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Irrigation  treatments  involving three  different  water  regimes were carried out  in  a

controlled environment on eight near-isogenic durum wheat lines that  differed in a major

yield-related QTL region (QYld.idw-3B) in order to assess the relationship between morpho-

physiological traits, antioxidant enzyme activities, polyamine contents and drought tolerance.

Drought stress, simulated under a rain-out shelter, negatively affected the performance of the

isogenic  lines,  leading  to  significant  reductions  in  seed  yield,  tiller  number,  chlorophyll

content, plant height, leaf area and ascorbate peroxidase activity, while the polyamine content

and guaiacol peroxidase activity increased. Correlation analysis revealed that the antioxidant

enzyme activities in the flag leaf were in significant, negative relationship with several yield-

related parameters,  while  a significant,  positive correlation was found between polyamine

contents and the seed number or weight in the main spike. The ascorbate peroxidase activity

was negatively correlated with seed weight per main (r= -0.446) or side spike (r= -0.465) and

the  1000-grain weight of the main or side spike (r= -0.396 or r= -0.49) and the guaiacol

peroxidase activity with the number of seeds per main (r= -0.457) or side spike (r= -0.378)

and the seed weight per side spike (r= -0.38). GGE biplot analysis showed that lines with the

KK2BLKK3BS  allele combination  had  better yield performance under non-watered conditions,

but their response to drought stress was not uniform in other yield-related traits.

Keywords: antioxidant enzymes; drought; polyamines; rain-out shelter; yield components
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The occurrence of drought and dry seasons is a recurrent phenomenon. Since the late 20th

century,  there  have  been  increasingly  higher  temperatures,  accompanied  by  less  and

unpredictable rainfall, and this is expected to continue due to climate change. If the amount of

precipitation is insufficient, in the critical phases of plant growth and development, which

means flowering and grain-filling in the case of cereals,  the genetically encoded yielding

ability cannot be fully achieved (Nouri et al. 2011). The yield reduction depends on the abiotic

stress tolerance of the plants. Thus, one of the important tasks now facing wheat breeding

programmes is to develop genotypes that are heat- and drought-tolerant, high-yielding, with

stable properties. 

Oxidative stress is induced during drought. The ability of plants to overcome the effect

of stress conditions and to sustain productivity may be related to the scavenging of stress-

induced reactive oxygen species. Peroxidases are one of the major systems for the enzymatic

removal of H2O2 in plants (Kocsy et al., 2011). Polyamines (PAs) are aliphatic amines found

in all living cells and well known for their direct antioxidant properties and their ability to

regulate the expression of genes encoding antioxidant enzymes (Kuznetsov and Shevyakova

2007).  The early activation of polyamine biosynthesis in response to abiotic stress has been

reported in several cases, and the existence of a relationship between the stress tolerance of

plants and their capacity to enhance the synthesis of polyamines on exposure to stress has also

been suggested (Fariduddin et al., 2013; Minocha et al., 2014). A recent review discussed the

fact that PAs are involved in the grain filling of wheat and rice plants (Liu et al., 2013).
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Grain  filling  and  its  end  result,  the  grain  yield  are  closely  linked  to  several

morphological, anatomical, physiological and molecular characteristics of flag-leaves (Biswal

and Kohli, 2013). For example, the net CO2 assimilation during water deficit displayed a close

correlation  with  the  drought  sensitivity  of  cereals  (Saeedipour  and  Moradi  2011).  The

increased accumulation of osmolites such as proline and sucrose was exhibited by the flag-

leaves of tolerant wheat genotypes under induced drought stress (Sawhney and Singh 2002).

Despite increasing knowledge on the importance of the physiological condition of cereal flag-

leaves under  normal or stress conditions, little is known about the relationship between the

content of endogenous plant growth regulators, such as polyamines, in flag-leaves and the

yield under drought stress conditions. 

The approach most widely used for the selection of drought-tolerant cereal genotypes

is  screening  for  grain  yield  under  stress  conditions (Tardieu  and  Hammer  2012).  Direct

selection  for  grain  yield  under  water-stressed  conditions  has  been  hampered  by  low

heritability, polygenic control, epistasis, and significant genotype-by-environment (GxE) and

quantitative trait loci (QTLs)-by-environment (QTLxE) interactions (Cattivelli et al., 2008).

Many QTLs for yield in drought environments have been identified in durum wheat (Habash

et al.,  2009).  Creating a suitable population for examining QTL effects is a complex task

because differential gene expression is caused not only by the trait of interest but also by the

variation  present  in  the  genetic  background.  One  solution  for  establishing  the  functional

association between the level of gene expression and a given trait is the use of a set of near-

isogenic lines (NILs), which are genetically similar except for a single gene, marker or trait
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(Varshney et al., 2005). Although several studies have been made on the physiological aspects

of  drought  stress,  mainly  under  controlled  conditions,  only  the  complex  analysis  of  the

combined effect of environmental factors and genotypes under field conditions will reveal the

real responses. 

In the present study near-isogenic durum wheat lines differing for a major grain yield

QTL (QYld.idw-3B) were evaluated.  The main aims were 1) through detailed morphological

and physiological analysis to reveal the stability of the lines under drought conditions, 2) to

explore  the  correlation  between  morphological  and  physiological  parameters  and  yield

components under drought conditions,  and 3) to  discover how the polyamine content and

antioxidant enzyme activity of the flag-leaves were related to yield-related parameters and

drought tolerance. In order to achieve these goals the  NILs were tested under drought stress

conditions  controlled  by  soil  sensors,  which  collected  data  on  the  moisture  content,

temperature and electrical conductivity of the soil hourly throughout the growing season.

2. Materials and methods
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2.1. Plant material 

Near-isogenic durum wheat lines (NILs) derived from 4 different Recombinant imbred

lines (RILs) of the original Kofa x Svevo spring durum wheat cross were included in the

experiments. These two cultivars were found to be similarly early flowering and to have good

adaptation ability in a multi-location experiment around the Mediterranean Basin. Two major

QTLs for grain yield, one on  chromosome 2B (QYld.idw-2B) and one on  chromosome 3B

(QYld.idw-3B),  were  identified  across  several  environments,  with  significant  epistatic

interactions  between  them  (Maccaferri  et  al.  2008).  The  F4  plants  were  checked  for

heterozygosity and marker-assisted selection was used to derive the NIL couples (NIL1++,

NIL1--, NIL2++, NIL2--, NIL3++, NIL3--, NIL4++, NIL4--).  The NILs were all fixed for the

Kofa allele on  chromosome 2B. When the allele on chromosome 3B was KK (Kofa) the NILs

were coded as ++ (KK2BLKK3BS) and when the allele was SS (Svevo) they were coded as --

(KK2BLSS3BS). Both Kofa and Svevo were included in the experiment.

2.2. Field trial and experimental data

The  experiments  were  carried  out  in  the  rain-out  shelter  and  the  surrounding

experimental area of the Agricultural Institute, Centre for Agricultural Research, Martonvásár

in  2014. The  lines  were  planted  on  17  March,  2014  and  were  grown in  three  different

treatments: (i) non-irrigated (NW), (ii) fully irrigated (W), (iii) rainfed (RF). Individual plots
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consisted of 3 rows per line, 10 cm apart, in 1.5 m x 4.8 m plots. There were four plots in each

treatment, so measurements were made on 12 rows per line/treatment. The soil texture of the

experimental site was chernozem with forest residues, having good water permeability.   In

NW  treatment  the  plants  were  grown  under  a  rain-out  shelter  and  drought  stress  was

generated by total water withholding from emergence until harvesting, in 30 cm depth of the

soil the value of field capacity was 29 vol% (pF 2.5), the wilting point at 10.3 vol% (pF 4.2),

and the water-stress state occurs at 19 vol% (pF 3.4). The field capacity of the rain-fed (RF)

plots is 30 vol%, the wilting point at 10.8 vol%, the water-stress state begins when the soil

moisture drops to 20.2 vol%. The amount of water per area was regulated using an automatic

drip irrigation system (Irritrol Junior Max, The Torro Company, Lyndal, USA).  Soil moisture

sensors were placed at depths of 10, 20 and 30 cm.  Data on the moisture content (vol%),

temperature  (°C)  and  electrical  conductivity  (dS/m)  of  the  soil  were  collected  hourly

throughout the growing season. For each plot, phenological development was recorded using

the Zadoks score (Zadoks et al., 1974).

The  chlorophyll  content  of  the  flag-leaf  was  estimated  using  a  chlorophyll  meter

(SPAD-502; Minolta, Tokyo, Japan) and expressed as a relative value (SPAD value) at the

boot stage (SPAD45), at flowering (SPAD65), in the late stages of milky ripeness (SPAD77),

at  early  waxy  ripeness  (SPAD83)  and at  the  end of  waxy  ripeness  (SPAD85)  in  sixteen

replications per line for each water regime. 

The flag-leaf (FLA) and total plant leaf (PLA) area were defined in eight and twelve

replications, respectively, at flowering (ZGS65) using an LI-3100C leaf area meter. The plant
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height up, to the flag-leaf collar (FLC), the base of the ear (BE) and the tip of the ear (TE,

without awn), the peduncle length (PL, from the flag-leaf to the base of the ear) and the neck

size (NL, from the last node to the base of the ear) were measured in twelve replications.

Measurements  were  made  on  the  spikelet  number  per  spike  for  16  main  spikes

(SKNM) per line, on the grain number and grain weight per spike (SNM) and per metre, and

on the number of sterile apical (ASM) and basal (BSM) spikelets per spike. Chemical weed

control was applied and no disease symptoms were observed during the growth period. 

2.3. Antioxidant enzyme assays and polyamine analysis

The ascorbate peroxidase (APX) and guaiacol peroxidase (G-POD) activities and the

polyamine contents were measured in the flag-leaves of the main tiller in five replications on

samples collected from irrigated (W) and non-irrigated (NW) plots at flowering (ZDS65).

Enzyme extraction and the analysis of antioxidant enzyme activity, expressed as nkatal

g-1 DW, were  carried out  as  described by Pál  et  al.  (2013) using a  UV-visible  recording

spectrophotometer (UV-VIS 160A, Shimadzu Corp. Kyoto, Japan), by monitoring changes in

the absorbance at 290 nm in the case of APX (EC 1.11.1.11.) and  at 470 nm in the case of G-

POD (EC 1.11.1.7.).

Polyamine extraction and analysis were carried out as described by Pál et al., (2013).

The polyamines were analysed as dansylated derivatives via HPLC using a W2690 separation
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module and a W474 scanning fluorescence detector with excitation at 340 nm and emission at

515 nm (Waters, Milford, MA, USA). The values were expressed as g g-1 DW. 

2.4. Statistical analysis

Analysis of variance, phenotypic correlation analysis between phenotypic traits and

GGE-biplot  analysis  were  performed  for  each  variant  using  the  GENSTAT17  software.

Means were compared by using Fisher’s least significant difference (P<0.001, 0.01 and 0.05).

3. Results

3.1. Soil water conditions in the experiments

In the NW treatment the soil moisture content dropped to below 13 vol% at a depth of 30 cm

even before sowing, thus causing water stress (Supplementary Figure 1-3). Because of the wet

weather in May the water supplies of the rain-fed (RF) and irrigated (W) areas did not differ

from each  other,  so  there  were  no  significant  differences  between  any  of  the  measured

properties.

3.2. Effect of drought stress on plant morphology and physiology 
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The  results  of  variance  analysis  for  chlorophyll  content  indicated  that  genotypic

differences were highly significant at all the developmental phases except in the early waxy

ripeness stage (ZDS83), when the SPAD index was 38% lower in the NW treatment than in

the W treatment (Table 1).  The effect of the treatment for the chlorophyll content was not

significant  at  the  end  of  waxy  ripeness  (ZDS85),  while  there  were  positive,  significant

differences between the lines under stress conditions because of the genotypic effect. The

chlorophyll  contents  of  NIL3++,  NIL1++ and  NIL1--  were  significantly  higher  than  the

experimental mean at ZDS85 (Figure 1). 

The different water regimes had a significant effect on both the flag-leaf area and the

plant leaf  area among the lines.  In  the case of the W treatment,  the flag-leaf  area of the

NIL1--, NIL1++ lines was significantly larger than the average, while in the NW treatment

only line NIL1-- had a larger flag-leaf area (Supplementary Table 1). 

The water stress developing in the soil after sowing significantly reduced the number

of fertile tillers and thus the size of the entire plant leaf area in the NW treatment. In the case

of the W and NW treatments, the NIL1-- and NIL1++ lines had the largest total plant leaf area

(Supplementary Table 1). 

Analysis of variance showed that the genotypic variance was not significant for plant

height up to the flag-leaf collar, while the plant height to the bottom and top of the spike

showed greater diversity over treatments and lines. The average height of the plants decreased

by 12% due to  water  shortage.  In  all  the  treatments  the  NIL3++ plants  were the  tallest.

Compared to the irrigated treatment the peduncle length of the NIL1--, NIL3-- and NIL4++
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lines was not reduced significantly during drought stress. In the irrigated treatment there was

no significant difference in the neck length between the lines, but insufficient water supplies

resulted in the shortening of the internode, which was most characteristic of the NIL1++ and

NIL2++ lines. The genotype had no significant effect on the main spike size, but lines NIL1--

and NIL1++ had the longest spike size under drought stress (Supplementary Table 1). 

3.3. Tthe effect of drought stress on yield components 

Analysis  of  variance  on the  yield components indicated that  genotypic differences

were  highly  significant  for  all  traits  except  for  the  apical  sterile  spikelet  number,  where

neither the genotype nor the treatment effect was significant (Table 1). Due to drought stress

the number of basal sterile spikelets significantly increased in the case of  lines NIL2-- and

NIL3--. In the NW treatment, the average grain number in the main spike decreased by 20%,

the grain weight by 30%, and the thousand-kernel weight per main spike by 16%,  while in

the side spikes these values were 28%, 40% and  17%,  respectively. In addition,  13% fewer

tillers emerged on average compared to the W treatment. Under NW conditions there were

significantly more seeds and significantly higher seed weight in the main spike of line NIL1+

+, while line NIL3++ line had the highest seed number and seed weight in the side spikes

compared to the mean value for this treatment (Supplementary Table 1). GGE biplot analysis

showed that PC1 and PC2 accounted a total of 95.12% of the variation (Figure 2). In the NW

treatment,  when the  lines  were ranked based on seed number per  metre  NIL1--,  NIL2--,
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NIL3-- and NIL4-- were found to have lower than average yield, NIL2++ and NIL4++ near

average yield, and Svevo, Kofa, NIL1++ and NIL3++ higher than average yield. The vector

of NIL3++ was shorter than that of the other lines, suggesting that it was more stable than all

the other genotypes. 

3.4. Drought-induced changes in antioxidant enzyme activities and polyamine contents

Under favourable water conditions the lowest ascorbate peroxidase (APX) activity was

measured in Kofa and NIL3++, while the highest value was observed for Svevo. Drought

stress (NW) significantly decreased the APX activity except in the case of Kofa and NIL3++

(Table 2). The lowest guaiacol peroxidase (G-POD) activity was found in NIL1-- and NIL1+

+, and the highest in NIL2++ under irrigated conditions (Table 2). Drought stress significantly

increased the activity of G-POD in all the lines, with the highest increments in NIL1-- and

NIL1++. The lowest increase in G-POD activity was found in NIL2++, where the enzyme

activity was already high under favourable water conditions. 

The agmatine and cadaverine contents were below the detection limit. Although the

patterns  of  the  detectable  free  polyamine  contents,  namely  putrescine  (PUT),  spermidine

(SPD) and spermine (SPN), were similar in the various lines, the most pronounced differences

were observed in the case of PUT. Lower PUT, SPD and SPN contents were detected in line

NIL3++,  and higher  amounts  in  NIL2--  under  irrigated  conditions.  Water  deficit  induced

greater PUT, SPD and SPN accumulation in NIL3++, than in lines such as NIL2--, where the
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polyamine content was already high under irrigated conditions. Drought caused hardly any

significant changes in the SPN content (Table 2). 

3.5. Correlations between the examined parameters under non- irrigated conditions

Significant relationships were found between several traits or parameters in the non-

irrigated  treatment.  For  instance,  there  was  a  positive  significant  correlation  between the

chlorophyll content of the flag-leaves and the seed number (0.450**), seed weight (0.682***)

and 1000-grain weight (TGW) of the main spike at the booting stage (0.580***) and the seed

number (0.648***) and seed weight (0.621***) of the side spikes at the ZDS85 stage under

drought  conditions  (Table  3).  Similarly,  positive  significant  correlations  were  detected

between the seed weight (0.425**) and TGW (0.520***) per side spike and the flag-leaf area

in replications exposed to total water withholding. 

There was a positive significant correlation (0.720***) between the APX and G-POD

activities  under  drought  stress  conditions.  Significant  negative  correlations  were  found

between the APX activity and the seed weight per main (-0.446**) or side spike (-0.465**)

and the TGW of the main or side spike (-0.396** or -0.490**),  and between the G-POD

activity and the number of seeds per main (-0.457**) or side spike (-0.378*) and the seed

weight per side spike (-0.380*). 

PUT exhibited  a  high  correlation  with  the  SPD content  (0.541***)  and  the  SPN

content (0.569***),  while  the PUT, SPD and SPN contents showed a significant positive
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relationship  with  both  SNM  (0.533***,  0.500***  and  0.481**,  respectively)  and  SWM

(0.383*, 0.352* and 0.399**, respectively).

4. Discussion 

Several breeding experiments for drought tolerance demonstrated that genotypes with

good tolerance of stress conditions are incapable of producing high yields under optimum

conditions (Rosielle and Hamblin 1981; Dixit et al. 2014; Spitkó et al. 2014).It would be the

idea that high yielding genotypes should be drought-tolerant and have low yield depression

when exposed to  water shortage. In order to achieve a better understanding of the drought

stress  responses  of  plants,  complex  morphological,  physiological  and  yield  component

examinations  were  carried  out  in  an  experimental  nursery  with  a  rain-out  shelter.  Near-

isogenic durum wheat lines differing only in the QYld.idw-3B region were used to investigate

the combined effect of environment, QTL, genotype and treatment. This was the first study to

highlight whether the polyamine content or the activities of certain antioxidant enzymes in the

flag leaves of NILs are correlated with yield-related QTLs and yield parameters under drought

conditions in field experiment.

In the non-irrigated treatment, the plants were subjected to drought stress throughout

the growing season, which thus had an impact on inflorescence formation, fertilization and

crop formation. The yellowing of the leaves, indicating the aging process, started soon after

flowering,  the  individual  isogenic  lines  showed  a  decrease  with  varying  degrees  of
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chlorophyll  content.  The  original  expectation  was  that  lines  with  the  Kofa  allele  on

chromosome 2B and the Svevo allele on  chromosome 3B would exhibit early senescence so

the leaves would begin to wither earlier. The higher chlorophyll values measured at the end of

the waxy ripeness stage in isogenic lines NIL1++ and NIL3++, both of which had the Kofa

allele on 3B, showed that this allele combination could also sustain photosynthetic activity for

a longer period of time under non-irrigated conditions, leading to higher seed number and

weight  at  the end of the  growing season. This was supported by the  positive,  significant

correlation between the flag-leaf chlorophyll content and the seed number and weight in the

main spike. Marker-trait associacion was detected on chromosome 3B for chlorophyll content

at grain filling in genetically diverse elit lines of spring wheat (Sukumaran et al. 2014). 

Grain yield was strongly influenced both by genotype and treatment effects, while the

genotype  by  treatment  interaction  was  not  significant.  In  the  NW treatment  there  were

significantly more seeds and significantly higher seed weight in the main spike of the NIL1++

line,  while line NIL3++ had the highest  seed number and seed weight in the side  spikes

compared  to  the  mean  value  of  the  treatment. The  positive  effect  of  Kofa  QTL  on

chromosome 3B was observed in two inbreed family under drought stress. It was recently

demonstrated that QTL qGYWD.3B.1 on the short arm of chromosome 3B was associated

with both increased grain yield and TGW (Shukla et al., 2015). This QTL was co-located with

QTLs for yield components, canopy temperature and days  to flowering, and was apparently

independent of plant height. It was also observed that four QTLs related to yield, which were

robust (i.e. across stressed and irrigated environments), appeared in linkage groups 1B-a, 3B-
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b,  4A-a,  and  4A-b (Pinto  et  al.,  2010). Although  drought  tolerance  were  to  be  found

associated with alterations in the antioxidant metabolism in various plant species, changes in

antioxidant enzyme activities during drought stress are greatly dependent not only on which

enzyme was examined, but also on the plant species and cultivar, and on the severity and

duration of the stress (DaCosta and Huang, 2007). Drought caused a reduction in the APX

activity  in  Kentucky  bluegrass  plants,  but  the  decrease  was  less  severe  in  the  tolerant

genotype. Under the same conditions no difference in G-POD activity was observed between

the sensitive and tolerant genotypes (Xu, 2011). A similar decrease in APX and increase in G-

POD activity were found in wheat plants exposed to drought stress (Chakraborty and Pradhan,

2012). In other experiments on the wheat APX activity increased in both tolerant and sensitive

genotypes, but the maximal activity occurred at the end of flowering in the tolerant one, and

at the end of ear formation in the sensitive one (Huseynova, 2012). In the present experiment,

the  APX activity  decreased  under  non-irrigated  conditions  except  for  Kofa  and NIL3++,

which have relatively low APX activity even under irrigated conditions. In contrast, higher G-

POD  activities  were  detected  in  all  the  lines  under  non-irrigated  conditions  than  under

favourable water conditions. The APX activity showed a significant negative correlation with

the seed weight of the main and side spikes, the flag leaf area and the SPD content under

drought  conditions.  The  G-POD  activity  also  showed  a  close,  negative  correlation  with

several yield components. 

Polyamines  (Pas)  are  thought  to  play  a  protective  role  under  stress  conditions.

However,  the  data  in  the  literature  are  contradictory.  In  some  cases  a  close,  positive
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correlation was found between the endogenous polyamine content and tolerance of various

stress  factors (Minocha et  al.,  2014),  while  in  several  plant species the correlations were

negative or non-existent (Pál et al., 2015). Increased polyamine contents were reported in the

flag-leaves of wheat under drought conditions (Biswal and Kohli, 2013). In the present work,

too, the accumulation of polyamines was observed in the flag-leaves of durum wheat lines

under water deficit conditions, with the highest accumulation of PUT, SPD and SPN in the

case of line NIL3++. Correlation analysis revealed a close, positive correlation between these

polyamines. In addition, several close, positive correlations were found between individual

polyamine contents and the seed number or seed weight of the main spikes under drought

conditions.  The  protective  effect  of  all  studied  poliamine  compounds  were  found in  this

studie.

PAs are involved in the balance of hormones that regulate the grain filling of wheat

(Liu  et  al.,  2013),  as  there  is  negative  feedback  between PAs and ethylene  and positive

feedback between PAs and abscisic acid, which also plays a key role in drought signalling and

protection (Alcazár et  al.,  2011).  In  agree with our results  the endogenous SPD and SPN

contents were positively correlated with the grain-filling rate and grain weight of wheat, and

the abscisic acid/ethylene ratio was positively and significantly correlated with the maximum

grain  weight  and with the  maximum and mean grain-filling rates  (Liu  et  al.,  2013).  The

increased contents of free SPD, free SPN, and insoluble-conjugated PUT in rice cultivars

under  drought  stress  were  also  significantly  correlated  with  the  ratio  of  the  grain  yields

recorded under dry and well-watered conditions (Yand et al., 2007). 

17

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

33
34



Considerable  variation  was detected  between the  eight  near-isogenic  lines  in  their

response  to  drought  stress  measured via phenological,  physiological  and yield component

traits.  Among these lines,  NIL1++ and NIL3++ proved to be the highest drought tolerant

because of the depression of yield components were the lowest. Although the selection for

QYld.idw-2B  and  QYld.idw-3B  regions  appear  promising  for  the  development  of  high-

yielding durum wheat lines under water limited conditions even though the clarification of the

role of other chromosome regions are required. Yield components showed a close, negative

relationship with the antioxidant enzyme activities, which in turn may indicate that changes in

these  parameters  more  related  the  cause  of  the  drought  stress.  In  contrast,  yield-related

parameters were in close positive relationship with the polyamine contents, suggesting the

need for a better  understanding of flag-leaf  physiology under drought,  and of the role  of

antioxidants, other protective compounds and hormonal balance in the flag-leaf, together with

the identification of flag-leaf-specific gene expression. 
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Table 1. Analysis of variance for traits of eight near-isogenic lines and two genotypes of durum wheat under NW, W and RF conditions during the 2014 cropping season in
the rain-out shelter. 
Source of variation df DH DF DM SPAD45 SPAD65 SPAD77 SPAD83 SPAD85 FLC BE TE PL NL SS FTN FLA PLA

Genotype (G) 9 65.55 59.86 44.55 20.33 33.91 85.00 56.41 28.64 131.40 174.97 185.19 65.34 80.45 3.18 0.63 190.27 3021.00

Treatment (T) 3 498.71 441.09 1419.05 188.99 451.64 182.77 1985.08 0.44 596.20 775.73 933.85 205.85 302.64 9.82 1.59 550.80 41963.90

G x T 27 3.66 4.11 6.26 8.67 10.70 24.95 25.77 0.22 108.80 10.58 12.15 7.65 9.65 0.86 0.09 16.57 484.10

F pr.  DH DF DM SPAD45 SPAD65 SPAD77 SPAD83 SPAD85 FLC BE TE PL NL SS FTN FLA PLA

Genotype <.001 <.001 <.001 0.047 0.001 <.001 0.078 <.001 0.425 <.001 <.001 <.001 <.001 0.065 0.003 <.001 <.001

Treatment <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.156 0.004 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

G x T 0.516 0.372 <.001 0.685 0.426 0.1 0.725 0.662 0.682 0.603 0.534 0.019 <.001 0.98 0.995 0.263 0.24
Source of variation df SKNM SNM SNS SNP SWM SWS SWP TGWM TGWS ASM BSM df APX GPX PUT SPD SPN

Genotype (G) 9 14.67 91.83 750.60 1160.20 0.22 1.60 2.67 101.26 95.94 1.01 24.43 9 112228 1457696 156595 8956.3 4610

Treatment (T) 3 9.48 825.85 2852.60 4781.90 4.81 11.65 26.46 615.84 530.36 1.76 185.81 1
165849

6
6850804

2
265067

5
265211.5 47529

G x T 27 0.74 9.82 135.20 161.50 0.06 0.35 0.48 27.72 43.91 0.82 9.21 9 94623 1028636 38936 8441.3 2214

F pr.  SKNM SNM SNS SNP SWM SWS SWP TGWM TGWS ASM BSM  APX GPX PUT SPD SPN

Genotype <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.001 0.522 <.001 <.001 <.001 <.001 <.001 <.001

Treatment <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.197 <.001 <.001 <.001 <.001 <.001 <.001

G x T 0.603 0.99 0.345 0.446 0.89 0.334 0.449 0.272 0.07 0.821 0.13 <.001 <.001 0.002 <.001 0.052

NW: non-irrigated; W: irrigated; RF: rain-fed; DH: days to heading; DF: days to flowering; DM: days to maturity; SPAD45: SPAD value at ZDS45; SPAD65: SPAD value at ZDS65; SPAD77:
SPAD value at ZDS77; SPAD83: SPAD value at ZDS83; SPAD85: SPAD value at ZDS85; FLC: plant height up to the flag-leaf collar (cm); BE: plant height up to the base of the ear (cm); TE:
plant height up to the tip of the ear (cm); PL: peduncle length (cm); NL: length of the neck (cm); SS: spike size (cm); FTN: fertile tiller number; FLA: flag-leaf area (cm 2); PLA: plant leaf area
(cm2); SKNM: spikelet number per main spike; SNM: seed number per main spike; SNS: seed number per side spike; SNP: seed number per plant; SWM: seed weight per main spike (g); SWS:
seed weight per side spike (g); SWP: seed weight per plant (g); TGWM: 1000-grain weight per main spike (g); TGWS: 1000-grain weight per side spike (g); ASM: apical sterile spikelet number
per main spike (%); BSM: basal sterile spikelet number per main spike (%); APX: ascorbate peroxidase (nkatal g-1 DW); G-POD: guaiacol peroxidase (nkatal g-1 DW); PUT: putrescine (mg g-1

DW); SPD: spermidine (mg g-1 DW); SPN: spermine (mg g-1 DW).
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Table 2. Polyamine contents and antioxidant activities in the flag-leaves of near-isogenic durum wheat lines under irrigated (W) or non-irrigated (NW) conditions. Data are
presented as means ± SD (n=5). *, ** and *** denote significant differences from the experimental mean at the P< 0.05, 0.01 and 0.001 probability levels, respectively.

 Treatment
s

KOFA NIL1-- NIL1++ NIL2-- NIL2++ NIL3-- NIL3++ NIL4-- NIL4++ SVEVO

Polyamine (mg g-1 DW)

Putrescine W 128.3±8.3 252±57.6 125.8±7.6 455.2±73*** 323.2±37.5* 284.8±12.3 128.846±47.4 108±31.1 274.9±25.8 331.7±13.6*

NW 381.6±61 710.4±9.6 454.4±14 893.3±30.5* 627.6±126.6 617.4±18.8 618±64.8 473.6±146.3 680.6±94.3 1159.9±21.2***

Spermidine W 173±20 191.7±31 173.1±8.1 292±13.2*** 243.1±25.5*** 187.4±12.5 105.5±24.2 121.4±12.7 154.6±11.4 162.5±3.5

NW 235.1±28.7 366.6±47.8 346.4±12.8 299.4±32.4 289.4±44.8 352.1±6.7 313.8±16.2 261.7±56.6 265.7±11.7 403.8±58**

Spermine W 201.7±11.1 203±20 205.5±15.6 237.9±16 265.6±44* 205.5±15.7 148.6±27.5 194.7±28.3 177.2±19.2 238.1±42.6

 NW 206±11.5 239.9±23.9 253.3±45.1 248.5±25.3 308±49.9 249.9±3.3 274±36.1 258.3±20.1 276.5±22.9 326.5±77.1

Enzyme activity (nkatal g-1 DW)

APX W 676.6±101.6 984.5±153.7 896.4±87.5 1102.4±169.5 1164.1±170.9 1026.5±249.3 730.3±145.4 841.5±6.3 1029.1±184 1294.8±187.6**

NW 766±71.9 568.5±56.4 664.7±35 969±26*** 736±66.8 655.±45.7 658.7±60.1 649.4±119.6 524.1±40.9 674.8±86.6

G-POD W 471±100.8 244.5±82.7 232.1±37.6 798.1±196.4 1169.6±511.5 774.9±493.2 653.7±58.5 876.2±225.3 743.3±150 527±66.3

 NW 2965.2±213 1922.4±344.2 1870.5±198.8 4140.1±257.8 1988.2±298 2437±333.8 2687.7±381 3037.5±224.4 1797.7±257.8 2152±184.5
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Table 3. Simple correlation coefficients between values of the eight near-isogenic durum wheat lines and two durum wheat genotypes under non-irrigated condition. 

 APX FLA GPX PUT SPAD45 SPAD65 SPAD77 SPAD83 SPAD85 SPD SPN SNM SNS SWM SWS TGWM TGWS

APX -

FLA -0.421 -

GPX 0.721*** -0.234 -

PUT -0.015 -0.003 0.146 -

SPAD45 -0.220 0.141 0.039 0.293 -

SPAD65 -0.197 0.124 -0.269 -0.329 0.182 -

SPAD77 -0.006 0.196 -0.093 -0.478 -0.025 -0.012 -

SPAD83 -0.297 0.220 -0.282 -0.143 -0.428 0.078 0.053 -

SPAD85 -0.433 0.457 -0.331 -0.195 0.078 0.310 0.060 0.303 -

SPD -0.455 0.375 -0.275 0.542*** 0.205 -0.191 -0.155 0.138 0.265 -

SPN -0.294 -0.071 -0.209 0.569*** 0.254 -0.179 -0.357 -0.207 -0.074 0.498 -

SNM -0.291 0.077 -0.457** 0.534*** 0.450** -0.102 -0.069 -0.132 0.112 0.496*** 0.481** -

SNS -0.292 0.201 -0.378* -0.133 -0.004 0.246 0.101 0.036 0.649*** 0.219 0.154 0.256 -

SWM -0.446** 0.141 -0.223 0.383* 0.682*** -0.030 -0.162 -0.118 0.042 0.352* 0.399** 0.668 0.142 -

SWS -0.465** 0.426** -0.380* -0.162 0.110 0.259 0.154 0.078 0.622*** 0.120 0.006 0.152 0.853 0.305 -

TGWM -0.396** 0.141 0.021 0.106 0.580*** 0.067 -0.177 -0.033 -0.007 0.112 0.153 0.152 0.025 0.835 0.317 -

TGWS -0.490** 0.520** -0.246 -0.062 0.174 0.149 0.120 0.097 0.264 -0.040 -0.156 -0.030 0.226 0.355 0.695 0.505 -

APX: ascorbate peroxidase (nkatal g-1 DW); FLA: flag-leaf area (cm2); G-POD: guaiacol peroxidase (nkatal g-1 DW); PUT: putrescine (mg g-1 DW); SPAD45: SPAD value at ZDS45; SPAD65:
SPAD value at ZDS65; SPAD77: SPAD value at ZDS77; SPAD83: SPAD value at ZDS83; SPAD85: SPAD value at ZDS85; SPD: spermidine (mg g-1 DW); SPN: spermine (mg g-1 DW); SNM:
seed number per main spike; SNS: seed number per side spike; SWM: seed weight per main spike (g); SWS: seed weight per side spike (g); TGWM: 1000-grain weight per main spike (g);
TGWS: 1000-grain weight per side spike (g). *, **, *** significant at the P< 0.05, 0.01 and 0.001 probability levels, respectively.
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Supplement

Table 1. Means of phenological, physiological and yield component parameters of eight near-isogenic durum wheat lines and two durum wheat genotypes under irrigated (W) and non-irrigated
(NW) conditions.
 SPAD77 SPAD83 SPAD85 FLA PLA FLC BE TE PL NL
 W NW W NW W NW W NW W NW W NW W NW W NW W NW W NW
KOFA 49.23 47.05 43.13 24.60 6.18** 5.93 25.27 22.11 124.24 50.64 45.08 39.92 61.25 52.25 68.17 58.67 16.17 12.33 33.00 28.50
NIL1-- 46.58 41.85 37.95 24.83 5.68 6.10 32,95* 28.29* 151.00** 65.81 41.08 38.17 49.83 47.25 55.42 53.42 8.75 9.08 24.50 25.50
NIL1++ 49.90** 47.68 39.15 25.63 7.13*** 7.23*** 35,76** 26.43 124.35 63.40 45.75 40.67 61.50 52.41 67.33 58.50 15.75 11.75 32.58 27.75
NIL2-- 42.20 42.68 35.90 24.48 3.13 3.43 20.37 22.77 106.66 53.46 43.42 40.92 59.25 52.66 65.58 57.67 15.83 11.75 30.50 26.75
NIL2++ 42.90 40.70 37.08 23.80 3.78 3.18 21.13 19.56 94.46 43.54 40.67 39.92 58.17 52.00 64.50 57.58 17.50 12.08 32.58 26.67
NIL3-- 46.60 43.60 40.73 24.25 3.55 3.73 24.62 21.90 122,64 54.80 43.58 39.50 60.25 54.50 66.33 59.08 16.67 15.00 32.58 30.00
NIL3++ 46.40 42.00 39.73 24.08 5.55 6.20*** 25.50 24,34 123,96 55.63 48,91* 38.92 65,25** 51.25 71.50* 61.83 16.33 12.33 32.17 28.58
NIL4-- 46.75 44.40 39.80 22.60 4.18 4.70 25.29 24.06 107.26 56.02 47.58 41.50 64,41* 53.91 69.92 59.50 16.83 12.42 31.75 29.08
NIL4++ 45.60 45.05 40.10 27.45 5.45 5.23 29,31 25.45 122,49 53.50 42.08 38.25 54.08 50.42 59.67 55.58 12.00 12.17 27.25 26.75
SVEVO 44.08 42.58 40.40 24.38 5.50 5.53 24.59 22.11 115.57 59.32 43.50 39.25 59.42 52.41 65.08 58.08 15.92 13.17 31.17 28.91
LSD5% 3.76 5.09 7.06 6.26 0.65 0.55 6.22 3.50 23.33 16.16 3.87 4.65 4.23 5.10 4.58 5.56 3.26 3.42 2.73 2.67
LSD1% 5.07 6.87 9.53 8.46 0.88 0.74 8.40 4.73 31.50 21.83 5.23 6.27 5.72 6.88 6.18 7.51 4.40 4.62 3.68 3.60
LSD0.1% 6.76 9.15 12.70 11.26 1.17 0.98 11.19 6.30 41.95 29.07 6.97 8.36 7.61 9.16 8.23 10.00 5.86 6.15 4.91 4.79
 SS SKNM SNM SWM BSM ASM TGWM SNS SWS TGWS
 W NW W NW W NW W NW W NW W NW W NW W NW W NW W NW
KOFA 6.91 6.41 15.75 16.06 42.56 33.19 2.14 1.36 1.86 5.17 0.38 0.74 64.06 39.72 82.37* 49.25 3.88* 1.67 48.00 33.72
NIL1-- 5.58 6.16 17.00** 16.68 37.75 29.38 1.77 1.30 1.86 5.02 1.38 0.37 56.73 43.77 68.00 46.75 2.62 1.90 38.28 40,58
NIL1++ 5.83 6.08 16.31 17.12 39.75 33.81* 2.07 1.53* 0.00 2.99 0.76 1.08 56.70 44.79 74.37 60.00 3.22 2,42 44.11 40.64
NIL2-- 6.33 5.00 14.88 14.38 37.50 28.06 2.00 1.32 1.26 7.32 0.00 0.42 56.35 46.64 59.38 42.75 2.69 1.61 45.52 37.71
NIL2++ 6.33 5.58 14.31 15.44 35.31 31.69 2.00 1.52 2.33 6.48 0.00 0.00 55.55 47.71 75.62 48.13 3.76* 1.66 49.76 34.20
NIL3-- 6.08 4.58 14.38 14.81 36.25 30.25 2.06 1.42 1.72 8.10 0.79 0.00 53.29 46.42 60.38 43.00 3.07 1.75 50.90 40.53
NIL3++ 6.25 5.58 14.56 15.06 38.56 30.56 2.45* 1.59* 2.58 2.88 0.79 0.00 52.19*** 52.43 81.62* 63.12* 3.87* 2,85** 47.81 45,38
NIL4-- 5.50 5.58 14.31 15.18 34.13 27.69 1.92 1.22 3.02 5.76 0.40 0.43 52.08 43.64 58.88 41.75 3.06 1.71 53.03 40,61
NIL4++ 5.58 5.17 14.31 14.69 35.69 30.00 1.99 1.41 3.15 5.60 1.85 0.00 50.22 46.57 76.00* 52.00 3.66* 2.29 48.04 43.90
SVEVO 5.67 5.66 14.88 14.06 39.88 35.00* 2.08 1.61* 1.97 3.18 0.00 0.00 46.77 44.71 62.63 54.37 3.06 1.88 49.06 34.62
LSD5% 0.97 1.07 1.34 1.08 6.18 2.07 0.37 0.11 3.19 3.76 2.14 1.12 4.94 7.69 6.04 12.12 0.37 0.57 7.34 6.81
LSD1% 1.31 1.45 1.81 1.46 8.34 6.85 0.50 0.47 4.31 5.08 2.89 1.51 6.67 10.38 19.90 16.36 0.99 0.77 9.91 9.20
LSD0.1% 1.74 1.93 2.41 1.94 11.10 9.11 0.67 0.63 5.73 6.76 3.84 2.02 8.88 13.82 26.50 21.79 1.32 1.02 13.19 12.25

SPAD77: SPAD value at ZDS77; SPAD83: SPAD value at ZDS83; SPAD85: SPAD value at ZDS85; FLA: flag-leaf area (cm 2); PLA: plant leaf area (cm2); FLC: plant height up to the flag-leaf
collar (cm); BE: plant height up to the base of the ear (cm); TE: plant height up to the tip of the ear (cm); PL: peduncle length (cm); NL: length of the neck (cm); SS: spike size (cm); SKNM:
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spikelet number per main spike; SNM: seed number per main spike; SWM: seed weight per main spike (g); BSM: basal sterile spikelet number per main spike (%); ASM: apical sterile spikelet
number per main spike (%); TGWM: 1000-grain weight per main spike (g); SNS: seed number per side spike; SWS: seed weight per side spike (g); SWP: seed weight per plant (g); TGWS:
1000-grain weight per side spike (g); 
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