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Abstract

A chemical and microbiological characterization on Hermetia illucens larvae was carried out

as well as an inactivation study of natural contaminating microorganisms and inoculated

E. coli O157:H7 in black soldier larvae by using High Hydrostatic Pressure (250 to 400 MPa,

for 1.5 to 15 min). Hermetia illucens was mainly composed of proteins (46.49%, d.m.)

followed by fat (37.88%, d.m.). Larvae had a high contamination load of Total Aerobic Meso-

philic bacteria (AMB) (1.58x107 cfu/g) and Enterobacteriaceae (1.15x106cfu/g). The pres-

ence of pathogenic microorganism varied: no Listeria spp. were found, but Salmonella

(1.15x106 cfu/g) and E. coli (7.08x105 cfu/g) were detected in the larvae extract. High Hydro-

static Pressure (HHP) was effective against natural contaminating yeasts and molds pro-

ducing more than 5 log cycle reductions at 400 MPa for any of the times considered (2.5 to 7

min), but a low reduction of total microbial load was achieved. The inactivation level of larvae

inoculated with E. coli O157:H7 varied. At 400 MPa for 7 min more than 5 log cycle reduc-

tions were achieved. Among the three inactivation models studied, the one that best

described the inactivation pattern of the cells, according to the Akaike index, was the

Biphasic model.

Introduction

Trends predict a steady increase in population, reaching nine billion people in 2050 and forc-

ing an increase in production of food and feed. This may affect agricultural ecosystems and the

consequence could be a shortage of land for cultivation, water, forests, fisheries, and biodiver-

sity resources, as well as nutrients and nonrenewable energy [1]. Insects, of which there are

about 2,000 edible species, have always been part of the human diet [1, 2]. Consequently, the

use of edible insects could be a sustainable protein supply, either for direct human consump-

tion or indirectly in new foods made from insect protein; and has recently been promoted by
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the FAO as a protein source in feedstock mixture.,. In a study carried out by [3] on quality of

proteins from edible indigenous insect food of Latin America and Asia, authors concluded

that those insects have a good nutritional value and are high in protein with all essential amino

acids.

Edible insects are usually cooked in salted water, dried on large surfaces, or slightly roasted

before consumption [4, 5]. The current insect processing industry has begun offering dried

products, using conventional or freeze-drying techniques [6]. However, sanitary authorities in

Europe advise that these insects should be suitably heated before consumption [7]. Raw insects

are characterized by elevated bacterial and fungal counts [7]. Those microorganisms often

contaminate external parts of insects as shell as their intestinal tract, and neither conventional

methods (degutting, boiling, sun-drying or roasting) nor modern freeze-drying techniques

seem to be fully effective against all microorganisms, they can remain contaminating the prod-

uct and when rehydrated, many could return to vegetative stadia. [8].

Processing must ensure the safety of the product while preserving its nutritional value. Var-

ious preservation methods (e.g. using UV, light, pH, high hydrostatic pressure) could be

applied to remove possible pathogenic microorganisms. E. coli is a known foodborne pathogen

that frequently causes foodborne illness outbreaks [9] Enterobacteriaceae, Staphylococcaceae,
yeasts and molds, and Bacilli have been found in the feed substrate of edible insects sold as pet

feed in Germany [6], considering those finding, pathogenic microorganisms as E. coli could be

found in the material used in rearing insects.

Among the possible insects to be used as protein sources, the larvae of the black soldier fly

(Hermetia illucens) is a very efficient organism that can be used in the management of organic

waste [10], and in animal feed [11]. However, one of the main concerns of the feeding system

is the hygiene of the pre-pupae and of the compost that is produced [12].

High hydrostatic pressure (HHP) is one of the most popular non-thermal preservation

technologies. The effect of this treatment has been demonstrated to be capable of inactivating

E. coli in beef meat [13], poultry meat [14], vegetables [15], ovine milk [16], fruits [17], seafood

[9], between other foods, but according to [18], up to today it has not been used for the decon-

tamination of edible insects.

Some studies to assess the impact of cold plasma, high hydrostatic pressure, and thermal

treatments have been carried out on the microbial surface of Tenebrio molitor (meal worm)

larvae [18]. Results indicated that high hydrostatic pressure at 600 MPa and thermal treat-

ments in a water bath at 90˚C induced the highest reduction of the total count of microorgan-

isms contaminating Tenebrio molitor. Consequently, high hydrostatic pressure could be a

promising technology to reduce the microbial load of insects before consumption of them as

food and feed.

In the present work, black soldier larvae were chemically and microbiologically character-

ized, and high hydrostatic pressure technology was used to inactivate natural contaminating

microorganisms and inoculated E. coli O157:H7. Inactivation data were fitted to different

mathematical models; those models are useful in an exposure assessment when a quantitative

risk assessment is needed.

Material and methods

Larvae

Larvae were supplied by BioFlyTech, S.L. (Alicante, Spain). Black soldier fly larvae were reared

on barley chaff and harvested in pre-pupae stage. After harvesting, they were frozen at -20˚C

for 1 h to kill them and then dried at 80˚C for 2 hours. Dried black soldier fly larvae were
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ground using an IKA M20 laboratory mill (IKA-Werke GmbH & Co. KG, Staufen, Germany)

and the resulting powder was used for microbiological and chemical characterization.

Chemical characterization

Fat and crude protein contents of larvae were determined in duplicate by the AOAC methods

960,39 and 981,10, respectively [19] by using a 2055 Soxtec (Foss Tecator, Sweden) and 2200

Kjeltec auto distillation unit (Foss Tecator, Sweden), respectively.

Proteins content was determined in the residue after precipitating the proteins with trichlo-

roacetic acid and then evaluated as described in the above mentioned method Moisture was

determined by infrared method at a constant temperature of 130˚C for 30 seconds, using a

Kern DBS 60–3 (Kern & Sohn GmbH, Germany), in duplicate. Ash content was measured fol-

lowing the method specified by ISO 2171:2010 for cereals, pulses and by-products. Nitrogen-

free extract (NFE) was determined by difference (NFE = 100%–(protein + crude fat + ash

+ crude fiber + moisture). Fat, protein, ash and NFE were expressed in dry matter.

Microbiological characterization

For each determination, 10.0 g ± 0.1 g sample with 90 ml peptone water (Scharlab, S.L, Barce-

lona, Spain) was homogenized for 3 min in a Stomacher (Scharlab, S.L, Barcelona, Spain).

Then the following methods, UNE-EN ISO 11290–1, UNE-EN ISO 6579, UNE-EN ISO 4833,

UNE-EN ISO-21528-2, UNE-EN ISO 16649–1, UNE-EN ISO 7954, were used to determine

Listeria spp., Salmonella spp., aerobic mesophilic bacteria, Enterobacteriacea, E. coli spp., and

yeasts and molds, respectively.

Culture preparation for inactivation studies

E. coli CECT 910 (E. coli O157:H7) was supplied by the Spanish Type Culture Collection and

used as inoculum of larvae. For rehydration of the lyophilized strain, it was transferred to 10

ml of Tryptic Soy Broth (TSB) (Scharlab Chemie S. A., Barcelona, Spain). After 30 min, 5 ml of

culture was inoculated in 200 ml of TSB and incubated at 37˚C with constant agitation at 200

rpm for 6 h. Then, 40 ml of the culture was transferred into 400 ml of TSB and incubated for

12 h at 37˚C with constant agitation at 200 rpm. After incubation, cells were centrifuged twice

at 4000 × g for 15 min at 4˚C and re-suspended in 20 ml of TSB. Then, cells were placed into 2

ml sterile plastic cryogenic vials containing TSB supplemented with 20% glycerol. The 2 ml

samples were immediately stored at –80˚C until they were needed. The approximate concen-

tration of each sample was 3 × 107 CFU ml–1

Sample preparation for inactivation studies

In these studies, uninoculated and inoculated larvae were used. In the case of inoculated larvae,

5 g of larvae suspended in 6 ml of peptone water (0.1%) were heated at 121˚C for 15 min to

allow sterilization, and then stored at 4˚C until use. Stored samples were aseptically transferred

to polyethylene bags, and 5 ml of sterilized peptone water was added. For inactivation studies,

1 ml of microorganism culture from cryogenic vials was transferred to 9 ml of peptone water,

and 1 ml of this cell suspension was transferred to each bag.

For uninoculated samples, 5 g of larvae suspended in 11 ml of sterilized peptone water

(0.1%) were placed in polyethylene bags.

Finally, bags containing uninoculated or inoculated larvae were vacuum sealed and placed

in the high hydrostatic pressure chamber for treatment.

Microbial inactivation kinetics on Hermetia illucens larvae
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High hydrostatic pressure treatment

High hydrostatic pressure treatments were performed in a pilot-scale unit (High-Pressure Food

Processor, EPSI NV, Belgium) with a vessel operating pressure of 2.35 litres and a maximum treat-

ment pressure of 600 MPa. The pressure transmitting fluid was a mixture of water and ethylene

glycol (70:30, v:v). The samples were pressurized at 250, 350, and 400 MPa for 0 to 15 min. All the

treatments were applied in duplicate, (two repetitions), with at least two replicates per treatment

and two bags per replica. After completing the treatment, the samples were removed from the ves-

sel and immediately transferred to an ice-water bath and stored under refrigeration (3 ± 1˚C)

until needed for analysis. In all cases, an unpressurized inoculated bag was used per repetition

with the subsequent replications as a control of the initial microbiological load.

Enumeration of microorganisms

Serial decimal dilutions of the treated samples and the controls were performed in 0.1% sterile

peptone water (Scharlab Chemie S. A., Barcelona, Spain). The enumeration medium used for

E. coli viable cells was Tryptic Soy Agar (TSA) (Scharlab Chemie S. A., Barcelona, Spain), for

total aerobic microorganisms it was Plate Count Agar (PCA) (Scharlab Chemie S. A., Barce-

lona, Spain), and for yeasts and molds it was Potato Dextrose Agar (PDA) supplemented with

10% of tartaric acid (Scharlab Chemie S. A., Barcelona, Spain). The selected dilutions were

incubated at 37˚C for 24 h and at 30˚Cfor 48 h for E. coli and total aerobic microorganisms,

respectively, and at 25˚C for 5–7 days in the case of yeasts and molds. The reduction of viable

cells was expressed as the decimal logarithm of the counts.

Mathematical models

GInaFiT software [20] was used to fit survival data of the E coli O157:H7 treated by high

hydrostatic pressure, to different mathematical models. The mathematical models contained

in the GInaFiT software used in this study were: the Weibull model (Eq 1), [21, 20], the Cerf

model with shoulder (Biphasic model) (Eq 2) [22], and the Log-linear model (Eq 3) [23].

Log10ðNÞ ¼ Log10ðNð0ÞÞ � ðt=dÞ
p

Eq 1

where N (CFU / mL) represents the final concentration of cells, N (0) (CFU / mL) is the initial

concentration of cells; t is the time (min); δ is the scale parameter; p is the shape parameter,

which corresponds to a concave upward curve if p< 1, a downward convex curve if p> 1, and

if p = 1 it describes a linear behavior.

Log10ðNÞ ¼ Log10ðNðoÞÞ þ Log10ðf � e
� kmax1t þ ð1 � f Þ � ekmax2tÞ Eq 2

where N (CFU/mL) represents the final concentration of cells; N(0) (CFU/mL) is the initial

concentration of cells; f is the fraction of the initial population considered as the bigger sub-

population, (1–f) is the fraction of the initial population considered as the smaller subpopula-

tion (which is more heat resistant than the previous subset); kmax1 and kmax2 (1/time unit) are

the rates of inactivation for the two subpopulations, respectively; t is the time (min)

NðtÞ ¼ ðNð0Þ � NresÞ � e
� kmaxt �

ekmaxS1

1þ ðekmaxS1 � 1Þ � e� kmaxt

� �

þ Nres Eq 3

where N (CFU / mL) represents the final concentration of cells; N (0) (CFU/mL) is the initial

concentration of cells; Nres is the concentration of residual cells (CFU/mL); kmax is the specific

inactivation rate (1/unit time); S1 is the parameter representing the time needed to appear sig-

nificant inactivation (shoulder) (time units); t is the time (min).
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Model comparison

The criteria and parameters used to compare the goodness of fit of the models were: Adjusted

coefficient of multiple determinations (AdjR2), Estimated Standard Deviation of the Regres-

sion Error Term (RMSE), and the Akaike Information Criteria for Model Selection [24].

The Akaike Information Criterion (AIC) is also a way of selecting a model from a set of

models. Two measures associated with the AIC can be used to compare models: the delta AIC
and Akaike weights. These are easy to compute, as calculations remain the same regardless of

whether the AIC or AICc is used, and they also have the advantage of being easy to interpret.

The delta AIC (Δi), is a measure of each model relative to the best model, and is calculated as:

Di ¼ AICi � min AIC Eq 4

where AICi is the AIC value for model i, and min AIC is the AIC value of the best candidate

model. Models having Δi< 2 suggest substantial evidence for the model, values between 3 and

7 indicate that the model has considerably less support, and Δi> 10 indicates that the model is

very unlikely [25].

Statistical analysis

The experimental design and the data analysis were performed using the Statgraphics1 Cen-

turion XV software (Statpoint Technologies, Inc., USA).

Results and discussion

Chemical characterization

The moisture content of the larvae was rather low (4.79±0.34) because they were dried to ex-

tend their stability during storage. Proteins represent the main component of the nutrient

composition of insects, between 20% and 77% based on dry matter [26]. Protein content of the

H. illucens larvae was 46.49% (Table 1). Nevertheless, [27] recently reported that according to

amino acid analysis a specific Kp of 4.76 should be applied to this larvae, in which case the

protein content would be 35.41. However, for comparison purposes with previously reported

protein values the widely accepted protein factor (6.25) was applied. Result obtained was con-

sistent with the results reported for different species of flies (Diptera), which were in a range of

35 to 64% [28, 29]. Lower protein content of the same larvae species but fed with poultry ma-

nure (37.88%) [30] and food waste (42%) has been reported [31]. The second main component

was total fat (38.63%), whose content was slightly higher than the values reported for other

species of Diptera such as Eristalis sp. (12%) or Ephydra hians (36%) [29], probably owing to

feeding variation, as mentioned with regard to protein content. Fiber and ash content were

within the ranges described for different diptera, which averages were 13.56% and 10.31%,

Table 1. Nutritional composition of Hermetia illucens (expressed as dry matter).

Parameter Composition (g/100 g dm)

Total proteins 46.49±0.09

Total fat 38.63±0.19

Ash 4.69±0.02

NFE n.d.

Crude fiber 11.39±0.09

n.d. Not detected

https://doi.org/10.1371/journal.pone.0194477.t001
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respectively [26]. No amount of nitrogen free extract was detected, which includes mainly car-

bohydrates, which agrees with previous information reported for some species of Diptera,

where carbohydrates comprised mainly fibers [26]. The amount of protein in H. illucens larvae

was higher than the values reported for pork edible flesh (11.9%), beef (17.7%), chickpea

(20.1%), hen egg (12.4%), and soybean seed (38%), expressed as dry base [32]. Some studies

have shown that black soldier fly meal can replace at least 25% of the fish meal in a diet [11] or

25% of the fish in a diet [33]. Therefore, the high protein content of the H. illucens larvae dried

powder might become an important protein source.

Microbiological characterization

Microbial characterization results are shown in Table 2. High counts can be observed for

Total Aerobic Mesophilic bacteria (1.58x107±1.82x106 cfu/g) and Enterobacteria (1.15x

106±2.58x105cfu/g). Similar results were reported by other authors [34]. Levels of 107 cfu/g for

Total Viable Count and 104−106 cfu/g for Enterobacteriaceae were found in fresh edible insects

[18].

Counts for pathogen microorganism varied. Although no Listeria spp. were found, Salmo-
nella (1.15x106±4.86x105cfu/g) and E. coli (7.08x105±1.81x105cfu/g) were detected in the larvae

extract, consequently preservation treatments would be needed to guarantee food safety in

relation to those pathogens.

It is necessary to take into account that H. illucens larvae can grow in a wide variety of waste

material. The larvae used in this study were grown in barley chaff rich in cellulose, probably

contaminated with high counts of yeasts and molds as well as spores and pathogenic microor-

ganisms that can contribute to the high counts of Total Aerobic Mesophilic bacteria.

Inactivation of natural contaminating microorganisms in larvae

The results for inactivation of yeasts and molds and Total Aerobic Mesophilic bacteria in lar-

vae samples treated by using various pressures and times are shown in Fig 1 (S1 Dataset). In

general, microbial count decreased with increasing pressure and time of treatment. The loga-

rithm of survivors of yeasts and molds showed a reduction close to 3.03 log cycles obtained by

applying a pressure of 250 MPa for 15 min, while at the same conditions, the reduction

achieved for Total Aerobic Mesophilic bacteria counts was only about 0.12 log cycles. In the

current study, no surviving yeasts and molds were found in the larvae samples after using a

pressure of 400 MPa for any of the times considered (2.5 to 7 min), while only 0.35 log reduc-

tions were achieved for Total Aerobic Mesophilic microorganisms after 7 min of treatment

(Fig 1) (S1 Dataset). Hence, treatment at 400 MPa is capable of effectively controlling the yeasts

and molds of larvae. The low effect of high hydrostatic pressure, on Total Aerobic Mesophilic

Table 2. Microbiological characterization in Log CFU/g of dry larvae.

Microorganism Counts (CFU/g)

Aerobic mesophilic 1.58x107±1.82x106

E. coli 7.08x105±1.8x105

Enterobacteria 115x106±2.58x105

Salmonella spp. 1.15x106±4.86x105

Listeria spp. n.d.

Yeasts and molds 5.81x106±1.72x106

n.d. = Not detected.

https://doi.org/10.1371/journal.pone.0194477.t002
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bacteria at the treatment conditions considered in the present work might be due to the pres-

ence of microbial spores or the absence of enough water in the vacuum sealed bags, despite of

larvae were moisten, as indicated by, [18]. Nevertheless, little information could be found in

the literature about inactivation of insect larvae natural flora by HHP. It has been reported that

high hydrostatic pressure of 600 MPa for 10 min reduced the Total Viable Count on the sur-

face of mealworms by 3 log cycles [18]. Inactivation of yeast in other foodstuffs has been

reported [35]. Those authors indicated that 300–600 MPa for 5 min effectively controlled the

Fig 1. Survival curves for natural contaminating microorganisms (S1 Dataset). (A) total mesophilic aerobes treated at 250 and

400 MPa; (B) yeasts and molds treated at 250. No survivors were observed at 400 MPa for yeast and mold.

https://doi.org/10.1371/journal.pone.0194477.g001
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occurrence of spoilage yeasts in cheese while in the present work 400 MPa for 2.5 min was

enough for totally inactivate mold and yeasts.).

Other treatments as the direct plasma treatment had been used by [18]. Authors concluded

that components emitted by the plasma jet had little detectable inactivating effect on the sur-

face microflora of mealworm larvae.

According to [18] the indirect plasma treatment resulted in the best surface decontamina-

tion procedure of mealworm larvae comparing all treatments considered in their study (HHP,

heat treatment, direct and indirect plasma treatments.

Inactivation of E. coli O157:H7 inoculated in larvae

Inactivation results obtained in the present work for E. coli O157:H7 inoculated in Hermetia
illucens larvae can be seen in Fig 2 (S2 Dataset). As can be seen in the Fig 2 (S2 Dataset), the

number of decimal reductions on E. coli survivors increased as the pressure and treatment

time were increased achieving a maximum of a 6.56 log-cycle reduction in viable cell numbers

of E. coli O157:H7 in larvae after a treatment at 400 MPa for 7 min. This value, 6.56 log-cycle

reduction, is largest than that considered as safe (5 log cycles reduction) for FDA for non-ther-

mal technologies. For other pressure-time combinations applied in this study, a reduction of

less than 1.5 log cycles was obtained by applying a pressure of 250 MPa for 5 min. This result

was similar to that obtained by [36] when the same bacterium was inoculated in TSBY broth.

Those authors [36] achieved reductions of 1.39 and 1.47 CFU/ml after subjecting samples to a

treatment of 276 MPa for 5 and 10 min, respectively. Treatment at 350 MPa for 10 min pro-

duced a reduction of 3.93 log cycles for E. coli, and at 400 MPa for 1 min the reduction was

2.78 log10 CFU/g. Similar results were reported for E. coli in minced mild smoked rainbow

trout derived from fillet [9], where a reduction of about 2.3 log10 units of E. coli occurred after

1 min with 400 MPa.

The inactivation curves for the pressures studied (250, 300, and 400 MPa) never followed a

straight line; thus they could not be analyzed by using a log-linear model such as the Bigelow

model (Fig 2). Mathematical models are of paramount interest in quantitative risk assessment.

They are generally used in the exposure assessment step of the analysis. Models are also useful

in case of changing some environmental or process factors that can affect the behavior of the

microbial inactivation, in this way they permit developing new safe processing conditions.

An attempt to model the inactivation of E. coli O157:H7 on black soldier larvae was carried

out. Non-log-linear curves obtained were characterized by a prolonged tail. The curves were

fitted to different mathematical models by using GInaFiT [20] to identify the best model for

the inactivation curves.

Table 3 shows the parameters for the different models tested. In general, the model parame-

ters suggested that as the pressure increased the resistance of the microorganism decreased.

The Weibull model [21] did not fit the inactivation curve at 250 MPa, but it had a good fit for

the survival curves at the other pressure levels used in this study (Table 4). The Log-linear with

tail model [23] fitted experimental data properly for all the pressures studied, but the one that

fitted the experimental data best was the Biphasic model [22] (Table 4). According to these

results, the last two models show a good fit as indicated by the low root mean square errors

(RMSE) and can be used to describe the inactivation curves of E. coli O157:H7 in black soldier

larvae. Nevertheless, the Akaike Information criterion was applied for model selection. Table 5

shows the values for the Akaike increments (Δi). Models with Δi� 2 have substantial support

and should receive consideration when making inferences. Models having Δi of about 4 to 7

have considerably less support, while models with Δi� 10 have essentially no support, and

might be omitted from further consideration. In our study, only the Biphasic model has a Δi�

Microbial inactivation kinetics on Hermetia illucens larvae
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2. This means that this model should receive consideration when making inferences, despite

the fact that it has more parameters than the Log-linear with tail model.

Conclusions

According to chemical characterization carried out in this study, black soldier larvae could be

used as a protein source for animal feeding as well as to produce human foodstuffs. Hermetia
illucens larvae has high levels of microbial contamination and some of the contaminating

Fig 2. Survival curves for E. coli O157:H7 and fitted lines (S2 Dataset). (A) for Log-linear model and (B) for Biphasic model on black

soldier larvae at 250 MPa, 350 MPa, and 400 MPa.

https://doi.org/10.1371/journal.pone.0194477.g002
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microorganisms are E. coli and Salmonella- The presence of those microorganisms encourage

the need of using some control measures if they will be used to be processed as feed or foods.

Although the effect of HHP considering the applied conditions of this study had a limited

effect on Total Aerobic Mesophilic bacteria, HHP shown its capability in controlling mold and

yeast and produce enough log-decimal reductions on E. coli O157:H7 load ensuring the safety

of the larvae for this microorganism. It is necessary more research and data on the impact of

high hydrostatic pressure treatments on other pathogenic microorganisms that can contami-

nate the surface of Hermetia illucens larvae in order to develop effective decontamination con-

ditions and ensure the microbial safety of those larvae as food and feed materials. Those

studies should be developed by using including Hermetia illucens larvae reared on different

legally admitted substrates for food and feed.

Supporting information

S1 Dataset. Dataset for natural contamination.

(DOCX)

S2 Dataset. Dataset for E coli O157:H7.
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Table 3. E. coli O157:H7 kinetic parameters obtained for each mathematical model used in the study.

Pressure

[MPa]

Weibull

δ ± σ [min�ml/CFU]

Log-linear with tail kmax ± σ [CFU/ml�min] Biphasic

kmax1 ± σ [CFU/ml�min] kmax2 ± σ [CFU/ml�min]

250 NA 0.53±0.19 0.55±0.42 0.003±0.05

350 0.11±0.10 2.95±0.21 3.59±1.18 0.19±0.07

400 0.42±0.34 7.01±0.86 7.23±0.59 0.63±0.11

σ = Standard deviation.

NA = Not available.

https://doi.org/10.1371/journal.pone.0194477.t003

Table 4. Goodness of fit for the various models used to describe the experimental data (E. coli O157:H7).

Pressure (MPa) Weibull Log-linear with tail Biphasic

RMSE(a) AdjR2(b) RMSE(a) AdjR2(b) RMSE(a) AdjR2(b)

250 NA NA 0.140 0.781 0.143 0.764

350 0.321 0.952 0.242 0.971 0.202 0.983

400 0.734 0.861 0.526 0.935 0.313 0.971

(a) Estimated root mean square of the nonlinear regression model.
(b) AdjR2, Adjusted coefficient of multiple determination.

NA = Not available.

https://doi.org/10.1371/journal.pone.0194477.t004

Table 5. Akaike increments (Δi) for the various models used to interpret the experimental data (E. coli O157:H7).

Model 250 MPa 350 MPa 400 MPa

Log-linear with tail 6.29 29.30 23.7

Biphasic 0 0 0

https://doi.org/10.1371/journal.pone.0194477.t005
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