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Abstract — We study a two-level overlapping additive Schwarz preconditioner for the h-version of
the Galerkin boundary element method when used to solve hypersingular integral equations of the
first kind on an open surface in R

3. These integral equations result from Neumann problems for the
Laplace and Lamé equations in the exterior of the surface. We prove that the condition number of
the preconditioned system is bounded by O(1 + log2(H/δ )), where H denotes the diameter of the
subdomains and δ the size of the overlap.

Keywords: Galerkin boundary element method, h version, additive Schwarz, overlapping, precondi-
tioned conjugate gradient

1. INTRODUCTION

In this paper we consider an overlapping additive Schwarz method for the Galerkin
boundary element approximation of the Laplace screen and Lamé crack problems
in three dimensions with Neumann boundary conditions. In the context of boun-
dary element methods, these problems are reformulated into hypersingular integral
equations on the screen, the solutions of which are then approximated with spline
functions by the h-version of the Galerkin method (see details in Section 2).

It is well known that the linear algebraic systems arising from these approx-
imations can be efficiently solved with preconditioning techniques using domain
decompositions. Substructuring techniques have been studied [1,2,8] for hypersin-
gular integral equations on surfaces in R

3. For equations on curves in R
2, overlap-

ping additive Schwarz methods have been discussed in [15,17] for both the h- and p-
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312 T. Tran and E. P. Stephan

versions. For the case of surfaces in R
3 where the p-version is used on anisotropic

elements, this type of preconditioners has been studied in [9]. However, they have
not been thoroughly addressed in case the h-version is used for these integral equa-
tions on surfaces. The purpose of the work in this paper is to fill this gap.

We prove that the condition number of the preconditioned system is bounded
by O(1+ log2(H/δ )), where H is the diameter of the subdomains, and δ is the size
of the overlaps. We note that the overlapping subdomains are not required to be
quadrilaterals, in fact their boundaries can be zigzag closed lines (see Fig. 1).

In the finite element literature, overlapping additive Schwarz methods have been
discussed in e.g. [6,12]. The algorithm in [12] consists of mainly two steps. The
first step involves the elimination of interior unknowns by using Schur comple-
ments. The second step involves subspace decomposition with subspaces being ver-
tex spaces. The algorithm is different from the one analysed in the present paper.

In [6] there is a very brief sketch of the proof in the 3-dimensional case of
differential operators, which corresponds to our situation of hypersingular integral
operators on a surface in R

3 with the H1/2
00 or H̃1/2 norm. A detailed analysis of the

situation is not given there. We believe that our analysis, going over several pages,
is by no means trivial.

The paper is organised as follows. In Section 2 we introduce the model problems
and the resulting hypersingular integral equations, together with their Galerkin ap-
proximations. The abstract framework of the additive Schwarz method is presented
in Section 3. In Section 4 we define the overlapping subdomains and the resulting
subspace decomposition, and state the main result of the paper. The proof is carried
out by proving different lemmas in Section 5. Numerical experiments for both the
Laplace and Lamé operators are presented in Section 6.

2. MODEL PROBLEMS AND BOUNDARY-INTEGRAL EQUATIONS

Let Γ⊂R
3 be an open two dimensional surface with a polygonal boundary, and let n

be a normal vector to Γ, which defines two sides Γ1 and Γ2 of Γ. In the unbounded
domain Ω = R

3 \ Γ, we consider the following Neumann problem, deferring the
definitions of the usual Sobolev spaces to a later paragraph in the section.

Given two functions f1, f2 ∈ (H−1/2(Γ))d , d = 1 or d = 3, such that f := f1− f2
∈ (H̃−1/2(Γ))d , find U ∈ (H1

loc(Ω))d satisfying

LU =0 in Ω

BiU = fi on Γi, i = 1,2
(2.1)

where

LU =

{

∆U, (Laplace operator) d = 1

µ∆U +(λ + µ)grad divU, (Lamé operator) d = 3Bereitgestellt von | Technische Informationsbibliothek Hannover
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Overlapping Schwarz preconditioner for BEM 313

and

BiU =






∂U
∂n

∣
∣
∣
Γi

, d = 1

TU |Γi , d = 3

with TU ∈ R
3 being the traction defined by

TU = λ (divU)n+ µ
∂U
∂n

+ µn× curlU.

Here λ and µ are the Lamé constants satisfying µ > 0 and 2λ +µ > 0. Additionally,
the vanishing condition U(x) = O(1/|x|) is required at infinity.

The problem (2.1) can be reformulated into hypersingular integral equations of
the first kind on the two dimensional open surface Γ. In order to do so, we first note
that the fundamental solution of the differential operator L is given by

G(x,y) =






1
2π

1
|x− y| , d = 1

λ + 3µ
4πµ(λ + 2µ)

{
1

|x− y|I3×3 +
λ + µ
λ + 3µ

(x− y)(x− y)t

|x− y|3
}

, d = 3

where x,y ∈ R
3, I3×3 is the identity matrix of size 3×3, and t denotes the transpose

of the matrix. Let u = [U ]|Γ be the jump of U across Γ. Then the problem (2.1) is
equivalent to (see [13,14])

Du = g (2.2)

where D : (H̃1/2(Γ))d → (H−1/2(Γ))d is the hypersingular integral operator defined
as

Du(x) :=






− ∂
∂nx

∫

Γ

∂
∂ny

G(x,y)u(y)dsy, d = 1

−Tx

∫

Γ
(TyG(x,y))t u(y)dsy, d = 3

(2.3)

and

g(x) :=






f1(x)+ f2(x)−
∫

Γ
( f1(x)− f2(x))

∂
∂ny

G(x,y)dsy, d = 1

f1(x)+ f2(x)−
∫

Γ
( f1(x)− f2(x))TyG(x,y)dsy, d = 3.

In order to describe the operator properties of D, we now give the definitions
for the function spaces mentioned above. Let S ⊂ R

n, n = 1 or 2, be a Lipschitz do-
main. We denote by L2(S) the usual space of Lebesgue square integrable functions
equipped with the standard norm ‖·‖L2(S), and by H1(S) the usual Sobolev space
equipped with the norm

‖v‖2
H1(S) = |v|2H1(S) +‖v‖2

L2(S)Bereitgestellt von | Technische Informationsbibliothek Hannover
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314 T. Tran and E. P. Stephan

where |v|H1(S) = ‖∇v‖L2(S). The space H1/2(S) is defined by Hilbert space interpo-
lation [3] so that

H1/2(S) := [L2(S),H1(S)]1/2

with the norm

‖u‖2
H1/2(S) =

∫ ∞

0
K(t,u)2 dt

t2

where the K-functional is defined, for u ∈ L2(S)+H1(S), by

K(t,u)2 = inf
u=u0+u1

(

‖u0‖2
L2(S) + t2 ‖u1‖2

H1(S)

)

.

Similarly, we define the subspace H̃1/2(S) by

H̃1/2(S) := [L2(S),H1
0 (S)]1/2

with the norm

‖u‖2
H̃1/2(S) =

∫ ∞

0
K(t,u)2 dt

t2

where the K-functional is defined, for u ∈ L2(S)+H1
0 (S), by

K(t,u)2 = inf
u=u0+u1

(

‖u0‖2
L2(S) + t2 ‖u1‖2

H1(S)

)

.

The spaces H−1/2(S) and H̃−1/2(S) are defined as the dual spaces ofH̃1/2(S) and
H1/2(S), respectively, with respect to the usual extension of the L2 inner product on
S.

The spaces (H̃1/2(S))d and (H1/2(S))d for d = 3 are defined as spaces of func-
tions in H̃1/2(S) and H1/2(S) componentwise.

It was shown in [13,14] that the operator D defined in (2.3) is a bijective map-
ping from (H̃1/2(Γ))d onto (H−1/2(Γ))d . Moreover (see also [7]), if

a(v,w) := 〈Dv,w〉 ∀v,w ∈ (H̃1/2(Γ))d

(where 〈Dv,w〉 denotes the duality pairing which coincides with the L2 inner product
on Γ if Dv,w ∈ (L2(Γ))d) then a(·, ·) is a positive-definite and symmetric bilinear
form on (H̃1/2(Γ))d satisfying

a(v,v) 	 ‖v‖2
(H̃1/2(Γ))d ∀v ∈ (H̃1/2(Γ))d . (2.4)

Here, and in what follows, the notation a 
 b is used to indicate that a � cb for some
positive constant c that is independent of the main quantities of interest, while a 	 b
is equivalent to a 
 b and b 
 a.

A weak form of equation (2.2) is the problem of finding

u ∈ (H̃1/2(Γ))d : a(u,v) = 〈g,v〉 ∀v ∈ (H̃1/2(Γ))d . (2.5)Bereitgestellt von | Technische Informationsbibliothek Hannover
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Overlapping Schwarz preconditioner for BEM 315

The problem (2.5) will be approximated by first constructing a finite-dimensional
subspace S ⊂ (H̃1/2(Γ))d , and then finding

uS ∈ S : a(uS ,v) = 〈g,v〉 ∀v ∈ S . (2.6)

In the remainder, for notational convenience we will consider only the case
d = 1. The case d = 3 should be treated similarly.

3. ABSTRACT FRAMEWORK OF ADDITIVE SCHWARZ METHODS

Additive Schwarz methods provide fast solutions to equation (2.6) by solving (at
the same time) problems of smaller size. Let S be decomposed as

S = S ′
0 + · · ·+S ′

J (3.1)

where S ′
i , i = 0, . . . ,J, are subspaces of S. Let bi(·, ·) : S ′

i ×S ′
i → R be a bilinear

form defined on S ′
i and Pi : S → S ′

i be a projection defined by

bi(Piv,w) = a(v,w) ∀v ∈ S, ∀w ∈ S ′
i .

Then the additive Schwarz method for equation (2.6) consists in solving, by an
iterative method, the equation

PuS = g (3.2)

where P := P0 + · · ·+PJ is theadditiveSchwarzoperatorand g isgivenby g=∑J
i=0 gi,

with gi ∈ S ′
i being solutions of

bi(gi,w) = 〈g,w〉 ∀w ∈ S ′
i . (3.3)

The equivalence of (2.6) and (3.2) was discussed in [16]. The operator P can be con-
sidered as the preconditioned version of D, i.e., P = BD with some preconditioner
B. In the implementation of the method, e.g., with the conjugate gradient method,
one is interested in computing B−1r for a residual r ∈ S :

Additive Schwarz Algorithm:

1. Subspace corrections: For j = 0, . . . ,J, find uj ∈ S ′
j such that

bj(uj,v j) =
〈
r,v j

〉 ∀v j ∈ S ′
j . (3.4)

2. Preconditioned residual:

B−1r =
J

∑
j=0

uj. (3.5)

Bounds for the minimum and maximum eigenvalues of the additive Schwarz
operator P can be obtained by using the following lemma (see [10,18]).Bereitgestellt von | Technische Informationsbibliothek Hannover
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316 T. Tran and E. P. Stephan

Lemma 3.1. (i) If there exists a positive constant C0 such that for any u ∈ S
and ui ∈ S ′

i satisfying u = ∑J
i=0 ui there holds

a(u,u) � C0

J

∑
i=0

bi(ui,ui) (3.6)

then
λmax(P) � C0.

(ii) If there exists a positive constant C1 such that any u ∈ S has a decomposition
u = ∑J

i=0 ui satisfying
J

∑
i=0

bi(ui,ui) � C1a(u,u) (3.7)

then
λmin(P) � C−1

1 .

4. OVERLAPPING ADDITIVE SCHWARZ PRECONDITIONER

4.1. Boundary element subspace

In this subsection we define the finite-dimensional subspace S in (2.6) on a two-
level grid.

The coarse grid: Assume that Γ is partitioned into subdomains Γi, i = 1, . . . ,J,
where each subdomain Γi is the image of the reference square R̂ = (−1,1)2 un-
der a smooth bijective mapping Fi : R̂ → Γi. Denoting by H the diameter of the
subdomains, we assume that

‖JFi‖L∞(R̂) 
 H, ‖JF−1
i
‖L∞(R̂) 
 H−1

where JFi denotes the Jacobian matrix of the transformation and the norm is a
matrix norm. The partition is assumed to be conforming in the sense that the non-
empty intersection of a pair of distinct subdomains is a single common vertex or
edge of both subdomains, and that each vertex of the domain Γ coincides with at
least one subdomain vertex.

We define on this coarse grid the space S0 of continuous piecewise bilinear
functions, vanishing on the boundary of Γ.

The fine grid: Each subdomain Γi is further divided into disjoint quadrilateral or
triangular elements, giving a locally uniform mesh of element of size hi in Γi. We
denote by h the maximum value of hi, i = 1, . . . ,J.

The finite-dimensional space S is defined as the space of continuous piecewise-
bilinear functions (in the case of quadrilateral elements) or piecewise-linear func-
tions (in the case of triangular elements) on the fine grid, vanishing on the boundary
of Γ. Bereitgestellt von | Technische Informationsbibliothek Hannover
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Overlapping Schwarz preconditioner for BEM 317

δ δ

δ

δ

Γ j Γ j

Figure 1. • vertex at a distance δ to Γ j , Γ̃ j : shaded region, Γ′
j = Γ j ∪ Γ̃ j : overlapping subdomain,

R j : (rectangle in shaded region) support of cutoff function ϑj .

We denote by {xk : k ∈ N } the set of all vertices of elements in the fine grid
which are not on the boundary of Γ, and by {ϕk : k ∈ N } the set of nodal basis
functions in S, i.e., ϕk(xl) = δkl . We also define subspaces Sj = S ∩ H̃1/2(Γ j) of
functions in S supported in Γj.

4.2. Overlapping subdomains

We extend each subdomain Γj in the following way. First we define, for some δ > 0
called the overlap size,

S̃j = span{ϕk : xk /∈ Γ j, dist(xk,∂Γ j) � δ}
and denote

Γ̃ j = supp{ϕk : ϕk ∈ S̃j}
which is the shaded area in Fig. 1. (Here the distance is defined with the max norm
‖x‖ = max{|x1|, |x2|} where x = (x1,x2).) The extended subdomain Γ′

j is then de-
fined as Γ′

j = Γj ∪ Γ̃j. We note that Γ′
j need not be a quadrilateral domain. Also, if δ

is chosen such that δ ∈ (0,H], then

diam(Γ′
i) 	 H. (4.1)

4.3. Subspace decomposition

The decomposition (3.1) is performed with subspaces S′
j , j = 0,1, . . . ,J, defined as

S ′
0 = ΠFS0, S ′

j = Sj ∪ S̃j = S ∩ H̃1/2(Γ′
j), j = 1, . . . ,J,Bereitgestellt von | Technische Informationsbibliothek Hannover
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318 T. Tran and E. P. Stephan

where ΠF is the interpolation operator which interpolates continuous functions into
functions in S.

The bilinear forms bi(·, ·) associated with the subspaces S ′
i (see Section 3) are

defined as
b0(v,w) = a(ΠCv,ΠCw) ∀v,w ∈ S ′

0 (4.2)

and
bj(v,w) = a(v,w) ∀v,w ∈ S ′

j , j = 1, . . . ,J (4.3)

where ΠC be the interpolation operator which interpolates continuous functions into
functions in S0.

We note that if v0 ∈ S0 and v′0 ∈ S ′
0 then

v′0 = ΠFv0 ⇐⇒ v0 = ΠCv′0. (4.4)

This subspace decomposition completely defines the additive Schwarz operator
P introduced in Section 3.

4.4. Matrix form of additive Schwarz algorithm

In this subsection we give the matrix formulation of the algorithm described in
Section 3.

Coarse space correction: Let {ϕk : k ∈ NC} be the set of nodal basis functions
for S0 consisting of bilinear functions on the coarse grid. Then a basis for S′

0 is
{ϕ̃k : k ∈ NC}, where ϕ̃k = ΠFϕk. Recall the basis {ϕl : l ∈ N } for S (see Sub-
section 4.1). Each ϕ̃k can be represented as

ϕ̃k = ∑
l∈N

εk,lϕl

where εk,l = ϕk(xl). Let
R0 = [εk,l ]k∈NC , l∈N .

Then R0 is the matrix that transforms the basis of S into the basis of S′
0 .

Equation (3.4) for j = 0 reads as: Find u0 = ∑k∈NC
αkϕ̃k ∈ S ′

0 such that

∑
k∈NC

αkb0(ϕ̃k, ϕ̃ j) =
〈
r, ϕ̃ j

〉
, j ∈ NC

which is equivalent to, noting (4.2) and (4.4),

∑
k∈NC

αka(ϕk,ϕ j) = ∑
l∈N

ε j,l 〈r,ϕl〉 , j ∈ NC. (4.5)

For any v = ∑k∈N vkϕk ∈ S, let v = (vk)k∈N . Then
〈
v,ϕ j

〉
= MvBereitgestellt von | Technische Informationsbibliothek Hannover
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Overlapping Schwarz preconditioner for BEM 319

where M is the mass matrix defined as M= [(ϕk,ϕl)]k,l∈N . Denoting by A0 the stiff-
ness matrix [a(ϕk,ϕl)]k,l∈NC computed on the coarse grid (with bilinear functions)
and by α the vector (αk)k∈NC , we can rewrite (4.5) as

A0α = R0Mr

implying

α = A−1
0 R0Mr

so that

u0 = Rt
0α = Rt

0A−1
0 R0Mr.

Corrections on S ′
i , i = 1, . . . ,J : A basis for S ′

i with i = 1, . . . ,J is more
straightforward: it is extracted from {ϕl : l ∈ N } by a Boolean matrix Ri. Using
the same argument as above we obtain

ui = Rt
iA

−1
i MiRir, i = 1, . . . ,J

where

Ai = RiARt
i, Mi = RiMRt

i.

By noting that MiRi = RiM we deduce

ui = Rt
iA

−1
i RiMr, i = 1, . . . ,J.

Preconditioned residual : The preconditioned residual u = B−1r is computed
by

u =
J

∑
i=0

Rt
iA

−1
i RiMr.

4.5. The main result

Theorem 4.1. The condition number of the additive Schwarz operator P is
bounded as

κ(P) 
 1+ log2(H/δ ).

Proof. The above estimate is a result of Lemma 3.1 and Lemmas 5.3 and 5.4
proved in the next section. �Bereitgestellt von | Technische Informationsbibliothek Hannover
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320 T. Tran and E. P. Stephan

5. TECHNICAL LEMMAS

For the analysis, if R ⊂ R
n, n = 1,2, is a Lipschitz domain, we also define the

following norms:

|||v|||2H1/2(R) :=
1

diam(R)
‖v‖2

L2(R) + |v|2H1/2(R) (5.1)

and

|||v|||2
H̃1/2(R) := |v|2H1/2(R) +

∫

R

v2(x)
dist(x,∂R)

dx (5.2)

where

|v|2H1/2(R) :=
∫

R

∫

R

|v(x)− v(y)|2
|x−y|n+1 dxdy. (5.3)

It was proved in Lemma 2 in [2] that if R = [0,H]× [0,H], then

‖v‖H̃1/2(R) 	 |||v|||H̃1/2(R) ∀v ∈ H̃1/2(R) (5.4)

where the constants are independent of H . In the same manner one can prove that if
R = [0,H], then

‖v‖H1/2(R) 	 |||v|||H1/2(R) ∀v ∈ H1/2(R). (5.5)

For the semi-norm | · |H1/2(R) with R = I × J, where I and J are intervals, it is
useful to use the following equivalent form, which was proved in Lemma 5.3 in
[11] (see also Exercise 5.1 following that lemma)

|v|2H1/2(R) 	
∫

I

∫

I

‖v(x, ·)− v(x′, ·)‖2
L2(J)

|x− x′|2 dxdx′ +
∫

J

∫

J

‖v(·,y)− v(·,y′)‖2
L2(I)

|y− y′|2 dydy′

(5.6)
where the constants in the equivalence are independent of the sizes of I, J, and R.

The following results were proved in Lemma 3.5 in [6]; however, for the conve-
nience of the reader we present the detailed proof to justify that the results still hold
with the norm defined in (5.1).

Lemma 5.1. Let 0 < δ < β .

1. If v ∈ H1/2(0,β ), then

∫ β

δ

|v(x)|2
x

dx 

(

1+ log2 β
δ

)

|||v|||2H1/2(0,β). (5.7)

2. If v ∈ H1/2((0,β )2), then

∫ β

0

(∫ β

δ

|v(x,y)|2
x

dx

)

dy 

(

1+ log2 β
δ

)

|||v|||2H1/2((0,β)2). (5.8)
Bereitgestellt von | Technische Informationsbibliothek Hannover
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Overlapping Schwarz preconditioner for BEM 321

Proof. Let Sδ be the space of continuous piecewise-linear functions on a uni-
form mesh of size δ on (0,β ). We first prove (5.7) for vδ ∈ Sδ . By noting that (see
Lemma 3.3 in [6])

‖vδ‖2
L∞(0,β) 


(

1+ log
β
δ

)

|||vδ |||2H1/2(0,β)

we have

∫ β

δ

|vδ (x)|2
x

dx � ‖vδ‖2
L∞(0,β)

∫ β

δ

dx
x



(

1+ log2 β
δ

)

|||vδ |||2H1/2(0,β).

Now consider v ∈ H1/2(0,β ). Let vδ ∈ Sδ be the L2 projection of v onto Sδ . Then

‖v− vδ‖2
L2(0,β) 
 δ |v|2H1/2(0,β) .

Moreover, as was proved in [4] (see also [5]),

‖vδ‖H1/2(0,β) 
 ‖v‖H1/2(0,β)

which, together with (5.5), yields

|||vδ |||H1/2(0,β) 
 |||v|||H1/2(0,β).

Therefore,

∫ β

δ

|v(x)|2
x

dx 

∫ β

δ

|v(x)− vδ (x)|2
x

dx+
∫ β

δ

|vδ (x)|2
x

dx


 1
δ
‖v− vδ‖2

L2(0,β) +
∫ β

δ

|vδ (x)|2
x

dx


 |v|2H1/2(0,β) +
(

1+ log2 β
δ

)

|||vδ |||2H1/2(0,β)



(

1+ log2 β
δ

)

|||v|||2H1/2(0,β).Bereitgestellt von | Technische Informationsbibliothek Hannover
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322 T. Tran and E. P. Stephan

Inequality (5.8) is obtained by using (5.7) and (5.6)

∫ β

0

(∫ β

δ

|v(x,y)|2
x

dx

)

dy 

(

1+ log2 β
δ

)∫ β

0
|||v(·,y)|||2H1/2(0,β) dy



(

1+ log2 β
δ

)∫ β

0

[
1
β
‖v(·,y)‖2

L2(0,β)

+
∫ β

0

∫ β

0

|v(x,y)− v(x′,y)|2
|x− x′|2 dxdx′

]

dy



(

1+ log2 β
δ

)[
1
β
‖v‖2

L2((0,β)2)

+
∫ β

0

∫ β

0

‖v(x, ·)− v(x′, ·)‖2
L2(0,β)

|x− x′|2 dxdx′
]



(

1+ log2 β
δ

)

|||v|||2H1/2((0,β)2)

finishing the proof of the lemma. �

The above results will be used to prove the following lemma, which is crucial
to obtain the estimate for the minimum eigenvalue of P (see Lemma 3.1). Let R be
the union of overlapping rectangular subdomains Rl , l = 1, . . . ,J, of diameters βl .
Assume that the size of the overlap is δ . Let {ϑl : l = 1, . . . ,J} be a partition of
unity on R defined by piecewise bilinear functions such that supp ϑl = Rl .

Lemma 5.2. If δ � minl βl/2, then for any w ∈ H̃1/2(R) there holds

J

∑
l=1

|||ϑlw|||2H̃1/2(Rl)



J

∑
l=1

(

1+ log
βl

δ

)2

|||w|||2H1/2(Rl)
+

∫

R

|w(x)|2
dist(x,∂R)

dx. (5.9)

Proof. Without loss of generality, we can assume that Rl = I×I, where I =(0,βl),
so that ϑl can be defined as

ϑl(x,y) = ηl(x)ηl(y), ηl(t) =






t/δ , 0 � t � δ
1, δ < t < βl −δ
(βl − t)/δ , βl −δ � t � βl.

(5.10)

In view of (5.2) and (5.6) in order to estimate ‖ϑlw‖2
H̃1/2(Rl)

we will estimate

T1 :=
∫

I

∫

I

‖(ϑlw)(x, ·)− (ϑlw)(x′, ·)‖2
L2(I)

|x− x′|2 dxdx′
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and

T2 :=
∫

Rl

|(ϑlw)(x)|2
dist(x,∂Rl)

dx.

Splitting the integral over I = (0,βl) into three integrals over I1 := [0,δ ], I2 :=
[δ ,βl −δ ], and I3 := [βl −δ ,βl], and denoting, for any v,

Ai j(v) :=
∫ ∫

Ii×Ij

‖v(x, ·)− v(x′, ·)‖2
L2(I)

|x− x′|2 dxdx′

we observe that, by symmetry, in order to estimate T1 it suffices to consider A11(ϑlw),
A12(ϑlw), A13(ϑlw), A23(ϑlw), and A33(ϑlw).There is no need to consider A22(ϑlw)
because A22(ϑlw) = A22(w). The symmetric shape of ϑl implies the similarity of
A11(ϑlw) and A33(ϑlw), and of A12(ϑlw) and A23(ϑlw). There remains three terms
to be considered: A11(ϑlw), A12(ϑlw), and A13(ϑlw).

Firstly, for A11 we have

A11(ϑlw) � 2
∫ ∫

I1×I1

‖ϑl(x, ·)−ϑl(x′, ·)‖2
L2(I)

|x− x′|2 ‖w(x, ·)‖2
L2(I) dxdx′

+ 2
∫ ∫

I1×I1

‖w(x, ·)−w(x′, ·)‖2
L2(I)

|x− x′|2 ‖ϑl(x, ·)‖2
L2(I) dxdx′

� 2
∫ ∫

I1×I1

3

∑
i=1

∥
∥
∥

x
δ η(·)− x′

δ η(·)
∥
∥
∥

2

L2(Ii)

|x− x′|2 ‖w(x, ·)‖2
L2(I) dxdx′ + 2βlA11(w)


 1
δ
‖w‖2

L2(I1×I) +A11(w).

It was proved in Lemma 3.4 in [6] that

1
δ
‖w‖2

L2(I1×I) � c

(

1+ log
βl

δ

)

|||w|||2H1/2(Rl)
(5.11)

where c is independent of w, βl , and δ . Thus A11(ϑlw) is bounded by the right-hand
side of (5.9).

For the term A12(ϑlw) we have

A12(ϑlw) =
1

δ 2

∫ δ

0

∫ βl−δ

δ

‖xw(x, ·)−δw(x′, ·)‖2
L2(I)

|x− x′|2 dx′ dx

� 2
δ 2

∫ δ

0

(∫ βl−δ

δ

dx′

|x− x′|2
)

|x−δ |2 ‖w(x, ·)‖2
L2(I) dx+ 2A12(w)

� 2
δ
‖w‖2

L2(I1×I) + 2A12(w).Bereitgestellt von | Technische Informationsbibliothek Hannover
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Using again (5.11) we deduce that A12(ϑlw) is bounded by the right-hand side of
(5.9).

Finally, for A13(ϑlw) since the assumption δ � βl/2 implies that βl/2− x � 0
for x ∈ I1 and x′ −βl/2 � 0 for x′ ∈ I3, we find

A13(ϑlw) =
1

δ 2

∫ δ

0

∫ βl

βl−δ

‖xw(x, ·)− (βl − x′)w(x′, ·)‖2
L2(I)

|x− x′|2 dx′ dx

� 2
δ 2

∫ δ

0

∫ βl

βl−δ

|x+ x′ −βl|2
|x− x′|2 ‖w(x, ·)‖2

L2(I) dx′ dx

+
2

δ 2

∫ δ

0

∫ βl

βl−δ
|βl − x′|2 ‖w(x, ·)−w(x′, ·)‖2

L2(I)

|x− x′|2 dx′ dx

� 2
δ 2

∫ δ

0

∫ βl

βl−δ

∣
∣
∣

(

x′ − βl
2

)

−
(

βl
2 − x

)∣
∣
∣

2

∣
∣
∣

(

x′ − βl
2

)

+
(

βl
2 − x

)∣
∣
∣

2 ‖w(x, ·)‖2
L2(I) dx′ dx+ 2A13(w)

� 2
δ
‖w‖2

L2(I1×I) + 2A13(w).

Inequality (5.11) yields the estimate for A13(ϑlw), which implies that T1 is bounded
by the right-hand side of (5.9).

To estimate T2 we first assume, without loss of generality, that dist(x,∂Rl) = x,
where x = (x,y). Then

T2 �
∫ βl

0

[∫ δ

0

x2

δ 2

|w(x,y)|2
x

dx+
∫ βl

δ

|w(x,y)|2
x

dx

]

dy

� 1
δ
‖w‖2

L2(I1×I) +
∫ βl

0

∫ βl

δ

|w(x,y)|2
x

dxdy.

The desired estimate for T2 now follows from (5.11) and (5.8), finishing the proof.
�

Lemma 5.3. For any u ∈ S there exist ui ∈S ′
i satisfying u = ∑J

i=0 ui such that

J

∑
i=0

bi(ui,ui) 

(

1+ log2 H
δ

)

a(u,u), (5.12)

where the constant is independent of u, H, h, and δ .

Proof. To define a decomposition for u∈S we need a projection and a partition
of unity. Since the operator −∆ with domain of definitionH̃1(Γ) = H1

0 (Γ) is positive
definite and self-adjoint, we can define Λ =

√−∆ which in turn is self-adjoint as an
operator from H̃1/2(Γ) to H−1/2(Γ). Moreover,

〈Λξ ,ξ 〉 	 ‖ξ‖2
H̃1/2(Γ) ∀ξ ∈ H̃1/2(Γ).Bereitgestellt von | Technische Informationsbibliothek Hannover
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Let PH : H̃1/2(Γ) −→ S0 be the projection defined by the inner product 〈Λ·, ·〉, i.e.,

〈ΛPHv,w〉 = 〈Λv,w〉 ∀v ∈ H̃1/2(Γ), w ∈ S0.

Using standard arguments one can prove that for any v ∈H̃1/2(Γ) there hold

‖PHv‖H̃1/2(Γ) 
 ‖v‖H̃1/2(Γ) , ‖PHv− v‖L2(Γ) 
 H1/2‖v‖H̃1/2(Γ) . (5.13)

We next define a partition of unity having the properties of the partition in
Lemma 5.2. For j = 1, . . . ,J we define

Rj = Γ j ∪{x ∈ Γ : dist(x,∂Γ j) � δ}
which are quadrilateral domains (see Fig. 1). It is crucial to define Rj as a quadrilat-
eral domain so that Lemma 5.2 can be applied. The cutoff function ϑj is defined as
in the proof of Lemma 5.2 so that supp ϑj = Rj.

We are now ready to define a decomposition of u ∈ S such that (5.12) holds.
For any u ∈ S let u0 = ΠFPHu ∈ S ′

0 and uj = ΠF(ϑ jw) ∈ S ′
j , j = 1, . . . ,J, where

w = u−u0. The fact that supp uj ⊂ Γ′
j so that uj ∈ S ′

j for j = 1, . . . ,J is clear from
the definitions of Rj and Γ′

j. It is also clear that u = ∑J
i=0 ui. By using (4.4), (5.13)

and Lemma 7 in [2], we obtain the following estimates

‖ΠCu0‖H̃1/2(Γ) = ‖PHu‖H̃1/2(Γ)


 ‖u‖H̃1/2(Γ) (5.14)

‖ui‖H̃1/2(Γ) 
 ‖ϑiw‖H̃1/2(Γ) (5.15)

‖w‖H̃1/2(Γ) = ‖ΠF(u−PHu)‖H̃1/2(Γ)


 ‖u−PHu‖H̃1/2(Γ)


 ‖u‖H̃1/2(Γ) (5.16)

and

‖w‖L2(Γ) = ‖ΠF(u−PHu)‖L2(Γ)


 ‖u−PHu‖L2(Γ)


 H1/2‖u‖H̃1/2(Γ) . (5.17)

Moreover, by Lemma 6 in [2] there holds

|||ϑiw|||H̃1/2(Γ) 	 |||ϑiw|||H̃1/2(Ri)
. (5.18)Bereitgestellt von | Technische Informationsbibliothek Hannover
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Hence by using successively (2.4), (5.14), (5.15), (5.4), (5.18), (5.9), (4.1), (5.16),
and (5.17) we obtain

J

∑
i=0

bi(ui,ui) 	 ‖ΠCu0‖2
H̃1/2(Γ) +

J

∑
i=1

‖ui‖2
H̃1/2(Γ)


 ‖u‖2
H̃1/2(Γ) +

J

∑
i=1

‖ϑiw‖2
H̃1/2(Γ)

	 ‖u‖2
H̃1/2(Γ) +

J

∑
i=1

|||ϑiw|||2H̃1/2(Γ)

	 ‖u‖2
H̃1/2(Γ) +

J

∑
i=1

|||ϑiw|||2H̃1/2(Ri)


 ‖u‖2
H̃1/2(Γ) +

(

1+ log2 H
δ

) J

∑
i=1

|||w|||2H1/2(Ri)
+

∫

Γ

|w(x)|2
dist(x,∂Γ)

dx


 ‖u‖2
H̃1/2(Γ) +

(

1+ log2 H
δ

) J

∑
i=1

‖w‖2
H1/2(Ri) +‖w‖2

H̃1/2(Γ)


 ‖u‖2
H̃1/2(Γ) +

(

1+ log2 H
δ

) J

∑
i=1

1
H

‖w‖2
L2(Ri)


 ‖u‖2
H̃1/2(Γ) +

(

1+ log2 H
δ

) 1
H

‖w‖2
L2(Γ)



(

1+ log2 H
δ

)

‖u‖2
H̃1/2(Γ)



(

1+ log2 H
δ

)

a(u,u)

completing the proof. �

Lemma 5.4. For any u ∈ S if u = ∑J
i=0 ui for some ui ∈ Si, then

a(u,u) 

J

∑
i=0

bi(ui,ui)

where the constant is independent of u, h, δ , and H.

Proof. By construction there are at most ν subdomains Γ′i to which any x ∈ Γ
can belong. (The utmost case happens when δ = H .) A standard colouring argumentBereitgestellt von | Technische Informationsbibliothek Hannover
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Table 1.
Condition numbers for Laplace equation, overlap size δ = h.

DoF h Unpreconditioned H = 2h H = 1/2

9 1/4 1.83 4.51 1.58
49 1/8 3.49 5.12 5.12

225 1/16 6.94 5.38 4.85
961 1/32 13.84 5.46 5.16

3969 1/64 27.77 5.47 6.02
16129 1/128 55.73 5.48 7.29
65025 1/256 111.68 5.47 8.93

261121 1/512 223.60 5.54 10.92

yields, noting that u0 = ΠFΠCu0,

a(u,u) 	 ‖u‖2
H̃1/2(Γ)


 ‖u0‖2
H̃1/2(Γ) +

∥
∥
∥
∥

J

∑
i=1

ui

∥
∥
∥
∥

2

H̃1/2(Γ)


 ‖ΠCu0‖2
H̃1/2(Γ) + ν

J

∑
i=1

‖ui‖2
H̃1/2(Γ)

	
J

∑
i=0

bi(ui,ui)

completing the proof. �

6. NUMERICAL EXPERIMENTS

We solved (2.2) for both the Laplace and Lamé operators, i.e. with D defined by
(2.3), and with Γ chosen to be [−1,1]2. The right hand side g of (2.2) is chosen to
be g(x) ≡ 1 in the Laplace case, and g(x) = (−y,x,0) in the Lamé case.

The experiments are performed with numerous values of H , h, and δ , but we
only report a few cases here. All numbers seem to agree with our theoretical result.
Tables 1 and 2 present the condition number for both cases, whereas Tables 3 and 4
present the corresponding number of iterations. We also plot in Fig. 2 the condition
number versus H/δ for the Laplace case. A logarithmic growth can be observed.
The authors are grateful to Dr. Matthias Maischak for carrying out the experiments.
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Table 2.
Condition number for Lamé equation.

DoF h Unpreconditioned H = 2h H = 4h
δ = h δ = 2h δ = h δ = 2h

147 1/8 4.14 2.38 4.11

675 1/16 8.24 2.78 4.27 5.15 9.01

2883 1/32 16.50 3.88 4.31 5.43 9.01

11907 1/64 33.07 5.36 5.88 5.56 9.01

Table 3.
Number of iterations for Laplace equation, overlap size δ = h.

DoF h Unpreconditioned H = 2h H = 1/2

9 1/4 4 4 4

49 1/8 11 15 15

225 1/16 16 20 17

961 1/32 23 21 18

3969 1/64 31 21 19

16129 1/128 44 21 20

65025 1/256 63 20 23

261121 1/512 89 20 24

Table 4.
Number of iterations for Lamé equation.

DoF h Unpreconditioned H = 2h H = 4h
δ = h δ = 2h δ = h δ = 2h

147 1/8 24 13 16

675 1/16 34 16 19 20 22

2883 1/32 48 19 21 22 25

11907 1/64 68 23 23 24 26
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Figure 2. Condition number vs H/δ for DoF = 16129.
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