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ABSTRACT 15 

Anaerobic digestion (AD) has been shown to have the biological potential to decrease the 16 

concentrations of several organic micropollutants (OMPs) from sewage sludge. However, the 17 

mechanisms and factors behind these biotransformations, which are essential for elucidating the 18 

possible transformation products and to foster the complete removal of OMPs via operational 19 

strategies, remain unclear. Therefore, this study investigated the transformation mechanisms of 20 

20 OMPs during the methanogenic step of AD with a focus on the role of acetate kinase (AK), 21 

which is a key enzyme in methane production. The results from lab-scale methanogenic reactors 22 

showed that this step accounts for much of the reported OMPs biotransformation in AD. 23 

Furthermore, enzymatic assays confirmed that AK transforms galaxolide, naproxen, 24 

nonylphenol, octylphenol, ibuprofen, diclofenac, bisphenol A and triclosan. Except for 25 

galaxolide, for which further studies are required to refine conclusions, the OMP’s chemical 26 

structure was a determinant for the AK action because only compounds that contain a carboxyl 27 

or a hydroxyl group and that have a moderate steric hindrance were enzymatically transformed, 28 

likely by phosphorylation. For these 7 compounds, this enzymatic mechanism accounts for 10-29 

90% of the measured methanogenic biotransformation, suggesting that other active enzymes of 30 

the AD process are also involved in OMPs biotransformation.  31 

Abstract Art  32 
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INTRODUCTION 33 

The increasing use of pharmaceuticals, personal care products, hormones and many other 34 

organic compounds in our daily life has resulted in the release of these organic micropollutants 35 

(OMPs) into the environment via diverse pathways.
1
 There is evidence of negative effects of 36 

OMPs on human and ecosystem health,
2
 which suggests that reduction measures should be 37 

applied, especially for one of the main sources of OMP discharge: effluents of sewage treatment 38 

plants (STPs). 39 

Anaerobic digestion (AD) is widely used in STPs for sludge stabilization prior to its 40 

application in agricultural soils as a biosolid. Significant quantities of OMPs arrive at the sludge 41 

treatment line sorbed onto solids
3
 but also solubilized in the water phase of the sludge, achieving 42 

concentrations up to 90-140 µg L
-1

 for musk fragrances (galaxolide and tonalide), 40 µg L
-1

 for 43 

triclosan, 25 µg L
-1

 for ibuprofen, and 1-10 µg L
-1

 for hormones (estrone and 17β-estradiol).
4
 44 

Most of these OMPs remain in the digested sludge,
4
 thus its use as a fertilizer might transfer 45 

OMPs to the soil.
5
 46 

Despite the environmental risks associated with biosolid-amended soils,
5
 few studies have 47 

investigated the fate of OMPs during AD.
4,6–12

 They conclude that AD is able to biologically 48 

transform OMPs, but the degree of removal of some compounds is still controversial, and few 49 

transformation products (TPs) have been identified, which indicates the poor understanding of 50 

the microbial mechanisms and factors behind these biotransformations.
3
 Therefore, to develop 51 

strategies that promote the complete elimination of OMPs and to predict the environmental risks 52 

of the TPs that are generated, it is essential to understand the biotransformation pathways 53 

involved in AD. 54 
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To date, only rare and inconclusive information is available about the relationship between 55 

anaerobic populations and the removal of OMPs.
13

 This lack of knowledge is justified by the 56 

complexity of the biological and chemical processes involved in the four steps of AD (Figure 1): 57 

hydrolysis, acidogenesis, acetogenesis and methanogenesis.
14

 According to the taxonomic 58 

analysis of Guo et al.,
15

 Bacteria (~93%) was more abundant than Archaea (methanogens) (~6%) 59 

on sewage sludge AD. Among bacteria, Proteobacteria (41%), Firmicutes (13%) and 60 

Bacteroidetes (10%) are the most abundant populations, while Methanosaeta (26%), 61 

Methanospirillum (13%), Methanosarcina (13%), Methanoculleus (11%) and Methanoregula 62 

(8%) are the dominant methanogenic genera. During the four AD steps, these microorganisms 63 

produce a broad diversity of enzymes to degrade the organic substrates. Depending on their 64 

specificity, these enzymes can also modify the structures of OMPs despite being non-growth 65 

substrates. This biochemical process is known as cometabolism, and it is considered by many 66 

authors to be a major removal mechanism of OMPs during the biological treatment of 67 

wastewater.
16–21

 The action of enzymes on OMPs is poorly investigated, and most studies have 68 

focused on oxygenases.
21–23

 A recent study by Krah et al.
24

 tested the activity of a cocktail of 69 

extracted enzymes from activated sludge towards OMPs. By measuring several TPs and using 70 

several enzymatic inhibitors, they concluded that amide hydrolases could be involved in the 71 

biotransformation of acetaminophen, acetyl sulfamethoxazole, atenolol and bezafibrate, that 72 

oxidoreductases transform 10-OH-carbamazepine and that erythromycin is affected by 73 

hydrolases acting on ester bonds. However, the suspected participation of particular enzymes in 74 

the cometabolic biotransformation of OMPs was not definitively confirmed because the 75 

identification of enzymes by indirect measurements is unreliable, and the isolation of target 76 

enzymes has not yet been reported.
21

 Although no studies about the enzymatic transformation 77 

routes of OMPs during AD have been found, it could be hypothesized that hydrolases from the 78 
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two first AD steps, which perform relatively simple reactions, are involved in the 79 

biotransformation of some OMPs, as was demonstrated for activated sludge systems.
24

 For the 80 

more specific acetogenic and methanogenic steps, the removal of polycyclic aromatic 81 

hydrocarbons (PAH) has been linked to methanogenesis,
25

 but the type of enzymatic 82 

biotransformation that could occur is not clear.  83 

The aceticlastic methanogenesis (Figure 1) is performed by the archaea Methanosaeta and 84 

Methanosarcina and it is considered the main pathway in the synthesis of methane in anaerobic 85 

digesters.
15,26

 The first step in the methanization of acetate by Methanosarcina species is the 86 

phosphorylation of acetate to acetyl phosphate (Figure 1 and Figure S1), which is performed by 87 

the key intracellular enzyme acetate kinase (AK). Then, the acetyl phosphate is further converted 88 

to acetyl-CoA by phosphotransacetylase (PTA)
27

 and the aceticlastic methanization continues 89 

with the action of other enzymes (Figure S1). In addition, AK associated with PTA catalyzes the 90 

reverse reaction (conversion of acetyl-CoA to acetate; Figure 1) in fermentative prokaryote 91 

bacteria during acetogenesis.
28

 AK is a relatively specific enzyme but, in addition to acetate, it is 92 

able to phosphorylate other substrates to a lower extent;
29,30

 thus, AK might also have effects on 93 

some OMPs. 94 
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 95 

Figure 1. Schematic representation of the steps of anaerobic digestion, including the roles of the 96 

enzymes acetate kinase (AK) and phosphotransacetylase (PTA). 97 

The major aim of this work was to gain insight into the biotransformation pathways involved 98 

in the removal of OMPs during methanogenesis. In particular, the enzymatic transformation of 99 

OMPs was assessed via in vitro assays with AK. Furthermore, the cometabolic impact of AK on 100 

the biotransformation of OMPs in methanogenic reactors (MRs) was quantified. To the best of 101 

our knowledge, this is the first attempt to clarify the role of AD enzymes on the 102 

biotransformation of OMPs.  103 

MATERIALS AND METHODS 104 

Organic micropollutants. This study focuses on 20 compounds that are commonly 105 

detected in sewage sludge
3,4,8,9,31–33

 and whose chemical structures (Table S1), applications and 106 

physicochemical properties (Table S2) are representative of a huge range of OMPs. The selected 107 

pollutants are: the musk fragrances galaxolide (HHCB), tonalide (AHTN) and celestolide 108 

(ADBI); the anti-inflammatories ibuprofen (IBP), naproxen (NPX) and diclofenac (DCF); the 109 
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antibiotics sulfamethoxazole (SMX), trimethoprim (TMP), erythromycin (ERY) and 110 

roxithromycin (ROX); the neurodrugs fluoxetine (FLX), carbamazepine (CBZ) and diazepam 111 

(DZP); and the endocrine-disrupting compounds triclosan (TCS), bisphenol A (BPA), 4-112 

octylphenol (OP), 4-nonylphenol (NP), estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol 113 

(EE2). These substances were purchased from Sigma-Aldrich (Steinheim, Germany) except for 114 

the fragrances, which were provided by Ventos (Spain). Stock solutions were prepared in HPLC 115 

grade methanol or acetone, depending on the compound, and stored at -18 °C.  116 

Methanogenic reactor. Two lab-scale (14 L) continuously stirred (IKA RW20, 150 rpm) 117 

MRs were operated under mesophilic (37 °C) conditions. Both reactors were inoculated with 118 

sludge from a mesophilic STP anaerobic digester. The feeding consisted of a synthetic mixture of 119 

volatile fatty acids (VFA) (acetic:butyric:propionic 50:25:25, %COD) and other trace nutrients 120 

(section S4), in order to promote the growth of acetogenic bacteria and aceticlastic methanogenic 121 

archaea (i.e. Methanosaeta and Methanosarcina).
15,34,35

 After a start-up period, both MRs 122 

reached steady-state operation at a hydraulic retention time (HRT) of 10 d, an organic loading 123 

rate (OLR) of 1 g COD L
-1

 d
-1

 and a methanization efficiency above 70%. After 1-2 months 124 

under these conditions (Table S4), a pulse of the selected OMPs (100 µg L
-1

 except for the 125 

hormones, which were 10 µg L
-1

, section S4) was added to each MRs, and their concentrations 126 

were followed in the liquid (17 samples) and solid (10 samples) phases for 10 d.  127 

Acetate kinase activity. Acetate kinase (AK, EC 2.7.2.1) is a homodimer with two active 128 

sites that catalyze the reversible Mg-dependent transfer of the ϒ-phosphoryl group from 129 

adenosine triphosphate (ATP) to acetate.
27

 AK from Methanosarcina thermophila was chosen 130 

for this study because it is a well characterized and investigated enzyme
29

 and because 131 

Methanosarcina species appear to be key organisms in AD.
36

 AK from M. thermophila 132 
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recombinant, expressed in E. coli, was purchased from Sigma-Aldrich (USA) as lyophilized 133 

powder (885 U mg
-1

 protein (Bradford) and 6.94 U mg
-1

 solid). One unit (U) phosphorylates 134 

1.0 µmol of acetate to acetyl phosphate per min at pH 7.6 and 25 °C. The AK powder was stored 135 

at -20 °C. Immediately before use, a solution of AK (288 µg mL
-1

, 2.0 U mL
-1

) in a potassium 136 

phosphate buffer (0.1 M, pH 7.4) was prepared.  137 

Hydroxamate assay. The hydroxamate assay
37,38

 is the simplest and most convenient method 138 

to determine the AK activity in the direction of acetyl phosphate synthesis.
29

 This standard assay 139 

measures the rate of the forward Reaction 1 in the presence of hydroxylamine, which reacts with 140 

acetyl phosphate (Reaction 2) to form a colored complex in the presence of trivalent iron 141 

(Reaction 3). Under standard conditions, dephosphorylate acetyl phosphate is thermodynamically 142 

more favorable (Reaction 1); therefore, hydroxylamine is required to shift the reaction 143 

equilibrium to the right through the removal of acetyl phosphate.
37

 144 

Acetate + ATP  
		��	

���  Acetyl-P + ADP     (Reaction 1) 145 

Acetyl-P + Hydroxylamine  →  Acetyl hydroxamate + HPO4
2-

  (Reaction 2) 146 

Acetyl hydroxamate + FeCl3  →  Ferric acetylhydroxamate   (Reaction 3) 147 

An adaptation of the hydroxamate assay
30

 was used in this study. A stock solution was 148 

prepared with the following components: 290 mM of Tris-HCl (pH 7.4, neutralized with KOH), 149 

400 mM of potassium acetate, 20 mM of MgCl2·6H2O, 20 mM of ATP and 1410 mM of 150 

hydroxylamine hydrochloride (pH 7.4, neutralized with KOH). This reaction mixture was 151 

prepared immediately before use, since the aqueous solution of ATP at room temperature and the 152 

neutralized hydroxylamine solution have a limited stability. The reaction started by adding 153 

1.0 mL of the enzyme solution over 1.0 mL of the pre-warmed (25 °C) reaction mixture. After 154 
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incubation for 12  min at 25 °C, the reaction was stopped by the addition of 2.0 mL of 10% 155 

trichloroacetic acid. Then, the color reaction was initiated by adding 2.0 mL of FeCl3 (2.5% in 156 

2 N HCl). After 5-30 min of incubation to allow for the formation of the colored complex,
38

 the 157 

absorbance was recorded spectrophotometrically (Cecil CE-7200, UK) at 540 nm. 158 

A standard curve was prepared by adding 0-1.7 U mL
-1

 of AK to the reaction mixture 159 

following the previously described methodology (Figure S2). Furthermore, because 1 U of 160 

enzyme dephosphorylates 1 µmol of ATP per minute, the consumption of ATP (µmol mL
-1

) can 161 

also be correlated with the measured absorbance (Equation S1). 162 

AK activity in the methanogenic reactor. The AK activity inside the reactor was 163 

determined without special precautions to avoid the presence of air (AK is not sensitive to 164 

oxygen)
30,39

 following a methodology adapted from Mu et al.
40

 Three samples 25 mL were 165 

withdrawn at different time points after the OMPs spike (10 min, 3 d and 10 d) and then 166 

centrifuged at 3107 g for 15 min. The supernatant was discarded, and the biomass was washed 167 

and resuspended in 25 mL of 0.1 M sodium phosphate buffer (pH 7.4). This procedure was 168 

repeated three times. The last resuspended mixture was sonicated at 20 kHz and 4 °C for 10 min 169 

to break down the cell walls and release the intracellular AK. The sample was then centrifuged at 170 

15344 g and 4 °C for 30 min to remove the waste debris. When needed, the extracts were stored 171 

at -20 °C before measuring the enzyme activity assay via the hydroxamate assay.  172 

Experiments with commercial AK. Preliminary assays. The relevance of several key 173 

parameters (temperature, pH and OMPs concentration) on the AK activity was first evaluated 174 

because they could impair the possible action of AK over the OMPs. Studies with AK from M. 175 

thermophila have typically been performed at 37 °C,
27,30,41,42

 but the product information from 176 

SIGMA recommends a temperature of 25 °C for the enzymatic assay. Therefore, several 177 
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theoretical AK activities (0.01, 0.05, 0.2 U mL
-1

) were evaluated via the hydroxamate assay at 178 

both temperatures. The results did not show significant differences (Table S5); thus, the lower 179 

temperature (25 °C) was chosen for the next assays to minimize possible activity losses by 180 

enzyme denaturation in long-term experiments.
43

 181 

A similar procedure was followed for the pH selection. According to Aceti and Ferry
30

 and 182 

the product information from SIGMA, the maximum activity of AK appears between pH 7.0-7.6. 183 

Both extreme pHs were tested and, as expected, the effect on the AK activity (0.02 U mL
-1

) was 184 

negligible (Table S5). To prevent the pH from decreasing below 7.0 during the OMP assays due 185 

to the consumption of acetate (weak base), the initial pH was adjusted with KOH to 7.6.  186 

Finally, a possible inhibition of the AK activity by the OMPs was examined at 3 OMPs/AK 187 

ratios: 0.35 µg mg
-1

 (50 µg OMPs L
-1

 and 144 mg AK L
-1

), 3.5 µg mg
-1

 (100 µg OMPs L
-1

 and 188 

28.8 mg AK L
-1

) and 69 µg mg
-1

 (100 µg OMPs L
-1

 and 1.44 mg AK L
-1

). In all cases, a negative 189 

control without OMPs was included. The results (Table S5) indicated that AK activity was not 190 

altered by any OMPs/AK ratio tested, and thus neither by the corresponding solvents added with 191 

the OMPs pulse. The OMPs/AK ratio employed in the OMPs assays was 35 µg mg
-1

 (based on 192 

the theoretical AK activity of a mesophilic AD operating at an OLR of 2 g COD L
-1

 d
-1

 with a 193 

70% methanization efficiency). 194 

Enzymatic transformation of OMPs. Once the operating parameters were selected (25 °C, 195 

pH 7.6, 100 µg L
-1

 of OMPs and 2.9 mg L
-1

 of AK), the enzymatic transformation of the OMPs 196 

was evaluated at two reaction times (1 d and 5 d) with and without the primary substrate (acetate) 197 

in duplicate in 100 mL Erlenmeyer flasks. The final reaction media contained 145 mM of Tris-198 

HCl, 10 mM of MgCl2·6H2O, 705 mM of hydroxylamine hydrochloride, 200 mM of potassium 199 

acetate (in excess) and 50 mM of ATP. The acetate concentration, ATP consumption (Equation 200 
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S1), AK activity, pH and temperature were monitored (n=2) at different reaction times (5-11 201 

time points) and the concentration of OMPs was measured in replicate at the beginning (n=4) and 202 

end (n=4) of each experiment. 203 

Abiotic disappearance of OMPs. The disappearance of the parent micropollutants by 204 

adsorption was evaluated by comparing the concentration of OMPs (100 µg L
-1

 in distilled 205 

water) after 1 d at 25 °C in contact with AK (2.9 mg L
-1

) and without the enzyme. No 206 

representative differences were found (data not shown), so the adsorption of OMPs during the 207 

enzymatic assays with commercial AK was dismissed. Furthermore, to discard possible losses of 208 

the parent compound by evaporation, analytical difficulties or chemical reaction with the media 209 

(145 mM of Tris-HCl, 10 mM of MgCl2, 705 mM of hydroxylamine hydrochloride, 50 mM of 210 

ATP, 200 mM of potassium acetate), duplicated negative controls (without AK) were incubated 211 

under the same conditions as the AK assays specified in the previous section. Trichloroacetic 212 

acid was not used to stop the enzymatic activity at the end of the assays with OMPs because 213 

reductions of the concentrations of ERY, ROX and SMX were observed when it was added. The 214 

enzymatic reaction was assumed to stop once the solid phase extraction (SPE) was performed. 215 

Analytical methods. Conventional parameters. The operation of the methanogenic 216 

digesters was monitored in terms of the temperature, pH, total suspended solids (TSS), volatile 217 

suspended solids (VSS), alkalinity, ammonium, and total and soluble COD.
44

 Biogas production 218 

was recorded using Ritter milligas counters (Dr. Ing. Ritter Apparatebau GmbH, Bochum, 219 

Germany), and its composition was determined through gas chromatography (HP 5890 Series II). 220 

Volatile fatty acids (VFA) were measured individually in a gas chromatograph (HP 5890A) 221 

equipped with a flame ionization detector (HP 7637A).  222 
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Organic micropollutants analysis. Samples from the MRs were centrifuged at 1880 g for 223 

15 min. The supernatant was pre-filtered (AP4004705, Millipore) and filtered at 0.45 µm 224 

(HAWP04700, Millipore) before performing the SPE with 100 mL samples and 60 mg OASIS 225 

HLB cartridges (Waters, Milford, MA, USA).
4,16

 Samples from the enzymatic assays (50 mL) 226 

did not require any pre-treatment prior to SPE. To quantify the OMPs sorbed onto the 227 

methanogenic sludge, ultrasonic solvent extraction (USE) was conducted before SPE, as 228 

described by Gonzalez-Gil et al.
4
 The limits of quantification (LOQ) and recoveries applied to 229 

the MRs and the AK assays are shown in Table S3. 230 

Statistical analysis. All of the enzymatic assays with OMPs were conducted in duplicate, 231 

and each micropollutant concentration was measured twice (n=4). The results are expressed as 232 

mean ± standard deviation. The significant differences between the enzymatic results were 233 

statistically tested by analysis of variance (ANOVA) followed by the Dunnett T3 test for 234 

multiple comparisons. The normal data distribution was analyzed with the Shapiro-Wilk test, and 235 

the variance homogeneity was analyzed with the Levene test. When the variances were not 236 

homogeneous, Brown-Forysthe analysis was used to assess the significant differences. All of the 237 

statistical tests were performed at a 5% significance level using the IBM SPSS statistics® 238 

software 20.0. 239 

RESULTS AND DISCUSSION 240 

Biotransformation of OMPs during methanogenesis. Figure 2 aims to highlight, in a 241 

semi-quantitative representation, the relevance of the methanogenic step on the overall removal 242 

efficiencies reported for OMPs during AD of sewage sludge. The methanogenic biomass showed 243 

the capacity to biotransform all of the tested OMPs, although the efficiencies varied depending 244 
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on the compound. For example, SMX, NPX, TMP, OP, NP, FLX, EE2, TCS and the musk 245 

fragrances were significantly removed during methanogenesis, while the other compounds had 246 

biotransformations of less than 50%.  247 

It was not easy to get a single value for the removal of OMPs during AD process due to the 248 

divergences on the reported values. Trying to narrow these differences, the average AD removals 249 

depicted on Figure 2 correspond to studies that used mainly continuous mesophilic digesters, 250 

treating sewage sludge at a HRT between 10 and 30 d (Table S6). Even though, IBP, DCF, BPA, 251 

NP, FLX, the hormones and the musk fragrances still presented high deviations, so it was not 252 

possible to accurately determine the influence of the methanogenesis on their disappearance. 253 

Most of the OMPs appear near the diagonal (between the two dashed lines) of Figure 2, 254 

suggesting that the methanogenic biomass is the main responsible for their biotransformation 255 

during AD. Therefore, the action of key enzymes participating in the methanogenic route, 256 

particularly AK, were further investigated in the next sections. ROX and TMP are the only 257 

compounds that clearly showed a higher removal during the overall AD, which indicates that 258 

other anaerobic communities (i.e., hydrolytic and acidogenic) widely participate on their 259 

removal. 260 
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 261 

Figure 2. Semi-quantitative representation of the removal efficiencies of OMPs in the 262 

methanogenic reactors (MR, x-axis) versus the average removal during AD of sewage sludge
4,8–

263 

12,45–47
 (y-axis). Compounds with large divergences on the reported AD removals (standard 264 

deviations above 25%) are depicted by open ellipses. No data about the removal of OP in AD 265 

was found (60-70% in the MRs). The two dashed lines delimit the region where methanogenesis 266 

explains to a high extent the overall AD removal of the OMPs. 267 

Transformation of OMPs in the AK assays. The experiments were performed at two 268 

reaction times (1 and 5 days) and, with the exception of the negative control in the absence of 269 

AK, consisted of two assays with and without acetate, which were intended to assess the role of 270 

the main substrate on the possible AK catalytic transformation of OMPs. No significant 271 

differences were found between the negative control and the two AK assays in the 1-day 272 

experiment (data not shown), likely because the reaction time was not sufficient to illustrate the 273 

action of AK on OMPs. Hence, this section focuses on the 5-day assays. 274 
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Performance of assays. The ATP and acetate concentrations during the 5-day assay are 275 

shown in Figure 3. The AK activity during the first 2 d was 4.8 ± 0.2 U L
-1

, which resulted in a 276 

moderate conversion of acetate and ATP (approximately 30%). To increase the enzymatic 277 

activity, a second pulse of AK (8.6 mg L
-1

) and ATP (40 mM) was added to the reaction media 278 

after 52 h. As a result, more rapid acetate and ATP consumption was achieved (Figure 3), which 279 

led to an average AK activity of 13.4 ± 1.5 U L
-1

. After approximately 4 d, the depletion of both 280 

reagents almost stopped, which suggests that the phosphorylation of acetate (Reaction 1) reached 281 

an equilibrium. This is likely due to the decomposition of hydroxylamine at room temperature in 282 

neutralized solutions,
38,48

 which is required to perform Reaction 2 and thus to avoid equilibrium 283 

of Reaction 1. This hypothesis is also supported by the fact that the acetate concentration on day 284 

5 was higher than the value that was estimated stoichiometrically from the ATP consumption 285 

rates (Figure 3). The average AK activity during the 5-day assay with acetate was much higher 286 

(8.0 U L
-1

) than in the assay without acetate (0.1 U L
-1

), where a considerably lower conversion 287 

of ATP (2% after 5 d) was also achieved because the only potential substrates for AK are OMPs 288 

at a much lower concentration than the acetate. 289 

 290 
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Figure 3. ATP (limiting reagent; squares) and acetate (dots) concentrations in the 5-day AK 291 

assay with acetate. The arrow indicates the second addition of ATP and AK. The dashed line 292 

represents the stoichiometric acetate concentration considering the consumption rates of ATP.  293 

Chemical OMP transformation. The initial concentration of OMPs in distilled water is 294 

compared to the concentration of OMPs after 5 d in the negative control (reaction media without 295 

AK) in Figure 4. DZP, AHTN, ADBI, ERY, E1, EE2 and CBZ nearly completely disappear, 296 

likely due to the reaction between the ketone group of these compounds (except EE2) with the 297 

hydroxylamine required to perform the enzymatic assays. This hypothesis was confirmed 298 

experimentally because the OMPs concentration did not decrease in a reaction media without this 299 

amine. However, hydroxylamine was included in the reaction media to shift the action of AK 300 

towards acetate phosphorylation (Reaction 1). Obviously, this decision masks any possible effect 301 

of AK on the biotransformation of these seven OMPs. 302 
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 303 

Figure 4. Chemical transformation of OMPs expressed as the ratio between the concentration in 304 

the negative control (reaction media without enzyme) after 5 d (C) to the initial concentration in 305 

distilled water (C0). 306 

Enzymatic transformation. The concentrations of the 13 OMPs that were not chemically 307 

transformed in the negative control after the 5-day assays with AK are shown in Figure 5. Based 308 

on their chemical structures (Table S1), these compounds are classified into three groups. The 309 

first group includes carboxylic compounds (IBP, NPX, DCF), the second group are OMPs with 310 

hydroxyl groups (NP, OP, BPA, TCS, ROX, E2), and the third group comprises compounds with 311 
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other functional groups (HHCB, SMX, TMP, FLX). All data were normally distributed and, 312 

except for NPX, OP and HHCB, their variances were homogeneous. FLX, TMP, SMX, E2 and 313 

ROX were not affected by AK, since no significant differences were found between the negative 314 

control and both enzymatic assays (with and without acetate). In contrast, this difference was 315 

statistically significant (p<0.05) for IBP, NPX, DCF, NP, OP, BPA, TCS and HHCB proving 316 

that these 8 compounds are transformed by the action of the enzyme. No statistical differences 317 

were found between the concentrations of these 8 OMPs in the AK assays performed in the 318 

presence and absence of acetate, which suggests that no competitive inhibition occurred between 319 

the primary substrate (acetate) and the cometabolic substrates (OMPs).
19,20

 Moreover, these 320 

results suggest that once AK is available it can directly transform OMPs in the absence of 321 

acetate. However, the presence of the primary substrate is needed to trigger the synthesis of AK 322 

during the AD process; therefore, according to the definition of cometabolism,
17,20,21

 the 323 

transformation of OMPs (non-growth substrates) is fortuitous and inherently linked to acetate.  324 

To understand how AK can transform these compounds, it is necessary to look into the AK 325 

specificity. The action of AK from M. thermophila is quite restrictive because the size of the 326 

hydrophobic pocket and its affinity to the methyl group of acetate are determinant for substrate 327 

specificity.
42

 However, this enzyme still shows slight activity over larger substrates with 328 

carboxyl groups (propionate, butyrate), alcohols (ethanol) and even over compounds without 329 

hydrophobic groups (formate, glycerol, glycine, glycolic acid).
29,30

 For that reason, IBP, NPX 330 

and DCF, which have a carboxyl group (Group 1, Table S1) and are relatively small (1-2 331 

benzene rings), were significantly (p<0.05) biotransformed by AK (10-15%). In addition, 332 

compounds with hydroxyl groups in their chemical structure (Group 2, Table S1) could also be 333 

appropriate substrates for AK. Nevertheless, the molecular size appears to be determinant 334 
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because only the smaller compounds (NP, OP, BPA and TCS) were biotransformed (15-32%). 335 

The steric hindrance of ROX and E2 could hinder the formation of the enzyme-substrate 336 

complex and their further reaction. Similarly, ERY, EE2 and E1, which reacted chemically with 337 

the hydroxylamine, would not be affected by AK due to their large molecular size. As expected, 338 

the concentrations of the rest of the OMPs (Group 3, Table S1) did not decrease during the 339 

enzymatic assays, excluding HHCB (45-50%), for which a clear explanation was not found. It is 340 

hypothesized that AK could attack the ether group of this compound, but no references were 341 

found to support this enzymatic transformation. 342 

 343 
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 344 

Figure 5. Transformation of OMPs by AK after 5 days of reaction time. The dark bars represent 345 

the concentrations of OMPs in the negative control (reaction media without enzyme), the light 346 

bars refer to the assay with acetate, and the white bars refer to the assay without acetate. The 347 

asterisks indicate the statistical differences (p<0.05) of both AK assays with respect to the 348 

control. The compounds are sorted according to their chemical structures in three groups: (G1) 349 

OMPs with a carboxyl group, (G2) OMPs with a hydroxyl group and (G3) OMPs with other 350 

functional groups.  351 
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The results of these experiments demonstrate the importance of combining the specificity of 352 

the enzymes and the chemical structure of OMPs to understand the biotransformation 353 

mechanisms. Accordingly, we hypothesized that some of the evaluated OMPs (Figure 5) are 354 

enzymatically transformed by the cometabolic action of AK when ATP is available in the media 355 

and disregarding the presence of the primary substrate (acetate). The proposed pathway predicts 356 

the formation of phosphorylated TPs. For example, the carboxyl group of NPX could act as the 357 

acceptor of a phosphoryl group, as occurs with acetate (Figure 6). Because the detection and 358 

identification of TPs is very challenging, a deep understanding of the cometabolic enzymatic 359 

biotransformation of OMPs allows TPs to be predicted, as was revealed in this study. 360 

 361 

Figure 6. Proposed cometabolic pathway for the biotransformation of some OMPs, such as 362 

NPX, by the enzyme AK during methanogenesis.  363 

Relevance of AK to the biotransformation of OMPs during methanogenesis. The 364 

previous section suggests that when sufficient ATP is present in the media, AK could 365 

cometabolically phosphorylate compounds with carboxyl or hydroxyl groups and relatively low 366 

steric hindrance, such as IBP, NPX, DCF, NP, OP, BPA and TCS. Therefore, the next step is to 367 
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determine the relevance of this mechanism to the overall biotransformation that was observed for 368 

the aforementioned OMPs in the MRs. Figure 7 compares the biotransformation rates (µg L
-1

 d
-1

) 369 

that were obtained in the AK assays with acetate and in the MRs at the same reaction time (5 d). 370 

It is important to note that the AK activities in the MRs and the enzymatic assay are quite similar 371 

(7.0 and 8.0 U L
-1

, respectively). Assuming that 2/3 of the total CH4 is produced from acetate by 372 

aceticlastic archaea,
26

 the theoretical AK activity in the MRs (OLR of 1 g COD L
-1

 d
-1

 and 70% 373 

methanization would be 10 U L
-1

, which is similar to the measured value.  374 

Depending on the compound, the biotransformation rates in the MRs varied from 3.0 to 375 

14 µg OMP L
-1

 d
-1

, while this range is narrower in the AK assays (1.5–4.0 µg OMP L
-1

 d
-1

). IBP 376 

and DCF are hardly biotransformed during methanogenesis (3.0–3.5 µg OMP L
-1

 d
-1

), although 377 

an important removal mechanism (>45%) is related to AK action. The AK cometabolic 378 

mechanism is also relevant (61%) in the methanogenic biotransformation of BPA (6 µg OMP L
-

379 

1
 d

-1
). In contrast, the transformation of NPX by AK (12%) does not explain its high depletion 380 

during methanogenesis (14 µg OMP L
-1

 d
-1

). Likewise, AK accounts for only 28-38% of the 381 

overall biotransformation observed for OP, NP and TCS in the MRs (10–13 µg OMP L
-1

 d
-1

). On 382 

the other hand, AK would explain the whole biotransformation rate of HHCB in the MR 383 

(9 µg OMP L
-1

 d
-1

); what is a quite surprising fact, especially because it cannot be ascertain that 384 

this transformation occurs via the proposed cometabolic phosphorylation pathway.  385 

Based on these results, no direct relationship was found between the degree of 386 

biotransformation during methanogenesis and the contribution of the AK cometabolic 387 

mechanism. Moreover, the biotransformation rate was always higher in the MRs, which suggests 388 

that other active enzymes in addition to AK could further transform them. Some candidate 389 

enzymes could be those that continue the aceticlastic methanogenesis (Figure S1), those involved 390 
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in the hydrogenotrophic methanogenesis
49

 or other kinases, such as propionate and butyrate 391 

kinase. These two kinases have a larger hydrophobic pocket than AK to directly phosphorylate 392 

propionate and butyrate, respectively;
50,51

 therefore, they could be involved in the enzymatic 393 

transformation of the same OMPs as AK, but they could also promote the transformation of 394 

larger OMPs with hydroxyl groups, such as ERY, ROX, E1, E2 and EE2, which were not 395 

affected by AK. Otherwise, the high methanogenic biotransformations of TMP and SMX (Figure 396 

2) should be caused by other types of enzymes because kinases will not modify their chemical 397 

structure. In summary, by combining enzyme action and the OMP’s chemical structure, new 398 

insights are provided to understand the transformation mechanisms of OMPs during AD, which 399 

is useful for developing new strategies to maximize the elimination of OMPs from sewage 400 

sludge and to predict the TPs that form and their potential risks. 401 

 402 
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Figure 7. Biotransformation rates of the OMPs prone to be cometabolically phosphorylated by 403 

AK in the MRs (empty green bars) and in the AK assay with acetate (blue-pointed bars) after 5 404 

days. The percentages indicate the contribution of AK to the methanogenic biotransformation. 405 

G1 refers to OMPs with carboxylic compounds, and G2 refers to OMPs with hydroxyl groups. 406 

HHCB was excluded from this figure due to the lack of information regarding the 407 

phosphorylation action of AK on ether groups.   408 
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