its phase is given by

−km(ρ1m sin θm + zm cos θm) = −k(ρm sin θi + nmzm cos θm), (2.6)

where, within themth layer, km is the radio wavenumber,ρ1m is the path change in the

X-Y plane,θm is the transmission angle, andnm is the refractive index of the layer.

The paths of the radio wave travelling up to the ionosphere and being reflected to the

ground are assumed to be symmetric (see Figure 1.5). Then thetotal phase change from the

radar to the ocean surface point in Figure 1.5 is

φi =− k(ρ sin θi + 2

∫ z0

0

n(ω, z) cos θmdz)

=− k(ρ sin θi + 2

∫ z0

0

√

n(ω, z)2 − sin2 θidz),

(2.7)
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wherez0 is the height of the reflection point. The integral in (2.7) expresses that a change

of phase is cumulative for a wave passing through a slowly varying medium. Thus, the

electric field at the surface point is

Ei = jC0 sin θi
e−jk(sin θiρ+2

∫ z0
0

√
n(ω,z)2−sin2 θidz)

4πR
θ̂. (2.8)

Comparing Eq. (2.8) with Eq. (1.12), the reflection coefficient is given as [60]

Ri(ω, ~ρ) = ejk(H cos θi−2
∫ z0
0

√
n(ω,z)2−sin2 θidz). (2.9)

This indicates that the IRC is the electric field ratio of the reflected wave to the incident

wave and depends on both position and radio frequency. Here,the radar transmitted signal

is considered to have a dominant frequencyω0.

Furthermore, the radio waves may suffer from ionospheric absorption while propagat-

ing within the ionosphere. During this process, part of the radio wave energy may be trans-

formed into heat and electromagnetic noise by electron collisions with neutral molecules

and ionized particles. The amplitude of the electric field decays exponentially with the

absorption loss, and this is accounted for by

Ria = e
∫

−κadz, (2.10)

whereκa is the attenuation per unit distance. In the absence of the Earth’s magnetic field,

κa in decibels per kilometer is given in [10] as

κa = 4.6× 10−2 Neν

µ(ω2 + ν2)
, (2.11)

whereν is the collision frequency andµ is the magnetic permeability. The absorption

of HF waves occurring in the D layer whereµ is approximately unity is usually denoted
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as nondeviative absorption, while deviative absorption occurs where marked ray bending

takes place, i.e., the absorption during reflections from the E and F layers. The absorption

may be measured by ionospheric sounding techniques [10].

After taking this factor into account as the real part of the IRC,Ri may be rewritten in

the form

Ri(~ρ) = Riae
jΦ(~ρ). (2.12)

Here we define the phase error functionΦ as

Φ(~ρ) = k0H cos θi − 2k0
∫ z0
0

√

n(z)2 − sin2 θidz.

This parameter represents deviations of the total phase dueto the existence of the iono-

sphere. It is fundamentally changed with the regular and stochastic variations of the elec-

tron density. The regular variations are associated with seasonal and diurnal dependencies

and are considered as the average electron density background depending on geophysical

conditions [61]. The stochastic fluctuations are significantly more varied and arise due to

the simultaneous effects of a number of random factors: atmospheric gas turbulence, spo-

radic sun activity, various kinds of plasma instability, etc [62]. A combination of these

stochastic sources generates a wide spatial spectrum of ionospheric irregularities.

2.3.2 Relationship between the IRC and ionospheric irregularities

When the influence of collisions and the Earth’s magnetic field can be neglected,Φ may be

taken as a zero mean real random variable. In order to investigate the statistic of properties

of the IRC, the spatial autocorrelation function corresponding to Eq. (2.12) is calculated as

RRi
(~r) = 〈Ri(~ρ+ ~r)R∗

i (~ρ)〉 = 〈ej[Φ(~ρ+~r)−Φ(~ρ)]〉. (2.13)
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The relationship of this function to the phase error functionRΦ(~r) is given in [40] as

RRi
(~r) = e[RΦ(~r)−〈Φ2〉], (2.14)

where〈Φ2〉 is the mean square of the phase error functionRΦ(0). Thus, the perturbation

of the phase error function accounts for the variation of theIRC. Here we consider only the

first order perturbation, i.e.RΦ1(~r) ≈ RΦ(~r)− 〈Φ2〉.

Then, the autocorrelation of the IRC may be expanded in an infinite series as

RRi
(~r) = (1 +RΦ1(~r) +

1

2!
R2

Φ1
(~r) + · · · ). (2.15)

Taking the spatial Fourier transform of Eq. (2.15) gives thespectral density of the IRC as

Si( ~Ki) =
δ(Ki)

2πKi

+ SΦ1( ~Ki) +
1

2!
SΦ1( ~Ki) ∗ SΦ1( ~Ki) + · · · , (2.16)

where∗ denotes two dimensional wave-number convolution. This equation is useful in

providing a connection between the spectral density function of the IRC and the phase

error functionΦ which is physically meaningful.

In order to determineSi, the derivation ofSΦ is considered firstly. The phase variation

may be caused by small-scale ionospheric irregularities orlarge-scale travelling ionospheric

disturbances (TIDs). Small-scale irregularities (from hundreds of metres to kilometres in

size) of the ionospheric plasma may increase the optical thickness for radio wave scattering,

and a single radar signal will be observed to undergo interactions with multiple irregular-

ities. This multiple scattering results in a correspondingredistribution of the spatial and

temporal properties of the radio waves [63]. The ionospheric electron density with small-

scale irregularities is described by

Ne = Ne0(z) +Ne1(~r), (2.17)
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whereNe0(z) is the zero-order ionospheric electron density profile,Ne1(~r) is the first-order

irregularity, and~r = (x, y, z) is the three dimensional coordinate of the ray trajectory.

By Fermat’s principle, the ray follows a trajectory of minimum phase, which means that

perturbations to the ray trajectory are second-order in density perturbation [64]. Thus,

a first-order Taylor series perturbation toΦ would be evaluated along the zero-order ray

trajectory and be given by

Φ1 = 2k0

∫ z′0

0

Ne1(~r, t) ·
∂
√

n(z)2 − sin2 θi
∂Ne

dz. (2.18)

In practical terms, the radar wavelength goes to infinity at the turning point and the con-

cept of phase is no longer meaningful. A more rigorous full-wave analysis of fluctuations

near the turning point shows the phase contribution near theturning point to be minor [65].

Using that conclusion, we ignore the phase contribution near the turning point by cropping

the path integration a short distance (on the order of a wavelength) below the turning point

at a height ofz′0. Here the first-order phase error function is equivalent to the wavenumber

of the IRC. From Eq. (2.1) and Eq. (2.2), Eq. (2.18) may be rewritten in the form

Φ1 = 2k0

∫ z′0

0

Ne1(~r) ·
∂
√

cos2 θi − e2Ne

ǫ0mω2
0

∂Ne
dz = −2reλ0

cos θi

∫ z′0

0

Ne1(~r)
√

1− z
z0

dz, (2.19)

wherere = e2/(4πǫ0mc2) is the classical electron radius andλ0 = 2π/k0.

For HFSWR applications, we are interested in the autocorrelation of the phase error

function as a function of the horizontal plane position, andthis may be written as

RΦ1(x
′, y′) = 〈Φ1(x+ x′, y + y′)Φ∗

1(x, y)〉

≈ 4z0r
2
eλ

2
0

cos2 θi
log

z0
z0 − z′0

∫ ∞

−∞
RNe1(x

′, y′, z′)dz′,
(2.20)
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whereRNe1 refers to the autocorrelation of the electron density fluctuations. Then, the

spectral density of the first-order phase error function maybe calculated by Fourier trans-

formation of both sides. Finally, the relationship betweenthe spectral density ofΦ1 (i.e.

SΦ1) and the electron density may be obtained as

SΦ1(κx, κy) =

∫ ∫

RΦ1(x
′, y′, τ)e−jκxx′−jκyy′dx′dy′

=
4z0r

2
eλ

2
0

cos2 θi
log

z0
z0 − z′0

SNe1(κx, κy, κz)|κz=0,

(2.21)

whereκ is the wavenumber of the electron density irregularities, and κx, κy andκz are

its Cartesian coordinate components. Research on ionosphere modelling suggests that the

spectral densitySNe1 of the electron density irregularities follows a power law model, which

means theSNe1 changes with the power ofκ. In-situ measurements show the power is

around 4 [66].

A generally used spectral density of the electron density irregularities which are in-

finitely elongated along the magnetic field is in the form [57]

SNe1(~κ) =
8π3κ0〈N2

e1〉δ(κ‖)

(κ2
0 + κ2

⊥)
3/2

, (2.22)

whereκ0 ≈ 10−4m−1 is the “outer” scale size parameter, which corresponds to the largest

scale size for which the eddies may be considered to be isotropic, κ⊥ is the magnitude of

the component ofκ that is perpendicular to the Earth’s magnetic field,κ‖ is the magnitude

of the component ofκ along the field, and〈N2
e1〉 is the variance of the electron density

fluctuations at the reflection height.

For present purposes, it is reasonable to assume that the irregularities move without

changing their shapes and may be adequately described by a frozen irregularity structure

that convects with the background ionosphere, which is known as the Taylor hypothesis
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[62]. Thus, the temporal variations of the ionospheric irregularities are considered to be

entirely due to the plasma drifting of the ionospheric layers, which give,

Si( ~Ki, ωi) = Si( ~Ki)δ(ωi + ~Ki · ~vh + 2k0vv cos θi), (2.23)

wherevh is the horizontal ionospheric plasma drift velocity, andvv is the vertical iono-

spheric plasma drift velocity.

The ionospheric plasma is often structured into large-scale wavelike fluctuations of elec-

tron density, i.e., TIDs. These may introduce variations ofthe reflection surface height

and the plasma drift velocity. TIDs can be tens to thousands of kilometres across, travel

at speeds of hundreds of meter per second, and have typical wave periods from tens of

minutes to more than an hour. Many observations show that theoccurrence of TIDs is

commonly associated with the action of an average regular structure of the atmosphere, the

acoustic gravity waves (AGWs) [67]. TIDs may cause distortion of the ionospheric reflec-

tion surface during extended temporal measurement periodsand induce apparent variations

of the angles of arrival and Doppler frequency shift on the ionospheric wave propagation.

The TIDs information may be obtained from the time-frequency distributions (TFD) of the

ionospheric echoes [68].

For simplicity, the horizontal wavelike TID may be considered as a large-scale plane

wave with wave vectorkT and frequencyωT corresponding to those of the original AGW.

Variations in electron densities caused by TIDs may change the reflection height of the

radio waves from the ionosphere. This height may be represented as

H(~ρ, t) = H0[1 + h(~ρ, t)] = H0[1 + δh cos(~kT · ~ρ− ωT t)], (2.24)

whereH0 is the mean height,δh is the relative surface height variation, and~ρ = (x, y) is a
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two dimensional coordinate on the ray trajectory. The time-dependent height in Eq. (2.24)

will result in additional Doppler shifts in radar spectrum,which are independent of the shifts

induced by the plasma drift. Since the periods of TIDs are much longer than the collection

time for one range-Doppler spectrum, only the vertical velocity of the reflection surface

is taken into account. The effects of the TID phaseϕ is examined by the time-frequency

distributions. Thus, the vertical velocity in Eq. (2.22) isexpressed as

vv =
dH

dt
= H0ωT δh sinϕ. (2.25)

Now, the spectral density for the IRC may be determined by Eq.(2.16), Eq. (2.21),

Eq. (2.22) and Eq. (2.25). This spectral density may be affected by the spectral density

of the small-scale electron density irregularities and theDoppler shift introduced by the

large-scale TIDs.

2.4 Simulation and Analysis

In the case of the ocean surface, the integration over the temporal frequenciesωmn and

ωpq may be performed by the respective linear dispersion relationships between them and

the ocean wavenumbers~Kmn and ~Kpq for deep water, as given in Eq. (1.23). Then, the

autocorrelation function associated with the sea surface profile with respect to the time lag

τ is given by,

〈ε(t+ τ)ε∗(t)〉 =
∫

~Ko

∫

ωo

So( ~Ko, ωo)e
jωoτd ~Kodωo

=
1

2

∑

m=±1

∫

~Ko

So(m~Ko)e
−jm

√
gKoτd ~Ko.

(2.26)
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The relationship between the temporal frequency of the ionospheric irregularitiesωi and

its wavenumber~Ki is deduced by applying the Taylor hypothesis as given in Eq. (2.23).

Thus, the autocorrelation function of the IRC becomes

〈Ri(t + τ)R∗
i (t)〉 =

∫

~Ki

∫

ωi

Si( ~Ki, ωi)e
jωiτd ~Kidωi

=

∫

~Ki

KiSi(Ki)e
−j( ~Ki·~vh+2k0vv cos θi)τd ~Ki.

(2.27)

Then, the ionosphere clutter power spectral density (PSD) of the mixed-path propaga-

tion for a monostatically configured pulsed radar in Eq. (1.20) becomes

Pi1(ωd) =
Ar

2η0

(k2
0η0 △ l|I0|)2
(2π)2

|F (ρ0)|2
R2

0ρ0
sin2 θ0(△ρ)2

∫

~Ko

∫

~Ki

(

~Ko · ~Ks

K
3/2
s

)2

·
∑

m=±1

So(m~Ko)Si(Ki)δ(ωd +m
√

gKo + ~Ki · ~vh + 2k0vv cos θi)

· Sa2
[△ρ

2
{Ks − k0(1 + sin θ0)}

]

d ~Kod ~Ki.

(2.28)

The integral in this equation is evaluated in detail in Appendix A. Then, the ionospheric

clutter power density in the directionφs may be written in the form of a standard radar

range equation as

Pi1(ωd, φs) =
λ2
0PtGtGr

(4π)3
|F (ρ0)|2R2

iaAi

R2
0ρ

2
0

·
[

25π2k2
0

1√
g
Ψ(ωd, φs)

]

, (2.29)

wherePt =
|I0|2η0k20(∆l)2

12π
is the total free space transmitted power of an elementary dipole

transmitting antenna,Gt =
3
2
sin2 θ0 is the free space gain of the transmitting antenna in the

directionθ0, Gr = 4πAr

λ2
0

is the free space gain of the receiving antenna,Ria accounts for

ionospheric attenuation as mentioned in Section 2.3.1,Ai = ρ0∆ρ∆φs is the area of ocean

surface scattering patch for ionospheric clutter, andΨ(ωd, φs) involves a single numerical

integration overKi, which is defined in Appendix A.
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The ionospheric clutter power density will be compared withthe average peak power

density obtained from the first-order scatter of the ocean surface at the same apparent range.

Since the first-order ocean clutter is, of course, the dominant radar return from the ocean

surface, this comparison will give an indication of the importance ofP (ωd) in the overall

radar clutter. Thus, the average peak power density of the first-order ocean clutter in theφs

direction is given as

Po1(φs) =
λ2
0PtGtGr

(4π)3
|F (ρ0)|4Ao

ρ4s
· 1
2
· 25k4

0π [So(2k0, φs) + So(2k0, φs + π)] , (2.30)

whereρs = (R0 + ρ0)/2 referring to Figure 1.5 is the apparent surface range of the first-

order ocean clutter andAo is the area of ocean surface scattering patch for first-orderocean

clutter. Moreover, the actual peak value and bandwidth are system dependent. Thus, it

should be noted that any loss terms which are not common in (2.29) and (2.30) must be

included in the comparisons. For example, the propagation distance over the ocean surface

for the ionosphere clutter is the rangeρ0 and is a one-way loss term. On the other hand,

for the ocean first-order clutter, the propagation distanceis the apparent rangeρs and is a

two-way loss term.

The normalized ionospheric clutter PSD function is defined as the ratio ofPi1 andPo1

and simulated by applying the derived spectral density model of the IRC and the Pierson-

Moskowitz (PM) model of the ocean surface.

Radio waves of different frequencies may be reflected by the ionosphere at different

heights. The operating frequency range for which the derived clutter model is applicable is

determined by both the maximum detection range of HFSWR and the maximum reflection

height of the ionosphere. For HFSWR, the maximum detection range decreases with in-
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creasing operation frequency due to increasing surface propagation losses (e.g., about 400

km for 5 MHz and 200 km for 10 MHz). On the other hand, for mixed-path ionospheric

clutter, the reflection height of the ionosphere increases with increasing operation frequency

(e.g., about 300 km for 5 MHz and 500 km for 10 MHz). Thus, it is appropriate to con-

sider the ionospheric clutter only when the total path length of the mixed-path propagation

is smaller than the maximum detection range of the HFSWR. Forthis reason, the model is

applicable to the lower end of the HF band (roughly, 3 to 8 MHz). In Fig 1.2, the ionograms

measured at nighttime from Cape Race (Newfoundland) show that the F-layer is at 310 km

for radio wave frequency of 4.1 MHz and experimental resultsindicate that this military-

grade HF radar sensed oblique ionospheric clutter at a rangeof about 325 km. Thus, the

simulation here is conducted for F-layer clutter at a heightof 310 km with a 4.1-MHz pulse

radar. In order to provide a balance between detection rangeand range resolution, the radar

pulsed width is chosen to be 50µs. The apparent range is set to be 325 km, which means

the ionospheric clutter is reflected from the ionosphere at the near-vertical direction.

The radar look direction for the monostatic radar is0◦ and the surface wind speed over

the scattering patch is chosen as 10 m/s while its direction is perpendicular to the radar

look direction. The ionospheric plasma drift velocity is animportant ionospheric parame-

ter to be considered. The drift velocity changes with latitude and is affected by the solar

fluxes [69]. In March 1989, the vertical, northward and eastward drift velocity components

of the F-layer at Millstone Hill, United States (mid-latitude) were measured using an inco-

herent scatter radar and a Digisonde [70]. The vertical velocities are usually in a range from

0 to 20 m/s and the horizontal velocities vary from 0 to 150 m/s. Here, the simulation ad-

dresses speeds within such a range. Another important ionospheric parameter is the spatial
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wavenumber bandwidthKif of the electron density irregularities. It is shown in Eq. (2.29)

that the power density model contains an integral over the wavenumber of the ionospheric

irregularitiesKi from 0 to Kif . For small-scale irregularities, thein-situ measurements

indicate that the contributions from irregularities with wavelengths longer than 1 km are

more significant [71]. Thus, the minimum spatial irregularity wavelengthλiMin is chosen

to be 1 km andKf = 2π/λiMin.

Using the typical values of these main parameters as listed in Table 2.1, a series of

numerical simulations will be conducted for varying ionospheric conditions and sea states.

Table 2.1: Main parameters for simulations of mixed-path ionospheric clutter.

radar operating frequency (f0) 4.1 MHz

radar pulse length (τ0) 50µs

radar look direction (φ) 0◦

ionosphere height (H/2) 310 km

apparent range ((ρ+R)/2) 325 km

typical ionosphere horizontal speed (vh) 100 m/s

ionosphere horizontal direction (θih) 90◦

typical ionosphere vertical speed (vv) 0

typical minimum irregularity wavelength (λiMin) 1 km

wind speed (U) 10 m/s

wind direction (θ) 0◦
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Firstly, Figure 2.2 illustrates the changes in the normalized Doppler spectrum of the

ionospheric clutter with varying horizontal ionospheric velocity magnitudes when the iono-

spheric plasma drift direction is perpendicular to the radar look direction and the surface

wind direction. It is observed that the Doppler bandwidth ofthe ionospheric clutter is broad-

ened and the intensity of the peaks decreases with increasing ionospheric speed. For lower

velocities, the dominant first-order peaks for mixed-path propagation are similar to the

Bragg peaks of the first-order sea clutter. A possible reasonfor this is that the wavelengths

of the electron density irregularities in the ionosphere are much longer than the wavelengths

of the ocean waves and the radio waves, which makes the reflection of the radio waves on

the still ionosphere similar to a specular reflection. However, higher ionospheric velocities

may cause significant Doppler spread of the dominant peaks inthe spectra. When the hor-

izontal velocity varies from 0 to 150 m/s, the bandwidth of the ionospheric clutter changes

from 0 to 0.6 Hz and the power density of the peaks decreases roughly from 53 to 45 dB.

The jagged shape for the 150 m/s spectrum may be due to a low resolution used for the

numerical simulations. The average normalized power density is greater than 40 dB in all

cases, indicating that the first-order normalized ionospheric clutter power density exceeds

that of the first-order ocean clutter peak more than 40 dB. This is reasonable as the radio

waves involved in the mixed-path propagation travel a much shorter distance over the ocean

surface and thus suffer much less surface attenuation than first-order ocean clutter from the

same apparent range. In reality, this value may vary with ionospheric absorption, attenua-

tion imposed by the surface, the relative ranges of mixed-path and surface propagation, and

the size of the ocean surface scattering patch.

Subsequently, the dependence of the simulated first-order received normalized power
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Figure 2.2: Normalized ionospheric clutter PSD for pulsed radar with different horizontal

ionospheric plasma drift velocities.

density on vertical ionospheric plasma drift velocities isshown in Figure 2.3. This figure

shows that the ionosphere vertical motion only results in a Doppler shift in the ionospheric

clutter spectrum without causing further broadening. The bandwidth of each spectrum

remains the same for different vertical velocities and the peak power density is also approx-

imately 45 dB. This shifted peak due to the vertical motion ofthe ionosphere may overlap

the Bragg peaks of the ocean clutter. It should be noted that the vertical ionospheric fluc-

tuations due to large-scale TIDs are not considered in thesesimulations and the vertical

velocity of the mean reflecting ionosphere layer is assumed to be constant.

Next, with the horizontal ionospheric plasma drift velocity set as 100 m/s, Figure 2.4

illustrates the variation in the ionospheric clutter normalized PSD with variation in the min-

imum ionospheric electron density irregularity wavelengths from 500 m to 2 km. This
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Figure 2.3: Normalized ionospheric clutter PSD for pulsed radar with different vertical

ionospheric plasma drift velocities.

figure indicates that the Doppler bandwidth of the ionospheric clutter increases with the

wavenumber bandwidthKf of the IRC. The positions and intensities of the first-order dom-

inant peaks remain the same. Again, the power density ratio of this clutter to the first-order

ocean clutter averages around 40 dB.

By setting the surface wind speed as 10 m/s and keeping the other radar parameters and

ionospheric conditions unchanged, the simulation resultsfor different wind directions are

shown in Figure 2.5. When the wind direction is the same as theradar look direction and

the horizontal ionospheric plasma drift direction, the normalized power density achieves its

maximum value for negative Doppler frequency, and is the minimum for positive Doppler

frequency. This indicates that most of the backscattered energy comes from ocean waves

travelling away from the radar, which are generated by the surface winds blowing away.
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Figure 2.4: Normalized ionospheric clutter PSD for pulsed radar with different minimum

ionospheric irregularity wavelengths.

Increasing the angle between the wind direction and the lookdirection results in increasing

normalized power density for positive Doppler frequency. The peak values change with

wind direction, while the bandwidths remain the same. As is to be expected, this appears

to indicate that the first-order mixed-path received PSD contains information regarding

the surface wind direction at the scattering patch of the seasurface. The results depicted

here differ from the Doppler spectra generated from real HF radar data since the latter

contain both the first and higher order continuum sea clutterand ionospheric clutter at

the same apparent range,while these simulations illustrate only the first-order ionospheric

clutter normalized to the average peak power density of the first-order ocean clutter.

Finally, the influence of TIDs on the Doppler spectrum is investigated via the time-
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Figure 2.5: Normalized ionospheric clutter PSD for pulsed radar with different surface

wind directions.

frequency distributions of the first-order normalized ionospheric clutter PSD [68]. It is

assumed that the TID travels horizontally at a speed of 150 m/s with a period of 45 min.

The relative reflector surface height variationδh is 10%. As shown in Figure 2.6, the speed

of the TIDs may introduce roughly 0.3 Hz Doppler shifts into the normalized power density

spectra. With the apparent range fixed to 350 km, the variations of the height cause the

distortion of the ionospheric reflector and cause the angle of arrival to change periodically.

Accordingly, for higher phase speeds of the TID, the bandwidth of the normalized power

density is broadened.
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2.5 General Chapter Summary

This chapter has been devoted to the modification of the IRC model from that appearing

in [41]. The relationship between the ionospheric spectraldensity of the IRC and the elec-

tron density irregularities is derived. This new IRC model includes various ionospheric

parameters such as horizontal and vertical ionospheric plasma drift velocities and spatial

wavelength of the electron density irregularities, which may better reflect the conditions of

the ionosphere. This model may then be incorporated into theionospheric clutter models

for the mixed-path and vertical propagation cases in the following Chapters.
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Chapter 3

The HF Radar Power Density Model for

the Mixed-Path Propagation Involving

Second-Order Sea Scattering With a

Pulsed Radar Source

3.1 Introduction

The mixed-path propagation includes two scattering processes: ionospheric reflection and

ocean surface scattering. At this stage, the ionospheric reflection may be considered as a

first-order scatter from the ionospheric irregularities with a statistical ionospheric reflec-

tion coefficient, while the ocean surface scattering involves the first-order and higher-order

scattering with ocean surface waves. The measured Doppler spectrum of the ionosphere-
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ocean clutter consists of dominant broadened peaks due to the first-order scattering of the

ionospheric-reflected radio waves from the ocean. These peaks are always surrounded by

continua due to higher-order sea scattering involving ocean waves of many directions and

wavelengths.

This chapter represents a continuation of the development of the power spectral density

model (PSD) for the mixed-path propagation. The analysis isextended to include con-

tribution due to second-order sea scattering. In this case,the reflected signals from the

ionosphere may be scattered back to the receivers by one second-order ocean wave (hy-

drodynamic effect) or two first-order ocean waves (electromagnetic effect) [54]. First, the

general form of the received electric field is investigated by considering the ionospheric

reflection and the second-order sea scattering, which involves both electromagnetic and

hydrodynamic contributions. Then, this field is inversely Fourier transformed to the time

domain, and a pulsed source is incorporated. Subsequently,the second-order received PSD

model is developed by assuming that the ionospheric reflection coefficient and the ocean

surface can be described as Fourier series whose coefficients are random variables. In order

to investigate the power density of the mixed-path propagation and its relative intensity to

that of the surface propagation under a variety of ionospheric conditions and sea states, a

normalized PSD is simulated [72,73].
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3.2 The Mixed-Path Second-Order Field Equation for Elec-

tromagnetic and Hydrodynamic Effects

The geometry of the mixed-path propagation involving second-order sea scattering is shown

in Figure 3.1. TheX-Y plane represents the mean ocean level and the ionosphere is at a

height ofH/2. The transmitting and receiving antennas are located at theorigin. Assuming

the ionosphere to be a reflecting plane, the image of the radarsource is at a height ofH.

The transmitted signal may travel upwards to the ionosphereand then be reflected to the

sea surface. It may be scattered back to the receiving antennas by one second-order ocean

wave (hydrodynamic scattering) at a surface point (x1, y1, 0) or two first-order ocean waves

(electromagnetic scattering) at surface points (x1, y1, 0) and (x2, y2, 0).

Figure 3.1: Geometry of the mixed-path propagation with second-order sea scattering.
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3.2.1 General mixed-path second-order field equation

The derivation of the second-order ocean scattering beginsfrom the rough surface scattering

equation for ionosphere-ocean interaction, which is givenin Eq. (1.6) as [40]

E+
0n −∇ε · ∇(E+

0n)
xy∗ F (ρ)

e−jkρ

2πρ

=Eszs −∇ε · 2 lim
z→0+

∂

∂z
( ~Es)

xy∗ F (ρ)
e−jkρ

2πρ
,

(3.1)

or, in operator form,

E+
0n − T1(E

+
0n) = Eszs,

whereT1(·) is referred to as

∇ε · [∇(·)− 2 lim
z→0+

∂

∂z
(Es)]

xy∗ F (ρ)
e−jkρ

2πρ
.

By successive approximation (Neumann Series), the solution to the second-order ofE+
0n

in Eq. (3.1) may be given as

E+
0n ≈ Eszs + T1(Eszs) + T2(Eszs)

= (E+
0n)0 + (E+

0n)1 + (E+
0n)2,

(3.2)

where(E+
0n)0 is the expression for propagation over a smooth plane surface and the re-

maining terms represent scattering due to surface roughness. The first-order solution of the

received electric field for mixed-path propagation in Eq. (3.2) may be written as

(E+
0n)1 =∇ε · [∇(Eszs)− 2 lim

z→0+

∂

∂z
(Es)]

xy∗ F (ρ)
e−jkρ

2πρ

∼− kC0

{[

(∇ε · ρ̂)Ri sin θi
e−jkR1

2πR1

]

xy∗ F (ρ)
e−jkρ

2πρ

}

.

(3.3)
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This first-order electric field for the mixed-path propagation has been investigated by Walsh

and briefly reviewed in Section 1.2.3.

The third term in Eq. (3.2), i.e. the second-order solution,may be written in a form

similar to that of the first-order as

(E+
0n)2 =∇ε · ∇xy[(E

+
0n)1]

xy∗ F (ρ)
e−jkρ

2πρ

=− kC0{∇ε · ∇xy[(∇ε · ρ̂)Ri sin θi
e−jkR1

2πR1

xy∗ F (ρ)
e−jkρ

2πρ
]
xy∗ F (ρ)

e−jkρ

2πρ
}.

(3.4)

Based on the convolution property for functions

∇xy[f1(x, y) ∗ f2(x, y)] = f1(x, y) ∗ ∇xy[f2(x, y)],

and the fact that, to a good approximation [54],

∇xy

[

F (ρ)
e−jkρ

2πρ

]

≈ −jkF (ρ)
e−jkρ

2πρ
ρ̂,

Eq. (3.4) becomes

(E+
0n)2 =

jk2C0

(2π)3

{[

(∇ε · ρ̂)Ri sin θi
e−jkR1

R1

]

1

xy∗
[

(∇ε · ρ̂)F (ρ)
e−jkρ

ρ

]

2

xy∗
[

F (ρ)
e−jkρ

ρ

]

3

}

,

(3.5)

where[· · · ]1 accounts for propagation from transmitter to the ionosphere, reflected to the

ocean surface and scattering at(x1, y1, 0), and [· · · ]2 and [· · · ]3 account for propagation

from (x1, y1, 0) to the point of reception alongρ12 andρ2 with scattering at(x2, y2, 0).

The ocean surface profileε is assumed to be a stochastic process. The variation of the

ionospheric reflection coefficientRi is fundamentally caused by the random fluctuations

of the electron density within the ionospheric layers. Whenthe influence of ionospheric
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absorption and the Earth’s magnetic field can be neglected, it may also be taken as a zero

mean real random variable, as discussed in Chapter 2. Then, these two parameters will be

represented, respectively, by general spatial Fourier forms with random Fourier coefficients

P o
~Ko

andP i
~Ki

corresponding to the wavenumber components of the ocean waves and the

ionospheric irregularities. At this stage, the dependencies ofP o
~Ko

on various sea states and

P i
~Ki

on various ionospheric conditions are not explicitly considered. This discussion occurs

in Section 3.4 following specification of particular representations of the spectral densities

of the sea surface profile and the IRC. Also, during one pulse case, the sea surface and the

ionospheric electron density may be considered as fixed as was discussed in Section 1.2.3.

Substituting the Fourier forms into Eq. (3.5) gives

(∇ε · ρ̂)1 = ∇[ε(x1, y1)] · ρ̂1

= j
∑

~Kmn

P o
~Kmn

ej
~Kmn·~ρ1Kmn cos(θmn − θ1)

and

(∇ε · ρ̂)2 = ∇[ε(x2, y2)] · ρ̂12

= j
∑

~Kpq

P o
~Kpq

ej
~Kpq·~ρ2Kpq cos(θpq − θ12),

where ~Kmn and ~Kpq are the two first-order wavenumber components of the ocean waves,

θmn andθpq are directions of these waves, andθ12 is the direction of~ρ12. Then, Eq. (3.5)
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may be written in an integral form as

(E+
0n)2 =− jk2C0

(2π)3

∑

~Kmn

∑

~Ki

∑

~Kpq

P ~Kmn
P ~Ki

P ~Kpq

∫

A1

∫

A2

Kmn cos(θmn − θ1)Kpq cos(θpq − θ12)

· ej ~Kmn·~ρ1ej
~Ki·~ρ1ej

~Kpq·~ρ2 sin θi
e−jkR1

R1

· F (ρ12)F (ρ2)
e−jkρ12

ρ12
· e

−jkρ2

ρ2
dA2dA1,

(3.6)

wheredA1 = dx1dy1 anddA2 = dx2dy2 are differential vector areas at the points (x1, y1)

and (x2, y2) on the scattering surface. The double integral in Eq. (3.6)is defined as

I =

∫

A1

sin θi
e−jkR1

R1
ej

~Kmn·~ρ1ej
~Ki·~ρ1Kmn cos(θmn − θ1)

Kpq

∫

A2

cos(θpq − θ12)e
j ~Kpq·~ρ2F (ρ12)F (ρ2)

· e
−jk(ρ12+ρ2)

ρ12ρ2
dA2dA1.

(3.7)

TheA2-integral with respect to the second scattering point (x2, y2) is firstly examined

as

IA2 =

∫

A2

cos(θpq − θ12)e
j ~Kpq·~ρ2F (ρ12)F (ρ2)

· e
−jk(ρ12+ρ2)

ρ12ρ2
dA2.

(3.8)

For a given sampling time, the total range ofρ12 + ρ2 is fixed. Thus, as depicted in

Figure 3.2, the locus of second scattering point(x2, y2) on the ocean surface is an ellipse

and its foci are(0, 0) and(x1, y1). Similar to the first-order case, it is convenient to change

to elliptic coordinates in order to seek a stationary phase approximation ofIA2 . Referencing

Figure 3.2, this is accomplished by: rotating the coordinate axis byθ1, shifting the origin

halfway alongρ1, and introducing elliptic coordinatesµ andδ to express (x2, y2). Then, we
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have


















x2 = ρ1/2[(1 + coshµ cos δ) cos θ1 − sinh µ sin δ sin θ1],

y2 = ρ1/2[(1 + cosh µ cos δ) sin θ1 + sinh µ sin δ cos θ1].

(3.9)

From the geometry relationships between the distance vectors and their defining coor-

dinates appearing in Figure 3.2, it may be shown that


















ρ2 =
√

x2
2 + y22 =

ρ1
2
(cosh µ+ cos δ),

ρ12 =
√

(x2 − x1)2 + (y2 − y1)2 =
ρ1
2
(coshµ− cos δ).

(3.10)

Figure 3.2: Elliptic locus of the second scattering point intheX-Y plane.

The Jacobian of the transformation gives thatdx2dy2 = ρ12ρ2dµdδ. Thus, Eq. (3.8)

reduces to

IA2 =

∫

µ

∫

δ

cos(θpq − θ12)F (ρ12)F (ρ2)

· ejΦ23(µ,δ)dµdδ,

(3.11)
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where

Φ23 =~ρ2 · ~Kpq − k(ρ12 + ρ2)

=ρ1/2{Kpq[(1 + cosh µ cos δ) cos(θpq − θ1)

+ sinhµ sin δ sin(θpq − θ1)]− 2k cosh µ}.

Kpq is a typical wavenumber associated with ocean gravity waves, which is of order ap-

proximately101 to 10−2 m−1 [50]. Then, the scattering rangeρ1 may likely be several

kilometres. Therefore,ρ1Kpq/2 in the phase term ofΦ23 may be taken to be a large param-

eter. Thus, the significant contributions toIA2 may be determined via a modification of a

two-dimensional stationary phase method. According to this theory, the stationary points

of the integral in Eq. (3.11) are the solutions to the equations

∂Φ23(µ, δ)

∂µ
= 0,

∂Φ23(µ, δ)

∂δ
= 0.

The stationary points may be shown to be


















































µ = 0, andδ = 0,

µ = 0, andδ = ±π,

tanhµ =

√
K2

pq−4k2 cos2(θpq−θ1)

2k sin(θpq−θ1)
,

andtan δ =
√

K2
pq−4k2 cos2(θpq−θ1)

2k cos(θpq−θ1)
.

These points may be seen to represent the following physicalsituations: 1) Based on

Eq. (3.10) and Figure 3.2,(µ, δ) ≡ (0, 0) indicates thatρ2 = ρ1 andρ12 = 0, which means a

double scatter near (x1, y1). This phenomenon is referred to as “patch scatter” when applied

to a pulsed radar. 2)(µ, δ) ≡ (0,±π) gives thatρ12 = ρ1 andρ2 = 0, indicating that the

second scatter occurs near the receiving antenna. 3) The scatter for the third case occurs
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elsewhere than at the remote patch or the receiver and is referred to as “off-patch” scatter.

It has been discussed elsewhere [53] that patch scatter provides the largest contribution to

the received field when the transmitter and receiver are narrow beam in nature. Only this

case is considered in this chapter.

3.2.2 Patch scatter field equation

Referring to Figure 3.1, for the patch scatter condition, the A2-integral in Eq. (3.8) may

also be written in polar coordinates, in which case,dA2 = ρ12dρ12dθ12. Sinceρ12 ≪ ρ1

andρ2, ρ2 ≈ ρ1 − ρ̂1 · ~ρ12. Using~ρ2 = ~ρ1 − ~ρ12 andρ1 ≈ ρ2, IA2 becomes

IA2 =F (ρ1)
e−jkρ1

ρ1
ej

~Kpq·~ρ1
∫

ρ12

∫

θ12

cos(θpq − θ12)F (ρ12)

· e−jkρ12ej~ρ12·(kρ̂1−
~Kpq)dθ12dρ12.

(3.12)

Defining ~KT = kρ̂1 − ~Kpq and rewriting

cos(θpq − θ12) = cos[(θpq − θT ) + (θT − θ12)]

= cos(θpq − θT ) cos(θT − θ12)− sin(θpq − θT ) sin(θT − θ12),

the sine function dependency in theθ12-integral will vanish. Then, theθ12-integral becomes

(see, for example, [74]),

∫ 2π

0

cos(θT − θ12)e
jρ12KT cos(θT−θ12) = 2πjJ1(ρKT ),

whereJ1 the first-order Bessel function.IA2 reduces to

IA2 =2πj cos(θT − θpq)F (ρ1)
e−jkρ1

ρ1
ej

~Kpq·~ρ1

∫

ρ12

F (ρ12)e
−jkρ12J1(ρ12KT )dρ12.

(3.13)
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Symbolizing theρ12-integral asG(KT ), substituting the simplifiedA2-integral into the

double integral in Eq. (3.7) and transforming theA1-integral from Cartesian to polar coor-

dinates at the first scattering point (x1, y1), Eq. (3.7) may be written as

I =2πj

∫

ρ1

sin θiF (ρ1)
e−jk(R1+ρ1)

R1

∫

θ1

Kmn cos(θmn − θ1)

Kpq cos(θT − θpq)e
j ~Ks·~ρ1G(KT )dρ1dθ1,

(3.14)

where ~Ks = ~Kmn + ~Ki + ~Kpq. The integral with respect toθ1 may be evaluated asymptot-

ically by the stationary phase technique. The stationary point for θ1 satisfies the condition

that

d

dθ1
[ρ̂1 · ~Ks] = 0,

which implies thatρ̂1 is parallel to the vector sum~Ks, and theθ1-integral may be approxi-

mated as

Iθ1 =
√
2π

( ~Kmn · K̂s)( ~Kpq · K̂T )G(KT )

R1

√
ρ1Ks

ejKsρ1e−jπ/4. (3.15)

Thus, the inner integral in Eq. (3.6) reduces to

I =(2π)3/2j

∫

ρ1

sin θiF (ρ1)
e−jk(R1+ρ1)

R1

· (
~Kmn · K̂s)( ~Kpq · K̂T )G(KT )

R1

√
ρ1Ks

ejKsρ1e−jπ/4dρ1.

(3.16)

The simplification of the double integral to a single integral overρ1 allows the field in Eq.

(3.6) to be written as

(E+
0n)2 =− jk2C0

(2π)3/2
e−jπ/4

∑

~Kmn

∑

~Ki

∑

~Kpq

P ~Kmn
P ~Ki

P ~Kpq

∫

ρ1

jF (ρ1) sin θi
( ~Kmn · K̂s)( ~Kpq · K̂T )G(KT )

R1

√
ρ1Ks

· ejKsρ1e−jk(R1+ρ1)dρ1.

(3.17)
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3.2.3 Received electric field equation for pulsed radar

At this stage, the form of the radar source currentI(ω) contained inC0 is unspecified.

Now, the second-order fields for mixed-path propagation aremodified by the imposition of

a pulsed source excitation. In order to incorporate this time-domain current, the electric

field may be inversely Fourier transformed to the time-domain as

(E+
0n)2(t) =

−je−jπ/4

(2π)3/2

∑

~Kmn

∑

~Ki

∑

~Kpq

P o
~Kmn

P i
~Ki
P o

~Kpq

∫

ρ1

jF (ρ1) sin θi
( ~Kmn · K̂s)( ~Kpq · K̂T )G(KT )

R1

√
ρ1Ks

ejKsρ1

· F−1
t

[

kC0 · e−jk(R1+ρ1)
]

dρ1,

(3.18)

where the inverse Fourier transforms are further written bysubstituting the time-domain

expression of a pulsed radar source given in Eq. (1.18) as

F−1
t

[

kC0 · e−jk(R1+ρ1)
]

= k2
0η0∆lI0e

jω0(t−R1+ρ1
c

)

·
[

h(t− R1 + ρ1
c

)− h(t− R1 + ρ1
c

− τ0)

]

.

The apparent range that corresponds to the received signal at time t is determined from

the Heaviside function

[h(t− R1 + ρ1
c

)− h(t− R1 + ρ1
c

− τ0)]

and thus satisfies the inequality

ct− cτ0 < R1 + ρ1 < ct.

Recalling thatR1 =
√

ρ21 + h2 (see Figure3.1), and defining the apparent range as

ρs =
ct
2
− cτ0

4
and the apparent range resolution as∆ρs =

cτ0
2

, the integral limits ofρ1 are
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given as

ρ1min = ρs −
∆ρs
2

− h2

4(ρs − ∆ρs
2
)
,

ρ1max = ρs +
∆ρs
2

− h2

4(ρs +
∆ρs
2
)
.

In order to carry out theρ1-integral in Eq. (3.18), the integration interval center point ρ0

and the interval length∆ρ are defined as

ρ0 =
(ρ1min + ρ1max)

2
= ρs

{

1− h2

4[ρ2s − (∆ρs/2)2]

}

, (3.19)

and

∆ρ =
(ρ1max + ρ1min)

2
= ∆ρs

{

1 +
h2

4[ρ2s − (∆ρs/2)2]

}

. (3.20)

Then, the integration variable is changed fromρ1 to ρ′, whereρ′ = ρ1 − ρ0. Adopting

the following approximation

R1 =
√

(ρ′ + ρ0)2 + h2 ∼ R0

√

1 +
2ρ′ρ0
R2

0

∼ R0 + sin θiρ
′,

theρ1-integrals in Eq. (3.18) may be cast as

Iρ1 ∼ejKsρ0ej2k0(ρs+∆ρs/2)e−jk0(ρ0+R0)
F (ρ0) sin θi
R0

√
ρ0

·
∫

∆ρ
2

−∆ρ
2

ej[Ks−k0(1+sin θi)]ρ′dρ′

=ejKsρ0ej2k0(ρs+∆ρs/2)e−jk0(ρ0+R0)
F (ρ0) sin θi
R0

√
ρ0

·∆ρSa

{

∆ρ

2
[Ks − k0(1 + sin θi)]

}

.

(3.21)

By invoking the properties of the Bessel function as in [54],G(KT ), defined in associ-

ation with Eq. (3.13), may be written as

G(KT ) = − 1

KT

∫

ρ12

F (ρ12)e
−jkρ12 · d

dρ12
[J0(ρ12KT )]dρ12

∼ 1

KT

{

1− jk

∫

ρ12

F (ρ12)e
−jkρ12J0(ρ12KT )dρ12

}

.

(3.22)
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Evaluating the Sommerfeld-type integral as

∫

ρ12

F (ρ12)e
−jkρ12J0(ρ12KT )dρ12 =

1
√

K2
T − k2 + jk∆

with ∆ being the surface impedance,G(KT ) becomes

G(KT ) ∼
1

KT

[

1− j
k0(1 + ∆)

√

K2
T − k2

0 + jk0∆

]

, (3.23)

whereKT may be further expressed in terms of~Kmn, ~Kpq and ~Ki as

KT =

√

k2
0 −

2( ~Kmn + ~Ki) · ~Kpq + (1− sin θi)K2
pq

1 + sin θi
. (3.24)

Then, the electric field becomes

E(E
+
0n)2(t) =− jk2

0η0∆lI0
(2π)3/2

e−jπ/4ej2k0(ρs+∆ρs/2)

· e−jk0(ρ0+R0)
∑

~Kmn

∑

~Ki

∑

~Kpq

P o
~Kmn

P i
~Ki
P o

~Kpq

· EΓpF (ρ1) sin θi
R1

√
ρ1

( ~Kmn + ~Kpq) · K̂s√
Ks

ejKsρ0

·∆ρSa

{

∆ρ

2
[Ks − k0(1 + sin θi)]

}

,

(3.25)

whereEΓP is defined as the electromagnetic coupling coefficient for mixed-path patch

scatter and may be written as

EΓP =k0

{

( ~Kmn · K̂s)( ~Kpq · K̂T )
√

K2
T − k2

0 + jk0∆

}

·
{

j
√

K2
T − k2

0 + k0

( ~Kmn + ~Kpq) · K̂sKT

}

.

(3.26)

This parameter involves the ionospheric reflection coefficient and the interaction of the

transmitted radio wave vector~k with the surface wave vectors~Kmn and ~Kpq.
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Another portion of the second-order field arises from singlescatters by second-order

ocean waves, which are generated by the hydrodynamic coupling of two first-order ocean

waves. Noting that the ocean surface profileε in Eq. (1.16) is actually the sum of all orders

of surface displacement, it may be modified to second-order as [75]

ε(x, y) =1 ε(x, y) +2 ε(x, y) =
∑

~Ko

1P
o
~Ko
ej

~Ko·~ρ

+
∑

~Kmn

∑

~Kpq

HΓP 1P
o
~Kmn

1P
o
~Kpq

ej
~Kmn·~ρej

~Kpq·~ρ,

(3.27)

where~Kmn+ ~Kpq = ~Ko, andHΓP is the hydrodynamic coupling coefficient. This equation

emphasizes that the wavenumberKo of the second-order gravity wave arises from the sum

of the wavenumbers of the two first-order components. However, it should be noted that~Ko

does not follow the linear dispersion relationship (i.e.ω 6=
√
gk). The factorHΓP accounts

for the manner in which the first-order waves couple to give the second-order wave. For the

deep water, this parameter is given as [76]

HΓP =
1

2

{

Kmn +Kpq −
g

ω1ω2
(KmnKpq − ~Kmn · ~Kpq)

·
[

gKo + (ω1 + ω2)
2

gKo − (ω1 + ω2)2

]}

.

(3.28)

The hydrodynamic contribution to the second-order electric field H(E
+
0n)2(t) may be

obtained by replacing the first-order ocean wave spectrum with the second-order ocean

wave spectrum in Eq. (1.19) for the first-order electric fieldfor mixed-path propagation.

Thus, the total second-order electric field for mixed-path propagation arising due to
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scattering occurring remotely from both the transmitter and receiver may be written as

(E+
0n)2(ρs) =E(E

+
0n)2(t) +H (E+

0n)2(t)

=− jk2
0η0∆lI0
(2π)3/2

e−jπ/4ej2k0(ρs+∆ρs/2)]

· e−jk0(ρ0+R0)
∑

~Kmn

∑

~Ki

∑

~Kpq

P o
~Kmn

P i
~Ki
P o

~Kpq

· ΓPF (ρ0) sin θi
R0

√
ρ0

~Ko · K̂s√
Ks

ejKsρ0∆ρ

· Sa
{

∆ρ

2
[Ks − k0(1 + sin θi)]

}

,

(3.29)

whereΓP = HΓP + EΓP and the time variable is changed to the corresponding apparent

rangeρs. This second-order equation may be directly comparable with the first-order result

Eq. (1.19), which describes the backscattered field due to a single scatter. Apart from the

fact that two ocean waves (~Kmn and ~Kpq) are involved in the scatter, as is evidenced by the

presence of~Ks andΓP , it is observed that first- and second-order electric field equations

have very similar mathematical forms. The sampling function remaining in Eq. (3.29) has

its maximum atKs = k0(1 + sin θi) and ~Ks is parallel to the radar look direction over the

ocean surface.

3.3 Derivation of the Received Power Spectral Density

It has been mentioned in Section 3.2 that even though the ocean and ionosphere surfaces

have a temporal variation, the time necessary for significant changes in the surfaces are

much greater than that required for a single electromagnetic scattering. For this reason,

the surfaces are considered to be “fixed” during a single measurement. Then, as time pro-

gresses, a train of radar pulses are transmitted to carry outa series of measurements. As
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there will be a change in the profile of the ocean surface and the height of the ionospheric

reflection from one measurement to the next, the time variablet will account for the genera-

tion of a time series from which to produce a Doppler spectrumfor the appropriate statistical

analysis of the received electric field. Thus, the frequencies of the ocean wavesωo and the

ionospheric irregularitiesωi are introduced into the Fourier representations ofε andRi to

indicate the time-varying properties of the ocean surface and the IRC. The corresponding

second-order received field may then be written as

(E+
0n)2(ρs, t) = (E+

0n)2(ρs)e
j(ωmn+ωo+ωpq)t. (3.30)

During the time series measurement, it is assumed thatε andRi may be considered to

represent stationary, homogeneous and independent randomprocesses. Thus, the autocor-

relation of the received electric field may be introduced as

Ri2(τ) =
Ar

2η0
〈(E+

0n)2(t+ τ)(E+
0n)

∗
2(t)〉

=
Ar

2η0

(k2
0η0∆lI0)

2

(2π)2
| F (ρ1) |2 sin θ2i

R2
1ρ1

(∆ρ)2

∫

~Kmn

∫

~Ki

∫

~Kpq

∫

ωmn

∫

ωi

∫

ωpq

Γ2
P

(

~Ko · K̂s√
Ks

)2

So( ~Kmn, ωmn)Si( ~Ki, ωi)So( ~Kpq, ωpq)

· ej(ωmn+ωi+ωpq)Sa2
{

∆ρ

2
[Ks − k0(1 + sin θi)]

}

d ~Kmnd ~Kid ~Kpqdωmndωidωpq.

(3.31)

Here,∗ represents complex conjugation and the ensemble average ofthe Fourier coeffi-

cients may be written as

〈P o
~Kmn,ωmn

P i
~Ki,ωi

P o
~Kpq,ωpq

(P o
~Kmn,ωmn

)∗(P i
~Ki,ωi

)∗(P o
~Kpq,ωpq

)∗〉

= So( ~Kmn, ωmn)Si( ~Ki, ωi)So( ~Kpq, ωpq)d ~Kmnd ~Kid ~Kpqdωmndωidωpq.
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The Fourier transform ofRi2(τ) with respect to the lag timeτ gives the second-order

received PSD as

Pi2(ωd) =F [Ri2(τ)]

=
Ar

2η0

(k2
0η0∆lI0)

2

(2π)2
| F (ρ1) |2 sin θ2i

R2
1ρ1

(∆ρ)2

∫

~Kmn

∫

~Ki

∫

~Kpq

∫

ωmn

∫

ωi

∫

ωpq

Γ2
P

(

~Ko · K̂s√
Ks

)2

δ[ωd − (ωmn + ωi + ωpq)]So( ~Kmn, ωmn)Si( ~Ki, ωi)

· So( ~Kpq, ωpq)Sa
2

{

∆ρ

2
[Ks − k0(1 + sin θi)]

}

d ~Kmnd ~Kid ~Kpqdωmndωidωpq.

(3.32)

whereωd is the observed “Doppler” frequency.

3.4 Simulation and Analysis

In order to carry out the simulations of the second-order received power density for the

mixed-path propagation, by applying the transformations in Appendix B the received PSD

in Eq. (3.32) is reduced to

Pi2(ωd) =
Ar

2η0

(k2
0η0∆lI0)

2

2π

| F (ρ1) |2 sin θ2i∆ρ

R2
1ρ1

∫

φmn

∫

Ki

∫

φi

∫

φs

2Y ∗Γ2
P

(

~Ko · K̂s

)2

∑

m1=±1

∑

m2=±1

So(m1
~Kmn)Si(Ki)So(m2

~Kpq)

· | ∂Y

∂Dp
|θmn,Y ∗ dφsdφidKidφmn.

(3.33)

where, as defined in Appendix B,Y =
√
Kmn, Dp(Y, φmn) = −m1

√
gKmn −m2

√

gKpq,

andY ∗ is the value ofY to makeDp(Y
∗, θmn) = ωo with ωo = ωd + ~Ki ·~vh +2k0vv cos θi.
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For narrow beam HF radar, the look directionφs is specified and the simulation will be

carried out over theφi-, Ki- andφmn-integrals.

The resulting power density of the second-order mixed-pathpropagation is investigated

numerically and a series of simulations are conducted undera variety of ionospheric con-

ditions and sea states. The PSD of the second-order ionospheric clutter for mixed-path

propagation is also normalized by the average peak power density of the first-order ocean

clutter for the same apparent range as

Pn =
Pi2

Po1
. (3.34)

The parameters, such as radar operating frequency, radar pulsed width, the height of iono-

spheric reflection, wind velocity and ionospheric motions,all affect the exact shape of the

simulated normalized power density. Typical values of these main parameters involved in

the simulation remain the same as listed in Table 2.1.

The normalized second-order PSD of the mixed-path propagation for different horizon-

tal and vertical ionospheric velocities are shown in Figure3.3 and Figure 3.4, respectively.

It can be observed from Figure 3.3 that the general shape of the second-order Doppler spec-

tra remains unchanged when the horizontal ionospheric velocity increases from 0 to 150

m/s, and so does the average power density. The Doppler bandwidths are around 1.5 Hz

and the average PSD is roughly 5 dB. However, a small variation in power density at the

regions around the Bragg frequencies (here±0.15 Hz) can be seen. This may be due to the

fact that increases in the horizontal ionospheric velocities may broaden the Doppler band-

width. As shown in Figure 3.4, the ionosphere vertical motion only results in a Doppler

shift in the ionospheric clutter spectrum without causing any Doppler broadening. Specif-
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ically, as is to be expected, the upwards ionosphere motion introduces a negative Doppler

shift while the downwards motion introduces a positive one.The magnitude of the Doppler

shift also depends on the radar operating frequency and the incidence angle of the radio

waves at the ionosphere layers. The shape and average power density remain the same for

different vertical velocities.
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Figure 3.3: Normalized second-order PSD of the ionosphericclutter with different horizon-

tal ionospheric velocities.

The second-order power density may also be influenced by sea surface wind near the

scattering patch. As shown in Figure 3.5, when the angle between the surface wind and

the radar look direction increases from0 to 180◦, normalized PSD for the positive Doppler

frequency increases and while that for the negative side decreases. The positions of the

peaks and the bandwidths are slightly affected by the wind direction. It appears that the
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Figure 3.4: Normalized second-order PSD of the ionosphericclutter with different vertical

ionospheric velocities.

bandwidth is maximum when the wind direction is perpendicular to the radar look direc-

tion. The normalized PSD is also simulated for different wind speeds (see Figure 3.6). It

is observed that the average power density increases from -20 to 15 dB and the bandwidth

narrows from 2 to 1.6 Hz with increasing wind speeds from 5 to 15 m/s. This may be ex-

plained by the fact that at higher wind speeds, the relatively longer wind waves that produce

the scatter carry a significant amount of the spectral energy. This indicates that higher sea

states may enhance the second-order radar backscatter for mixed-path propagation.

Finally, the simulated first- and second-order received PSDof the mixed-path propaga-

tion is compared with the spectrum of field data in Figure 1.3 (b), which was collected at

Cape Race, Newfoundland on January 6, 2002 at 20:00 UTC. The radar frequency was 4.1

MHz and the pulsed width of the radar source was 50µs. The apparent range was 368.8 km
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Figure 3.5: Normalized second-order PSD of the ionosphericclutter with different wind

directions.

and the azimuth angle is 2◦. The real spectrum involves contributions from both the mixed-

path propagation and the sea surface propagation. However,for an apparent range over 300

km, the power density of the latter is much lower than that of the former. According to the

actual radar configurations, the radar frequency is set to 4.1 MHz and its pulsed width is 50

µs. Other parameters, such as wind velocity, ionospheric motions and attenuation factors,

are adjusted to fit the shape of the simulated power density tothat of the real power density

spectrum. As shown in Figure 3.7, the receding and approaching Bragg peaks due to sea

surface propagation are roughly at±0.2 Hz, and the two dominant peaks caused by the

first-order mixed-path propagation are roughly at -0.4 Hz and -0.08 Hz, respectively. In

both cases, the power density of the left peak is higher than that of the right. This indicates

that the surface wind was blowing away from the radar. Thus, the direction of the surface
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Figure 3.6: Normalized second-order PSD of the ionosphericclutter with different wind

velocities.

wind is set to60◦. Furthermore, it can be observed that the positions of the Bragg peaks

for surface wave propagation are symmetric about zero Doppler. This indicates the radial

component of the ocean current to be small at the scattering patch. On the other hand, for

mixed-path propagation, the second-order PSD appears as the continuum around the first-

order dominant peaks. The average power density and the bandwidth are determined by

the surface wind speed, which is set to 5 m/s. The mixed-path spectra are shown to have

a Doppler shift of 0.16 Hz due to the upward vertical motion ofthe ionosphere. Based on

the theoretical analysis, the corresponding vertical speed is 7.5 m/s. It should be noted that

the high power density in some portions of the spectrum for the field data is beyond that

accounted for by the model, which may be due to higher order contributions and noise.

Using the particular set of parameters listed, the simulated spectrum closely resembles that
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obtained from the field experiment.
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Figure 3.7: Comparison of the simulated PSD and the real spectrum for the mixed-path

propagation.

3.5 General Chapter Summary

This chapter has been devoted to the derivation of an ionospheric clutter model for mixed-

path propagation with second-order sea scattering. The received electric field was firstly

presented, with the ionospheric reflection coefficient and the profile of the ocean surface

expressed by a random Fourier form. Then the received power spectral density (PSD) was

developed. This model includes the ionospheric reflection,which incorporates a physically

meaningful model of the ionospheric reflection coefficient introduced in Chapter 2, as well

as the second-order sea scattering, which involves both electromagnetic and hydrodynamic
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contributions.

In order to validate the model, the proposed normalized PSD was simulated. A variety

of parameters affecting the power density were examined. These included ionospheric

horizontal and vertical motions, and surface wind velocities. Simulation results show that

different ionospheric conditions and sea states may affectthe amplitudes, bandwidths and

Doppler shifts of the second-order ionospheric clutter power density. These observations

are consistent with field tests.
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Chapter 4

Further Analysis of the Ionospheric

Clutter Model Incorporating a Pulsed

Radar Source

4.1 Introduction

In this Chapter, two special cases for the ionospheric clutter model with a pulsed radar

source will be further investigated. One is the case of vertical reflection for monostatic

radar. The particular mode analyzed is that associated witha radar signal traveling from

the transmitting antenna vertically upwards to the ionosphere being reflected back to the

receiving antenna. The electric field and power spectral density (PSD) for the radar return

via a single ionospheric reflection are presented by assuming the source to be a contin-

uously excited elementary vertical dipole, and a typicalin-situ spectral density for the
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electron density irregularities is incorporated into the derived PSD model. Simulations of

the normalized power, which is the power density ratio of thevertical ionospheric clutter to

the average first-order ocean clutter peak, for different ionospheric characteristics are then

presented. Condensed versions of this analysis appear in [77] and [78].

The second case considered is the first-order mixed-path ionosphere clutter model for

the bistatic HF radar [79]. For radar operation in a marine environment, the directional

information of the ocean surface characteristics may be obtained by employing the con-

figuration of a single transmitter and two widely separated receivers (one possibly at the

transmit location) - the so-called bistatic mode - instead of using two full radar systems.

Thus, an understanding of the ionospheric clutter for bistatic HF radar operation will be

essential to improving the accuracy and efficiency of this more economical configuration.

Based on previous monostatic work, the first-order receivedelectric field for the bistatic

configuration is derived by considering the scattering processes on both the ionosphere and

the ocean surface. Then, the first-order received PSD model is developed by incorporat-

ing a vertically polarized pulsed dipole antenna. Simulations are conducted for varying

parameters associated with the bistatic configuration and environmental conditions and a

comparison is made with results from a monostatic configuration.
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4.2 Ionospheric Clutter Model for the Case of the Vertical

Propagation

4.2.1 Derivation for the power spectral density of the vertical iono-

spheric clutter

As shown in Figure 4.1(a), the ionosphere is assumed to be a reflecting plane at a height

z = H/2, and thus the primary vertical dipole source atz = 0 will have an elevated image

source atz = H. Ideally, there is no radiation in the vertical direction. However, due to

practical limitations imposed by the transmitting antennas and the ground conductivity, a

portion of the radio waves may be radiated vertically upwards to the ionosphere. Here,

it is assumed that the antenna pattern of the elementary dipole has an angle derivationδθ

from the ideal case as shown in Figure 4.1(b). From image theory, the electric field for the

vertical ionospheric clutter at the receiving antenna may be written as

ER = jC0 sin(δθ)RiA
e−jkH

4πH
, (4.1)

whereRiA is the average ionosphere reflection coefficient (IRC), which may be written as

RiA =
∫ ∫

S Ri(x,y)dS

S
,

whereRi is the IRC at horizontal position(x, y) of the ionospheric scattering point, and

the size,S, of the ionospheric scattering patch depends on the beam width of the vertically

transmitted signal and the height of the ionosphere [77, 78]. It is assumed that the incident

electric field within this patch is uniform.
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The received electric field may then be written as

EV = jC0 sin(δθ)
e−jkH

4πH

∫ ∫

S
Ri(x, y)dS

S
. (4.2)

Ri(x, y) may be considered as a random process that can be representedby a general

Fourier form as

Ri(x, y) =
∑

~Ki

P ~Ki
ej

~Ki·~ρi, (4.3)

where~ρi is the horizontal displacement of the radio waves propagating in the ionosphere

and its magnitude is the diameter of scattering area size. The value ofρi changes from

0 to ∆ρi (several kilometres) - see Figure 4.1(a). The wavenumber~Ki of the ionosphere

irregularity is usually smaller than10−3 m−1. The angle between~ρi and ~Ki is defined asϕ.

The size of the scattering patch becomesS = π(∆ρi)
2.

Inserting Eq. (4.3) into Eq. (4.2) leads to

EV =
jC0 sin(δθ)e

−jkH

4π2H∆ρ2i

∫

ρi

∫

ϕ

∑

~Ki

P ~Ki
ejKiρi cosϕρidϕdρi. (4.4)

The result of the integral with respect toϕ is a zero-order Bessel function

∫

ϕ

ejKiρi cosϕdϕ = 2J0(Kiρi) = 2
∞
∑

n=0

(−1)n
(Kiρi/2)

2n

(n!)2
. (4.5)

Thus, Eq. (4.4) reduces to

EV =
jC0 sin(δθ)e

−jkH

2π2H∆ρ2i

∑

~Ki

P ~Ki

∫ ∆ρi

0

J0(Kiρi)ρidρi. (4.6)

Next, in order to specify the radar current in Eq. (4.6), a dipole antenna that transmits

a signal with pulse width ofτ0 and frequencyω0 is introduced. In order to incorporate the
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(a)

(b)

Figure 4.1: (a) Geometry of the vertical ionospheric clutter and (b) antenna pattern for a

vertical dipole.
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time-domain pulsed current, Eq. (4.6) is inversely Fouriertransformed as

EV (t) =
sin(δθ)

2π2H∆ρ2i

[

F−1
t (jC0)

t∗ δ(t− H

c
)

]

·
∑

~Ki

P ~Ki

∫ ∆ρi

0

J0(Kiρi)ρidρi,
(4.7)

where

F−1
t (jC0) =

η0∆l
c

· di(t)
dt

≈ jk0η0∆lI0e
jω0t [h(t)− h(t− τ0)] .

It should be noted that the leading and trailing edge impulseterms have been ignored in

calculating the derivative ofi(t). Therefore, Eq. (4.7) becomes

EV (t) =
jk0η0∆lI0 sin(δθ)

2π2H∆ρ2i

[

h(t− H

c
)− h(t− H

c
− τ0)

]

· ejω0(t−H
c
)
∑

~Ki

P ~Ki

∫ ∆ρi

0

J0(Kiρi)ρidρi.
(4.8)

Here, the ionosphere reflection height that corresponds to the received signal at timet is

determined by the range of the Heaviside function
[

h(t− H
c
)− h(t− H

c
− τ0)

]

. The mean

heightH and height resolution∆H are defined as

Ha =
ct
2
− cτ0

4
and∆Ha =

cτ0
2

,

respectively. Thus, for a single transmitted pulse, the received electric field at the height of

(2Ha ±∆Ha) may be derived as

EV (Ha) =
jk0η0∆lI0 sin(δθ)

4π2Ha∆ρ2i
ejk0(2Ha+∆Ha)

·
∑

~Ki

P ~Ki

∫ ∆ρi

0

J0(Kiρi)ρidρi.
(4.9)
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The instantaneous average received power density for vertical ionospheric clutter during

a pulse is taken to be

Pv =
Ar

2η0
|EV (Ha)|2, (4.10)

For successive pulses, the Doppler effect of the vertical return is recorded and contains

information about the time variation of the ionosphere. TheRi representation is modified

by introducing the time variable termejΩt and the autocorrelation of a time series of pulse

returns is calculated as

Rv(τ) =
Ar

2η0
〈EV (t+ τ)E∗

V (t)〉. (4.11)

The evaluation of Eq. (4.11) involves

〈P ~Ki,Ω
, P ∗

~Ki,Ω
〉 = SRi

( ~Ki,Ω)d ~KidΩ. (4.12)

whereSRi
( ~Ki,Ω) is the spectral density of the IRC for the wavenumber~Ki of the iono-

spheric irregularities which have frequencyΩ.

Then, the autocorrelation of the electric field received from a vertical trajectory above a

location (0,0) on the ground may be given as

Rv(τ) =
η0k

2
0∆l2I20Ar sin

2(δθ)

32π4H2
a∆ρ4i

∫

~Ki

∫

Ω

SRi
( ~Ki,Ω)

· |
∫ ∆ρi

0

J0(Kiρi)ρidρi |2 ejΩτd ~KidΩ.

(4.13)

The Fourier transform of Eq. (4.13) with respect toτ gives the vertical received power

density of the pulsed radar as

Pv(ωd) = F [Rv(τ)] =
η0k

2
0∆l2I20Ar sin

2(δθ)

32π4H2
a∆ρ4i

∫

~Ki

∫

Ω

SRi
( ~Ki,Ω) |

∫ ∆ρi

0

J0(Kiρi)ρidρi |2 δ(ωd − Ω)d ~KidΩ,

(4.14)
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whereωd is the observed “Doppler” frequency. The expression of the spectral density for

the IRC is specified in Chapter 2.

With the aid of the delta functions, the received power density function in (4.14) reduces

to

Pv(ωd) =
k3
0η0∆l2I20Ar sin

2(δθ)

32π4H2
a∆ρ4i

|
∫ ∆ρi

0

J0(ωdρi/vh)ρidρi |2

· (1 + 4z0r
2
eλ

2
0

k0
log

z0
z0 − z′0

· 8π3κ0〈N2
e1〉

(κ2
0 + (ωd/vh)2)3/2

+ · · · ).
(4.15)

4.2.2 Simulation and analysis

The power spectral density of the vertical ionospheric clutter is also investigated by its

relative intensity to the average first-order ocean clutterpeak power density. The main

parameters involved in the simulation are listed in Table 4.1.

Table 4.1: Main parameters for simulations of vertical ionospheric clutter.

radar operating frequency (f0) 4.1 MHz

radar pulse length (τ0) 50µs

ionosphere height (H/2) 300 km

patch radius (∆ρi) 2.5 km

typical horizontal ionospheric plasma drift velocity (vh) 100 m/s

typical vertical ionospheric plasma drift velocity (vv) 0

The received normalized PSD of the vertical ionospheric clutter for three horizontal

ionospheric plasma drift velocities is shown in Figure 4.2.It is observed that the shapes
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of the power density are similar to an impulse but with oscillations. The oscillations may

be caused by the integral over the phase of the IRC which involves the zero-order Bessel

function as given in Eq. (4.6). Furthermore, the ionospheric clutter Doppler bandwidth

increases from 0.2 to 0.8 Hz as the ionospheric horizontal velocity changes from 50 to 150

m/s. Moreover, if there is no vertical velocity, the Dopplerfrequency of the clutter peak is

zero. The normalized power density of the peak remains the same with varying horizontal

ionospheric velocities and exceeds that of the average first-order ocean clutter peak by about

45 dB.
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Figure 4.2: Normalized vertical ionospheric clutter PSD with different horizontal iono-

spheric plasma drift velocities.

Next, with the horizontal ionospheric plasma drift velocity set as 100 m/s, Figure 4.3

illustrates the normalized ionospheric clutter PSD when the vertical ionospheric velocity

86



vv varies from -15 m/s to 15 m/s. This figure indicates that the Doppler frequency of the

clutter peaks directly responds to the ionospheric vertical motions. The negative velocity

represents the ionosphere traveling upwards and away from the radar station, which intro-

duces a negative Doppler shift, and vice versa. The band width of each spectrum and the

intensity for the peak remain the same for differentvv.
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Figure 4.3: Normalized vertical ionospheric clutter PSD with different vertical ionospheric

plasma drift velocities.

Then, the normalized ionospheric clutter PSD may be investigated for different radar

operating frequencies reflected at the same height and for different reflection heights with

the same operating frequency. Theoretically, a higher radar frequency corresponds to a

higher electron density being required for total reflection, and the latter occurs at a greater

height. This frequency is commonly referred to as the critical frequency at a given height.

87



The level of the electron density may change regularly with the intensity of sunlight and the

corresponding virtual height of reflection can be obtained from an ionogram for a particular

transmitted frequency. Two cases depicting critical frequencies associated with the E- and

F-layers (150 km and 300 km, respectively) appear in Figure 4.4. At one point time with

lower ionospheric electron density, the critical frequencies for E- and F-layers are 3.1 MHz

and 4.1 MHz, respectively, and they become 4.1 MHz and 13 MHz at a different time

at which the ionosphere has a higher electron density. It is observed that, for the same

virtual height, the power density of the vertical ionospheric clutter with higher operating

frequencies have higher peak values and broader bandwidths. On the other hand, for the

same operating frequency of 4.1 MHz, the normalized peak power density of the F-layer

reflection is higher than that for the E-layer, and the formerbandwidth is broader than the

latter. It is noted that, in practice, this value also depends on ionospheric absorption.

Finally, the simulated first-order received PSD of the vertical ionospheric clutter is com-

pared with the spectrum of field data in Figure 1.3 (a), which was collected at Cape Race,

Newfoundland on January 6, 2002 at 20:00 UTC. The radar frequency was 4.1 MHz and

the pulsed width of the radar source was 50µs. The apparent range was 230.8 km and the

azimuth angle is 2.5◦. The real spectrum involves contributions from both the vertical iono-

spheric propagation and the sea surface propagation. For vertical ionospheric propagation,

the ionospheric motion and attenuation factors of the simulated spectrum are adjusted to fit

the shape of the real power density spectrum. As shown in Figure 4.5, the dominant peak

at “-0.31 Hz” is the first-order peak due to vertical reflection from the overhead ionosphere.

The Doppler shift may be caused by the upwards ionospheric vertical motion with a speed

of 12 m/s. The horizontal ionospheric drift velocity is determined to be 125 m/s in this case,
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Figure 4.4: Normalized vertical ionospheric clutter PSD with different radar frequencies

for reflections at 150 km (E layer) and 300 km (F layer).

which determines the bandwidth of the peak. The broadening of the first-order peak in the

real spectrum may be due to the superposition of the sea clutter power.

4.3 The First-Order HF Radar Power Density Model for

the Case of Mixed-Path Propagation with Bistatic Radar

Configuration

4.3.1 Mixed-path geometry for bistatic HF radar

The geometry of the mixed-path propagation for the bistaticradar is shown in Figure 4.5.

TheX-Y plane indicates the mean sea level. The primary source transmitting antenna is
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Figure 4.5: Comparison of the simulated PSD and the real spectrum for the vertical iono-

spheric clutter.

again taken to be a vertical dipole at the origin (0, 0, 0+) and the receiving antenna is at a

distanceρ from the transmitter. As before, assuming the ionosphere tobe a reflecting plane

at a height ofH/2, the image of the radar source is at a height ofH. Note thatθi is the

reflection angle,R1 is the range of free space propagation,ρ1 is the projection ofR1 onto

theX-Y plane, andρ2 is the range of surface propagation.

4.3.2 Derivation of the received electric field and power spectral den-

sity

The development of the mixed-path ionospheric clutter model for the bistatic HF radar in-

corporating a general vertical dipole source begins from the electric field equation found in
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Figure 4.6: Geometry of the mixed-path propagation for the bistatic radar.

Eq. (1.13) [41]. According to previous investigations for HFSWR mixed-path propagation,

the first-order radar received electric field equation may berepresented as a convolution

of the free-space propagation, in which the radiated electric field interacts with the rough

surfaces of the ionosphere and the ocean, and the sea surfacepropagation with Sommerfeld

attenuation.

Referring to Figure 4.5, the electric field at the receiving antenna (ρ, 0, 0+) when a single

scatter occurs at a point (x, y, 0+) is given as

(E+
0n)1 ∼ −kC0[(▽ε · ρ̂)Ri sin θi

e−jkR1

2πR1
] ∗ F (ρ2)

e−jkρ2

2πρ2
. (4.16)

Substituting the general Fourier forms of the ocean surfaceprofile and the IRC found in
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equations (1.16) and (1.17), respectively, Eq. (4.16) may be written in integral form as

(E+
0n)1bi(ρRT , 0) =− j

kC0

(2π)2

∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki
Ko

∫ ∫

S

sin[θi(ρ1)]

(K̂o · ρ̂1)F (ρ2) ·
e−jk(R1+ρ2)

R1ρ2
ej(

~Ko+ ~Ki)·~ρ1dxdy.

(4.17)

For a given transmitting time, the apparent range2Ra = R1 + ρ2 is fixed. Thus, the

locus of the scattering points on the ocean surface may be obtained by the intersection of

theX-Y plane and an ellipsoid, of which the foci are (0, 0, H) and (ρRT , 0, 0) and the major

axis is2Ra. Based on the property of the ellipsoid that its intersection with a plane is always

an ellipse, the locus of scattering points (x, y) on the ocean surface may be derived from

the geometric relationships


















x2 + y2 = R2
1 −H2,

(ρ− x)2 + y2 = ρ22.

(4.18)

This locus may be determined and rewritten in the form

(x− x0)
2

(q coshµ)2
+

y2

(q sinhµ)2
= 1, (4.19)

where

x0 =
ρ(4R2

a +H2 − ρ2)

2(4R2
a − ρ2)

, q =
ρ(4R2

a −H2)

2(4R2
a − ρ2)

,

q coshµ =
Ra(4R

2
a −H2 − ρ2)

4R2
a − ρ2

, q sinh µ =
4R2

a −H2 − ρ2

2
√

(4R2
a − ρ2)

.

The positions of the two foci areF1 = ( ρH2

4R2
a−ρ2

, 0) andF2 = (ρ, 0), and the range between

F1 and the scattering point is noted asρ′1, as illustrated in Figure 4.6. Thus,x andy may be

represented by the elliptic coordinatesµ andδ as

x = q cosh µ cos δ + x0,

y = q sinhµ sin δ.

(4.20)
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Figure 4.7: Locus of the scattering points on the ocean surface.

Thex andy variables of the integrations in Eq. (4.17) are transformedto µ andδ, and

the Jacobian of the transformation isq2(cosh2 µ− cos2 δ). Thus,

dxdy = q2(cosh2 µ− cos2 δ)dµdδ = ρ′1ρ2dµdδ.

Then, Eq. (4.17) becomes

(E+
0n)1bi =− j

kC0

(2π)2

∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki
Ko

∫

µ

e−jk(R1+ρ2)

∫

δ

sin2[θi(ρ1)] cos(θO − θ1)F (ρ2)e
j ~Ks·~ρ1dδdµ.

(4.21)

The term
(

~Ks · ~ρ1
)

in the exponential of Eq. (4.21) is expanded with the aid of the

elliptic coordinates in Eq. (4.20) as

~Ks · ~ρ1 = ρ1Ks cos(θs − θ1)

= ρ1Ks(cos θs cos θ1 + sin θs sin θ1)

= Ks[cos θs(q coshµ cos δ + x0) + sin θsq sinh µ sin δ]

= Ksq(cos θs coshµ cos δ + sin θs sinh µ sin δ) + ~x0 · ~Ks.
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This leads to

(E+
0n)1bi =− j

kC0

(2π)2

∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki
Ko

∫

µ

ej~x0· ~Kse−jk(R1+ρ2)Iδdµ, (4.22)

where theδ-integral is written as

Iδ =

∫

δ

ρ′1
R1

sin[θi(ρ1)] cos(θO − θ1)F (ρ2)

· ejKsq(cos θs cosh µ cos δ+sin θs sinhµ sin δ)dδ.

(4.23)

This integral may be written in the form of

Iδ =

∫

δ

G(δ)ejZΦ(δ)dδ,

whereG(δ) =
ρ′1
R1

sin[θi(ρ1)] cos(θO−θ1)F (ρ2),Z = Ksq, andΦ(δ) = cos θs cosh µ cos δ+

sin θs sinhµ sin δ. WhenZ is a large real number andG(δ) varies much more slowly than

Φ(δ), the stationary phase technique may be applied to solve thisintegral. For bistatic op-

eration,Ksq (i.e., Z) in the phase item of Eq. (4.23), may be shown to be on the order

of thousands, is a large parameter, and the attenuation function F (ρ2) is a slowly vary-

ing quantity, especially for ocean surface with high conductivity [53]. Under these con-

ditions, theδ-integral may be evaluated asymptotically by the stationary phase technique,

the details of which are presented in Appendix C. The stationary phase point is solved as

tan δ = tanhµ tan θs. It is straightforward to show that~Ks is normal to the scattering

ellipse at the stationary scattering point, and the angle between the foci of the ellipse as

viewed from the scattering point is bisected by the ellipse normal at that point. Each por-

tion of this bisection is seen in Figure 4.6 as angleφ, hereafter referred to as the bistatic

angle. Furthermore, the angle between~ρ1 and ~Ks is defined asφ1 and the angle between

the transmitter and receiver is defined asφb = φ1+φ for mixed-path propagation. Based on
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the stationary phase theory technique in Appendix C, theδ-integral may be approximated

as

Iδ ≈
√
2π

ρ′1
R1

sin[θi(ρ1)] cos(θO − θ1)F (ρ2) ·
ej~ρ3·

~Kse−j π
4

√
ρsKs cosφ

, (4.24)

whereρs =
ρ′1+ρ2

2
= q coshµ, ~ρ3 is the vector from (x, y) to (x0, 0) (as shown in Figure

4.6),ρ′1 can be written based on simple geometry as a function of the angleφ, as

ρ′1 =ρs +

√

q2 − sin2 φρ2s
cosφ

,

andR1 = 2Ra − 2ρs + ρ′1.

Substituting the solvedIδ into Eq. (4.22), it is seen that the first-order electric fieldmay

now be expressed as a single integral overµ. The integral variable is then changed toρs

with

dρs = q sinh µdµ = q
√

cosh2 µ− 1dµ =
√

ρ2s − q2dµ.

Thus, Eq. (4.22) becomes

(E+
0n)1bi =− j

kC0

(2π)2

∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki
Ko

∫

ρs

ej~x0· ~Kse−jk(R1+ρ2)

·
√
2π

ρ′1 sin[θi(ρ1)] cos(θO − θ1)F (ρ2)

R1

√

Ksρs cosφ(ρ2s − q2)
ej~ρ3·

~Kse−jπ/4dρs.

(4.25)

Following the procedure discussed in previous work [41], theρs-integral may be further

examined by incorporating a pulsed source current contained in C0. Eq. (4.25) is first

inversely Fourier transformed to the time-domain and the frequency-dependence termskC0

ande−jk(R1+ρ2) in Eq. (4.25) are similarly treated to give

F−1
[

kC0 · e−jk(R1+ρ2)
]

=k2
0η0∆lI0e

jω0(t−R1+ρ2
c

)

·
[

h(t− R1 + ρ2
c

)− h(t− R1 + ρ2
c

− τ0)

]

.
(4.26)

95



The apparent range that corresponds to the received signal at time t is limited to the interval

ct− cτ0 < R1+ρ2 < ct. The rangeRa and range resolution∆Ra are defined in association

with t as

Ra0 =
ct
2
− cτ0

4
and ∆Ra =

cτ0
2

.

Accordingly, the surface rangeρs and surface range resolution∆ρs are defined as

ρs0 = Ra0

(

4R2
a0−H2−ρ2

4R2
a0−ρ2

)

and ∆ρs = ∆Ra

(

4R2
a0−H2−ρ2

4R2
a0−ρ2

)

,

respectively. Thus, the upper and lower limits of theρs-integral may be written asρs0 ±

∆ρs/2 and Eq. (4.25) becomes

(E+
0n)1bi =− j

k2
0η0∆lI0
(2π)3/2

ej2k0(Ra0+∆Ra/2)e−jπ/4
∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki
Ko cos(θO − θ1)

·
∫ ρs0+

∆ρs
2

ρs0−∆ρs
2

ρ′1 sin[θi(ρ1)]F (ρ2)

R1

√

Ksρs cosφ(ρ2s − q2)
ej~ρ1·

~Kse−j2k0Radρs,

(4.27)

where it may be noted that~ρ1 = ~x0 + ~ρ3.

An asymptotic form of this equation will be investigated to express the received electric

field from a particular scattering patch on the ocean surfacewith the condition thatρs0 ≫

∆ρs. The phase term (~ρ1 · ~Ks−2k0Ra) is examined first. According to the ellipse geometry

shown in Figure 4.7,φ andφ1 are related toθs as

cosφ =

√

1−
(

q
ρs

)2

sin2 θs,

cosφ1 =

√

1−
(

xN

ρ1

)2

sin2 θs.

(4.28)

Definingρ′s = ρs − ρs0, the corresponding variation ofρ1 is given as

ρ′1 = ρ1 − ρ10 ≈ ρ′s cosφ1.
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Figure 4.8: Ellipse geometry onX-Y plane.

Applying a binomial expansion, the first phase term may be written as

~ρ1 · ~Ks =ρ1Ks cosφ1

=Ks

√

(ρ10 + ρ′1)
2 − x2

N sin2 θs

≈Ks

√

ρ210 − x2
N sin2 θs +

Ks

cos φ10
ρ′1

≈Ksρ10 cosφ10 +Ksρ
′
s,

(4.29)

wherecosφ10 =

√

1−
(

xN

ρ10

)2

sin2 θs.WithR′
a = Ra−Ra0 =

R′

1+ρ′2
2

,R′
1 = ρ′s cosφ10 sin θi,

andρ′2 ≈ ρ′s cosφ0, the second phase term becomes

2k0Ra = 2k0Ra + k0(cosφ10 sin θi + cosφ0)ρ
′
s, (4.30)

wherecosφ0 =

√

1−
(

q
ρs0

)2

sin2 θs.

Substituting Eq. (4.29) and (4.30) and changing the integral variable fromρs to ρ′s in
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Eq. (4.27), the electric field becomes

(E+
0n)1bi =− j

k2
0η0∆lI0
(2π)3/2

ej2k0(Ra0+∆Ra/2)e−jπ/4
∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki

·Ko cos(θO − θ1)
ρ′10 sin[θi(ρ10)]F (ρ20)

R10

√

Ksρs0 cosφ(ρ
2
s0 − q20)

· ejKsρ10 cosφ10−2k0Ra0

∫
∆ρs
2

−∆ρs
2

ejρ
′

s[Ks−k0(sin θi cosφ10+cosφ0)]dρ′s.

(4.31)

The remainingρ′s-integral can be easily solved as

∫
∆ρs
2

−∆ρs
2

ejρ
′

s[Ks−k0(sin θi cos φ10+cosφ0)]dρ′s

=∆ρsSa

{

∆ρs
2

[Ks − k0(sin θi cos φ10 + cosφ0)]

}

.

Finally, the electric field of the mixed-path ionospheric clutter for the bistatic case be-

comes

(E+
0n)1bi =− j

k2
0η0∆lI0
(2π)3/2

ej2k0(Ra0+∆Ra/2)e−jπ/4
∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki
Ko cos(θO − θ1)

· ρ′10 sin[θi(ρ10)]F (ρ20)

R10

√

Ksρs0 cosφ(ρ2s0 − q20)
ejKsρ10 cos φ10−2k0Ra0

·∆ρsSa

{

∆ρs
2

[Ks − k0(sin θi cos φ10 + cos φ0)]

}

.

(4.32)

The sampling function in Eq. (4.32) has its principle maximum at

Ks = k0(sin θi cosφ10 + cosφ0), (4.33)

for which condition the received electric field achieves itsmaximum value. This conclusion

may also be drawn from the Bragg scattering analysis. The Bragg condition dictates that the

energy scattered off the one wave is precisely in phase with that scattered from a successive

wave, and this resonance amplifies the signal at the receiver. In the first-order case, the
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difference in the travelling path of the scattered signals is a whole wavelength [80]. As

shown in Figure 4.8, the total effect produced by the scattering of the radio waves from the

ionospheric irregularities and the ocean waves may be considered as a scattering from the

vector sum~Ks = ~Ki+ ~Ko, recalling that~Ki and ~Ko are the wavenumber of the ionospheric

irregularities and the ocean waves, respectively. The pathdifferences ofR1 and ρ2 are

denoted as∆λ1 and∆λ2, and the anglesφ1 andφ are defined in Figure 4.6. The Bragg

scattering condition is given as

λ0 = ∆λ1 +∆λ2

= λs cosφ1 sin θi + λs cos φ,

which is equivalent to Eq. (4.33).

Figure 4.9: Illustration of the Bragg scattering of mixed-path propagation for bistatic case.

It is now assumed that data from successive pulses are collected. In this case, the ocean

and ionosphere surfaces may be considered to have slow time variations. Thus, their rep-

resentations are modified to the spatial and temporal Fourier transforms. The received
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first-order PSD may be obtained by the Fourier transform of the field autocorrelation as

P1bi(ωd) =F
[

Ar

2η0
〈E1bi(t+ τ)E∗

ibi(t)〉
]

=
Ar

2η0

(k2
0η0∆lI0)

2

(2π)2
ρ′210 sin

2(θi)F (ρ20)
2(∆ρs)

2

R2
10ρs0 cosφ(ρ

2
s0 − q20)

·
∫

~Ko

∫

~Ki

∫

ωo

∫

ωi

K2
o

Ks
cos2(θo − θ1)

· Sa2
{

∆ρs
2

[Ks − k0(sin θi cos φ10 + cosφ0)]

}

· So( ~Ko, ωo)Si( ~Ki, ωi)δ[ω − (ωo + ωi)]d ~Kod ~Kidωodωi.

(4.34)

4.3.3 Simulation and analysis

Here, numerical simulations will be conducted to investigate the PSD of the mixed-path

ionospheric clutter for the bistatic configuration. The specific models of the ocean surface

and the ionospheric irregularities are incorporated into the received power density equa-

tion, and the integral is evaluated following similar stepsdiscussed in Appendix A for the

monostatic case. Eq. (4.34) may be reduced to

P1bi(ωd) =
Ar

2η0

(k2
0η0∆lI0)

2

(2π)2
ρ′210 sin

2(θi)F (ρ20)
2(∆ρs)

2

R2
10ρs0(ρ

2
s0 − q20)

2π

∆ρs

1

2

2√
g

∫

φs

Ψbi(ωs, φs)dφs,

(4.35)

whereΨbi(ωd, φs) = Ψ1bi(ωd, φs) + Ψ2bi(ωd, φs) with

Ψ1(ωd, φs) =

∫

Ki

KiK
5/2
o

cos2(θo − θ1)

cos(θo − θs)

∣

∣

∣

∣

∣

~Ko · ~Ks

Ks

∣

∣

∣

∣

∣

So(Ko, φo)Si(Ki)

·
∣

∣

∣

∣

∣

Ki cos(φi − φs)−Ks

KiKs sin(φi − φs)−Ko
dKo

dφi

∣

∣

∣

∣

∣

dKi,

for m=1,
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and

Ψ2(ωd, φs) =

∫

Ki

KiK
5/2
o

cos2(θo − θ1)

cos(θo − θs)

∣

∣

∣

∣

∣

~Ko · ~Ks

Ks

∣

∣

∣

∣

∣

So(Ko, φo + π)Si(Ki)

·
∣

∣

∣

∣

∣

Ki cos(φi − φs)−Ks

KiKs sin(φi − φs) +Ko
dKo

dφi

∣

∣

∣

∣

∣

dKi,

for m=-1.

The simulated PSD for the bistatic case is also normalized bythe average first-order

ocean clutter peak power density. The parameters of the radar system, bistatic configura-

tions, and ionosphere and sea conditions are given in Table 4.2.

Table 4.2: Main parameters involved in the simulations

radar operating frequency (f0) 4.1 MHz

radar pulse length (τ0) 50µs

distance between transmitter and receiver (ρ) 100 km

bistatic angle (φ) 30◦

ionosphere height (H/2) 300 km

typical ionosphere speed (v0) 100 m/s

ionosphere direction (θih) 90◦

wind speed (U) 10 m/s

wind direction (θ) 0◦

The bistatic normalized PSD is compared with that of the monostatic configuration

looking at the same scattering patch (see Figure 4.9). It is assumed that a transmitter and

receiver are at one radar site (monostatic) and a receiver atanother (bistatic). The direction
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of the ellipse normal for the bistatic case is taken to be perpendicular to the wind direction.

For a particular scattering point, this produces Bragg peaks of equal magnitudes. Since,

in the example, the bistatic angle is30◦ and the direction of the normal to the scattering

ellipse is90◦ in the bistatic case, the apparent range of(R1 + ρ2)/2 is calculated to be 350

km. Thus, the direction ofρ1 in Figure 4.7 is given as76◦ (noting that in this case, the

transmitter is located between of foci of the scattering ellipse), which is set to be the look

direction of the monostatic radar. In the monostatic case, the surface wind has more of a

outward component along the look direction for the monostatic case. This enhances the

peak value in the negative Doppler region. This also indicates that simultaneous bistatic

and monostatic operation can provide surface wind direction information. Of course, due

to the bistatic angle, the bistatic Doppler frequencies of the Bragg peaks are slightly smaller

than those of the monostatic case .

Simulation results for the first-order received PSD of the mixed-path propagation for

various angles are depicted in Figure 4.10. Setting the direction of the ellipse normal as

90◦, the corresponding apparent ranges for bistatic angles of 15◦, 30◦ and 45◦ are 410 km,

350 km and 335 km, respectively. The Doppler frequencies of the peaks become smaller

for larger bistatic angle, since the Bragg peaks directly depend on the cosine of the bistatic

angle. The normalized power density is roughly 35 dB relative to the first-order ocean

clutter average peak power density, and the bandwidth remains the same as 0.2 Hz.

Finally, keeping the bistatic angle as 30◦ and the direction of the ellipse normal as

90◦, the normalized PSD is investigated by changing the distance between transmitters and

receivers. The apparent ranges may vary correspondingly. It is observed from Figure 4.11

that the overall shapes remain unchanged, and major peak positions of the Doppler spectrum
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Figure 4.10: First-order PSD for bistatic and monostatic HFradar.

shift slightly, an effect which may be caused by the variation of the incidence angle. The

normalized peak power density are also about 35 dB. In reality, this value may be modified

by considering the radar system parameters and environmental absorption factors.

4.4 General Chapter Summary

In this Chapter the ionospheric clutter power spectral density (PSD) model has been derived

for the cases of vertical ionospheric clutter for monostatic radar and first-order mixed-path

ionospheric clutter for bistatic radar.

For the vertical ionospheric clutter case, the derivation started from the received electric

field of radio waves travelling vertically upwards and beingreflected by the ionosphere to

the receivers based on the image theory. The next key steps were to incorporate a pulsed
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Figure 4.11: First-order PSD for different bistatic angle.

source current into the field equation and apply a simplified practical model of the electron

density irregularities into the spectral density of the IRC. Finally, the PSD of the vertical

ionospheric clutter for the monostatic case was simulated for varying vertical and horizontal

ionospheric plasma drift velocities and radio waves of different radar operating frequency

reflected from different ionospheric layers. Simulations illustrate that the vertical iono-

spheric clutter was shaped as an impulse with oscillations and the peak power density of

the ionospheric clutter exceeds that of the average first-order ocean clutter peak by about

45 dB. Of course, the peak value and the Doppler spread of the power spectral density will

be determined by the particular radar operation parametersand ionosphere conditions.

Next, a first-order ionospheric clutter PSD model for mixed-path propagation has been

extended to the case of bistatic HF radar. This model includes the scattering processes

from both the ionosphere and the ocean surface for a particular bistatic angle. With the
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Figure 4.12: First-order PSD for different distance between transmitters and receivers.

aid of the elliptical coordinates, the form of the electric field was derived. Simulations

of the normalized PSD were compared with the monostatic caseand then conducted for a

variety of bistatic features including bistatic angle and the distance between transmitters and

receivers. Results showed that simultaneous operation of the radar system in the monostatic

and bistatic modes may provide adequate information of surface winds.
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Chapter 5

The First-Order HF Radar Power

Density Model for Monostatic

Mixed-Path Propagation with a

Frequency-Modulated Continuous

Waveform Source

5.1 Introduction

In a pulsed radar system, for a given operating frequency, the maximum range of detection

is determined by the total transmitted energy, and long-duration pulses should be used to

achieve high energy; on the other hand, shorter pulses wouldresult in better range resolu-
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tion. Thus, these divergent needs require the radar to transmit high peak power in narrow

pulses for good operating performance [81]. Fortunately, frequency-modulated continuous

wave (FMCW) systems may be designed with sufficient bandwidth to provide good max-

imum range and range resolution with power levels significantly smaller than the typical

peak power in pulsed systems [82], [83]. In recent years, lowpower FMCW HF radar

systems have become popular in ocean remote sensing applications. This fact provides the

motivation for revisiting the work for the mixed-path case with monostatic radar [84].

This chapter presents a continuation of the development of the mixed-path propagation

models, which have been investigated for first- and second-order power spectral density

(PSD) with a pulsed dipole [41, 72]. Here, the analysis is extended to the first-order HF

radar clutter power density for mixed-path propagation incorporating an FMCW source.

Background information for mixed-path propagation and theFMCW radar source is intro-

duced in Section 5.2. In Section 5.3, the received field equation incorporating a general

vertical dipole source is modified for an FMCW source. Then, the corresponding first-

order received PSD is derived. In Section 5.4, simulations are conducted for a variety of

ionospheric conditions, and a comparison is made with results from a pulsed system.

5.2 Frequency-Modulated Continuous Waveform

The time-domain expression for the FMCW transmitting antenna current waveform within

one sweep interval is given as

iT (t) = I0 cos[2π(f0 +
αt

2
)t], −Tr

2
≤ t <

Tr

2
, (5.1)
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whereI0 is the peak current,f0 is the centre frequency,α is the sweep rate, andTr is the

sweep interval. The sweep frequency bandwidthB is given asB = αTr. This current

waveform may also be expressed in the complex exponential form as

iT (t) = I0e
j(ω0t+απt2)

{

h

[

t+
Tr

2

]

− h

[

t− Tr

2

]}

, (5.2)

whereh is the Heaviside function. A typical example of a linear FMCWsignal and its

frequency-time plot are shown in Figure 5.1. For the purposeof illustration, this upsweep

waveform is chosen to have a center frequency off0 = 20 Hz and a sweep bandwidth

B = 20 Hz. The FMCW signal is a periodic repetition version of the swept signal with

finite sweep intervalTr = 1 s.

Figure 5.1: Example of FMCW signal and its frequency-time plot.

For the upsweep case, the basic method to measuring the rangeof one target is indicated

in Figure 5.2. After transmission, the received waveform isboth delayed in time and shifted

in Doppler [82]. Assuming one simple target at the rangeR0 at timet = 0 traveling at a
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constant velocityv with respect to the radar, its range as a function of time is

R(t) = R0 + vt.

The received signaliR(t) is a replica of the transmitted signal, but multiplied in amplitude

by an attenuation factorA and delayed in time by a factortd = 2R(t)/c and may be cast as

iR(t) = AiT (t) = A cos

[

2π

(

f0 +
α(t− td)

2

)

(t− td)

]

.

In order to extract the target information, the received signal is mixed with the trans-

mitted signal. After appropriate filtering and approximation, the mixed signal may be rep-

resented mathematically by subtracting the phaseφT (t) from the received phaseφT (t− td)

as

iM(t) =A cos[φT (t− td)− φT (t)]

≈A cos

[

2π

(

f0
2R0

c
+

2αR2
0

c2

)

− 2π

(

2v

c
f0 + α

2R0

c

)

t

]

.
(5.3)

The frequency of the mixed signal is given as

fM =
1

2π

d

dt
φM(t) =

2v

c
f0 + α

2R0

c
. (5.4)

It is seen that the frequency offset is due to both the target velocity and the range of the

target.

It must be emphasized that the analysis above is for the one-target case. For the ocean

surface, which consists of a great number of waves travelling in different directions with

different speeds, the radio waves may be reflected back to thereceiver by any of these. The

Doppler spectrum produced by scattering from this complex surface is used to extract the

ocean information.
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Figure 5.2: Transmitted and received waveforms for one target case.

5.3 Derivation of the Received Electric Field and Power

Spectral Density

The development of the scattered electric field equations from the ionosphere-ocean path in-

corporating a general vertical dipole source is discussed in Section 1.2.3. For the backscat-

ter case, this general first-order electric field in the frequency domain (from Eq. (2.4)

in [40]) is given by

(E+
0n)1 ∼ −kC0

{[

(∇ε · ρ̂)Ri sin θi
e−jkR

2πR

]

xy∗ F (ρ)
e−jkρ

2πρ

}

. (5.5)

Recalling that the ocean surface profileε(x, y) and the IRCRi(x, y) are considered to

vary randomly with position and be represented by general Fourier forms, the integral form

of Eq. (5.5) may be written as

(E+
0n)1 =− j

kC0

(2π)3/2
e−jπ/4

∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki

~Ko · ~Ks

K
3/2
s

∫

ρ

F (ρ)

R
√
ρ
sin[θi(ρ)] · ejKsρe−jk(ρ+R)dρ.

(5.6)
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In order to incorporate a time-domain transmitted signal consisting of an FMCW wave-

form from a dipole antenna, Eq. (5.6) may be inversely Fourier transformed and is then

given by

(E+
0n)1(t) ∼ −j

1

(2π)3/2
e−jπ/4

∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki

~Ko · ~Ks

K
3/2
s

∫

ρ

F (ρ)

R
√
ρ
sin[θi(ρ)]e

jKsρ · [F−1
t (kC0) ∗ δ(t−

ρ+R

c
)]dρ.

(5.7)

The inverse Fourier transform of(kC0) is given by

F−1

[

η0∆l

c2
ω2I(ω)

]

(t) = −η0∆l

c2
∂2i(t)

∂t2
, (5.8)

where the second-order derivative ofi(t) with the FMCW excitation is

∂2i(t)

∂t2
=− I0(ω

2
0 + 4παω0t+ 4π2α2t2 − j2πα)ej(ω0t+απt2)

{

h

[

t+
Tr

2

]

− h

[

t− Tr

2

]}

≈− I0ω
2
0e

j(ω0t+απt2)

{

h

[

t+
Tr

2

]

− h

[

t− Tr

2

]}

.

(5.9)

The approximation is permissible because|2παt| < 2πB ≪ ω0 for typical HF radar operat-

ing parameters. The convolution of Eq. (5.8) withδ
(

t− ρ+R
c

)

produces a shift of(ρ+R)/c

in the time variablet. Then the phase in Eq. (5.9) becomes

ω0[t− (ρ+R)/c] + απ[t− (ρ+R)/c]2

=ω0t+ απt2 − k0(ρ+R)− πα

[

(
ρ+R

c
)2 − 2(

ρ+R

c
)t

]

.

Up to this point, the electric field equation is developed fora sweep time intervalTr.

Within one sweep, the ocean and ionosphere surfaces are illuminated by the radar signals

and the surfaces are assumed to be fixed during this transmitting time. In order to emphasize

this, the time variable of the electric field within a sweep intervalTr is renamed astr and
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the time variablet will be retained when the time-varying ocean and ionospheresurfaces

are introduced.

Thus, from Eq. (5.7), the first-order temporal field equationfor the FMCW waveform

in a sweep interval is

(E0)1FM(tr) =

−jI0η0∆lk2
0

(2π)3/2
e−jπ/4

∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki

~Ko · ~Ks

K
3/2
s

∫

ρ

F (ρ)

R
√
ρ

· sin[θi(ρ)]ej(ω0tr+απt2r)e−jk0(ρ+R)ejπα[(
ρ+R
c

)2−2( ρ+R
c

)tr]

· ejKsρ ×
{

h

[

tr −
ρ+R

c
+

Tr

2

]

− h

[

tr −
ρ+R

c
− Tr

2

]}

dρ.

(5.10)

In order to focus on the information generated during the transmission process, a de-

modulation of the received field is implemented before further processing. This is the

typical “preprocess” which involves coherently mixing theacquired signal with the origi-

nal signal and low-pass filtering the outcome to remove higher frequency components [85].

Applying the transformations found in Appendix D, an ideal demodulation shows that the

original exponential factorej(ω0tr+απt2r) will be eliminated, the phase term will be replaced

by its complex conjugate, and the other factors remain the same as in Eq. (5.10). After

demodulation, Eq. (5.10) is given as

(E0)
D
1FM(tr) =

−jI0η0∆lk2
0

(2π)3/2
ejπ/4

∑

~Ko

∑

~Ki

P o
~Ko
P i

~Ki

~Ko · ~Ks

K
3/2
s

·
∫

ρ

F (ρ)

R
√
ρ
sin[θi(ρ)]e

−jKsρejk0(ρ+R)e−jπα( ρ+R
c

)2ej2πα(
ρ+R
c

)tr

×
{

h

[

tr −
ρ+R

c
+

Tr

2

]

− h

[

tr −
ρ+R

c
− Tr

2

]}

dρ,

(5.11)

where the superscriptD indicates demodulation.
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As mentioned above, when the FM signal is scattered over the patch and received,

the range information will be brought back with a time delay.For a certain time delay,

there will be a corresponding frequency offset as depicted in Figure 5.2. This indicates

that the frequency distribution of the demodulated electric field would indicate the range

distribution of the scattering ‘point’ on the ocean surface. Thus, the next step of the process

is to Fourier transform the electric field with respect totr to obtain the so-called “range

transform”. In Eq. (5.11), only the last two terms are functions of tr and their Fourier

transform is given by

F
[

ej2πα(
ρ+R
c

)tr ×
{

h

[

t− ρ+R

c
+

Tr

2

]

− h

[

t− ρ+R

c
− Tr

2

]}]

=

∫
ρ+R
c

+Tr
2

ρ+R
c

−Tr
2

ej2πα(
ρ+R
c

)tre−jωtrdtr

=Tre
j(

2πα(ρ+R)
c

−ω) ρ+R
c Sa

[

Tr

2
(ωr −

2πα(ρ+R)

c
)

]

.

(5.12)

Thus, the range transform corresponding to the time-domainexpression in Eq. (5.12) is

given as

(E0)
D
1FM(ωr) =

−jI0η0∆lk2
0Tr

(2π)3/2
ejπ/4

∑

~Ko
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~Ki
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~Ki
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ρ

F (ρ)

R
√
ρ
sin[θi(ρ)]e

−jKsρejk0(ρ+R)ejπα(
ρ+R
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)2

ej(
2πα(ρ+R)

c
−ωr)(

ρ+R
c

)Sa

[
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2

(

ωr −
2πα(ρ+R)

c

)]

dρ.

(5.13)

For a given frequency,ωr, the corresponding travel range is defined as2ρr, where

ρr =
c∆t
2

= cωr

4πα
= ρ0+R0

2
,

and where∆t is the total travel time of the radio waves along the ionosphere-ocean path.

As illustrated in Figure 5.3,ρ0 represents the range between the radar and the centre point

113



of the scattering patch on the ocean surface, andR0 is the range of the skywave from the

transmitting radar to this point. Then, the argument of the sampling function in Eq. (5.13)

can be rewritten as

Tr

2

(

ωr − 2πα(ρ+R)
c

)

= 2πB
c

(

ρ0+R0

2
− ρ+R

2

)

= kB
(

ρ0+R0

2
− ρ+R

2

)

,

wherekB = 2πB
c

. The relationship betweenρ0 andR0 is R0 =
√

ρ20 +H2. Defining

ρ = ρ0 + ρ′ andsin θ0 = ρ0/R0, the general skywave rangeR to a position on the ocean

scattering patch is approximated as

R =
√

(ρ0 + ρ′)2 +H2 ≈ R0

√

1 +
2ρ′ρ0
R2

0

≈ R0 + sin θ0ρ
′.

Figure 5.3: The geometry with a scattering patch.
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The phase terme−jπα( ρ+R
c

)2 in Eq. (5.13) may be expanded as

ejπα(
ρ+R
c

)2 = e
jπα

[

(ρ0+R0
c )

2
+kr(ρ′+R′)+

(

ρ′+R′

c

)2
]

≈ e
jπα

[

( ρ0+R0
c )

2
+kr(1+sin θ0)ρ′

]

(5.14)

Then, changing the integration variable fromρ to ρ′, Eq. (5.13) becomes

(E0)
D
1FM(ωr) =

−jI0η0∆lk2
0Tr

(2π)3/2
ejπ/4
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·
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e−jKsρ′ejk0(1+sin θ0)ρ′Sa

[
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(

1 + sin θ0
2

)

ρ′
]

dρ′

(5.15)

Noting thatSa(−x) = Sa(x), the integral limitsρ′min andρ′max are defined as±∆r. In

physical sense, the lower limit of theρ′-integralρ′min corresponds to the range of the radar

relative to the position of the scattering point, while the upper limitρ′max indicates the range

at which the radar return becomes negligible. Meanwhile, itis considered that the sampling

function in the integral part is “narrow band” and most of thecontribution to the integral

comes from within the half power points of the main lobe, which gives

−π/2 < kB

(

1 + sin θ0
2

)

ρ′ < π/2.

In this case,2∆r represents the radial width of the scattering patch on the ocean sur-

face and the “range resolution” is defined as∆ρ, which is specified approximately as

∆ρ = 2π/[kB(1 + sin θ0)]. Because of the sidelobes of the sampling function, the FMCW

radar does not have an absolutely defined range resolution. The range resolution∆ρ only

represents the range of the scattering patch from which the return energy is predominantly

received at a given range frequencyωr. The size of the interaction between range bins
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is specified by the parameter∆r. Evaluating theρ′-integral with these limits, Eq. (5.15)

reduces to

(E0)
D
1FM(ωr) =

−jI0η0∆lk2
0Tr
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(5.16)

whereSm(Ks, kB,∆r) is defined as

Sm(Ks, kB,∆r) =

1

π

{

Si

[

(Ks − (k0 +
kB
2
)(1 + sin θ0))∆r

]

− Si

[

(Ks − (k0 −
kB
2
)(1 + sin θ0))∆r

]}

,

and whereSi(x) =
∫ x

0
sin(t)

t
dt, and2∆r represents the radial width of the scattering patch

on the ocean surface.

At this stage, the first-order range spectra for the frequency-modulated wave have been

obtained by Fourier transforming the electric field equation over a sweep intervalTr. For

the development of the power spectral density, the analysiswill include many sweep periods

to examine the Doppler shift effect. Firstly, a factorej(ωi+ωo)t is introduced into the surface

coefficients to indicate the time-varying properties of theocean and ionosphere surfaces as

discussed in previous cases. Additionally, recall that(E0)
D
1FM(ωr) is the Fourier transform

of the electric field during a sweep at a certain received timetr. Note too that most of the

energy of the sampling function in Eq. (5.13) is associated with its main lobe. Thus, the

frequency bandwidth∆fr for a givenωr may be specified as

−π

2
<

Trωr

2
<

π

2
→ ∆fr =

1

Tr
.
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Then, the time-varying electric field from successive sweeps is modified as

(E0)
D
1FM(ωr, t) = (E0)

D
1FM(ωr)e

j(ωi+ωo)t
1

Tr
. (5.17)

As discussed in Chapter 2, it is also assumed thatε andRi represent stationary, homoge-

neous and independent random processes, making it meaningful to investigate the statistical

properties of the received electric field by first introducing its autocorrelation as

R1FM(τ) =
Ar

2η0
〈(E0)

D
1FM(t+ τ)(E0)

D∗
1FM(t)〉. (5.18)

With the autocorrelation in place, the first-order receivedPSD for an FMCW source is

found by the Fourier transform ofR1FM(τ) with respect to the lag timeτ as

P1FM(ωd) =F [R1FM(τ)]

=
Arη0|I0∆l|2k4

0∆ρ2

2(2π)2
|F (ρ0)|2
R2
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)2

So( ~Ko, ωo)Si( ~Ki, ωi)

Sm2(Ks, kB,∆r)δ [ωd − (ωo + ωi)] d ~Kod ~Kidωodωi.

(5.19)

This integration spans all spatial wave number and temporalfrequencies for both the ocean

wave spectrum and the spectral representation of the ionospheric reflection coefficient.

5.4 Simulation and Analysis

Before conducting simulations, the power density of the mixed-path ionospheric clutter for

an FMCW source is further investigated. First, in Eq. (5.19), the integration overωo and

ωi may be performed immediately by incorporating the delta functions, as found in Eq.

(1.23) and Eq. (2.23), respectively, which describe the relationships between wavenumbers

117



and frequencies for ocean waves and ionospheric irregularities, respectively. Then, the

Sm(Ks, kB,∆r), which is defined in Eq. (5.12), approaches a rectangular function for the

case of large∆r, since, from its definition,

lim
∆r→∞

[Sm(Ks, kB,∆r)]

=










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]
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2
)(1 + sin θ0)

]}

.

(5.20)

After a series of derivations similar to the discussion in Appendix A for pulsed source case,

the received PSD reduces to

P1FM(ωd) =
Arη0|I0∆l|2k4
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(5.21)

whereΨ(ωd, φs) = Ψ1(ωd, φs) + Ψ2(ωd, φs) with
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for m=1,

and
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∫

Ki

KiK
3/2
o

∣

∣

∣

∣

∣

~Ko · ~Ks

Ks

∣

∣

∣

∣

∣

So(Ko, φo + π)Si(Ki)

·
∣

∣

∣

∣

∣

Ki cos(φi − φs)−Ks

KiKs sin(φi − φs) +Ko
dKo

dφi

∣

∣

∣

∣

∣

dKi,

for m=-1.

Then,So(Ko, φo) andSi(Ki) are specified by particular physical models of the ocean sur-

face and the IRC as discussed in Sections 1.2.3 and 2.3.2. Finally, this power density is

also normalized by the average first-order ocean clutter peak power density, and the main
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Table 5.1: Main parameters involved in the simulations

centre frequency for FMCW (f0) 4.1 MHz

sweep interval (Tr) for FMCW 0.5 s

sweep bandwidth (B) for FMCW 100 kHz

radar look direction (φs) 0◦

ionosphere height (H/2) 300 km

typical ionospheric horizontal plasma drift velocity (vh) 100 m/s

ionosphere direction (θih) 0◦

wind speed (U) 10 m/s

wind direction (θ) 90◦

parameters involved in the simulation are listed in Table 5.1. Using these parameters, the

first-order normalized received power density via the mixed-path path for a FMCW source

is compared with that of a pulsed radar for the same ocean scattering patch. The range

resolution for the FMCW source is given asc
2B

, and sinceB is chosen as 100kHz thus the

radial width of the scattering is calculated to be 1.5 km. In the case of the pulsed radar,

the corresponding pulse length is set to be 10µs. Figure 5.4 shows that the plots with the

two sources are coincident with each other. The power density of the ionospheric clut-

ter exceeds that of the average first-order ocean clutter peak by roughly 45 dB. Since the

mixed-path echo travels much less distance over the ocean surface than that through pure

surface wave propagation with the same apparent range, the mixed-path clutter suffers less

surface attenuation. Additionally, at the range of 300 km the backscatter power density of
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the sea clutter is very low.
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Figure 5.4: First-order PSD for FMCW and pulsed HF radar.

Next, the dependence of the first-order received normalizedPSD of the ionosphere-

ocean scatter for an FMCW source on radar operating frequency is simulated and shown in

Figure 5.5. Assuming that the radio waves with different frequencies are reflected by the

ionosphere at the same height, it is observed that the Doppler frequencies of the first-order

dominant peaks increases with the operating frequency. This may be explained by the fact

that, according to the the Bragg scattering condition, the radio waves with higher frequency

are Bragg scattered by the ionospheric irregularities and ocean waves with greater wavenu-

mers. Since the velocity of the ionosphere is assumed to be constant, the Doppler frequency

of the Bragg peak depends on the frequency of ocean waves, andthe dispersion relationship

of ocean waves indicates that greater wavenumber corresponds to higher frequency. It may

120



be also noticed that the average normalized power density ofthe ionospheric clutter varies

from 40 dB to 50 dB when the operating frequency increase from2.5 MHz to 13 MHz. The

Doppler spread is about 0.2 Hz in all cases.
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Figure 5.5: First-order ionosphere clutter PSD for FMCW with varying radar operating

frequency.

Finally, with the height of the ionospheric reflection layerset as 300 km, normalized

ionospheric clutter PSD for different apparent ranges ((R1 + ρ1)/2) are simulated and de-

picted in Figure 5.6. This figure shows that the Doppler frequencies of the first-order dom-

inant peaks increases with the apparent range of the mixed-path propagation, but the peak

power density decreases from 45 dB to 38 dB when the apparent range varies from 310 km

to 400 km. On one hand, the variation of the apparent range fora fixed ionosphere height

corresponds to the change of the incidence angleθi of the radio waves on the ionosphere,
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which may affect the Doppler frequencies corresponding to the Bragg scattering. On the

other hand, increasing apparent ranges may cause longer surface propagation ranges, in

which cases the received power density will decrease. The bandwidth of each spectrum

changes slightly for different apparent ranges.
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Figure 5.6: First-order ionosphere clutter PSD for FMCW with different apparent ranges.

5.5 General Chapter Summary

The first-order FMCW backscatter power spectral density (PSD) for mixed-path ionosphere-

ocean propagation has been derived in this chapter. The general method followed that ap-

pearing in [83] and [86]. First, an expression for the first-order electric field was derived

for the mixed-path case in which scattering occurs from boththe ionosphere and the ocean
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surface. Then, this field was Fourier transformed and the frequency distribution of the de-

modulated electric field indicates range information of themixed-path propagation. Finally,

the first-order PSD was developed by assuming the ocean surface and the ionosphere are

stochastic processes. To investigate the PSD of this ionospheric-clutter mode and its relative

power density to that of the average first-order ocean clutter peak, a normalized ionospheric-

clutter power density was simulated and compared with that for a pulsed radar for the same

ocean scattering patch. Subsequently, it was shown that changes in radar operating fre-

quency and the apparent range result in the variation of the Doppler frequency and power

density of the first-order dominant peaks in the power density spectrum of this mixed-path

propagation. Other factors, such as ionospheric plasma drift velocities and surface wind di-

rection, will have similar effects on the normalized PSD obtained using an FMCW source

to that with a pulsed source. The ratio of the ionospheric clutter to the average first-order

ocean clutter peak power density indicates this clutter mayhave a significantly negative

impact on the performance of the HFSWR.
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Chapter 6

Conclusions

6.1 General Summary and Significant Results

This thesis has addressed the development of ionospheric clutter models for high frequency

surface wave radar (HFSWR). The ionospheric clutter includes two feasible propagation

paths. The upwards transmitted signal may be reflected from the ionosphere to the re-

ceivers directly (vertical ionospheric clutter) or via theocean surface (mixed-path iono-

spheric clutter). Both cases have been investigated based on previous work analyzing the

radar cross sections of the sea surface scattering for oceanic remote sensing [37–39] and

Walsh’s mixed-path model [41]. The work in this thesis is intended to provide theoretical

characterizations of the ionospheric clutter which may be later implemented in suppression

schemes, particularly as applied to sea state monitoring orhard target detection using HF

radar.

First, the representation of the ionospheric reflection coefficient (IRC) was addressed in

Chapter 2. This helped to indicate the influence of the ionosphere on radio waves propa-
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gation. Based on the ionospheric layered model, this reflection coefficient is shown to be

a function of the ionospheric electron density and to be dependent on both ocean surface

observation position and radio wave frequency. The IRC’s real part accounts for the iono-

spheric absorption of the radio wave energy by electron collisions, and its imaginary part

represents phase deviations of the radio wave’s electric field because of the interaction with

the ionosphere. In the absence of the Earth’s magnetic field and the ionospheric absorp-

tion, the phase part may be taken as a zero mean random variable, which is fundamentally

caused by the electron density irregularities, such as small-scale irregularities and large-

scale travelling ionospheric disturbances (TIDs). In thisthesis, the relationship between

the ionospheric spectral density of the IRC and the electrondensity irregularities is derived

and includes various ionospheric parameters. This IRC model has been incorporated into

the ionospheric clutter models of the mixed-path and vertical propagation in subsequent

chapters.

The analysis of the mixed-path ionospheric clutter startedfrom the received electric

field equation of the rough surface scattering for ionosphere-ocean propagation. In Chap-

ter 3, an approximate solution for this field is expanded to second-order for ocean surface

scattering using a Neumann series, and the second-order monostatic power spectral density

(PSD) model is investigated for a pulsed source. In this case, the signals from the iono-

sphere may be reflected back to the receivers by two scatters from first-order ocean waves

(electromagnetic effect) or one scatter from a second-order ocean wave (hydrodynamic ef-

fect). The contribution from the so-called electromagnetic effect is derived for the patch

scatter condition, while that of the hydrodynamic effect issimilarly obtained by appropri-

ately modifying the first-order field equation. The total frequency-domain electric field for
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a general source current is inversely Fourier transformed and a time-domain pulsed radar

source is incorporated into the analysis. Assuming that theionosphere and the ocean sur-

face roughness may be represented as stochastic processes,the second-order received PSD

model is developed by Fourier transforming the field autocorrelation.

In Chapter 4, two special cases incorporating a pulsed radarsource are introduced.

For the vertical ionospheric clutter case, the received electric field of radio waves travel-

ling vertically upwards and reflected by the ionosphere to the receivers is treated based on

image theory. Then, the PSD of the vertical ionospheric clutter for the monostatic case

incorporating a pulsed source is derived by taking steps corresponding to those used in

the mixed-path case [41]. Subsequently, for the first-orderbistatic mixed-path ionospheric

clutter, the frequency-domain electric field was determined with the aid of elliptical coor-

dinates. After incorporating a pulsed source current, the first-order power spectrum for the

bistatic configuration was derived.

Finally, in Chapter 5, an investigation of the first-order monostatic mixed-path iono-

spheric clutter was presented for a frequency-modulated continuous waveform (FMCW)

radar source current. The motivation for this lies in the fact that such waveforms have

been widely applied in HFSWR remote sensing applications. The frequency distribution of

the demodulated field incorporating an FMCW source indicates range information of the

mixed-path propagation and its PSD model is then obtained.

In order to investigate the PSD of this ionospheric clutter and its relative intensity to

that of the average first-order ocean clutter peak, the normalized ionospheric clutter power

density is simulated under a variety of ionospheric conditions, radar parameters and sea

states.
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For the mixed-path case involving various ionospheric conditions, simulation results

show that the horizontal ionospheric plasma drift velocityresults in a significant Doppler

spreading of the power density spectra, while the vertical ionospheric motion introduces

a Doppler shift corresponding to its velocity. The Doppler bandwidth of the ionospheric

clutter may also be broadened by increasing the wavenumber bandwidth of the IRC, which

is determined by the wavenumber range of the ionospheric irregularities. Furthermore, the

Doppler frequencies of the first-order dominant peaks increase with the radar operating fre-

quency and the apparent range. This may be explained by the fact that the Bragg scattering

conditions for the radio waves scattering from the ionosphere and ocean surface depend on

the wavelength of the radio waves and the incidence angle. Itis also observed that higher

peak values occur for higher operating frequencies and lower apparent ranges. The PSD for

the mixed-path case is further investigated for various seastates. When the angle between

the surface wind direction and the radar look direction for monostatic radar (or the direction

of the ellipse normal for bistatic radar) increases from 0◦ to 180◦, the average power density

for the negative Doppler frequency decreases from its maximum, while that of the positive

Doppler frequency increases from its minimum. This is due tothe fact that the outward

component of the surface wind enhances the power density in the negative Doppler region

and vice versa. The second-order power density of the mixed-path propagation is also in-

fluenced by surface wind speeds. This shows that the average power density increases and

the bandwidth becomes narrower with increasing wind speeds, indicating that higher sea

states may enhance the second-order radar backscatter for mixed-path propagation.

For vertical ionospheric clutter, simulations of the normalized power density were first

conducted with different ionospheric conditions. The results also show that the horizontal
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ionospheric velocity and the wavenumber bandwidth of the IRC lead to Doppler spreading,

and vertical directional velocity leads to an observed Doppler shift. In addition, the PSDs

with higher radar operating frequencies and greater reflection heights have higher peak

values and broader bandwidths.

The average ionospheric clutter power density in all cases exceeds that of the average

first-order sea clutter peak by more than 30 dB. In practice, this value may vary with iono-

spheric absorption, attenuation imposed by the surface, the relative ranges of mixed-path

and surface propagation, and the size of the ocean surface scattering patch. It should be

noted that the simulated results seem to differ from the Doppler spectra generated from real

HF radar data since the latter contains both the first and higher order continuum sea clutter

and ionospheric clutter at the same apparent range, while the simulations illustrate only one

kind of ionospheric clutter normalized to the average peak power density of the first-order

ocean clutter.

The better understanding of the ionospheric clutter problem in this thesis gives a sense

of how this clutter was characterized for a variety of sea states, ionospheric conditions and

radar parameters in the range-Doppler spectra of HFSWR. These insights may potentially

lead to better ionospheric clutter suppression schemes that will facilitate sea state parameter

extraction and hard target detection using HFSWR systems. Moreover, the modelling of

ionosphere and sea surface scattering presented in this thesis may be applied to a theoretical

analysis for sky wave or sky-surface wave hybrid HF radar.
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6.2 Suggestions for Future Work

Based on the analyses in this thesis, several points may be suggested for future experimental

and theoretical research work.

The activities of the ionosphere are likely to be far more complex in reality than pre-

sented in the models in this thesis. Although the statistical relationship between the iono-

spheric reflection coefficient and the electron density for the case of single scattering of the

radio waves by small-scale ionospheric irregularities hasbeen derived, models of the real-

time ionospheric characteristics, in which both the earth’s magnetic field and ionospheric

absorption are included, should be further investigated. As the ionospheric electron density

irregularities∆Ne increase, multiple scattering effects become significant and may create

a regular spatio-angular pattern in the amplitude of radio waves reflected by the anisotropic

ionosphere at the sea level. Additionally, in practice, TIDs may cause multipath reflections

of the radio waves within the ionosphere. Moreover, severalprominent TIDs propagat-

ing in different directions may exist simultaneously. While these effects are not addressed

here, they may be examined in future work by introducing appropriate complexities into

the ionospheric model.

The multiple scattering of the radio waves due to plasma irregularities and turbulences

within the ionosphere may also be taken into account. Moreover, some of the radar and

environmental parameters (antenna gains, beam-widths, spherical earth attenuation, etc.)

affect only the predicted magnitude of the ionospheric clutter for all Doppler frequencies.

The numerical simulations are meant to exhibit general properties of the modelled iono-

spheric clutter by setting these parameters to constant values. These parameters may be
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considered and analysed in future experimental designs.

The models detailed in this thesis are analytical in nature and derived with restrictions.

It is necessary to examine them comprehensively using field data obtained from subsequent

HFSWR experimentation with simultaneous operation of an ionosonde recently obtained by

the radar group at Memorial University. As discussed, the ionospheric conditions, such as

horizontal and vertical ionospheric drift velocities, spectral densities of the electron density

irregularities, and reflection heights of the ionospheric layers, may be expected to influ-

ence the features observed in the ionospheric clutter. Thus, the theoretical models may

be evaluated and improved by comparing the ionospheric information extracted from the

range-Doppler spectra of the radar echoes with those obtained from corresponding iono-

grams simultaneously measured by an ionosonde.
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Appendix A

Evaluation of Integral in the First-Order

Power Spectral Density Equation (2.28)

Attention is now turned to the evaluation of the integral portion of Eq. (2.28), symbolized

here as

I =

∫

Ko

∫

Ki

∫

φo

∫

φi

(

~Ko · ~Ks

K
3/2
s

)2
∑

m=±1

So(m~Ko)Si(Ki)

· δ(ωd +m
√

gKo + ~Ki · ~vh + 2k0vv cos θi)

· Sa2
[△ρ

2
{Ks − k0(1 + sin θ0)}

]

dφidφodKidKo.

(A.1)

Firstly, the sampling function in Eq. (A.1) has quite narrowband width about the point

Ks = k0(1 + sin θ0) and may be simplified to produce a tractable form of the integrationI.

It seems appropriate to approximate this function by its limit ∆ρ → ∞ , and then,

Sa2
[△ρ

2
{Ks − k0(1 + sin θ0)}

]

∼ 2π

∆ρ
δ[Ks − k0(1 + sin θ0)].
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For the case ofm = 1, Eq. (A.1) becomes

I1 =
2π

∆ρ

∫

Ko

∫

Ki

∫

φo

∫

φi

(

~Ko · ~Ks

K
3/2
s

)2

So(Ko, φo)Si(Ki)

· δ(ωd +
√

gKo + ~Ki · ~vh + 2k0vv cos θi)

· δ[Ks − k0(1 + sin θ0)]KiKodφidφodKidKo.

(A.2)

TheKo-integral will be performed firstly by setting

u = ωd +
√

gKo + ~Ki · ~vh + 2k0vv cos θi.

Thus,

dKo =
2√
g

√

Kodu,

and according to the first delta function,Ko satisfies the equation

√

gKo =− (ωd + ~Ki · ~v0) + 2k0vv cos θi

=− [ωd +Kiv0 cos(φi − φv) + 2k0vv cos θi],

(A.3)

whereφv is the direction of the horizontal ionospheric plasma driftand noting thatKo is a

function ofKi andφi.

Next, with the aid of the triangle relationship of~Ki, ~Ko and ~Ks− i.e. ~Ks = ~Ko + ~Ki−,

the integral variableφo is changed toφs, which refers to the radar look direction. The

relationship

Ko sin(φo − φs) +Ki sin(φi − φs) = 0

gives,

dφo =
Ko cos(φo − φs) +Ki cos(φi − φs)

Ko cos(φo − φs)
dφs =

K2
s

~Ko · ~Ks

dφs. (A.4)
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Finally, the second delta function is used to evaluate the integral with respect toφi. The

equation relatingKs andφi is,

2KiKs cos(φi − φs) = K2
i +K2

s −K2
o .

Accordingly,

dφi =
Ki cos(φi − φs)−Ks

KiKs sin(φi − φs)−Ko
dKo

dφi

dKs, (A.5)

where, based on Eq. (A.3),

dKo

dφi
= 2

√

Ko

g
Kiv0 sin(φi − φv). (A.6)

Substituting Eq. (A.3), (A.4) and (A.5) into Eq. (A.2) gives

I1 =
2π

∆ρ

2√
g

∫

φs

Ψ1(ωd, φs)dφs, (A.7)

whereΨ1(ωd, φs) is defined as

(ωd, φs) =

∫

Ki

KiK
3/2
o

∣

∣

∣

∣

∣

~Ko · ~Ks

Ks

∣

∣

∣

∣

∣

So(Ko, φo)Si(Ki)

∣

∣

∣

∣

∣

Ki cos(φi − φs)−Ks

KiKs sin(φi − φs)−Ko
dKo

dφi

∣

∣

∣

∣

∣

dKi.

For the case ofm = −1, the integral in Eq. (A.1) becomes

I2 =
2π

∆ρ

∫

Ko

∫

Ki

∫

φo

∫

φi

(

~Ko · ~Ks

K
3/2
s

)2

So(Ko, φo + π)Si(Ki)

· δ(ωd −
√

gKo + ~Ki · ~vh + 2k0vv cos θi)

· δ[Ks − k0(1 + sin θ0)]KiKodφidφodKidKo.

(A.8)

The evaluation of the integralI2 may take the same series of steps given above forI1 with

the following differences:Ko now satisfies

√

gKo =ωd + ~Ki · ~v0 + 2k0vv cos θi

=ωd +Kiv0 cos(φi − φv) + 2k0vv cos θi,
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and accordingly, the derivative in Eq. (A.5) is modified to the negative of (A.6). Thus, the

evaluation ofI2 integral is identical with (A.7) with the modification aboveandSo(Ko, φo)

replaced bySo(Ko, φo + π) as

I2 =
2π

∆ρ

2√
g

∫

φs

Ψ2(ωd, φs)dφs, (A.9)

whereΨ2(ωd, φs) is defined as

(ωd, φs) =

∫

Ki

KiK
3/2
o

∣

∣

∣

∣

∣

~Ko · ~Ks

Ks

∣

∣

∣

∣

∣

So(Ko, φo + π)Si(Ki)

∣

∣

∣

∣

∣

Ki cos(φi − φs)−Ks

KiKs sin(φi − φs) +Ko
dKo

dφi

∣

∣

∣

∣

∣

dKi.

The complete integralI is therefore,

I = I1 + I2 =
2π

∆ρ

2√
g

∫

φs

Ψ(ωd, φs)dφs, (A.10)

whereΨ(ωd, φs) = Ψ1(ωd, φs) + Ψ2(ωd, φs).
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Appendix B

Evaluation of Integral in the

Second-Order Power Spectral Density

Equation (3.32)

The integral in Eq. (3.32) is symbolized by

I2nd =

∫

~Kmn

∫

~Ki

∫

~Kpq

∫

ωmn

∫

ωi

∫

ωpq

Γ2
P

(

~Ko · K̂s√
Ks

)2

δ[ωd − (ωmn + ωi + ωpq)]So( ~Kmn, ωmn)Si( ~Ki, ωi)

· So( ~Kpq, ωpq)Sa
2

{

∆ρ

2
[Ks − k0(1 + sin θi)]

}

dωpqdωidωmnd ~Kpqd ~Kid ~Kmn.

(B.1)

With the aid of the relationship between the wavenumber~Ko, ~Ki and the frequencyωo, ωi

for ocean waves and ionospheric irregularities, as given inEq. (1.23) and Eq. (2.23), and
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the approximation of the the sampling function, the integral I2nd reduces to

I2nd =

∫

~Kmn

∫

~Ki

∫

~Kpq

Γ2
P

(

~Ko · K̂s√
Ks

)2

∑

m1=±1

∑

m2=±1

So(m1
~Kmn)Si(Ki)So(m2

~Kpq)

· δ(ωd +m1

√

gKmn + ~Ki · ~vh + 2k0vv cos θi +m2

√

gKpq)

· δ [Ks − k0(1 + sin θi)] d ~Kpqd ~Kid ~Kmn.

(B.2)

The integrals are further simplified with the aid of the deltafunction constraints in (B.2).

The ~Kpq-integral is changed tod ~Ks as follows,

d ~Kpq = d ~Ks = KsdKsdφs, (B.3)

andKs-integral is eliminated by settingKs = k0(1 + sin θi). Furthermore, definingY and

Dp, respectively, as

Y =
√
Kmn,

and

Dp(Y, φmn) = −m1

√
gKmn −m2

√

gKpq,

their relationship may be given as

Y =
−Dp(Y, θmn)

m1
√
g

− m2[g
2(Y 4 +K2

o − 2KoY
2 cos(θmn − θo))]

1/4

m1
√
g

,

(B.4)

where ~Ko = ~Kmn + ~Kpq. TheKmn-integral may be changed todDp for a givenθmn as,

dKmn = 2Y | ∂Y

∂Dp
|θmn dDp.
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Based on the Jacobian transformation,

| ∂Y

∂Dp
|θmn=

1
√
g | 1 + m1m2(Y 3−Y Ko cos(θmn−θo))

[Y 4+K2
o−2KoY 2 cos(θmn−θo)]3/4

|
. (B.5)

TheDp-integral is solved numerically based on another delta function constraint of Eq.

(B.2). The value ofY = Y ∗ may be sought through the Newton-Raphson method to satisfy

Dp(Y
∗, θmn) = ωo,

whereωo is equal toωd + ~Ki · ~vh + 2k0vv cos θi. Thus, the integral becomes

I2nd(ωd) =

∫

φmn

∫

Ki

∫

φi

∫

φs

2Y ∗Γ2
P

(

~Ko · K̂s

)2

∑

m1=±1

∑

m2=±1

So(m1
~Kmn)Si(Ki)So(m2

~Kpq)

· | ∂Y

∂Dp
|θmn,Y ∗ dφsdφidKidφmn.

(B.6)
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Appendix C

Stationary Phase Approximation for

Mixed-path Bistatic Case

Under the conditions stated in Section 4.3.2, theδ-integral of Eq. (4.22) may be determined

via a stationary phase method. This method is a procedure forevaluation of integrals of the

form [87]

I =

∫ ∞

−∞
G(δ)ejZΦ(δ)dx, (C.1)

whereZ is a large real number andG(δ) varies much slower thanΦ(δ). The rapid oscil-

lations of the exponential term indicates that the significant non-zero contributions to the

integral occur in regions wheredΦ(δ)/dδ = 0, which is referred to as the stationary phase

pointsδs. Applying the stationary phase method toI gives

I ≈
√

2π

Z

G(δs)
√

−j ∂2φ(δs)
∂δ2

ejZΦ(δs). (C.2)
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Theδ-integral

Iδ =

∫

δ

ρ′1
R1

sin[θi(ρ1)] cos(θO − θ1)F (ρ2)

· ejKsq(cos θs cosh µ cos δ+sin θs sinhµ sin δ)dδ.

may now be evaluated in view of the stationary phase method here. The oscillation phase

partΦ(δ) is identified as

Φ(δ) = cos θs cosh µ cos δ + sin θs sinhµ sin δ,

and the stationary phase condition onδ is given by

dΦ(δ)

dδ
= − cos θs cosh µ sin δ + sin θs sinhµ cos δ = 0.

Thus, the stationary phase point is solved to satisfy

tan δs = tanhµ tan θs. (C.3)

Given the second derivative ofΦ(δ) as

∂2(Φ(δ))

∂δ2
= −(cos θs cosh µ cos δ + sin θs sinhµ sin δ),

theδ-integral may be approximated as

Iδ ≈
√
2π

ρ′1
R1

sin[θi(ρ1)] cos(θO − θ1)F (ρ2)

· ejKsq(cos θs coshµ cos δs+sin θs sinhµ sin δs)

√

jKsq(cos θs cosh µ cos δs + sin θs sinh µ sin δs)

(C.4)

With reference to the geometry of the ellipse in Fig. B.1, thedirection of ~Ks will be

shown to be perpendicular to the ellipse at the scattering point. Shifting the origin of the

XOY plane to (x0, 0), the expression of the scattering point in the new X’O’Y’ plane is

given as

x′ = x− x0 = q coshµ cos δ,

y′ = y = q sinh µ sin δ.

(C.5)
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The tangent~T at (x′, y′) to the ellipse curve is given by

~T =
∂x′

∂δ
x̂+

∂y′

∂δ
ŷ,

and its normal is
~N =

∂x′

∂µ
x̂+

∂y′

∂µ
ŷ

=q sinhµ cos δx̂+ q coshµ cos δŷ,

(C.6)

sinceµ andδ are orthogonal coordinates. The directionθN of the ellipse normal is shown

to be the same asθs in Eq. (C.3). Furthermore, converting~ρ′1 andρ2 to elliptic coordinate

form gives the following relationship as

~ρ2 · ~N = −
(

ρ2
ρ′1

)

~ρ′1 · ~N. (C.7)

This equation implies that~N bisects the angle between the foci as viewed from the scatter-

ing point.

Figure C.1: Locus of the scattering points onX-Y plane.

With the aid of the ellipse geometry relationships, the evaluatedδ-integral is further

represented by the scattering range and angle information instead ofµ andδs. As shown in

Fig. B.1, the expression of~ρ3 from (x, y) to (x0, 0) may be represented as

~ρ3 = q cosh µ cos δx̂+ q sinh µ sin δŷ.
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Thus, the phase term in Eq. (C.4) may be written as

Ksq(cos θs cosh µ cos δs + sin θs sinhµ sin δs) = ~ρ3 · ~Ks. (C.8)

On the other hand,~ρ3 may also expressed as

~ρ3 = (~ρ′1 − ~ρ2)/2.

Then, substituting Eq. (C.7) into~ρ3 · N̂ gives

~ρ3 · N̂ = ρsρ̂
′
1 · N̂, (C.9)

whereρs = (ρ′1 + ρ2)/2 and noting that̂ρ′1 · N̂ = cos φ.

Combining the information in Eq. (C.8) and (C.9) and applying 1√
j
= e−j π

4 , the evalu-

ation forIδ becomes

Iδ ≈
√
2π

ρ′1
R1

sin[θi(ρ1)] cos(θO − θ1)F (ρ2) ·
ej~ρ3·

~Kse−j π
4

√
ρsKs cosφ

. (C.10)
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Appendix D

Demodulation of the Mixed-Path

Ionospheric Clutter with a FMCW

Radar Source

The range and Doppler information of radio waves interacting with the ionosphere and

ocean surface during mixed-path propagation may be extractby demodulating the received

electric field for a FMCW radar source. The demodulation is the process which involves

multiplying the acquired signal with the original transmitted signal followed by a low-

pass filter [88]. In our analysis, the equation of the original transmitted FMCW current is

rewritten here as

iT (tr) = I0 cos[2π(f0 +
αtr
2

)tr], −Tr

2
≤ t <

Tr

2
, (D.1)

wheretr is the time variable within the periodTr. All the other parameters are defined in

Chapter 5. Furthermore, the first-order temporal field equation for the FMCW source in a
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sweep interval (5.10) may be rewritten as

(E0)1FM(tr) = Ec cos[ω0tr + απt2r +Θ(tr)], −Tr

2
≤ t <

Tr

2
. (D.2)

whereEc is a collection of irrelevant factors, andΘ(tr) is summation of all the other phase

terms with assumption thatdΘ(tr)
dtr

≪ (ω0 + απtr). After absorbingI0 intoEc, the demodu-

lation of (E0)1FM(tr) gives,

(E0)
D
1FM(tr) = LPF {i(tr)(E0)1FM(tr)}

= LPF
{

Ec cos
[

ω0tr + απt2r
]

cos
[

ω0tr + απt2r +Θ(tr)
]}

= Ec/2LPF
{

cos
[

2ω0tr + 2απt2r +Θ(tr)
]

+ cos [−Θ(tr)]
}

= Ec/2 cos [−Θ(tr)]

(D.3)

where(E0)
D
1FM(tr) represents the demodulation with respect to(E0)1FM(tr) andLPF ·

refers to the operation of an ideal low-pass filtering. As a result of the ideal demodulation,

the exponential factorej(ω0tr+απt2r) will be eliminated, the phase term will be replaced by

its complex conjugation and the other factors remain the same.

155


