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Abstract 

Procedural learning facilitates the efficient processing of complex environmental stimuli and 

contributes to the acquisition of automatic behaviors. Although earlier findings suggest 

different temporal trajectories of the multiple learning processes within procedural learning, 

this has not been clarified at the level of neurocognitive correlates. Therefore, we investigated 

whether two prominent learning processes – statistical learning and sequence learning – can 

be distinguished using event-related brain potentials (ERPs) within the same experimental 

setting. Healthy young adults (N = 40) performed the Alternating Serial Reaction Time task 

while RTs and ERPs were measured time-locked to the onset of the task’s stimuli. Both RT 

and N2 effects reflected the rapid acquisition of statistical probabilities. At the same time, 

these effects reflected the gradual learning of sequential structures. The amplitude change of 

the P3 reflected only gradual sequence learning. The P1 component was sensitive to both 

learning processes, which did not change as the task progressed. Our results altogether 

indicate that statistical learning and sequence learning develop differently at the level of both 

ERPs and overt responses. These findings could provide insight to the dynamic change of 

multiple parallel learning processes that occur during procedural memory formation. 
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Introduction 

Procedural learning enables us to extract complex probabilistic regularities embedded in the 

environment. It underlies various perceptual, cognitive, and motor processes in the human 

brain (Armstrong, Frost, & Christiansen, 2017; Aslin, 2017; Fiser & Aslin, 2002; Saffran, 

Aslin, & Newport, 1996; Turk-Browne, Scholl, Johnson, & Chun, 2010). Therefore, through 

extensive practice, procedural learning contributes to the acquisition of automatic behaviors, 

such as skills and habits (Hallgato, Gyori-Dani, Pekar, Janacsek, & Nemeth, 2013; Kaufman 

et al., 2010; Romano, Howard, & Howard, 2010; Ullman, 2004). Learning of probabilistic 

regularities requires the orchestrated work of multiple parallel learning processes (Bays, Turk-

Browne, & Seitz, 2016; Daltrozzo & Conway, 2014; Siegelman, Bogaerts, Christiansen, & 

Frost, 2017; Thiessen, Kronstein, & Hufnagle, 2013). Among these processes, the differential 

contribution of statistical and sequence learning to overall procedural learning performance 

has recently been measured with overt behavioral responses in skill learning tasks (Nemeth, 

Janacsek, & Fiser, 2013; Simor et al., 2017). However, to date, the temporal dynamics of their 

neurocognitive correlates resulting in brain responses measured over the human scalp have 

not yet been clarified. Therefore, in the present study, we investigated whether statistical 

learning and the learning of sequential structures can be distinguished using event-related 

brain potentials (ERPs) during the acquisition of complex probabilistic regularities in a 

modified perceptual-motor procedural learning task. 

From a broader perspective, statistical learning can be defined as a multi-faceted 

individual ability to pick up transitional as well as distributional statistics from the sensory 

environment, when contingencies are non-adjacent and extracted across time (Siegelman et 

al., 2017). The present study narrows down the concept of statistical learning by regarding it 

as only one of the processes that facilitate the acquisition of the underlying structure 

characterizing a certain temporal sequence of stimuli. From a sequence of stimuli, different 
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types of input structures could be acquired, such as fixed sequences, statistical patterns, and 

hierarchical structures (Conway & Christiansen, 2001; Daltrozzo & Conway, 2014). In our 

approach, the representations of one or more of these input structures could be encoded and 

manipulated not only by statistical learning in the narrow sense but also by another process 

that we term as sequence learning. Particularly, we distinguish statistical and sequence 

learning by the acquisition of different types of input structures as follows.  

In the present experimental design, statistical learning refers to the acquisition of 

shorter-range relations among visual stimuli that are primarily based on frequency or 

probability (i.e., differentiating between more frequent and less frequent stimulus chunks 

[e.g., pairs or triplets of stimuli]). In contrast, sequence learning refers to the acquisition of a 

series consisting of usually 5-12 stimuli (longer-range relations) that repeatedly occur in the 

same order (Conway & Christiansen, 2001). The order can be presented without embedded 

noise (without random elements), which results in deterministic or fixed sequences, or with 

some embedded noise, which results in probabilistic sequences (J. H. Howard, Jr. & Howard, 

1997). The present experimental design used the latter, probabilistic sequences. From a 

theoretical perspective, however, it is important to note that at the level of transitional 

probabilities, statistical and sequence learning could be considered as similar (see later in the 

Introduction). 

Outside the laboratory, in most of the day-to-day situations, both forms of learning 

might work in parallel. For instance, learning the phonotactical constraints within words of a 

given language involves detecting and using transitional statistics, i.e., statistical learning. At 

the same time, when understanding a sentence, humans use the predictive nature of 

hierarchically organized phrases (Conway & Christiansen, 2001) and that of the semantic 

context. This involves the operation of sequence learning over longer-range ordered relations, 

such as regularly occurring linguistic and semantic patterns.  
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Current findings on procedural learning indicate not only that statistical and sequence 

learning follow different developmental trajectories (Nemeth, Janacsek, & Fiser, 2013) but 

also that while sequence learning is a gradual process, transitional statistics are acquired 

rapidly and their representations remain stable, irrespective of further training (Simor et al., 

2017). It was also shown that slow oscillatory activity in the delta and theta frequency ranges 

during daytime sleep were predictive of further improvements in sequence learning but not in 

statistical learning. In addition, the two learning processes were associated with different 

spindle parameters (Simor et al., 2017). Attempts to separate parallel learning processes in the 

procedural learning domain have been successful using functional magnetic resonance 

imaging (Rose, Haider, Salari, & Büchel, 2011; Rose, Haider, Weiller, & Büchel, 2002). 

While the implicit learning of a hidden sequential structure was related to the activation of the 

ventral perirhinal cortex, the explicit learning of fixed stimulus-response associations within 

the same task was related to the activation of the basal ganglia (Rose et al., 2002). The 

implicit learning of statistical contingencies between perceptual features activated the bilateral 

hippocampus, while that of the motor contingencies activated the basal ganglia and the motor 

cortex but not the hippocampus (Rose et al., 2011). Nevertheless, by what means the 

neurocognitive correlates of the extraction of different statistics embedded in the same 

information stream change over a time scale with higher resolution remains unclear. 

Previous ERP studies on temporal statistical-sequence learning, although without 

separating multiple learning processes and defining this concept in a wider sense than the 

present paper, predominantly focused on differentiating the implicit and explicit elements of 

this learning form. These studies used variants of the serial reaction time (SRT) task 

combined with the features of the oddball paradigm. Namely, repeating deterministic 

sequences were presented, and the sequence was randomly violated by replacing one of its 

elements with a deviant stimulus (Eimer, Goschke, Schlaghecken, & Stürmer, 1996; 
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Ferdinand, Mecklinger, & Kray, 2008; Rüsseler, Hennighausen, Münte, & Rösler, 2003; 

Rüsseler & Rösler, 2000; Schlaghecken, Stürmer, & Eimer, 2000). Otherwise, random and 

regular sequences were generated (Fu, Bin, Dienes, Fu, & Gao, 2013; Verleger, Seitz, 

Yordanova, & Kolev, 2015) or second-order conditional sequences were combined to produce 

standard and deviant sequence chunks (Fu et al., 2013). Thus, the applied SRT tasks did not 

allow to separately measure the ERP correlates of learning statistical probabilities and 

sequential structures. 

Furthermore, previous SRT studies mainly measured the N2 and P3 components 

elicited by different stimulus types. The N2 component has been found to peak between 200 

and 450 ms after stimulus onset over the frontocentral electrode sites. Although 

subcomponents of the N2 can be differentiated, their distinctiveness varies across paradigms 

and studies (Kopp, Rist, & Mattler, 1996). Earlier SRT studies have focused on the deviance-

related N2, which could reflect the mismatch between the predicted and the actual event 

(Folstein & van Petten, 2008). The N2 has usually been followed by the more parietally 

distributed P3 component, which has typically peaked between 300 and 500 ms post-stimulus, 

so that it could have reflected the conscious processing of action-related stimuli and the 

formation of decisions (Ullsperger, Fischer, Nigbur, & Endrass, 2014) among its many 

functions (Polich, 2007).  

The sensitivity and specificity of the N2 and P3 components to sequence learning were 

not entirely consistent in the previous SRT studies, focusing primarily on associations 

between these ERP components and the acquired explicit knowledge about the sequence. 

While some studies found that the N2 was enhanced for deviant stimuli irrespective of the 

explicitness of acquisition (Eimer et al., 1996; Ferdinand et al., 2008; Fu et al., 2013), others 

found that the N2 effect was related only to the presence of explicit knowledge (Rüsseler et 

al., 2003; Rüsseler & Rösler, 2000; Schlaghecken et al., 2000). Meanwhile, it was also shown 
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that although the N2 effect was observable both in the implicit and explicit groups, this effect 

was larger or developed faster in the explicit group (Eimer et al., 1996; Ferdinand et al., 

2008). In contrast, another study found that an N2-like frontocentral negativity was larger for 

the random than for the regular sequence only in the group showing fast sequence-specific 

learning without explicit knowledge (Verleger et al., 2015). Therefore, it could be assumed 

that the N2 reflects a culmination of implicit and explicit processes during sequence learning, 

and its amplitude change might vary as a function of the applied experimental design. 

Regarding the later emerging P3, it was shown to be a marker of explicit knowledge in several 

SRT studies (Ferdinand et al., 2008; Fu et al., 2013; Rüsseler et al., 2003; Rüsseler & Rösler, 

2000; Schlaghecken et al., 2000; Verleger et al., 2015). 

Beyond the implicit and explicit elements of the SRT task, ERP correlates of 

predictive processes in statistical-sequence learning were more directly investigated using 

variants of the oddball paradigm (Daltrozzo & Conway, 2014). In the visual domain, in 

addition to the standard (frequent) stimuli, different deviants were presented: predictors and 

targets. Participants were required to respond to the targets, which, unknown to them, were 

predicted by high, low, and zero probability according to the type of the preceding deviant 

stimulus. It was shown that after learning the transitional probabilities between predictor-

target pairs, the high-probability predictors elicited the largest P3 component (Daltrozzo et al., 

2017; Jost, Conway, Purdy, & Hendricks, 2011; Jost, Conway, Purdy, Walk, & Hendricks, 

2015). Similarly, predictable target motion elicited a larger P3 than unpredictable target 

motion, which effect was lacking for standard stimuli (Baldwin & Kutas, 1997). Indicators of 

statistical-sequence learning were also shown in deterministic visual sequences, where the 

amplitude of the P3 for a predictive S1 stimulus increased over the task, while it decreased for 

the upcoming S2 predicted by the S1 (Rose, Verleger, & Wascher, 2001).  



8 

Relatedly, in different modalities, studies on contextual processing used short 

sequences of standard stimuli (informative context) that predicted a target stimulus and 

random sequences (non-informative context) that preceded random targets. These studies 

found a P3 amplitude increase for the last stimulus of the predictive sequence vs. random 

sequence and a “context positivity” (a variant of the N2 component) for predicted vs. random 

targets (for a review, see Fogelson, 2015). In the 200-250 ms time window, an N2 amplitude 

attenuation was observed for predicted vs. random targets, indicating that the processing of 

predicted targets required less attentional resources (e.g., Fogelson, Peled, Marmor, 

Fernandez-del-Olmo, & Klein, 2014). Importantly, in most of these studies, the predictive 

sequence was explicitly shown to participants and they were asked to pay attention to this 

sequence; however, although in a lesser extent, the P3 amplitude modulation was also 

observed in the implicit version of the task (Fogelson & Fernandez-del-Olmo, 2013).  

The P3 component has also been in the focus of interest in studies investigating the 

role of implicit and explicit knowledge and the enhancing effect of explicit training on 

auditory statistical learning (Batterink, Reber, Neville, & Paller, 2015; Batterink, Reber, & 

Paller, 2015). After being exposed to a continuous stream of repeating nonsense words, 

participants responded to target syllables occurring in a similar speech stream. Although the 

P3 amplitude scaled with the predictability of the target syllable indicating a rapid and 

incremental statistical learning process, those receiving explicit pretraining on the nonsense 

words showed anticipatory and more effortful processing for predictable targets. 

While ERP evidence from the “motor end” of the perceptual-motor chain is also 

available on statistical-sequence learning (Eimer et al., 1996; Rose et al., 2001; Rüsseler & 

Rösler, 2000), amplitude changes in components related to the different stages of perceptual 

processing and attentional selection have rarely been considered (but see Beaulieu, Bourassa, 

Brisson, Jolicoeur, & De Beaumont, 2014). However, it is reasonable to test at which 
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processing stage the effect of detecting statistical contingencies occurs (cf. Fogelson, 2015). 

Several studies indicated that the P1 component – a visually evoked positive-going brain 

potential peaking between approx. 70-130 ms after stimulus onset with a maximum amplitude 

over the occipital electrodes sites – was modulated by spatial attention (Luck, Heinze, 

Mangun, & Hillyard, 1990; Luck et al., 1994; Martinez et al., 1999). Considering visual 

prediction tasks manipulating the transient occlusion of moving objects, spatial expectations 

increased the P1 amplitude, and additional P1 amplitude enhancement was observed for 

combined spatial and temporal expectations (Doherty, Rao, Mesulam, & Nobre, 2005). When 

strong and weak temporal expectations were generated, the P1 amplitude was enhanced for 

valid, rhythmic events compared to neutral, arrhythmic events (Rohenkohl & Nobre, 2011). 

Accordingly, we propose that implicit and/or explicit exposure to different statistical 

contingencies could alter selective attention and thereby modulate the early stage of visual 

stimulus processing during statistical and sequence learning. 

To the best of our knowledge, no studies have tracked the temporal dynamics of 

learning statistical probabilities (frequency information) as well as sequential structures (order 

information) within the same experimental design to date using ERPs. Accordingly, we aimed 

to investigate the behavioral and ERP correlates of these learning processes in a modified 

version of the SRT task. The Alternating Serial Reaction Time (ASRT) task is a unique tool to 

investigate statistical and sequence learning within the same experiment (J. H. Howard, Jr. & 

Howard, 1997). In this perceptual-motor four-choice RT task, participants are asked to 

respond to visual stimuli appearing on a screen. There is an alternating sequential regularity 

between non-adjacent trials that results in some chunks of stimuli being more frequent than 

others (see Fig. 1) and enables us to measure the acquisition of both order and frequency 

information. Particularly, when acquiring frequency information (statistical learning), a 2nd 

order probabilistic sequence should be learned, in which there are always one probable 
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continuation and some less probable continuations for the first two elements of a given three-

element stimulus chunk (Szegedi-Hallgató et al., 2017). When acquiring order information 

(sequence learning), the 2nd order transitional probability is equal to one; namely, consecutive 

elements in the sequence could be predicted with 100% certainty from the previous sequence 

element. The learning trajectories can be tracked by how different behavioral indices, such as 

RT and accuracy, change over the course of the task (D. V. Howard et al., 2004). While 

statistical learning develops fast (already within one training session), sequential knowledge 

in this task develops more slowly if participants are not given explicit cues (i.e., it requires 

about 4-5 days of practice, see J. H. Howard, Jr. & Howard, 1997). Therefore, we decided to 

use a cued version of the task that speeds up learning (Nemeth, Janacsek, & Fiser, 2013; 

Simor et al., 2017) and thus enables us to simultaneously measure RTs and ERPs associated 

with statistical and sequence learning within one training session. 

Based on previous findings, we hypothesize that at the behavioral level, statistical and 

sequence learning could be distinguished in the cued ASRT task (J. H. Howard, Jr. & 

Howard, 1997; Nemeth, Janacsek, & Fiser, 2013). While sequence learning would be a 

gradual process, statistical learning would be a rapid one (Simor et al., 2017). Crucially, we 

also expect differentiation between the two learning processes at the level of ERPs (Simor et 

al., 2017). Although previous studies are inconclusive about the sensitivity of the N2 and P3 

components to the implicitly and explicitly learned chunks of a given sequence, we assume 

N2 modulation for statistical learning and N2 and P3 modulations for sequence learning, 

because the latter process is influenced by explicit cuing (Fu et al., 2013). We assume similar 

P1 modulations in both learning processes as the encoding of frequency and order information 

could evoke expectations about the forthcoming stimulus and influence attentional processes 

(Doherty et al., 2005). Although statistical and sequence learning could develop along a 

different trajectory at the behavioral level, this might not be true at the neurocognitive level, 
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since previous findings indicate that statistical-sequence learning effects could dissociate 

between RTs and ERPs (Eimer et al., 1996). Thus, the shape of the learning-related temporal 

trajectories in ERPs has yet to be explored in the present study.  

 

Material and methods 

Participants 

Forty-one healthy young adults took part in the experiment. One of them was excluded 

because of technical reasons. Therefore, 40 participants remained in the final sample (25 

females). They were between 19 and 25 years (MAge = 21.4 years, SD = 1.6 years). They were 

undergraduate students from Budapest, Hungary (MYears of education = 14.7 years, SD = 1.5 

years). Handedness was measured by the Edinburgh Handedness Inventory (Oldfield, 1971); 

the Laterality Quotient (LQ) of the sample varied between -33.3 and 100 (-100 means 

complete left-handedness, 100 means complete right-handedness; MLQ = 68.5, SD = 28.1). 

Participants had normal or corrected-to-normal vision, none of them reported a history of any 

neurological and/or psychiatric condition, and none of them was taking any psychoactive 

medication. They performed in the normal range on standard neuropsychological tests 

(Wisconsin Card Sorting Task [WCST; percentage of perseverative errors]: M = 12.06%, SD 

= 4.22%; Digit span task: M = 5.98, SD = 1.00; Counting span task: M = 3.57, SD = 0.75; 

Verbal fluency task [total number of correct items in phonemic and semantic subtasks]: M = 

56.93, SD = 10.64). All participants provided written informed consent before enrolment and 

received payment (ca. 10 Euros) or course credit for taking part in the experiment. The study 

was approved by the United Ethical Review Committee for Research in Psychology (EPKEB) 

in Hungary and was conducted in accordance with the Declaration of Helsinki. 
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Stimuli, task, and procedure 

Procedural learning of probabilistic regularities was measured with a cued version of the 

Alternating Serial Reaction Time (ASRT) task (Nemeth, Janacsek, & Fiser, 2013), which was 

modified to make the task suitable to reliably measure EEG and calculate ERPs. In this task, 

an arrow stimulus appears at the center of the screen. Participants are instructed to press a key 

as quickly and accurately as possible that corresponds to the spatial direction (up, down, left, 

or right) of the actual arrow on a Cedrus RB-530 response pad (Cedrus Corporation, San 

Pedro, CA).  

The presentation of arrow stimuli follows an eight-element sequence, within which 

predefined/pattern (P) and random (r) elements alternate with each other (e.g., 2 – r – 1 – r – 3 

– r – 4 – r; where numbers denote the four predefined spatial directions [1 = left, 2 = up, 3 = 

down, 4 = right] of the arrows and rs denote randomly chosen directions out of the four 

possible ones; see Fig. 1A). In this cued ASRT task, the alternating sequence is marked by 

arrow stimuli of different colors for predefined (black arrows) and random (red arrows) 

elements. Participants are told that black arrows always follow a predefined sequence of 

spatial directions while red arrows always point into a randomly chosen spatial direction. 

They are instructed to find the hidden pattern defined by the black arrows to improve their 

performance, thus to be faster and more accurate using this sequence information to predict 

the next sequence (pattern) element. However, they are not informed about the exact length of 

the sequence. Instruction emphasize that participants also have to respond to red arrows.  

There are 24 permutations of the four possible spatial directions (e.g., 2 – r – 1 – r – 3 

– r – 4 – r; 1 – r – 2 – r – 3 – r – 4 – r; 1 – r – 2 – r – 4 – r – 3 – r, etc.). However, because of 

the continuous presentation of the stimuli, there are only six unique permutations, i.e., the 

sequence of 2 – r – 1 – r – 3 – r – 4 – r is indistinguishable from 1 – r – 3 – r – 4 – r – 2 – r. In 

the present study, one of these six unique permutations was selected for each participant in a 
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pseudorandom manner (J. H. Howard, Jr., Howard, Dennis, & Yankovich, 2007; Nemeth et 

al., 2010). 

The alternating sequence in the ASRT task makes some runs of three successive 

elements – henceforth referred to as triplets – more frequent than others. In the first of the 

examples above (sequence 2 – r – 1 – r – 3 – r – 4 – r), 2 – X – 1, 1 – X – 3, 3 – X – 4, and 4 – 

X – 2 triplets (X indicates the middle element of the triplet) occur often since their third 

elements could either be predefined or random (see Fig. 1B). However, 1 – X – 2 and 4 – X – 

3 triplets occur less frequently since their third elements could only be random. The former 

triplet types are labeled as “high-frequency” triplets while the latter types are labeled as “low-

frequency” triplets (Kóbor, Janacsek, Takács, & Nemeth, 2017; Nemeth, Janacsek, & Fiser, 

2013). The terms high- and low-frequency triplets also refer to the predictability of the final 

element of that triplet: The third element of a high-frequency triplet is more predictable from 

the first element of the triplet than in the case of low-frequency triplets. Thus, the comparison 

of high- vs. low-frequency triplets involves 2nd order transitional probabilities. However, 

regarding these triplets, distributional (the frequency of the triplet) and transitional 

probabilities (the predictability of the triplet) completely overlap in the task.  

Each stimulus (trial [arrow]) is categorized as either the third element of a high- or a 

low-frequency triplet, and the reaction time (RT) of the response to this stimulus is 

determined. (All stimuli are categorized this way; the third element of a triplet is also a second 

element of the following triplet, and so on). There are 64 possible triplets in the task, 

including all Pattern – random – Pattern (50%) and random – Pattern – random (50%) triplets 

(see Fig. 1B). Out of the 64 possible triplets, 16 are high-frequency and 48 are low-frequency 

ones. Particularly, in the case of high-frequency triplets, there are four possible combinations 

in regard to the first and last elements of the triplet with four possible directions for the 

middle element (e.g., for 3 – X – 4, the triplet could be 3 – 1 – 4, 3 – 2 – 4, 3 – 3 – 4, 3 – 4 – 
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4). In the case of low-frequency triplets, there are four possible directions for the first element 

of the triplet, four for the second, and only three for the third, because the fourth direction 

corresponds to the high-frequency triplets (i.e., 4*4*3). With respect to the unique triplets, 

high-frequency triplets occur five times more often than low-frequency triplets (4% [62.5% / 

16] vs. 0.8% [37.5% / 48]).  

Beyond this local sequence structure (i.e., triplets of different frequency), another 

aspect of the probabilistic structure in the ASRT task originates from the four non-adjacent 

elements following the predefined sequence (i.e., the sequence of pattern elements). 

Accordingly, high-frequency triplets could occur as both pattern high-frequency triplets and 

random high-frequency ones. Particularly, because of the alternating sequence structure, all 

pattern trials (50%) and by chance, one-fourth of random trials (12.5%) form high-frequency 

triplets (altogether 62.5%). In sum, we could differentiate pattern and random high-frequency 

triplets as well as random low-frequency ones (occurring with an overall probability of 50%, 

12.5%, and 37.5%, respectively, see Fig. 1B; but note that with respect to the unique triplets, 

random high-frequency triplets are five times more frequent than low-frequency ones). Note 

that low-frequency triplets are always random and that the terms “pattern trials” and “pattern 

high-frequency triplets” are interchangeable. 

The timing of an experimental trial was the following. The arrow was presented at the 

center of the screen for 200 ms, then a blank screen was displayed until the participant gave 

behavioral response but no longer than 500 ms. After a fixed delay of 700 ms following the 

response (indicated by a blank screen again), the next trial started (Fig. 1A). In the case of an 

incorrect response, a blank screen and then an “X” were presented at the center of the screen 

for 500 ms, respectively. If no response occurred in the predefined 500 ms response window, 

a “!” was presented at the center of the screen for 500 ms. Thus, although participants could 

proceed with the trial without giving a correct response, we used these visual error signals to 
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strengthen the representation of different response types and to enhance learning (Gehring, 

Liu, Orr, & Carp, 2012). 

Stimuli were presented in blocks of 85 trials. In each block, the eight-element 

sequence repeated 10 times after five warm-up trials consisting only of random stimuli (red 

arrows). After each block, explicit knowledge about the sequence was measured. Participants 

were instructed to continuously type the order of black arrows with the corresponding 

response keys. This sequence report lasted until participants gave 12 consecutive responses 

(i.e., ideally, they reported the given sequence three times). Participants were not informed 

that they had to provide exactly 12 responses and that this series of responses could be three 

repetitions of the given sequence. This method allowed us to determine the duration (in term 

of the number of blocks) participants needed to identify the length of the sequence and to 

learn the sequence elements correctly as defined by consistently reporting at least 10 correct 

responses from that point on in the remaining blocks. We labeled this variable as the timing of 

the discovery of the sequence. We also scored partial knowledge of the sequence by awarding 

the report of each correct sequence element with one point after each block, then averaging 

the sum of correct elements across the 30 blocks. Henceforth, this index is referred to as 

sequence knowledge score. After the sequence report, participants received feedback about 

their mean reaction time and accuracy on sequence stimuli in the given block. The feedback 

lasted for 4000 ms and was followed by a delay interval while participants could have a short 

rest. The beginning of the next block was self-paced. Participants completed 30 blocks, thus, 

altogether 2550 trials were presented. The entire experimental procedure lasted about 2.5 

hours, including the application of the electrode cap. The ASRT task was written in 

Presentation software (v. 18.1, Neurobehavioral Systems) and stimuli were displayed on a 

19’’ CRT screen at a viewing distance of 125 cm.  
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Figure 1. Design of the experiment. (A) In the cued Alternating Serial Reaction Time (ASRT) 

task, an arrow stimulus appears at the center of the screen. The presentation of stimuli follows 

an eight-element sequence, within which pattern (P) and random (r) elements alternate with 

each other. Regularity is marked by different colors for pattern (black arrows) and random 

(red arrows) elements. The timing of an arrow trial, which was modified to make the task 

suitable for calculating ERPs, is presented below the sequence structure. (B) In the alternating 

sequence structure, numbers denote the four spatial directions (1 = left, 2 = up, 3 = down, 4 = 

right) of the arrows. The alternating sequence makes some runs of three consecutive elements 

(triplets) more frequent than others. High-frequency triplets are denoted with light orange 

shading and low-frequency triplets are denoted with green shading. Among high-frequency 

triplets, we determined pattern high-frequency (with black font in the table) and random high-

frequency (with blue font in the table) triplets. Only random low-frequency triplets occurred 

(with green font in the table). Statistical learning contrasted the right column of the table 

(random low- vs. high-frequency triplets [green vs. blue]) while sequence learning contrasted 

the top row of the table (random vs. pattern high-frequency triplets [blue vs. black]). 
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EEG recording and analysis 

EEG activity was recorded in an electrically  shielded and acoustically attenuated, dimly lit 

room with 64 Ag/AgCl electrodes, placed according to the international 10–20 system 

mounted in an elastic cap (EasyCap), using Synamps amplifiers and Neuroscan software 4.5. 

(Compumedics Neuroscan, Charlotte, NC, USA). Vertical and horizontal eye movements 

were recorded by electrodes attached above and below the left eye, and the left and right outer 

canthi. The tip of the nose was used as reference and electrode AFz was used for ground. The 

sampling rate was 1000 Hz and the signals were filtered online (70 Hz low-pass, 24 dB/oct). 

Electrode impedance levels were kept below 10 kΩ.  

Data were analyzed using BrainVision Analyzer software (Brain Products GmbH, 

Munich, Germany). After visual screening for major deflections and possible bad electrodes, 

as the first step of pre-processing, the continuous EEG data were band-pass filtered offline 

between 0.5 – 30 Hz (48 dB/oct) and notch filter at 50 Hz to remove additional electrical 

noise. Second, we corrected horizontal and vertical eye-movement artifacts and heartbeats 

with independent component analysis (Delorme, Sejnowski, & Makeig, 2007; Mullens et al.). 

Two – four components per participant were rejected (mean = 3.2). Third, EEG data was re-

referenced to the average activity of all electrodes. Fourth, the continuous EEG was 

segmented in two steps as follows.  

The first step involved segmentation as a function of time. Specifically, to track the 

temporal changes of learning processes, the EEG data were cut into six epochs, each 

containing five consecutive blocks of the ASRT task. This is in line with the conventional 

behavioral data analysis protocol of the task (see Data analysis section below), and 

considering the requirements of ERP analysis, “epochwise” segmentation could still provide a 

good temporal resolution for investigating learning processes. The second segmentation step 

involved the creation of the other three experimental conditions within each epoch. Namely, 
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we identified pattern high-frequency, random high-frequency, and random low-frequency 

triplets. Importantly, only correctly responded trials with an RT greater than 0 ms were 

included in this step of the segmentation. Segments extended from -200 to 600 ms relative to 

the onset of the stimuli. Thus, altogether 18 (3*6) conditions were created.  

After segmentation, as the fifth step of pre-processing, we used an automatic artifact 

rejection algorithm implemented in BrainVision Analyzer software to remove artifacts still 

present in the data after ICA corrections (see above). This algorithm rejected segments where 

the activity exceeded +/- 100 µV at any of the electrode sites. As the percentage of removed 

segments was below 35% in each condition in the entire sample (range: 0 – 32.3%), all 

participant’s data were included in further analysis. The mean percentage of removed 

segments across the conditions was 1.4% (SD = 2.5%). The mean number of retained 

segments across the conditions was 104.8 (SD = 3.6; range: 26 – 193; note that random high-

frequency triplets are originally rare in the ASRT task [12.5%] producing a broad range of the 

possibly retainable segments across the conditions). Sixth, after artifact rejection, the retained 

segments were baseline corrected based on the mean activity from -200 to 0 ms. Finally, these 

segments were averaged for pattern high-frequency, random high-frequency, and random 

low-frequency triplets in each of the six epochs. 

In order to identify the latency ranges where ERP components might vary as a 

function of different learning processes, we visually inspected the grand average ERP 

waveforms calculated separately for each condition (pattern and random high-frequency, low-

frequency triplets) as a function of time (epoch) as well as averaged for the entire learning 

phase. Given the topographical characteristics of the anterior/frontal N2 component described 

in previous studies, and since variations in this component were seen over the midline, a 

frontal electrode pool was defined by calculating the average activity of electrodes of F1, F2, 

Fz, FCz, FC1, and FC2. We quantified the N2 component indicating mismatch- and deviance-
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related functions as the mean amplitude between 200 ms and 300 ms over the frontal (F) pool. 

The subsequent P3 component indicating potentially more explicit target processing was 

measured as the mean amplitude between 250 ms and 350 ms at the electrode Pz. We 

quantified the P1 component related to perceptual processing as the mean amplitude between 

70 ms and 120 ms at the electrode Oz, where this ERP component showed maximum 

amplitude.  

 

Data analysis 

Different learning measures can be quantified in the ASRT task. It has been shown that 

participants give increasingly faster responses to high-frequency triplets compared to low-

frequency ones over the course of the task, which is a behavioral correlate of learning the 

local sequential regularities (i.e., triplet learning, see Nemeth et al., 2010; Song, Howard, & 

Howard, 2007). However, as the high-frequency triplet category collapses pattern and random 

triplets, knowledge about the predefined sequence structure cannot be extracted merely from 

the comparison of RT to high- vs. low-frequency triplets. To disentangle the two key learning 

processes of the ASRT task performance (see the behavioral study of Nemeth, Janacsek, & 

Fiser, 2013), statistical learning and sequence learning were measured instead of triplet 

learning. In addition, speed-up could also be measured independent of the frequency or 

sequential position of the stimuli. The latter indicates general skill improvements reflecting 

more efficient visuomotor and motor-motor coordination due to practice (Hallgato et al., 

2013). 

 Statistical learning is the difference in RT between random high-frequency and low-

frequency triplets (RT for low-frequency triplets minus RT for random high-frequency 

triplets). These triplets share the same sequence properties (both random) but differ in 

statistical properties (i.e., whether they are frequent or not during stimulus presentation). 
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Hence, greater statistical learning is defined as faster responses to high-frequency than to low-

frequency random triplets. Sequence learning is the difference in RT between random high-

frequency and pattern high-frequency triplets (RT for random high-frequency triplets minus 

RT for pattern high-frequency triplets). These triplets share the same statistical properties 

(both high frequency) but differ in sequence properties (i.e., whether they belong to the 

predefined sequence or not). Thus, greater sequence learning is defined as faster responses to 

pattern high-frequency than to random high-frequency triplets. As random high-frequency 

triplets are rare compared to the other triplet types, this learning measure could capture the 

difference between the effect of a larger sequential pattern and the effect of random 

appearance when controlling for the frequency of stimulus presentation. In contrast, statistical 

learning could capture purely frequency-based learning. 

Following the standard data analysis protocol of previous studies using the ASRT task 

(J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013), two types of low-

frequency triplets were eliminated from the behavioral and ERP analyses: repetitions (e.g., 1 – 

1 – 1, 4 – 4 – 4) and trills (e.g., 1 – 2 – 1, 2 – 4 – 2). Repetitions and trills were low frequency 

for all participants, who often show pre-existing response tendencies to them (D. V. Howard 

et al., 2004). By eliminating these triplets, we could ensure that any high- versus low-

frequency differences were due to learning and not to pre-existing tendencies. As in previous 

studies (Nemeth, Janacsek, Polner, & Kovacs, 2013; Song et al., 2007; Virag et al., 2015), we 

collapsed the five-block-long segments of data into larger epochs; thus, we altogether 

analyzed six epochs of the ASRT task. Epochs are labeled consecutively in this paper (1, 2, 

etc.). Considering the behavioral data, for each participant and epoch, we calculated median 

RT (only for correct responses with an RT greater than 0 ms), separately for pattern and 

random high-frequency triplets and low-frequency triplets. For the sake of completeness, we 

report the mean accuracy of responses in each experimental condition in Table 1. However, as 
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the accuracy of responding has been influenced by the feedback given to participants after 

each block, and overall accuracy has usually been high with relatively low variability in 

samples of healthy young adults performing the ASRT task (J. H. Howard, Jr. & Howard, 

1997; Nemeth et al., 2010; Romano et al., 2010), we do not analyze accuracy data in details 

here. In addition, since RTs and ERPs are calculated only for correctly responded trials, 

accuracy results are not assumed to match RT and ERP results; therefore, are not considered. 

The targeted learning measures – statistical learning and sequence learning – were first 

quantified with two-way repeated measures analyses of variance (ANOVAs) with TYPE 

(pattern high-frequency, random high-frequency, and low-frequency triplets) and EPOCH (1–

6) as within-subjects factors on RT and the mean amplitude of P1, N2, and P3 components, 

respectively. In the case of a significant TYPE * EPOCH interaction, statistical learning was 

then tested with another TYPE by EPOCH ANOVA, where the TYPE factor contrasted 

random high-frequency and low-frequency triplets. Similarly, sequence learning was tested 

with a TYPE by EPOCH ANOVA, where the TYPE factor contrasted random high-frequency 

and pattern high-frequency triplets. In all ANOVAs, the Greenhouse-Geisser epsilon (ε) 

correction (Greenhouse & Geisser, 1959) was used when necessary. Original df values and 

corrected p values are reported (if applicable). Partial eta-squared (ηp
2) is reported as the 

measure of effect size. To control for Type I error, we used LSD (Least Significant 

Difference) tests for pair-wise comparisons.  

To investigate the correspondence in the potential change of statistical and sequence 

learning between the behavioral and the ERP correlates, we ran correlational analysis. We 

calculated statistical and sequence learning scores for the N2 component in each epoch 

similarly to RT data. Namely, statistical learning was defined as the mean amplitude of N2 for 

low-frequency triplets minus the mean amplitude of N2 for random high-frequency triplets, 

while sequence learning was defined as the N2 for random high-frequency triplets minus the 
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N2 for pattern high-frequency triplets. Note that a more negative learning score in the N2 is 

considered as an index of greater learning since we expected the most negative deflection for 

low-frequency triplets and the least negative deflection for pattern high-frequency triplets 

with random high-frequency ones in-between. Importantly, overall learning scores for RT and 

N2 were also considered for the entire task as the mean of scores calculated for each epoch. 

Correlational analysis involved testing the relations between the indices of the sequence 

report – the timing of the discovery of the sequence and the sequence knowledge score 

(partial knowledge) – and overall learning scores of RT and N2.  

 

Results 

Results from ANOVAs performed on behavioral and ERP data are presented in Table 2. 

 

Table 1. Mean percentage (%) and standard deviation of response accuracy split by triplet 

type and epoch. 

 Pattern high Random high Low 

 M (SD) M (SD) M (SD) 

Epoch1 94.8 (2.7) 93.8 (3.8) 92.1 (3.4) 

Epoch2 94.5 (2.6) 93.1 (4.6) 92.3 (3.3) 

Epoch3 94.8 (2.3) 93.3 (4.3) 91.0 (4.7) 

Epoch4 94.9 (2.6) 92.8 (5.5) 89.7 (5.6) 

Epoch5 95.6 (2.1) 93.6 (4.6) 91.0 (5.0) 

Epoch6 95.3 (2.3) 92.0 (5.9) 90.2 (7.9) 
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Table 2. Summary of results from ANOVAs performed on behavioral and ERP data. 

 

TYPE EPOCH TYPE * EPOCH 

  F p ηp
2 F p ηp

2 F p ηp
2 

RT 

         Overall 82.0 < .001 .68 30.5 < .001 .44 15.3 < .001 .28 

Statistical learning 123.5 < .001 .76 10.7 < .001 .22 0.7 .643 .02 

Sequence learning 64.1 < .001 .62 27.7 < .001 .42 16.8 < .001 .30 

P1 

 

  

       Overall 5.9 .012 .13 0.7 .552 .02 1.4 .180 .04 

Statistical learning 19.2 < .001 .33 1.3 .264 .03 0.9 .493 .02 

Sequence learning 7.3 .010 .16 0.5 .697 .01 1.8 .110 .05 

N2 

         Overall 24.7 < .001 .39 2.5 .062 .06 3.2 .004 .08 

Statistical learning 14.2 .001 .27 3.2 .021 .08 0.3 .900 .01 

Sequence learning 20.4 < .001 .34 2.4 .069 .06 4.0 .005 .09 

P3          

Overall 2.6 .107 .06 5.4 .001 .12 4.7 < .001 .11 

Statistical learning 0.1 .746 .00 0.9 .482 .02 0.6 .733 .01 

Sequence learning 3.0 .092 .07 7.4 <.001 .16 6.1 .001 .13 

Note. p-values below .050 are boldfaced. 

 

Behavioral results 

The TYPE (pattern high-frequency, random high-frequency, and low-frequency triplets) by 

EPOCH (1–6) ANOVA on RT revealed the significant main effects of TYPE, F(2, 78) = 

82.02, ε = .521, p < .001, ηp
2 = .678, and EPOCH, F(5, 195) = 30.51, ε = .633, p < .001, ηp

2 = 

.439, showing that RTs differed across triplet types and overall RT of participants gradually 

decreased irrespective of triplet type as a result of general skill improvements. These effects 

were qualified by the significant TYPE * EPOCH interaction, F(10, 390) = 15.25, ε = .382, p 

< .001, ηp
2 = .281, indicating that RTs between and/or within triplet types changed as the task 

progressed (see Fig. 2).  

To quantify statistical learning in more detail and as a follow-up of this interaction, 

we performed a TYPE by EPOCH ANOVA contrasting random high-frequency and low-
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frequency triplets. Analysis revealed significant statistical learning (main effect of TYPE, 

F(1, 39) = 123.53, p < .001, ηp
2 = .760), indicating that participants were faster on random 

high-frequency triplets than on low-frequency ones. In addition, there were significant general 

skill improvements (main effect of EPOCH, F(5, 195) = 10.71, ε = .730, p < .001, ηp
2 = .215). 

To detail, RTs on random triplets became faster in the early phase of the task, irrespective of 

the frequency of the triplet (RTs were significantly higher in epoch1 [359 ms] than in 

epochs3,4,5,6, all ps ≤ .010, and they were also higher epoch2 [356 ms] than in epochs3,4,5, all ps 

≤ .002; but RTs were again higher in epoch6 than in epoch3 [352 ms vs. 347 ms, p = .024] and 

epoch5 [352 ms vs. 346 ms, p = .002]). The difference in RT between random high- and low-

frequency triplets did not change with practice, indicated by the non-significant TYPE * 

EPOCH interaction, F(5, 195) = 0.68, p = .643, ηp
2 = .017.  

In regard to sequence learning, the TYPE by EPOCH ANOVA contrasting random 

high-frequency and pattern high-frequency triplets revealed significant sequence learning and 

general skill improvements (significant main effects of TYPE, F(1, 39) = 64.07, p < .001, ηp
2 

= .622, and EPOCH, F(5, 195) = 27.73, ε = .613, p < .001, ηp
2 = .416). Participants were 

faster on pattern high-frequency triplets than on random high-frequency ones, and, 

importantly, this difference increased with practice, indicated by the significant TYPE * 

EPOCH interaction, F(5, 195) = 16.78, ε = .617, p < .001, ηp
2 = .301. According to pair-wise 

comparisons, the difference between pattern and random high-frequency triplets was 

significant in all epochs (all ps < .001), and this difference significantly increased until epoch4 

(it was larger in epoch1 [34 ms] than in all other epochs (all ps < .001); it was larger in epoch2 

[57 ms] than in epochs4,5,6, all ps ≤ .008; it was larger in epoch3 [63 ms] than in epochs4,5,6, all 

ps ≤ .021; and it was larger in epoch4 than in epoch6 [75 ms vs. 87 ms, p = .035]. Particularly, 

RTs became increasingly faster on pattern high-frequency triplets (RTs were significantly 

higher in epoch1 [316 ms] than in all other epochs, all ps < .001; they were higher in epoch2 
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[293 ms] than in epochs3,4,5,6, all ps ≤ .009; and they were higher in epoch3 [278 ms] than in 

epochs4,5,6, all ps ≤ .010; but no further significant RT decrease was found in the task after 

epoch4). Meanwhile, RTs on random high-frequency triplets did not change linearly over the 

task (RTs were significantly higher in epoch1 [350 ms] than in epochs3,4,5, all ps ≤ .020; they 

were higher in epoch2 [349 ms] than in epochs3,4,5, all ps ≤ .006; but they were again higher in 

epoch6 than in epoch5 [344 ms vs. 339 ms, p = .038]). 

According to the sequence report, explicit knowledge about the sequence emerged 

early in the experiment. Participants consistently reported the sequence structure from around 

the 4th block (M = 3.68, SD = 6.15). The mean of the sequence knowledge score for the whole 

task (partial knowledge of the sequence) was 11.56 (SD = 0.82). After the very first block, the 

maximum of 12 correct responses was provided by 70% of the sample (28 participants), and 

relatedly, the mean of reporting the correct sequence elements was 10.18 (SD = 3.26) in the 

entire sample. 



26 

 

Figure 2. Temporal dynamics of procedural learning across epochs at the behavioral level. 

Group-average RT values for correct responses as a function of epoch (1–6) and triplet type 

(pattern and random high-frequency triplets and random low-frequency triplets) are presented. 

The green vs. blue difference indicates statistical learning (random low- vs. high-frequency 

triplets) while the blue vs. black difference (random vs. pattern high-frequency triplets) 

indicates sequence learning. Error bars denote standard error of mean. 

 

ERP results 

Grand average ERP waveforms split by triplet type and epoch are presented in Figures 3-5. 

The P1 component appeared as a sharp positive wave at the Oz electrode, and the N2 

component appeared as a broader negative deflection over the frontocentral electrode pool. 

Distinct subcomponents of the N2 were not clearly identifiable across conditions. The N2 was 

followed by a large P3 component over the centroparietal, parietal, and parieto-occipital 

electrodes sites (only the Pz electrode is presented in Figure 5). 
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P1 component. The TYPE (pattern high-frequency, random high-frequency, and low-

frequency triplets) by EPOCH (1–6) ANOVA on the mean amplitude of P1 showed 

significant main effect of TYPE, F(2, 78) = 5.91, ε = .569, p = .012, ηp
2 = .132, indicating that 

the amplitude of P1 was more positive for random low-frequency than for random high-

frequency triplets (1.30 µV vs. 1.07 µV, p < .001), and was more positive for pattern high-

frequency than for random-high frequency triplets (1.38 µV vs. 1.07 µV, p = .010). This 

means that the P1 showed the lowest mean amplitude for random high-frequency triplets, and 

random low-frequency and pattern high-frequency triplets did not differ from one another (see 

Fig. 3). The main effect of EPOCH, F(5, 195) = 0.69, ε = .569, p = .552, ηp
2 = .017, and the 

TYPE * EPOCH interaction, F(10, 390) = 1.40, p = .180, ηp
2 = .035, were not significant, 

suggesting that the overall mean amplitude of P1 and its difference between triplet types did 

not change as a function of practice. In line with these results, the TYPE by EPOCH 

ANOVAs performed separately for statistical (contrasting random high-frequency and low-

frequency triplets) and sequence learning (contrasting random high-frequency and pattern 

high-frequency triplets) revealed the main effects of TYPE for both learning processes 

(statistical learning: F(1, 39) = 19.23, p < .001, ηp
2 = .330, sequence learning: F(1, 39) = 7.28, 

p = .010, ηp
2 = .157). As the interaction was not significant in the overall ANOVA, we do not 

report the separate TYPE * EPOCH interaction effects. However, for the sake of 

completeness and direct comparison of learning effects, results of the separate TYPE by 

EPOCH ANOVAs are shown in Table 2. 
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Figure 3. P1 results for each triplet type. (A) Grand average ERP waveforms at electrode Oz, 

displaying the P1 component for each triplet type, averaged for all epochs. Please note, 

negativity is plotted upwards here and in the following figures representing ERPs. (B) Group-

average P1 mean amplitudes for each triplet type. The green vs. blue difference indicates 

statistical learning (random low- vs. high-frequency triplets) while the blue vs. black 

difference (random vs. pattern high-frequency triplets) indicates sequence learning. Error bars 

denote standard error of mean. 
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N2 component. The TYPE (pattern high-frequency, random high-frequency, and low-

frequency triplets) by EPOCH (1–6) ANOVA on the mean amplitude of N2 showed a 

significant main effect of TYPE, F(2, 78) = 24.73, ε = .546, p < .001, ηp
2 = .388, a tendency 

for the main effect of EPOCH, F(5, 195) = 2.54, ε = .576, p = .062, ηp
2 = .061, and a 

significant TYPE*EPOCH interaction, F(10, 390) = 3.21, ε = .623, p = .004, ηp
2 = .076, 

suggesting that the mean amplitude of the N2 between and/or within triplet types changed as 

the task progressed (see Fig. 4 and Fig. 6A).  

In the case of statistical learning, the TYPE by EPOCH follow-up ANOVA 

contrasting random high-frequency and low-frequency triplets revealed the significant main 

effects of TYPE, F(1, 39) = 14.22, p = .001, ηp
2 = .267, and EPOCH, F(5, 195) = 3.21, ε = 

.669, p = .021, ηp
2 = .076, showing that the N2 was larger (more negative) for random low-

frequency than for random high-frequency triplets, as well as that the mean amplitude of the 

N2 for random triplets changed during the task, irrespective of the frequency of the triplet (N2 

in epoch2 was significantly lower [less negative, -1.37 µV] than in epochs1,3,4,5, all ps ≤ .024, 

and it was larger (more negative) in epoch5 than in epoch6 [-1.92 µV vs. -1.66 µV, p = .014]). 

The difference in the mean amplitude of N2 between random high-frequency and low-

frequency triplets did not change with practice, indicated by the non-significant interaction of 

TYPE * EPOCH, F(5, 195) = 0.32, p = .900, ηp
2 = .008.  

In the case of sequence learning, the TYPE by EPOCH follow-up ANOVA 

contrasting random high-frequency and pattern high-frequency triplets revealed a significant 

main effect of TYPE, F(1, 39) = 20.42, p < .001, ηp
2 = .344, and a tendency for the main 

effect of EPOCH, F(5, 195) = 2.43, ε = .596, p = .069, ηp
2 = .059. The mean amplitude of N2 

was larger (more negative) for random than for pattern high-frequency triplets, and, 

importantly, this difference increased with practice, indicated by the significant TYPE * 

EPOCH interaction, F(5, 195) = 4.03, ε = .756, p = .005, ηp
2 = .094. Pair-wise comparisons 
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showed that the difference between pattern and random high-frequency triplets was 

significant in all epochs (all ps ≤ .036), and this difference significantly increased during the 

second half of the task as compared to its first half (it was larger in epoch4 [-1.22 µV] than in 

epochs1,2, all ps ≤ .030; it was larger in epoch5 [-1.29 µV] than in epochs1,2,3, all ps ≤ .044; 

and it was larger in epoch6 [-1.31 µV] than in epochs1,2,3, all ps ≤ .028). Particularly, although 

the N2 for pattern high-frequency triplets slightly decreased over the task (the N2 in epoch6 

was significantly lower [less negative, -0.30 µV] than in epochs1,3,5, all ps ≤ .020; other 

significant differences: epoch1 vs. epoch2 [-0.97 µV vs. -0.59 µV, p = .033], epoch1 vs. epoch4 

[-0.97 µV vs. -0.34 µV, p = .009], epoch3 vs. epoch4 [-0.65 µV vs. -0.34 µV, p = .035]), no 

such trend was observed for random high-frequency triplets (the N2 in epoch2 was 

significantly lower [less negative, -1.22 µV] than in epochs1,5, all ps ≤ .033). 

 

P3 component. The TYPE (pattern high-frequency, random high-frequency, and low-

frequency triplets) by EPOCH (1–6) ANOVA on the mean amplitude of P3 showed a non-

significant main effect of TYPE, F(2, 78) = 2.62, ε = .594, p = .107, ηp
2 = .063, a significant 

main effect of EPOCH, F(5, 195) = 5.43, ε = .707, p = .001, ηp
2 = .122, and a significant 

TYPE * EPOCH interaction, F(10, 390) = 4.72, ε = .551, p < .001, ηp
2 = .108, suggesting that 

the mean amplitude of the P3 between and/or within triplet types changed as the task 

progressed (see Fig. 5 and Fig. 6B).  

In the case of statistical learning, the TYPE by EPOCH follow-up ANOVA 

contrasting random high-frequency and low-frequency triplets did not reveal any significant 

effect (TYPE: F(1, 39) = 0.11, p = .746, ηp
2 = .003, EPOCH: F(5, 195) = 0.85, ε = .707, p = 

.482, ηp
2 = .021, TYPE * EPOCH: F(5, 195) = 0.56, p = .733, ηp

2 = .014).  

In the case of sequence learning, the TYPE by EPOCH follow-up ANOVA 

contrasting random high-frequency and pattern high-frequency triplets revealed a trend for the 
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main effect of TYPE, F(1, 39) = 2.99, p = .092, ηp
2 = .071, and a significant main effect of 

EPOCH, F(5, 195) = 7.35, ε = .737, p < .001, ηp
2 = .158. These effects were qualified by the 

significant TYPE * EPOCH interaction, F(5, 195) = 6.05, ε = .608, p = .001, ηp
2 = .134, 

indicating that the mean amplitude of P3 was more positive for pattern than for random high-

frequency triplets in epoch1 (5.44 µV vs. 4.53 µV, p < .001) and epoch2 (4.85 µV vs. 4.21 µV, 

p = .002), and there was no significant difference between these triplet types in the remaining 

epochs (all ps ≥ .179). Pair-wise comparisons also showed that the difference between pattern 

and random high-frequency triplets significantly decreased as the task progressed (it was 

larger in epoch1 [-0.91 µV] than in epochs4,5,6, all ps ≤ .038; it was larger in epoch2 [-0.64 µV] 

than in epochs5,6, all ps ≤ .002; it was larger in epoch3 than in epoch6 [-0.31 µV vs. 0.14 µV, p 

= .033]; and it was larger in epoch4 than in epoch6 [-0.24 µV vs. 0.14 µV, p = .048]; overall, it 

was lower in epoch6 than in epochs1,2,3,4, all ps ≤ .048). Particularly, the P3 for random high-

frequency triplets did not change over the task (all ps ≥ .075), while it showed a roughly linear 

decrease for pattern high-frequency triplets (the P3 was significantly larger [5.44 µV] in 

epoch1 than in the other epochs, all ps < .001; it was larger in epoch2 [4.85 µV] than in 

epochs4,5,6, all ps ≤ .038; it was larger in epoch3 than in epoch5 [4.63 µV vs. 4.24 µV, p = .014] 

and epoch6 [4.63 µV vs. 4.07 µV, p = .002]; and it was larger in epoch4 than in epoch6 [4.49 

µV vs. 4.07 µV, p = .021]). 
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Figure 4. Grand average ERP waveforms at the frontal electrode pool, displaying the N2 

component for each epoch and triplet type. The green vs. blue difference indicates statistical 

learning (random low- vs. high-frequency triplets) while the blue vs. black difference (random 

vs. pattern high-frequency triplets) indicates sequence learning. 
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Figure 5. Grand average ERP waveforms at electrode Pz, displaying the P3 component for 

each epoch and triplet type. The green vs. blue difference indicates (the lack of) statistical 

learning (random low- vs. high-frequency triplets) while the blue vs. black difference (random 

vs. pattern high-frequency triplets) indicates sequence learning. 
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Figure 6. Temporal dynamics of procedural learning across epochs at the level of ERPs. 

Group-average (A) N2 and (B) P3 mean amplitudes as a function of epoch (1–6) and triplet 

type (pattern and random high-frequency triplets and random low-frequency triplets) are 

presented. The green vs. blue difference indicates statistical learning (random low- vs. high-

frequency triplets) while the blue vs. black difference (random vs. pattern high-frequency 

triplets) indicates sequence learning. Error bars denote standard error of mean. 
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Correlations between the behavioral and the N2 correlates of learning  

First, no significant correlations were found between the overall learning scores of sequence 

learning and statistical learning calculated either for the RT (r(38) = - .145, p = .372) or the 

N2 (r(38) = - .126, p = .440). Second, regarding the relations between behavioral and ERP 

correlates, in the case of sequence learning, greater learning score for RT was associated with 

greater learning score for N2 (r(38) = - .675, p < .001), but no such association was found in 

the case of statistical learning (r(38) = - .188, p = .245). (Recall that a more negative learning 

score in the N2 [larger negative amplitude] is considered as an index of greater learning). 

We also tested the indices of the sequence report, which measured explicit knowledge 

about the ASRT sequence. When we analyzed the timing of the discovery of the sequence, we 

excluded two participants who failed to provide at least 10 correct responses even after the 

final block of the task or reached this threshold during earlier blocks but failed to do so 

consistently in the remaining blocks. Other analyses with the sequence knowledge score 

(partial knowledge) were run on the entire sample. The distributions of these variables were 

strongly skewed; therefore, Spearman’s rank correlations (rs) were calculated between indices 

of the sequence report and RT and N2 overall learning scores. We found a significant 

correlation between the timing of the discovery of the sequence and the extent of sequence 

learning in RT (rs = - .521, p = .001) and N2 (rs = .351, p = .031); thus, the earlier the 

participants could report the sequence structure, the greater their sequence learning 

performance was at the level of both the behavioral and the ERP correlates. However, as 

expected, there was no significant correlation between this sequence report index and 

statistical learning scores (RT: rs = - .048, p = .776; N2: rs = - .204, p = .220). The same 

pattern of associations was observed for the sequence knowledge score (partial knowledge): 

While higher sequence knowledge score was related to significantly greater sequence learning 
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in RT (rs = .457, p = .003) and N2 (rs = - .410, p = .009), it was not related to statistical 

learning (RT: rs = .103, p = .526; N2: rs = .031, p = .849). 

 

Discussion 

This study investigated the ERP correlates of simultaneously extracting statistical 

probabilities and complex sequential structures from the same information stream. To this 

end, we separately analyzed the processes of statistical learning and sequence learning in a 

procedural learning task that included temporal regularity between trials farther apart. In the 

case of statistical learning, sequential properties of the stimuli were kept constant while 

stimuli were more or less frequent, thus, differed in transitional and distributional probability. 

In the case of sequence learning, stimulus probabilities were kept constant and the stimuli 

were random or part of the predefined sequence, thus, differed in sequential properties. 

Behavioral results suggested the rapid acquisition of statistical probabilities as opposed to the 

gradual learning of sequential structures, which were independent of one another. 

Importantly, ERP results also reflected the distinct trajectory of these two processes. Although 

the N2 component showed rapid, automatic detection of statistical probabilities, this 

component gradually changed as participants acquired the sequential structures. The extent of 

sequence learning measured by RT as well as the N2 component were related; moreover, 

these learning measures varied as a function of explicit knowledge about the sequence 

structure. Such associations were not shown in relation to statistical learning. Meanwhile, the 

P3 component was not sensitive to statistical probabilities, but, likewise the N2, it gradually 

changed with the acquisition of sequential structures. Fast and robust distinction of stimulus 

probabilities as well as sequential properties was observed at the early stage of perceptual 

processing as the P1 component was sensitive to both learning processes and this sensitivity 

did not change further through extended practice with the task. Overall, our results indicate 
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that statistical learning and sequence learning develop differently at the level of both 

behavioral and ERP correlates, at least after the early stage of stimulus processing.  

The distinction between statistical learning and sequence learning at the behavioral 

level has been shown previously both in explicit and implicit ASRT task versions (Nemeth, 

Janacsek, & Fiser, 2013; Simor et al., 2017). As in the study of Nemeth, Janacsek, and Fiser 

(2013), analysis of the explicit knowledge about the sequence structure in the present study 

indicate that participants could find and explicitly learn the sequence in line with task 

instructions. In addition, the earlier they found the sequence and the more often they correctly 

reported each element of the sequence, the greater their knowledge about the sequence was in 

terms of behavioral and ERP correlates. The different nature of statistical and sequence 

learning was also supported by the fact that the extent of explicit knowledge about the 

sequence was unrelated to the extent of statistical learning. Beyond measures of the sequence 

report, future studies could also consider premature responses and their change in frequency 

over the task as additional indices of explicit sequence learning (Verleger et al., 2015). Since 

the occurrence of premature responses was low in the present study (0.29%), these responses 

could not be meaningfully analyzed. In addition, the use of implicit (with perceptually 

identical pattern and random elements) and explicit (with the pattern elements cued) task 

blocks in future experiments might help investigating whether the explicitly acquired 

knowledge in the cued blocks could be transferred to the implicit blocks (Nemeth, Janacsek, 

& Fiser, 2013). This design could probably test whether the extraction of statistical 

probabilities (statistical learning) is related to the generalization of sequence learning from a 

controlled, explicit learning situation to a more automatic one with the same underlying 

alternating sequence structure. Nevertheless, our behavioral and correlational findings 

altogether support the notion that multiple, dissociable processes contribute to the procedural 
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learning of probabilistic regularities, which could not only be measured by multiple tasks 

(Bays et al., 2016; Daltrozzo & Conway, 2014) but also within the same paradigm. 

Although earlier SRT studies showed the emergence of the N2 effect, they provided 

inconsistent results on whether this effect was associated with explicit knowledge about the 

sequence (Eimer et al., 1996; Fu et al., 2013; Rüsseler et al., 2003). In the present study, the 

N2 effect was observed in relation to both statistical and sequence learning. Statistical 

learning was not supported by explicit task instructions; therefore, in that case, participants 

implicitly or incidentally acquired statistical probabilities. Meanwhile, in the case of sequence 

learning, which was supported by explicit instructions, participants explicitly or intentionally 

learned the sequential structures. Therefore, our results suggest that the emergence of the N2 

effect is independent of conscious, intentional, and explicit processes in an SRT-like task; 

however, it seems to be modulated by explicit knowledge about the sequential structure. 

Namely, in line with some previous studies (Baldwin & Kutas, 1997; Eimer et al., 1996; 

Ferdinand et al., 2008; Fogelson & Fernandez-del-Olmo, 2013), the N2 effect was more 

pronounced for sequence learning that was supported by explicit sequence information.  

The N2 was more negative for random low-frequency than for random high-frequency 

triplets, irrespective of practice with the task. In addition, the N2 was more negative for 

random high-frequency than for pattern high-frequency triplets, although the difference 

between the two triplet types increased with practice. Overall, within both learning processes, 

the N2 was larger and responses were slower for the less probable, relatively unpredictable 

stimuli of the task, i.e., for random low-frequency and random high-frequency triplets, the 

processing of which could have resulted in higher cognitive load. Similarly, the study of 

Koelsch, Busch, Jentschke, and Rohrmeier (2016) observed stronger brain electrical responses 

(early anterior negativity labeled as statistical mismatch negativity, MMN) for low and 
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intermediate probability triplets than for high probability ones in a statistical learning 

paradigm with acoustical stimuli. 

The N2 effect has also increased with practice in earlier SRT studies (Eimer et al., 

1996; Ferdinand et al., 2008; Rüsseler et al., 2003). In the present study, the observed change 

in the N2 difference related to sequence learning largely originated from the slight decrease of 

the N2 for pattern high-frequency triplets over the task, since the N2 for random high-

frequency triplets did not change gradually. This N2 amplitude modulation suggests that the 

processing of pattern high-frequency triplets became more automatic with practice and 

required less attention. The relatively stable N2 for random high-frequency triplets over the 

task could have resulted from the rapid acquisition of statistical properties, i.e., from the fast 

differentiation of random high- and low-frequency triplets (cf. behavioral results). However, 

the temporal chunks that we used to analyze learning effects were not sufficiently sensitive to 

detect the development of the N2 component for random stimuli (but see Ferdinand et al., 

2008). More insight to the change of the N2 component as a function of multiple learning 

processes could be gained by manipulating the underlying sequence that determines the 

direction (or position) of stimuli.  

Statistical and sequence learning could be also differentiated in a later stage of 

stimulus processing. The P3 component gradually changed with the acquisition of complex 

sequential structures but it was not sensitive to statistical learning. As the amplitude of the P3 

component has been assumed to reflect the employment of increased attentional resources 

(Polich, 2007; Polich & Criado, 2006), less probable target stimuli should elicit larger P3 

amplitude. In our study, the P3 showed a linear decrease for pattern high-frequency triplets as 

the task progressed, reflecting gradual sequence learning. Indeed, this triplet type was entirely 

predictable and after some practice, no further attentional resources were needed to its 

processing. Previous studies also observed that the P3 amplitude scaled with the predictability 
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of the target stimuli, reflecting facilitated processing as a result of learning the transitional 

probabilities (Batterink, Reber, Neville, et al., 2015; Batterink, Reber, & Paller, 2015). 

Similar anticipatory processes have been reflected by larger P3 amplitudes to stimuli with 

high predictive value that preceded the target per se (Fogelson, 2015; Jost et al., 2015; Rose et 

al., 2001). In line with the account of processing effort explaining the functional significance 

of the P3 component, the P3 did not change with practice for random high-frequency triplets 

over the task. Similarly, the P3 amplitude remained stable for random low-frequency triplets 

(pair-wise comparisons are not reported in the Results section).  

The P3 was originally shown to be a marker of explicit knowledge in SRT tasks (e.g., 

Ferdinand et al., 2008; Fu et al., 2013; Verleger et al., 2015), and in line with these previous 

findings, in the present study, it was not sensitive to statistical learning but to sequence 

learning. In the case of statistical learning, P3 amplitude modulation was observed neither for 

the entire learning session nor across temporal bins. Although our experimental design 

contrasted incidental (statistical learning) and intentional (sequence learning) learning rather 

than implicit and explicit sequence learning, the intentional part of the task, at least in regard 

to the instruction, was relatively similar to the explicit conditions of earlier SRT studies. 

Although P3 amplitude modulation as a function of implicit statistical learning was found 

using other tasks (Baldwin & Kutas, 1997; Batterink, Reber, Neville, et al., 2015; Batterink, 

Reber, & Paller, 2015; Fogelson & Fernandez-del-Olmo, 2013; Jost et al., 2015), these 

experimental designs could not be directly compared with the present cued ASRT task and the 

measured learning processes. 

The lack of P3 amplitude modulation related to statistical learning could also be 

explained by both high- and low-frequency random stimuli being task relevant targets with 

the same physical features (red arrows), the processing of which does not require further 

attentional resources (Eimer et al., 1996; Polich & Criado, 2006). Although random high-



41 

frequency triplets were overall the least probable among all triplet types, appearing more 

often than low-frequency triplets (i.e., being more frequent at the level of unique triplets), 

they were predictable stimuli. However, participants did not become aware of their 

predictable nature as they incidentally learned these triplet types (having a structure of 

random – pattern – random), which, again, could have hindered the differentiation of random 

high- and low frequency triplets in the P3 amplitude. A further experiment with implicit and 

explicit task blocks might help determining whether the P3 is sensitive to incidental and/or 

intentional learning processes during procedural learning.  

Overall, partial dissociation between the N2 and P3 components was observed as the 

N2 was a marker of both statistical learning and sequence learning while the P3 indicated only 

sequence learning. This finding could be interpreted along with the study of Fu et al. (2013) 

claiming that the N2 and P3 effects reflect different processes of sequence learning; namely, 

implicit knowledge is related to N2 modulation and explicit knowledge is related to additional 

P3 modulation. Importantly, as we pointed out above, explicit knowledge is not necessary for 

the emergence of the N2 effect. 

Given the paucity of earlier findings on the P1 ERP component regarding statistical-

sequence learning, this facet of the study remained somewhat exploratory. Considering the 

present results, the encoding of the spatial direction of stimuli with different probabilistic and 

sequence properties was reflected in the amplitude modulation of the P1 component. The 

mean amplitude of the P1 was lower for random high-frequency triplets than for random low-

frequency and pattern high-frequency triplets, and it did not differ between the latter two 

triplet types. Importantly, this amplitude modulation did not change with practice either for 

statistical probabilities or for sequential structures, which contrasts with the obtained gradual 

N2 and P3 effects.  
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The lowest P1 amplitude observed for random high-frequency triplets throughout the 

task could be explained by this stimulus type being the least probable in the ASRT task 

(occurring with a frequency of 12.5%). Because of this property, the pattern high-frequency 

triplets could be considered as neutral, regular, or valid events, while random triplets could be 

deviant or invalid events, especially the random high-frequency triplets. During target 

detection using valid and invalid central cues, Luck et al. (1994) showed the suppression of 

sensory processing to stimuli at the unattended location indicated by the P1 component while 

the enhancement of sensory processing to stimuli at the attended location indicated by the N1 

component. The relative suppression of the P1 component to invalid vs. neutral trials was 

related to the cost of attention due to the reduction in target detectability on invalid trials. This 

effect was also observed in the discrimination condition of a different visual search task for 

nontarget positions vs. neutral trials (Luck & Yard, 1995). It is conceivable that a similar 

suppression effect was observed for the random high-frequency triplets, given that in the 

ASRT task, each stimulus is a cue for the final event of a triplet with different probability. 

Although we acknowledge that the cued ASRT task with arrow stimuli differs in many 

properties from a paradigm assessing luminance detectability using spatial cuing, especially 

that this ASRT task version does not directly measure spatial attention, we assume that 

exposure to probabilistic regularities could altered selective attention acting at an early stage 

of stimulus processing. This argumentation could also be supported by previous findings 

indicating P1 amplitude enhancement for spatially and temporally expected events (Doherty 

et al., 2005; Rohenkohl & Nobre, 2011).  

Beyond the sensitivity to probabilistic regularities, attentional effects originating from 

the cued alternating characteristic of the ASRT sequence could have also influenced the P1 

findings. Particularly, it is possible that participants attended more to sequence elements 

(black arrows) than to random ones (red arrows) as they were required to report the sequence 
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after each block. Although the P1 amplitude did not differ between pattern high-frequency 

triplets and random low-frequency ones, the attended sequence could have enhanced the P1 

amplitude for pattern high-frequency triplets (Luck et al., 1990). Nevertheless, the physical 

difference (black vs. red arrows) might have played a role in the obtained P1 results. 

Therefore, the lack of counterbalancing the assignment of different colors between pattern and 

random elements across participants should be considered as a limitation of the present study. 

Moreover, these P1 results should be replicated in future studies using a baseline closer to 

stimulus onset during the ERP analyses. 

In sum, the present study showed that using ERPs, it is possible to distinguish between 

multiple parallel learning processes that contribute to procedural learning. Both the behavioral 

and the ERP results indicate that statistical learning and sequence learning develop along a 

different trajectory: While statistical probabilities could be acquired rapidly, the learning of 

sequential structures seems to be gradual. The observed N2 and P3 effects presume the role of 

predictive mechanism and appropriate allocation of attentional resources in the procedural 

learning of probabilistic regularities. Moreover, while the N2 amplitude modulation could be 

considered as a neurocognitive correlate of both statistical learning and sequence learning, the 

P3 amplitude modulation possibly reflects only sequence learning. These results also indicate 

that explicit knowledge about sequential properties is not necessary for the emergence of the 

N2 effect. This study also focused on earlier ERP components in relation to procedural 

learning. The observed P1 effect suggests that exposure to probabilistic regularities could 

guide selective attention. In this early stage of stimulus processing, the perceptual system 

rapidly differentiates stimulus probabilities as well as sequential structures and this sensitivity 

does not change with further practice. 

The current results altogether indicate that multiple probability distributions can be 

perceived and extracted from the same information stream. The construction of memory 
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representations on the different probabilistic regularities (frequency vs. order information) 

takes place at a different rate but in overlapping temporal windows. This seems to be a 

plausible structure of acquisition mechanisms, if in everyday procedural learning scenarios, 

humans simultaneously rely on multiple forms of learning. Moreover, the results are also 

compatible with the view that although procedural learning involves different computations 

that underlie the learning of specific probabilistic inputs, it could be considered as a domain-

general adaptation device supporting the sensitivity to subtle regularities of the environment 

(Siegelman et al., 2017). Likewise, the present findings could relate to the vast amount of 

research on the role of statistical learning in language acquisition and processing by providing 

neurocognitive evidence for learning multiple levels of hierarchically organized temporal 

sequences (Daltrozzo & Conway, 2014; Siegelman et al., 2017). The extraction and 

integration framework of statistical learning (Thiessen et al., 2013) offers a plausible account 

of learning different probabilistic regularities; however, in light of the present findings, future 

work is needed for the proper implementation of statistical and sequence learning into this 

account. 
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