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Abstract
This review is dedicated to recent progress in the active field of rogue 
waves, with an emphasis on the analytical prediction of versatile rogue 
wave structures in scalar, vector, and multidimensional integrable nonlinear 
systems. We first give a brief outline of the historical background of the rogue 
wave research, including referring to relevant up-to-date experimental results. 
Then we present an in-depth discussion of the scalar rogue waves within two 
different integrable frameworks—the infinite nonlinear Schrödinger (NLS) 
hierarchy and the general cubic-quintic NLS equation, considering both 
the self-focusing and self-defocusing Kerr nonlinearities. We highlight the 
concept of chirped Peregrine solitons, the baseband modulation instability 
as an origin of rogue waves, and the relation between integrable turbulence 
and rogue waves, each with illuminating examples confirmed by numerical 
simulations. Later, we recur to the vector rogue waves in diverse coupled 
multicomponent systems such as the long-wave short-wave equations, the 
three-wave resonant interaction equations, and the vector NLS equations (alias 
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Manakov system). In addition to their intriguing bright–dark dynamics,  
a series of other peculiar structures, such as coexisting rogue waves, watch-
hand-like rogue waves, complementary rogue waves, and vector dark three 
sisters, are reviewed. Finally, for practical considerations, we also remark on 
higher-dimensional rogue waves occurring in three closely-related (2  +  1)D 
nonlinear systems, namely, the Davey–Stewartson equation, the composite 
(2  +  1)D NLS equation, and the Kadomtsev–Petviashvili I equation. As 
an interesting contrast to the peculiar X-shaped light bullets, a concept of 
rogue wave bullets intended for high-dimensional systems is particularly put 
forward by combining contexts in nonlinear optics.

Keywords: rogue wave, modulation instability, integrable turbulence

(Some figures may appear in colour only in the online journal)

1.  Introduction

1.1.  Motivation and historical background

The field of rogue waves is currently one of the most active multidisciplinary areas of research 
encompassing oceanography, hydrodynamics, optics and photonics, plasma physics, and 
Bose–Einstein condensation [1, 2]. Scientists from a wide range of disciplines acknowledge 
that this general rogue wave concept can describe in a relevant way extreme wave events of 
different origins, from the killer waves in the ocean [3–6] to the extreme pulses in optics [7, 
8], and even the financial crises in economy [9].

Considering the ubiquity of extreme wave dynamics, and the multiplicity of their contex-
tual denominations, it is important to begin our review article by providing an accessible rogue 
wave definition that most scientists would be inclined to approve. Indeed, this issue of shaping 
up a unifying rogue wave concept has been debated in past years [1]. It is therefore of concern 
to recall the observational origin of this concept arising from oceanography. Whereas it had 
been nourished long ago by sailor folklore of monster or killer waves, it was scientifically con-
firmed by live accounts of maritime disasters involving tankers and liners as well as anoma-
lous water elevation recordings on offshore platforms, such as the henceforth notorious New 
Year’s wave at the Draupner platform in the North Sea, recorded on January 1st, 1995 [3].

From scientific accounts in oceanography, three main features have arisen to qualify a 
rogue wave phenomenon [7, 10]. The dynamics should manifest rare transient events of 
giant amplitude. This is first quantified by comparing the wave amplitude to the significant 
wave height (SWH), defined as the average amplitude of the highest third of the wave events.  
To qualify, a wave transient should have a maximum amplitude more than twice (or larger than 
2.0–2.5, according to different authors) the SWH. Secondly, at the observational level, the 
wave transient should appear and disappear unexpectedly. Even though this second criterion 
appears to be merely qualitative, it remains essential to rule out high-amplitude solitary waves 
from the picture. For instance, the second criterion excludes the tsunamis in hydrodynamics, 
since once triggered by a primary catastrophic event, usually of geological origin, their propa-
gation can be followed over large distances. For a similar reason, in photonics, the second cri-
terion rules out stable mode-locked laser pulses, whatever gigantic their peak power may be.

It is always conceivable that transient events of very large amplitude might be resulting 
from the linear superposition of random waves [11]. However, in that situation, the likelihood 
of waves transients exceeding twice the SWH would be extremely scarce. Such likelihood of 
wave events is assessed by recording the probability distribution function (PDF) of the wave 
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amplitudes. Since linear superposition models generally entail Gaussian distributions, the 
recurrent observation of rogue wave phenomena, beginning from the field of oceanography 
and flourishing in photonics, has given nonlinearity an essential role in most rogue wave con-
texts. Therefore, comes the third criterion, stating that rogue wave events should arise more 
frequently than they would if they were obeying a classical Gaussian distribution. This is an 
indispensable technical aspect in rogue wave experimentation, which is the scientific transla-
tion of the wicked maritime experience of witnessing a catastrophic event that should not have 
reasonably occurred during the lapse of time spent on the sea, would the forecast statistics be 
based on a classical probability distribution. Hence, the typical PDF of rogue wave dynamics 
will display an L-shaped distribution of amplitudes [12–16].

Rogue wave observation and experimentation in various propagation media has naturally 
been a strong incentive for fundamental rogue wave modelling, mathematically and numer
ically. As an integrable scalar equation of nonlinear wave propagation in one dimension, with 
versatile applications from deep water hydrodynamics to nonlinear fibre optics, the nonlinear 
Schrödinger (NLS) equation has played a central role in the systematic investigation of rogue 
wave phenomena. In 1983, Howell Peregrine proposed a first-order rational solution of the 
NLS equation, endowed with localization in both space and time (1  +  1) dimensions [17]. This 
solution, although usually termed as ‘Peregrine soliton’, is not a soliton in the ordinary sense, 
since its profile never stays stationary. Instead, this doubly-localized pulse gradually develops 
from a background excitation, reaches a climax worth three times the background amplitude, 
then vanishes back into the background in an otherwise symmetrical fashion. Its high peak 
amplitude as well as its asymptotic connection with a constant background, which supports 
the aesthetic idea that this extreme wave comes from nowhere and disappears without leaving 
a trace [18], has made the Peregrine soliton a central prototype of rogue wave manifestations, 
even though the notion of statistical distributions, which is meant to confront the experimental 
appearance of rogue waves among chaotic wave fields, namely, our third criterion, has been 
mostly absent to date from mathematical investigations. Nevertheless, the Peregrine soliton has 
until now continued to play a pivotal role for modelling rogue waves in scalar NLS systems, as 
well as a gauge to assess other rogue wave solutions proposed for systems other than the NLS 
equation. Analytically, it can be considered as the limiting case of breather solutions on a finite 
background, when their recurrence period tends to infinity [19]. Therefore, it is anticipated that 
Peregrine-type solitons will bear a special relationship with modulation instability (MI), which 
we shall specify and illustrate at several places along our review.

In nonlinear science, the diversity of the nonlinear propagation media that can be consid-
ered in realistic settings entails a wide range of modelling equation candidates [20]. Above all, 
in some media, the dominating nonlinearity will be quadratic, instead of cubic as in the NLS 
equation. In addition, considering the bandwidth and intensity of the medium excitation, the 
inclusion of higher-order dispersive and/or nonlinear terms can become a necessity to reach 
an acceptable modelling accuracy. Finally, the vector nature of interacting wave fields can 
also manifest, as well as the higher dimensionality of the propagation, when we go beyond 
one-dimensional guided propagation. Thus, the possible existence of rogue wave phenomena 
in various experimental fields of nonlinear science justifies their mathematical and numer
ical investigations within a wide range of propagation equation models. Note that in the fol-
lowing, we have privileged the mathematical exploration of integrable equations, in order to 
explicitly obtain exact rational rogue wave solutions. Therefore, dissipative nonlinear systems 
[21] are not discussed here, albeit their practical importance in several areas of rogue wave 
experimentation [14], from current-driven hydrodynamics to ultrafast lasers [3, 8, 22]. Also, 
the constraint of integrability often dictates a specific relationship between the model param
eters, weighing in a fixed fashion several physical effects that otherwise can feature a large 
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variability among realistic propagation media. Nevertheless, the mathematical exploration of 
exact rational solutions in various integrable models can be considered as the safest ground to 
discover new possibilities of rogue wave existence, endowed with novel features. Sometimes, 
the latter can even be extrapolated numerically to closely related models whose parameter sets 
break the integrability, but still possess qualitatively similar solutions [23].

1.2.  Outline of the review

The structure of the review is organized in the following. In section 2, a short peregrination 
around soliton solutions on a background of the scalar NLS equation  will bring us to the 
Peregrine soliton, the premier rogue wave mathematical prototype (section 2.1.1). We then 
present a series of exact rogue wave solutions recently obtained from scalar nonlinear equa-
tions that can be considered as extensions of the NLS equation. This extension begins with the 
Hirota equation (section 2.1.2), and the infinite NLS hierarchy (section 2.1.3), which general-
izes the construction of higher-order integrable equations. These extended equations do also 
accept the rational Peregrine soliton as a valid solution, exclusively in the self-focusing case. 
The Sasa–Satsuma equation is then presented as an interesting situation where the structure of 
the rogue wave solution can significantly differ from the Peregrine soliton, with the possibility 
to involve two peaks instead of a single one, and four holes (section 2.1.4).

Whereas the ubiquity of rational rogue wave solutions among a wide range of nonlin-
ear propagation equations may look surprising, it provides a hint for a common generating 
mechanism. As mentioned above, the Peregrine soliton can be related to a limiting case of 
MI, when the modulation period tends to infinity. Therefore, the existence of such rational 
solution would be precisely contingent on the existence of a net positive MI gain for any arbi-
trarily small modulation frequency, namely, the existence of baseband MI. This fundamental 
relationship is developed in section 2.1.5, and illustrated for other propagation equations sub-
sequently investigated.

Analytical rational solutions provide us with prototypical rogue wave profiles that are 
essential in experimental confrontation. Nevertheless, to assess whether rogue waves can be 
excited in realistic conditions, it is also crucial to undertake systematic numerical simulations 
that incorporate noise into the continuous-wave (cw) background. Noise and nonlinearity will 
produce turbulent wave fields, over which rogue wave events can be statistically analysed. 
This approach is presented in section 2.1.6, in the framework of the integrable NLS equation, 
revealing, besides Peregrine solitons, the impact of breather and soliton collisions on the gen-
eration of localized extreme events.

Adding higher-order terms with more parameters into the propagation equation  is also 
a way to produce new possibilities of balancing several physical effects, which is known to 
impact the domains of existence of soliton solutions. This is also true for rational solutions: 
we show in section 2.2 that a cubic-quintic extended NLS equation allows for rational rogue 
waves solutions in both focusing and defocusing nonlinearity cases, a feature absent from the 
NLS hierarchy. These Peregrine-like rational solutions feature a strongly localized frequency 
chirping effect, hence their denomination of chirped Peregrine solitons. Rogue waves formed 
with either focusing or defocusing nonlinearity are also illustrated within the Fokas–Lenells 
equation  (section 2.2.3), revealing the subtle role of the self-steepening term that plays in 
rogue wave formation.

Coupled nonlinear systems also constitute an abundant class of experimentally relevant 
dynamical systems. They consist of interacting wave components of different modes, fre-
quencies or polarizations, commonly termed vector systems. Similar to the inclusion of 
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additional physical effects and free parameters, it is known that the model extension from a 
scalar to a vector one usually expands the domains of existence for MI and solitons. We also 
expect the same with respect to rogue waves. Moreover, the vector character will provide 
additional possibilities for rogue wave profiles, such as coupled bright–dark and dark–dark 
rogue waves.

These possibilities are explored in section 3, starting in section 3.1 with the long-wave 
short-wave (LWSW) resonant system, which is a general parametric process occurring 
when the group velocity of the short wave matches the phase velocity of the long wave. The 
(1  +  1)-component LWSW system demonstrates dark–bright rogue waves, whereas the study 
of the (2  +  1)-component LWSW equation reveals the unusual coexistence of two different 
rogue waves solutions on a common cw background. The three-wave resonant interaction 
system (TWRI) is another popular vector system that is relevant in many areas, such as in 
the nonlinear optics of quadratic propagation media. Its investigation in section 3.2 unveils 
bright–dark–bright and dark–dark–bright rogue wave triplets, along with some peculiar rogue 
wave patterns such as watch-hand-like (WHL) super rogue waves and complementary rogue 
waves. In section 3.3, the Manakov system, which models for instance the propagation in opti-
cal fibres with randomly varying birefringence, is shown to exhibit vector dark rogue wave 
solutions, as well as higher-order solutions that take the form of vector dark triplets, which we 
dub dark three sisters, the dark counterpart of the three-sister rogue waves reported to occur in 
the Great Lakes in North America. All the models investigated in section 3 provide the occa-
sion to verify the direct relationship between the existence of rogue wave solutions and that 
of baseband MI. Particularly, the vector dark rogue waves predicted for the Manakov system 
have just recently observed in telecommunication fibres.

As soon as the fields are no longer confined into unidimensional waveguides, the exten-
sion to higher-dimensional models represents a physically natural albeit mathematically 
challenging task, as accounted for in section 4. Conserving integrability as a guiding rule, 
several (2  +  1)D models are presented: the Davey–Stewardson (DS) equation (section 4.1), 
a composite modified Korteweg-de Vries (mKdV)–Hirota equation  (section 4.2), and the 
Kadomtsev–Petviashvili I (KP-I) equation  (section 4.3). Notably, the composite mKdV–
Hirota model allows us to present the novel concept of a rogue wave bullet, namely a light 
bullet propagating in a given space-time direction that has the shape of a rogue wave in other 
dimensions. Similarly, rogue wave bullets are also demonstrated in the KP-I equation, with 
distinct additional features.

Finally, the last section 5 concludes this review and proposes an outlook for future possible 
directions of theoretical research in this fast growing field.

2.  Scalar rogue waves

2.1. The NLS equation hierarchy

2.1.1. The NLS equation and solitons on a finite background.  The scalar 1D integrable NLS 
equation [24] plays a central role in nonlinear science, and is well known for its relevance to 
capturing any weakly nonlinear evolution of narrow-band processes [19]. For instance, it can 
describe well the small-amplitude gravity waves in deep water [25], the Langmuir waves in 
hot plasmas [26], the beam/pulse propagation in optical waveguides or fibres [20], and even 
the Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps in the mean-
field regime [27, 28]. In dimensionless variables, this equation can be cast into the following 
standard form
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iuξ +
1
2

uττ + σ|u|2u = 0,� (2.1)

where u(ξ, τ) is the complex wave envelope traveling along ξ, with τ being the transverse 
variable. Along this review, the subscripts stand for partial derivatives, unless otherwise stated. 
In optical contexts, while the second term on the lefthand side of equation (2.1) denotes the 
group-velocity dispersion (GVD) or diffraction responsible for the pulse broadening or beam 
divergence, the third term accounts for the self-focusing (σ = 1) or self-defocusing (σ = −1) 
Kerr nonlinearity that acts to possibly counterbalance the former effect. Here for brevity, we 
fix the GVD in (2.1) to be anomalous while letting the nonlinearity sign be changeable, which 
can be equivalently transformed to the case with a fixed nonlinearity sign but a variable dis-
persion [20].

Since the pioneering work of Zakharov and Shabat in 1971 [29], there has been an intense 
and continued investigation into the analytic solutions of the NLS equation, both for their 
intrinsic scientific interest and for their potential to provide new insights into many impor-
tant applications. Thanks to integrability, the NLS equation  is now found to admit several 
exact elementary analytical solutions (solitons, cnoidal waves, breathers), but one in particular 
describing a localized soliton on a finite background is of much concern as the latter can help 
understand the physics of extreme waves. The first solution of this type is the Kuznetsov–Ma 
(KM) soliton, which was derived by Kuznetsov in 1977 [30] and separately by Ma in 1979 
[31]. Considering the general plane wave background given by

u0(ξ, τ) = a exp(ikξ + iωτ), k = σa2 − 1
2
ω2,� (2.2)

the KM soliton can be expressed as

uKM = u0
cos(mξ − 2iφ)− cosh(φ) cosh[n(ωξ − τ)]

cos(mξ)− cosh(φ) cosh[n(ωξ − τ)]
,� (2.3)

where m = σa2 sinh(2φ), n = 2
√
σa sinh(φ) and φ ∈ R.

The second breather-type solution on a finite background was originally presented by 
Akhmediev in 1986 [32], starting with the MI, hence the term Akhmediev breather (AB). On 
the same background (2.2), we can express AB as

uAB = u0
cosh(mξ − 2iφ)− cos(φ) cos[n(ωξ − τ)]

cosh(mξ)− cos(φ) cos[n(ωξ − τ)]
,� (2.4)

where now m and n are defined by m = σa2 sin(2φ) and n = 2
√
σa sin(φ), with φ ∈ R.

We should point out that, compared to their original forms shown in [30–33], both solu-
tions (2.3) and (2.4) have been generalized by including two extra free parameters ω and σ. 
Particularly, as σ = −1, they are still, although singular, solutions of equation (2.1) and are 
easy to verify by recalling that cos(ix) = cosh(x). Despite the similarity between solutions 
(2.3) and (2.4) (basically with trigonometric cosines and hyperbolic cosines interchanged), 
the former indeed exhibits distinctly different dynamics than the latter. As seen in figures 1(a) 
and (b), the KM soliton periodically breathes along the propagation direction ωξ − τ = 0, 
whereas the AB always oscillates in the transversal direction, but with its localized peaks being 
oriented along the line ωξ − τ = 0. The period of both breathers is determined by the free real 
parameter φ; the larger the value φ, the more intensely the breathers oscillate. Recently, both 
ABs and KM solitons with ω = 0 were successively realized in optical fibres [34, 35] and then 
observed at the same time in a water wave experiment [36]. However, both of them are only 
observable for σ = 1, as predicted by (2.3) and (2.4).
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Interestingly, as the frequency parameter φ approaches zero, either the solution (2.3) or 
(2.4) can boil down to the much simpler rational form

uPE = u0

[
1 − 2iσξ + 1/a2

σ(ωξ − τ)2 + σ2a2ξ2 + 1/(4a2)

]
,

�
(2.5)

which is also an exact solution of the NLS equation  (2.1). This rational solution was first 
proposed in 1983 by Howell Peregrine in the domain of hydrodynamics [17], and hence the 
name Peregrine soliton. It is now evident that the Peregrine soliton corresponds to the limiting 
case of either KM solitons or ABs when the period tends to infinity [33–36], and only exists 
in the self-focusing regime (as σ < 0, the solution (2.5) will be singular and thus physically 
irrelevant). To date, Peregrine solitons have been observed in a water wave tank [33], in optical 
fibres [34], and in plasmas [37].

One may notice that the solutions (2.3)–(2.5) presented above indeed hold true for an arbi-
trary value of σ, although the latter is frequently normalized to ±1 in the model (2.1). We 
let σ be an arbitrary constant in the solutions because this can help inspect the transitionary 
behavior of solutions, if it exists, in the vicinity of σ = 0. In this review, we shall follow such 
a convention to present solutions, unless otherwise stated.

Among the above three types of solitons built on a finite background, the Peregrine soliton 
has the peculiarity of being localized in both space and time, with a peak amplitude which 
can reach three times the surrounding background height [38], as seen in figure 1(c). It thus 
depicts a wave that appears from nowhere and disappears without a trace [18], matching the 
fleeting nature of oceanic rogue waves frequently witnessed by seafarers [3, 10, 12]. For this 
reason, the Peregrine soliton has often been thought of as the prototype of rogue waves [39], 
as mentioned in section 1.1.

Later, with the great success of the Peregrine soliton in modelling realistic rogue waves, 
researchers began to seek higher-order (multiple) rogue wave solutions to the NLS equa-
tion [40–44], using either the Darboux transformation (DT) [45] or Hirota bilinear method 
[46]. Almost in the same breath, super rogue waves with order up to the fifth have been 
observed in a water wave tank [47–49]. Here we do not present the analytical results of 
higher-order rogue waves for scalar systems but leave this interesting issue in section 3 for 
the analysis of vector rogue waves. On the other hand, there was also an intensive study 
on controllable rogue waves in dispersion- and nonlinearity-managed systems whose model 
coefficients can be made variable [50, 51]. Basically, such types of rogue waves, usually con-
strained by stringent parameter conditions, can often be constructed from the known solutions 

Figure 1.  3D surface and contour plots of (a) a Ma soliton, (b) an AB, and (c) a 
Peregrine soliton for a = 1, ω = 1/2, and σ = 1, with φ being specified in the figures.
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of the constant-coefficient equations by means of self-similar symmetry reduction. Hence, in 
this review, we are primarily concerned with the unmanaged rogue wave systems, with scope 
beyond the NLS framework.

In practice, the NLS equation is a little bit poetical to realistic problems, as there are also 
other significant physical effects that need to be considered, aside from the GVD and Kerr 
nonlinearity. For example, one needs to take into account the third-order dispersion (TOD), 
self-steepening, and/or delayed nonlinear response when studying the ultrashort pulse propa-
gation in highly dispersive optical fibres [52, 53]. Under these circumstances, the integrable 
Hirota equation [46] and Sasa–Satsuma equation [54] can gain more ground for application as 
compared to the simple NLS equation, although the former two usually involve higher-order 
terms with fixed proportions.

2.1.2. The Hirota equation.  Let us first consider the Hirota equation [46], which, in dimen-
sionless form, can be written as

iuξ +
1
2

uττ + σ|u|2u + iεuτττ + iγ|u|2uτ = 0, ε =
γ

6σ
.� (2.6)

The last two terms that enter with the real coefficients ε and γ are responsible for the TOD and 
a time-delay correction to the cubic term, respectively [55, 56]. For the sake of discussion, 
here and in what follows we will adopt the denomination proposed in [57, 58], namely self-
steepening, for the last term |u|2uτ , although in some works, it is the term (|u|2u)τ  that was 
referred to as self-steepening [52, 53]. Meanwhile, we will assume γ � 0 without loss of gen-
erality. The parameter relation ε = γ/(6σ) is chosen so that equation (2.6) is integrable. It is 
easy to see that if γ = 0, equation (2.6) can reduce to the NLS equation (2.1). Noteworthily, in 
(2.6), we have taken into account both the self-focusing and self-defocusing scenarios which 
are specified by σ.

As shown in [55, 56, 59], the Hirota equation is equivalent to the compatibility, Rτξ = Rξτ , 
of the two Lax linear operators

Rτ = UR, Rξ = VR,� (2.7)

where R = [r, s]T  (T means a matrix transpose), and

U = −iλσ3 + Q, V = (1 + 4ελ)[λU − i
2
σ3(Q2 − Qτ )] + εK,� (2.8)

with λ being the spectral parameter, and

σ3 = diag(1,−1), Q =

[
0 −u

σu∗ 0

]
,� (2.9)

K = QτQ − QQτ − Qττ + 2Q3.� (2.10)

Here the asterisk denotes complex conjugation. Hence, using the Darboux dressing technique 
[55, 56, 60] based on the above Lax pair, one can readily derive the rogue wave solutions of 
the Hirota equation (2.6).

We begin with the plane wave solution that now reads

u0(ξ, τ) = a exp(ikξ + iωτ),� (2.11)

where

k = ηa2 − 1
2
ω2 + εω3, η = σ − γω.� (2.12)
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Seeding it into the Darboux formalism yields the fundamental rogue wave solution

uHR = u0

[
1 − 2iηξ + 1/a2

σ(χξ − τ)2 + η2a2ξ2 + 1/(4a2)

]
,� (2.13)

where

χ = ω + γa2 − 3ω2ε.� (2.14)

A comparison between solutions (2.5) and (2.13) shows that the latter is none other than the 
Peregrine soliton, but with its peak being oriented along the line χξ − τ = 0. Meanwhile, it 
is clear that this Peregrine solution is only physically valid for the self-focusing nonlinearity, 
as in the NLS case.

2.1.3.  The infinite NLS hierarchy in the focusing and defocusing regimes.  Recently, an 
integrable extension of the NLS equation to infinite-order equations was proposed in [61]. 
This extension creates the infinite NLS hierarchy with an infinite number of arbitrary real 
coefficients. The additional terms in the equation  include higher-order dispersion of all 
orders and higher-order dispersion of nonlinear terms. This infinite NLS hierarchy can be 
defined by

iuξ +
1
2

K2 +
iγ
6σ

K3 + ε4K4 + iε5K5 + · · · = 0,
� (2.15)

where the coefficients γ, ε4, ε5 etc are arbitrarily real, and

Kj(u∗) =
(−1) j

σ

δ

δu∗

∫
upj+1dτ ,� (2.16)

pj+1 =
∂pj

∂τ
+ u

j∑
n=0

pnpj−n, ( j = 1, 2, 3, · · · ),� (2.17)

with p0 = 0 and p1 = σu∗. Using the functional derivative defined by equation (2.16) and the 
recursion relation (2.17), the first few K terms can be found to be

K2 = uττ + 2σ|u|2u,� (2.18)

K3 = uτττ + 6σ|u|2uτ ,� (2.19)

K4 = uττττ + 8σ|u|2uττ + 2σu2u∗ττ + 6σu∗u2
τ + 4σu|uτ |2 + 6σ2|u|4u,�

(2.20)
K5 = uτττττ + 10σ|u|2uτττ + 10σu(uτu∗

ττ + u∗
τuττ ) + 10σ|uτ |2uτ

+ 10σu∗(u2
τ )τ + 30σ2|u|4uτ .

�
(2.21)

Obviously, for these specified K terms, one can identify the first two terms in (2.15) as the 
NLS equation (2.1) and the first three terms as the Hirota equation (2.6). The first four terms 
are known as the Lakshmanan–Porsezian–Daniel equation [62] which has also been inten-
sively investigated in recent years [63]. It is worth noting that, as in (2.1) and (2.6), both kinds 
of nonlinearity, labeled by σ, have been considered in (2.15).

As regards this infinite NLS hierarchy, no matter how long it is, it strikingly admits the 
Peregrine soliton solution [61]
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uIN = u0

[
1 − 2iη′ξ + 1/a2

σ(χ′ξ − τ)2 + η′2a2ξ2 + 1/(4a2)

]
,� (2.22)

u0(ξ, τ) = a exp(ik′ξ + iωτ),� (2.23)

which is similar in form to solutions (2.5) and (2.13), but with the defining parameters

η′ = σ − γω + 12σε4(σa2 − ω2)− 20ε5σω(3σa2 − ω2) + · · · ,� (2.24)

k′ = η′a2 − 1
2
ω2 +

γ

6σ
ω3 − ε4(6σ2a4 − ω4) + ε5ω(30σ2a4 − ω4) + · · · ,

�

(2.25)

χ′ = ω + γa2 − γ

2σ
ω2 + 4ε4ω(6σa2 − ω2) + 5ε5(6σ2a4 − 12σa2ω2 + ω4) + · · · .

�
(2.26)

Now, the Peregrine soliton given by solution (2.22) propagates along the line χ′ξ − τ = 0. 
It includes those defined by (2.5) and (2.13) as special cases. As pointed out in section 2.1.2, 
the whole infinite NLS hierarchy does not admit the Peregrine structure in the self-defocusing 
regime, as its solution becomes now singular.

It is not surprising that these solutions are so similar in structure, as the whole infinite NLS 
hierarchy shares the same linear spectral problem constructed from a loop algebra of sl(2). 
However, not all scalar integrable wave equations of one field variable can be squeezed into 
this infinite NLS hierarchy. For example, the Sasa–Satsuma equation [54], although compris-
ing the higher-order dispersion and nonlinearity terms as well, involves a 3 × 3 linear spectral 
problem resulting from the loop algebra of sl(3) [64], and hence admits more complicated 
rogue wave dynamics [65–67].

2.1.4.  A special case: the Sasa–Satsuma equation.  The Sasa–Satsuma equation, named 
after its pioneers Sasa and Satsuma [54], has been an active area of research for the past two 
decades. In dimensionless form, it can be written as

iuξ +
1
2

uττ + σ|u|2u + iεuτττ + iγ|u|2uτ + iν(|u|2)τu = 0,� (2.27)

where ε = γ
6σ and ν = γ/2 so as to satisfy the integrability condition. Compared to the Hirota 

equation  (2.6), an additional term proportional to the coefficient ν, sometimes referred to 
as self-frequency shift in literature [68, 69], is included, which has its origin in the delayed 
Raman response [52, 53]. Due to the introduction of this term, equation (2.27) possesses a 
3 × 3 Lax pair and hence an unusual DT [64]. Proceeding with this DT, one can obtain the 
fundamental rogue wave solution [66]:

uSS = u0

(
1 − G + iH

D

)
,� (2.28)

where u0 is the plane wave solution defined by (2.11) and (2.12), and

G =
ρ

ση2

(
2γθ − αβξ

σρ

)2

+
2αβ(α− β)ξ2

σ3ρ
+

4ρ3γ4

σαβ(α+ β)2 ,� (2.29)

H =

[
4γ2θ2 +

αβξ2

σ2 − 12γ4ρ2η2

αβ(α+ β)2

](
αβξ

σ2ηγ2 − 2γa2θ

η

)

+
8ξ(ρ+ 2σγ2a2)αβη

σ3a2(α+ β)2 ,
�

(2.30)
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D =
a2

2γ2

[
4γ2θ2 +

αβξ2

σ2 +
2γ4(α2 − β2 − αβ)

αβ(α+ β)

]2

+
4βγ2a2(2σγθ − αξ)2

σ2(α+ β)2 +
8γ6a2

β(α+ β)
,

�

(2.31)

with

θ = (ω +
3
2
γa2 − 3εω2)ξ − τ ,� (2.32)

ρ = σγ2a2 + 2η2,� (2.33)

α =
√
η2(2σγ2a2 + η2)− σγ2a2 + η2,� (2.34)

β =
√
η2(2σγ2a2 + η2) + σγ2a2 − η2.� (2.35)

In like manner, we have generalized the solutions to include the self-defocusing situation as 
well. We clearly see that this solution involves polynomials of fourth order, more complicated 
than the Peregrine soliton structure allowed by the Hirota equation, although both integrable 
equations differ by only one term.

To avoid the singularity, we have obtained from equation (2.31) the parameter condition 
β > 0 for existence of rogue waves, which can be simplified to give

4η2

σ
> a2γ2.� (2.36)

It follows that the rogue waves within the Sasa–Satsuma framework exist only in the focusing 
(σ > 0) situation, yielding the same conclusion as above, but however in a limited regime of 
ω [66], different from that discussed for the NLS hierarchy where the Peregrine rogue wave 
tends to exist in the whole regime of ω.

Figure 2.  Analytical twisted rogue wave structure allowed by the Sasa–Satsuma 
equation  (2.27) in the self-focusing regime (σ = 1) for given a = 1, γ = 3 and 
ω = −1/4 [66]. Top: 3D surface plot; Bottom: contour plot.
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Moreover, different from the Peregrine soliton structure in the NLS hierarchy, the rogue 
wave solution (2.28) involves one or two peaks, depending on the value of ω [66]. For illustra-
tion, we present in figure 2 a twisted rogue wave structure which features two peaks and four 
holes, as ω = −1/4 (the other two parameters have been fixed: a = 1, γ = 3). It can therefore 
not be identified as Peregrine soliton because the latter involves one peak and two side holes 
[17]. In [67], it was numerically demonstrated that this peculiar elongated two-peak structure 
can be excited from a chaotic wave field, hence endowed with a strong stability property, 
see figure 7 therein. In the latter simulation, another set of parameters a = 1, γ = −3, and 
ω = 1/4 was used, which could result in an identical structure to that shown in figure 2 by a 
time inversion τ → −τ .

2.1.5.  Baseband MI as origin of rogue waves.  Although the existence of rogue waves has 
been confirmed by multiple observations, uncertainty still remains on their fundamental ori-
gins. It is now generally recognized that the MI is among the several mechanisms that may 
lead to rogue wave excitation [70–74]. We know that MI is a fundamental property of many 
nonlinear dispersive systems, which is associated with the growth of periodic perturbations on 
an unstable cw background [7, 24]. However, as revealed in recent works [75, 76], not every 
kind of MI necessarily leads to rogue wave generation; it is generally the baseband MI that 
plays such a pivotal role. Simulations showed that in the passband MI region, only nonlinear 
small oscillations were observed. Here, by baseband MI we mean that the cw background 
undergoes instability in a region where the perturbations can have infinitesimally small fre-
quencies. Conversely, the passband MI is referred to as the situation where the perturbation 
grows up in a spectral region that does not include Ω = 0 as a limiting case [75, 76]. Below, 
we take the Hirota and Sasa–Satsuma equations as enlightening examples.

Suppose the plane wave solution (2.11) experiences small perturbations, given by

u = u0{1 + p exp[−iΩ(κξ − τ)] + q∗ exp[iΩ(κ∗ξ − τ)]},� (2.37)

where p and q are small amplitudes of the Fourier modes, Ω signifies the modulation frequency 
(Ω � 0), and κ denotes the complex propagation parameter of perturbations. Substituting 
(2.37) into (2.27) and linearizing the resulting equation, we obtain a system of two coupled 
linear equations for p and q. This system has a nontrivial solution only when κ and Ω satisfy 
the following dispersion relation:

[
κ− ω + ε(Ω2 + 3ω2)− a2(ν + γ)

]2 − η2Ω2

4σ2 +
η2a2

σ
− a4ν2 = 0,� (2.38)

where ν = 0 is given for the Hirota equation and ν = γ/2 for the Sasa–Satsuma one, with the 
same ε = γ

6σ. In principle, MI occurs whenever the root κ of the quadratic equation (2.38) has 
an imaginary part. Therefore, in the limit of Ω = 0 (that is, at a sufficiently low modulation 

frequency), the necessity of a complex κ requires that η
2

σ > a2ν2, under which there occurs 

the baseband MI that gives rise to rogue waves [75, 76]. It is obvious that within either the 
Hirota or the Sasa–Satsuma framework, rogue waves exist only for self-focusing nonlinearity 
(σ > 0). Specially, when ν = γ/2, the above condition can exactly reduce to (2.36) obtained 
with the Sasa–Satsuma equation.

Solving equation (2.38) directly for κ and defining the MI growth rate as γh = Ω|Im(κ)|, 
one can obtain the MI map versus Ω and ω. Figures 3(a) and (b) display such MI maps associ-
ated with the Hirota equation (2.6) and with the Sasa–Satsuma equation (2.27), respectively, 
both in the self-focusing (σ = 1) situation. It is clear that for the Hirota equation, the MI is 
of baseband type in the whole ω regime, while for the Sasa–Satsuma equation, it features 
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baseband type as well, but exists in the regime ω < 1/γ − a/2 or ω > 1/γ + a/2. No pass-
band MI was exhibited for both situations. These results are completely consistent with the 
parameter conditions for rogue wave existence that have been predicted in our analytical solu-
tions (2.13) and (2.28).

In this topical review, we will further illustrate the equivalence between the rogue wave 
existence and the baseband MI by other convincing examples. We will show in particular 
that some vector nonlinear systems will also give birth to passband MI which, when acting 
alone, contributes little to the rogue wave excitation; only the baseband MI has such a pivotal 
role. Based on our observations, we believe that the baseband MI approach has a merit in 
that it enables us to predict extreme wave events not only for integrable systems, but also for 
nonintegrable physical models of great interest, whose analytical rogue wave solutions might 
usually be unknown [23].

2.1.6.  Integrable turbulence and rogue waves.  Nonlinear dynamical systems often exhibit 
behaviors characterized by erratic changes of their characteristic local parameters. These 
irregular behaviors are usually denoted as being turbulent [2]. The interaction of a multiplicity 
of waves can cause such turbulence. In integrable systems, these waves are basically solitons 
and breathers and their presence is fully determined by the initial conditions. Radiation waves 
are also modes of the system but their role is less important because they have low amplitudes.

Integrable turbulence has attracted much attention in recent years [77–80]. Among the 
most interesting phenomena observed in the turbulent wave fields is the appearance of rogue 
waves, those that have peak amplitude more than twice the SWH. The highest waves appear 
as a result of the multiple collisions of breathers and/or solitons [81] rather than as a single 
Peregrine soliton. When solitons dominate such collisions, we have ‘soliton turbulence’, while 
when breathers do the term ‘breather turbulence’ is then used [82]. The number of rogue 
waves, the PDF of the chaotic wave fields, and their physical spectra are all specific for either 

Figure 3.  MI maps versus Ω and ω related to (2.38) for given parameters a = 1, 
γ = 3, and σ = 1: (a) The Hirota equation  situation (ν = 0); (b) The Sasa–Satsuma 
equation situation (ν = γ/2). The dash-dotted lines in both figures show the marginal 
instability defined by Ω = 2a

√
1 − a2ν2/η2 .
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of these two situations. In general, a mixed regime will participate of the characteristics of 
both.

Solitons, breathers, and radiation waves are indeed deterministic in evolutions once the 
initial conditions are given, and they can be found using the inverse scattering transform (IST) 
technique. Let us take the focusing NLS equation, i.e. equation (2.1) with σ = 1, as a para-
digm of integrable systems, which originates from the compatibility condition of the follow-
ing set of linear matrix equations [29]:

Rτ = (iλσ3 + A)R,� (2.39)

Rξ = (iλ2σ3 + λA + B/2)R,� (2.40)

where R = [r(ξ, τ), s(ξ, τ)]T, σ3 = diag(1,−1), as defined in (2.7), and the 2 × 2 matrices A  
and B are given by

A =

[
0 iu∗

iu 0

]
, B =

[
−i|u|2 u∗τ
−uτ i|u|2

]
.� (2.41)

We should point out that the Lax pair given above is completely consistent with that defined 
by equations (2.7)–(2.10), of course in the NLS equation limit ε = 0. It is seen that the spec-
trum of eigenvalues of equation (2.39) does not depend on ξ. This means that the dynamics of 
the field u(ξ, τ) at any ξ is defined by the spectrum of eigenvalues of (2.39) at ξ = 0, that is, 
can be fixed by the initial condition.

Recently, Akhmediev, Soto-Crespo, and Devine gave a clear evidence of soliton turbulence 
that plays an otherwise unperceived role in generating rogue waves, by solving the eigenvalue 
problem (2.39) numerically with given initial chaotic field inputs u(0, τ) [82, 83]. In their 
numerical calculations, a constant background field of unit amplitude perturbed by a random 
function was taken as initial conditions. This random function is bound to have zero mean 
value and be both Gaussian distributed and correlated. The resulting initial field intensity, 
normalized to mean-value unity, is then defined by two parameters: its standard deviation (μ) 
and its correlation length (Lc) that provide good estimates of the mean height and width of 
the input waves, respectively. Besides, a large number of different realizations with the same 
initial statistical parameters have been considered so as to obtain the statistical characteristics 
of the resulting field after a certain propagation distance, at which some kind of stationary tur-
bulence is reached [83]. It should be pointed out that, for un unperturbed constant background 
input, while the eigenvalues that are purely real correspond to radiation waves, the eigenvalues 
that are purely imaginary correspond to breathers (e.g. Peregrine solitons, KM solitons, or 
ABs) and those involving both real and imaginary parts may correspond to solitons. We will 
see that, when the initial noise level is increased, there is a strong excitation of solitons what-
ever happens in this competing process.

The sets of complex eigenvalues λ solved for three different values of μ are shown in 
figure 4. Figure 4(a) shows the eigenvalues found for µ = 0.1, which gives an initial u func-
tion close to the unperturbed cw. The upper limiting point λ = i in the spectrum corresponds 
to the Peregrine breather. The latter has a peak amplitude of 3 which is the maximum possible 
for breathers. The eigenvalues located below the point λ = i on the imaginary axis corre-
spond to ABs that have lower amplitudes. Some eigenvalues have the imaginary part slightly 
exceeding 1, which may correspond to KM solitons. Clearly, the predominant presence of the 
cw component in the initial conditions leads to the excitation of different types of breathers 
through MI. Figure 4(b) shows the set of eigenvalues obtained when the chaotic perturbation 
is larger, µ = 0.5. Many of the eigenvalues correspond to ABs and some, those with both real 
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and imaginary parts, to solitons. It is suggested that there appear a greater number of solitons 
as compared to breathers, giving rise to a higher probability of generating rogue waves. Larger 
deviations from the cw in the initial conditions may result in that practically no eigenvalues 
are left exactly on the imaginary axis, as seen in figure 4(c) where µ = 0.9. All eigenvalues 
now correspond to solitons rather than breathers. Their amplitudes are twice the imaginary 
part of the eigenvalue and they will acquire a velocity which is defined by the real part of the 
complex eigenvalue.

The increasing presence of solitons of higher amplitude and velocity in the chaotic wave 
field, which is true as μ grows, prophesies a higher probability of appearance of rogue waves. 
That is also fully confirmed by numerical simulations. Equation (2.1) can be easily solved 
numerically using a standard split-step Fourier method. By performing such a task for a high 
number of different realizations, we can construct the corresponding PDF. Figure 5 shows the 
PDF of the field intensity obtained after propagating a distance of 100 units along the ξ axis. 
The PDF curves are not settled at the initial stages of propagation, but converge to a nearly 
stationary regime and practically do not change after ξ = 20. These curves show clearly that 
the tails of the PDF increase considerably with the value of μ, in relationship with the relative 
content of solitons and breathers in the initial conditions.

Figure 4.  Complex eigenvalues λ calculated for the initial conditions u(0, τ) with (a) 
µ = 0.1 (b) µ = 0.5 and (c) µ = 0.9 [82]. In all cases Lc = 0.79. As the eigenvalues 
appear in complex conjugate pairs, only the upper half of the complex plane is shown.

Figure 5.  PDF of the field intensity at ξ = 100 obtained with different μ values [82].
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The above results are universal and can be extended to other integrable models that have 
both solitons and breathers as essential parts of their complex dynamics, such as the TWRI 
equations (section 3.2), the vector NLS equations (section 3.3), and so on.

2.2. The general cubic-quintic NLS equation

At this stage, one may be curious whether the self-defocusing media could support the 
Peregrine soliton structure. To answer this question, let us consider another scalar equa-
tion framework [84, 85] different from the NLS hierarchy, namely,

iuξ +
1
2

uττ + σ|u|2u + iγ|u|2uτ + i(µ− γ)(|u|2)τu

+
1
2
(µ− γ)(µ− 2γ)|u|4u = 0.

�

(2.42)

In this cubic-quintic (CQ) type NLS equation, we still retain, for the sake of comparison, 
the same coefficients σ and γ for the Kerr nonlinearity and the pulse self-steepening effect, 
respectively, as defined above. However, to attain integrability, the combined coefficients 
(µ, γ) related to the last two terms—the nonlinearity dispersion and quintic nonlinearity—
are specially selected as shown. It is worth noting that in this integrable model, we have 
excluded the higher-order dispersion terms beyond the GVD. This will enable us to catch the 
significance of the self-steepening effect in the absence of higher-order dispersion. In optical 
contexts, such CQ NLS equation can model the propagation of ultrashort pulses in a single-
mode optical fibre [52, 53] or in quadratic nonlinear media considering the group-velocity 
mismatch [57].

The general scalar model (2.42) has several reductions under specific conditions. In addi-
tion to the standard NLS equation (2.1) corresponding to the case µ = γ = 0, this model can 
also reduce to many known derivative or modified NLS equations, e.g. the Chen–Lee–Liu 
(CLL) type NLS equation (µ = γ �= 0) [86], the Kaup–Newell type NLS equation (µ = 2γ, 
γ �= 0) [87], the Gerdjikov–Ivanov equation  (µ = 0, γ �= 0) [88], and the Kundu–Eckhaus 
(KE) equation (γ = 0, µ �= 0) [84, 89], all of which were recently explored for understand-
ing rogue waves [90–93]. No doubt, once the rogue wave solutions of the CQ-NLS equa-
tion (2.42) were found, they should include those of the above equations as special cases.

Starting from the known solutions of the CLL equation followed by a gauge transforma-
tion, we obtain the general fundamental rogue wave solution of (2.42) [94]

uCQ = u0

[
1 +

2i(γθ − ηξ)− 1/a2

M − iN

]
exp(iΦ),� (2.43)

where the initial plane-wave seed u0 and the extra phase Φ are defined as follows

u0(ξ, τ) = a exp[ikξ + iωτ + ia2(µ− γ)(θ − 1
2
γa2ξ)],� (2.44)

Φ(ξ, τ) = 2(µ/γ − 1) arctan(N/M),� (2.45)

with θ = (ω + γa2)ξ − τ , k = ηa2 − 1
2ω

2, η = σ − γω, and

M = (η + γ2a2)(θ2 + ηa2ξ2) +
1

4a2 ,� (2.46)

N = γ(γa2ξ + θ).� (2.47)
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It is easy to see from (2.46) that if and only if η = σ − γω > 0 can this rational solution 
behave like a rogue wave. This condition implies that it becomes possible for rogue waves 
to exist in a defocusing regime as well, when the self-steepening effect comes into play, i.e. 
γ �= 0. Besides, we find that, apart from the phase Φ, the complex polynomial function, given 
in the square brackets in equation (2.43), which characterizes the Peregrine structure, has an 
inherent phase denoted by Θ,

Θ = arctan

[
2M(γθ − ηξ)− N/a2

M2 + N2 − 2N(γθ − ηξ)− M/a2

]
.� (2.48)

In contrast to the acquired phase Φ given by (2.45), however, this inherent phase Θ does not 
depend on the parameter μ and thus will be the same across different integrable systems for 
given γ and given initial parameters.

As a special case, when γ approaches zero, equation (2.43) can boil down to

uKE = u0

(
1 − 2iσξ + 1/a2

M

)
exp

[
2iµ(ωξ − τ)

M

]
,� (2.49)

with

M = σ[(ωξ − τ)2 + σa2ξ2] +
1

4a2 ,� (2.50)

which is none other than the first-order rational solution of the KE equation  [93]. 
Correspondingly, the parameter condition for existence of rogue waves becomes now 
η = σ > 0, which suggests that in the absence of the self-steepening effect, the solution (2.49) 
is only valid for the focusing nonlinearity, as in the NLS hierarchy.

2.2.1.  MI and the chirped Peregrine soliton.  Actually, the general existence condition of 
rogue waves, η = σ − γω > 0, can also be obtained via a baseband MI analysis [76]. We 
assume that the perturbed plane wave is given by (2.37) but with u0 defined by (2.44). Substi-
tuting it into (2.42) and linearizing the resulting equation, we obtain a system of two coupled 
linear equations for p and q. This system has a nontrivial solution only when κ and Ω satisfy 
the following dispersion relation:

(κ− ω − γa2)2 + ηa2 − 1
4
Ω2 = 0,� (2.51)

which is a quadratic equation of κ. Obviously, in the limit of Ω = 0, one can obtain from 
(2.51) the parameter condition η > 0 for the rogue wave existence, a sufficient condition 
exactly consistent with our analytical prediction above.

By use of the quadratic equation (2.51), we plot in figure 6 the MI maps of the background 
field, defined by

γh = Ω|Im(κ)| = Ω
√
ηa2 − Ω2/4,� (2.52)

for both the focusing and defocusing cases. It is seen that the MI is of baseband type in both 
cases and the Peregrine soliton states only exist in the ω < σ/γ  regime for γ �= 0, indepen-
dently of the value of μ. Besides, for the same initial parameters, the MI in the defocusing case 
(see figure 6(b)) is weaker than in the focusing case (see figure 6(a)). Here we should point 
out that if η � 0, equation (2.43) may also serve as a valid solution to (2.42), but generally 
manifests itself in the form of algebraic solitons [95].
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It is now evident that the solution (2.43) exhibits a Peregrine structure, but will be relieved 
from any singularity because of the self-steepening effect, even in the defocusing nonlinearity 
situation. As such, it generalizes the original Peregrine soliton concept of the NLS hierarchy 
that only exists in the focusing situation [17]. Considering that this solution acquires an extra 
instantaneous frequency shift [53]

δω = −∂Φ

∂τ
=

2(µ− γ)[M − 2N(η/γ + γa2)θ]

M2 + N2 ,� (2.53)

we will dub it the chirped Peregrine soliton. It is interesting to note that the chirp δω is also 
doubly localized, as a rogue wave does, but on a zero background, markedly different from that 
of the traveling dissipative solitons which is usually of tanh-shape in the transversal dimension 
[96, 97]. This chirp will have a central value of 8(µ− γ)a2, hence displaying a peak or a dip 
at the center, depending on whether µ > γ or < γ. Obviously, such kind of strong localization 
entails potentially important frequency chirping, for large (µ− γ) values, in both temporal 
and spatial domains.

Figure 7 illustrates a typical chirped Peregrine soliton as well as its chirp characteristic 
in a self-defocusing medium. It is clear that for such a defocusing Kerr nonlinearity, there 
occurs a deterministic Peregrine soliton structure, usually involving an extra nonplanar phase 
(see figures 7(a) and (b)). More intriguingly, the chirp distribution will take a dark doubly-
localized structure on a zero background for µ < γ, as seen in figure 7(c). In fact, as one can 
verify, even if the Kerr nonlinearity is zero (i.e. σ = 0), the Peregrine soliton state remains 
alive as long as η > 0.

We need to emphasize that for the current CQ-NLS equation, the chirped Peregrine soliton 
form found for the focusing case has no bearing upon the one in the defocusing case. In a 
physical sense, that a defocusing (or equivalently, normally dispersive) scalar system could 
allow a bright solution is not surprising. One may recall that in the CQ-type dissipative system, 

Figure 6.  MI maps versus Ω and ω related to (2.51) for a = 1 and γ = 1 [94]: (a) 
Self-focusing (σ = 1); (b) Self-defocusing (σ = −1). The dash-dotted lines in both 
situations denote the marginal instability defined by Ω = 2a

√
η .
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there also occur the bright dissipative solitons in both the anomalous and normal dispersion 
regimes [98, 99].

2.2.2.  Numerical simulations and experimental proposals.  Extensive numerical simulations 
were also performed to study the stability of chirped Peregrine solitons using the standard 
split-step Fourier method [82]. Particularly, in order to see whether the chirped Peregrine soli-
tons would be easily generated in realistic conditions, we intend to excite them numerically by 
using the plane-wave solution (2.44) at ξ = 0 as the initial condition, perturbed by white noise 
of strength ε = 0.001. Typical simulation results are presented in figure 8, using otherwise 
identical parameters as in figure 7. In the amplitude evolution plot (see figure 8(a)), the first 5 
distance units have been removed, as there are hardly any visible changes on the chosen scale. 
It is seen that after 10 distance units, the MI has developed completely and there would appear 
rogue waves, ABs, and KM solitons in the sea of waves. The part selected by a black rectangle 
is enlarged and plotted in figure 8(b). It is clear that the wave in the fore part of the 3D plot is 
exactly the Peregrine soliton shown in figure 7, as its profile agrees very well with the analytic 
solution (2.43) (see figure 8(c)). This result implies that the chirped Peregrine solitons, for 
either the focusing or defocusing nonlinearity, can be observed in a laboratorial environment 
as long as the model equation (2.42) applies.

In [94], several possible experimental settings for observation of chirped Peregrine solitons 
were put forward, in the context of nonlinear optics. Usually, one may consider the temporal 
dynamics of ultrashort pulses in soft glasses or organic polymers, which show observable 
quintic nonlinearity besides the cubic response [20, 53]. In a bulk polydiacetylene para-
toluene sulfonate (PTS) crystal, a stable propagation of 2D spatial solitons was reported, 
thanks to the stabilizing effect of a saturating quintic nonlinearity [100]. Hence, as one might 
expect, the generic chirped Peregrine solitons may also be observed in a 1D PTS waveguide, 
of course taking into account the self-steepening effect that always accompanies the ultrashort 
pulse propagation [53]. Additionally, one may consider the propagation of ultrashort optical 
pulses in quadratic crystals (e.g. periodically-poled lithium niobate or tantalate crystals) in 
the high phase-mismatch cascading regime, which may mimic effective Kerr and self-steep-
ening effects [57, 58, 101]. Further, one might also consider mode-locked fibre lasers, since 
their distributed modelling involves quintic nonlinearity [21, 22]. However, the latter is essen-
tially of dissipative type, which breaks down the integrability required by the current analytic 
approach. Although beyond analyticity, dissipative rogue waves [14] should in general exhibit 
frequency chirping effects as discussed above. All these interesting issues are topics for future 
investigation among the soliton physics community.

Figure 7.  Chirped Peregrine soliton in the defocusing situation (σ = −1) for a = 1, 
γ = 1, µ = 1/2, and ω = −2 [94]: (a) Amplitude |u|; (b) Phase Φ; and (c) Chirp δω.
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2.2.3.  An extended case: the Fokas–Lenells equation.  The significant role played by the 
self-steepening term in rogue wave evolution dynamics can be further understood within the 
following scalar wave equation

i(1 +
iγ
σ
∂τ )uξ +

1
2

uττ + σ|u|2u + iγ|u|2uτ = 0.� (2.54)

Here ∂τ  is a partial derivative with respect to τ and again the coefficient γ accounts for the self-
steepening effect [57, 58]. This equation is completely integrable [102], first derived by Fokas 
using the bi-Hamiltonian method [103] and then obtained by Lenells from the Maxwell’s 
equations under appropriate envelop approximations [104], hence the name Fokas–Lenells 
equation [105]. It differs from the CLL equation [86] by containing an extra space-time cor-
rection term, −(γ/σ)uξτ , and thus can not be classified into the CQ-NLS framework (2.42). 
When γ = 0, the NLS equation (2.1) arises again.

Figure 8.  Numerical excitation of the chirped Peregrine soliton from the plane-wave 
solution (2.44) perturbed by initial white noise [94]: (a) The amplitude evolution; (b) 
The enlarged 3D plot of the black rectangle part in (a); (c) The wave profile (red dashed 
curve) of the selected part compared to the analytic solution (blue dotted curve).
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Using the standard DT method [95, 106], one can obtain readily the fundamental rogue 
wave solution of (2.54):

uFL = u0

[
1 − 2iη2(σξ + 2γτ)/σ2 + 1/a2

D + iγθ/σ

]
,� (2.55)

where θ = η2τ/σ + (η2 − σ2)ξ/(2γ), and

D =
(θ + ηγa2ξ)2

η
+ a2(σ2 − ηγ2a2)ξ2 +

1
4a2 .� (2.56)

As before u0(ξ, τ) = a exp(ikξ + iωτ) is the plane wave solution, with

k = σa2 − σω2

2η
, η = σ − γω.� (2.57)

Once again due to the presence of the self-steepening term, the rogue wave solution (2.55) 
contains a complex denominator and can therefore exist in both the focusing and defocusing 
situations without singularity. It is of typical Peregrine structure, as seen in figure 2 in [95], 
but, however, there is no chirp being introduced to it, differently from the chirped Peregrine 
solitons discussed above.

As the function D in (2.56) should be positive definite everywhere, it follows that

0 < η <
σ2

a2γ2 ,� (2.58)

which is the parameter condition for rogue wave existence. Equivalently, one can solve the 
inequality (2.58) further and find that ω should lie between [95]

σ

γ
and

σ

γ

(
1 − σ

γ2a2

)
.� (2.59)

Obviously, this condition is much tighter than the one obtained for existence of the rogue wave 
solution (2.43) to the CQ-NLS equation.

Let us check the parameter condition (2.58) using the baseband MI analysis [76]. Substitution 
of the perturbed background field equation (2.37) into the governing equation (2.54) followed 
by linearization, we obtain the dispersion relation
[
κ

σ
+

σω + (ω − 2γa2)η + γΩ2

2(Ω2γ2 − η2)

]2

− σ4Ω2 + 4a2η3(ηγ2a2 − σ2)

4η2(Ω2γ2 − η2)2 = 0.� (2.60)

Apparently, in the limit of Ω = 0, the necessity of a complex κ requires that 
η3(ηγ2a2 − σ2) < 0, a condition exactly the same as (2.58).

The MI maps determined by (2.60) are shown in figure  9, for both the focusing and 
defocusing situations. For better view, here we plotted the physical quantity ln(γh) versus 
Ω (> 0) and ω, where γh is the growth rate as defined before. It is seen that the MI exhibits 
a baseband type in both cases, and for the same parameters, the MI in the defocusing situ-
ation is weaker than that in the focusing situation, as exhibited in figure 6. In particular, as 
Ω approaches zero, the baseband MI lies in a region exactly defined by (2.59). We point out 
that the results shown in figure 9 are totally consistent with those presented in [76], see for 
example figure 3 therein.
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3.  Vector rogue waves

While rogue wave investigation is flourishing in several fields of science, there is a necessity 
to go beyond the scalar NLS framework in order to model important classes of physical sys-
tems in a relevant way. One development of major importance consists in the study of coupled 
wave systems, as numerous physical systems comprise interacting wave components of dif-
ferent modes, frequencies, or polarizations. When compared to scalar dynamical systems, 
vector systems generally allow energy transfer between their additional degrees of freedom, 
which potentially yields families of intricate vector rogue wave solutions. In recent years, 
vector rogue wave dynamics were explored in diverse coupled integrable systems such as 
the LWSW resonant equations [107–109], the TWRI equations [110–114], the vector NLS 
(VNLS, sometimes alias Manakov system [115]) equations [116–120] or the Hirota extension 
[60], and others [121–123].

In this section, we will take the LWSW, TWRI, and VNLS equations as typical examples, 
to reveal the unique vector rogue wave dynamics. First of all, we will show that for coupled 
systems, there may appear a passband gain spectrum in the MI map, but it does not contribute 
to the rogue wave generation when acting alone, consistently with the baseband MI conjecture 
observed for scalar wave systems (see figures 3, 6 and 9). However, in coupled systems that 
involve more components, the baseband spectrum may extend significantly the domain such 
that the latter overlaps partially that of the passband spectrum. In this case, the passband MI 
may also be possible to dominate over the baseband one and excite the rogue waves. Secondly, 
we will show that there exist new rational solutions with dark structures that are also relevant 
to practical physical systems. In particular, in a defocusing VNLS system, we demonstrate 
vector dark rogue waves as well as their dark three-sister counterparts [75, 119]. One may 
recall that in scalar NLS equations, no single dark rogue wave solutions take place, even in the 
case of a defocusing nonlinearity. Lastly, we wish to present other novel rogue wave phenom-
ena such as coexisting rogue waves on the same background [109], WHL super rogue waves 

Figure 9.  Maps of ln(γh) versus Ω and ω related to (2.60) for a = 1 and γ = 1/2: 
(a) The self-focusing case (σ = 1); (b) The self-defocusing case (σ = −1). The dotted 
lines denote the marginal instability defined by Ω = 2aη

√
η(1 − a2ηγ2).
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arising from three-wave interaction [113], complementary rogue waves originating in equal 
group-velocity propagation [114], and some other higher-order structures (e.g. rogue wave 
doublets, triplets, quartets, and sextets) [110, 112, 120].

3.1.  Long-wave short-wave resonant system

Among coupled wave dynamics, the LWSW resonance is a general parametric process that 
manifests when the group velocity of the short (high-frequency) wave matches the phase 
velocity of the long (low-frequency) wave. It has been predicted in plasma physics [124] and 
nonlinear optics [125]. In hydrodynamics, the LWSW resonance can result from the interac-
tion between capillary and gravity waves [126, 127]. The fact that capillary rogue waves have 
been discovered experimentally [128] may stimulate further the investigation of rogue wave 
solutions for media manifesting LWSW resonance.

The nonlinear interaction of the complex short wave, u, and the real long wave, φ, is mod-
eled by the following two coupled equations, expressed in a normalized form [125]

iuξ +
1
2

uττ + φu = 0, φξ − (|u|2)τ = 0.
� (3.1)

This equation is integrable, with its fundamental rogue wave solutions given by [107]

u(ξ, τ) = u0

[
1 −

iξ + iτ
2m−ω + 1

2(2m−ω)(m−ω)

(τ − mξ)2 + n2ξ2 + 1/(4n2)

]
,

φ(ξ, τ) = b +
2[n2ξ2 − (τ − mξ)2 + 1/(4n2)]

[(τ − mξ)2 + n2ξ2 + 1/(4n2)]
2 ,

�
(3.2)

where u0(ξ, τ) is the initial plane wave solution

u0(ξ, τ) = a exp (−ikξ + iωτ) ,� (3.3)

with k = ω2/2 − b (b � 0 is an arbitrary constant defining the background of the long-wave 
field). The parameters m and n in (3.2) are real, defined by

m =
1
6

[
5ω −

√
3 (ω2 + �+ ς/�)

]
,� (3.4)

n2 = (3m − ω)(m − ω),� (3.5)

where ς = 1
9ω

4 + 6ωa2, � = 1
2ω

6 − 1
54 (27a2 + 5ω3)2, and

� =



−
(
�−

√
�2 − ς3

)1/3
, ω � −3ωn,

(
−�+

√
�2 − ς3

)1/3
, −3ωn < ω � 3

2ωn.
� (3.6)

Here ωn ≡ (2a2)1/3, and the parameter � has been given in piecewise form to avoid any ambi-
guity. It follows from (3.4) and (3.5) that only when ω � 3ωn/2 do the above analytical solu-
tions exhibit rogue wave structures.

3.1.1.  MI and vector dark–bright rogue wave dynamics.  Let us first examine the MI of the 
background fields being perturbed in accordance with

u = u0{1 + p exp[−iΩ(κξ − τ)] + q∗ exp[iΩ(κ∗ξ − τ)]},
φ = b + s exp[−iΩ(κξ − τ)] + s∗ exp[iΩ(κ∗ξ − τ)],
�

(3.7)
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where p, q, and s are small amplitudes of the Fourier modes. As usual, a substitution of (3.7) 
into (3.1) followed by linearization yields the dispersion relation

κ(κ− ω)2 − Ω2κ/4 − a2 = 0,� (3.8)

which is a cubic equation of κ. As the MI arises from a non-real value of κ, it is required that 
the discriminant of the cubic equation (3.8) should satisfy

∆ =
1

16
Ω2(Ω2 − 4ω2)2 − a2(9ωΩ2 − 4ω3 + 27a2) < 0.� (3.9)

Hence, according to the baseband MI theory, we let Ω = 0 in the inequality (3.9) and obtain 
4ω3 < 27a2, which is just the parameter condition for rogue wave existence, exactly con-
sistent with our analytical result obtained above. Figure 10 displays the MI map related to 
(3.8), where γh = Ω|Im(κ)| denotes the growth rate. The dash-dotted lines denote the mar-
ginal instability given by ∆ = 0. It is seen that the MI map consists of two parts separated 
by a green dashed line—the baseband MI, which determines the domain of rogue waves as 
Ω approaches zero, and the passband MI, which does not have zero-frequency component 
and contributes little to the rogue wave formation. Clearly, we can see that not every MI is 
responsible for the rogue wave generation [75, 76], which has nonetheless been overlooked in 
previous studies for years.

Within the domain ω < 3ωn/2, the rogue wave structure will change with ω. As revealed in 
[107, 129], the short-wave field exhibits a dark rogue wave state when ω � (8a2/3)1/3 ≈ 1.1ωn. 
Particularly, at ω = (8a2/3)1/3, a black rogue wave structure occurs, by which we mean the two 
side holes coalesce and the field amplitude can fall to zero at the dip center. We remind that in the 
scalar NLS equation, a self-defocusing Kerr nonlinearity results in a rational solution becoming 
singular, thus precluding a dark rogue wave solution [94, 95]. Here, owing to the complex inter-
play between anomalous dispersion and the nonlinearity resulting from the coupling between 

Figure 10.  MI map related to (3.8) for a = 1 [107]. The dash-dotted lines denote 
the marginal instability defined by ∆ = 0. The map is demarcated by dashed line as 
baseband and passband parts. The blue cross gives the value of modulation frequency 
Ω ≈ 3.5, where the growth rate reaches its maximum γmax

h ≈ 1.78, at given ω ≈ 1.1ωn.
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u and φ fields, we anticipate that the contribution part of φ integrated along with propagation 
would wipe out the singularity, giving rise to an unusual dark rogue wave solution.

Field coupling provides a drastic change of the effective nonlinearity characterized by φ. It 
also favors strongly asymmetric solutions. If we consider a symmetric bright pulse formed at a 
given time, it has both temporally increasing and decreasing intensity parts, initially symmetric. 
One can infer from the governing equation (3.1) that, due to the coupling with φ, the increasing 
intensity part of the pulse will induce an increase of φ with propagation, as in a self-focusing 
process. Whereas the decreasing intensity part of the pulse will make a decrease of φ as in a 
self-defocusing process. This asymmetrizes the pulse in a peculiar way, giving rise to bright and 
dark localized pulsed solutions that depend on the magnitude of the normalized frequency ω/ωn.

Numerical results of the dark–bright rogue wave state at ω = (8a2/3)1/3 are demonstrated 
in figure 11, with or without exerting white noise perturbation [107]. The initial pulse inputs are 
given by analytical solutions (3.2) at ξ = −5. We mimic the initial noise conditions by multiply-
ing the real and imaginary parts of u and φ by [1 + εri(τ)] (i = 1, 2, 3), respectively. Here ri are 
three uncorrelated random functions uniformly distributed in the interval [−0.5, 0.5], and ε is a 
small number characterizing the strength of perturbations. It is clear that the unperturbed numer
ical solutions (i.e. ε = 0) reproduce the analytical solutions (see figures 11(a) and (c)). When 
ε = 0.002 (see figures 11(b) and (d)), the numerical solutions begin as before, but the MI of the 
background grows exponentially until it starts to interfere strongly with the localized solutions. 
The solutions themselves are stable on an unstable background. Besides, one can infer from fig-
ure 11(d) the modulation period to be around 10/5.5, corresponding to a modulation frequency of 
Ω ≈ 3.5, a value that can be exactly predicted by our MI analysis, see the blue cross in figure 10.

3.1.2. The multicomponent case: Rogue-wave coexistence.  Naturally, one may wonder what 
would happen if the multicomponent case of the LWSW equation is targeted. For this end, let 
us consider the (2  +  1)-component LWSW resonance equation below [109]

iuξ +
1
2

uττ + φu = 0, ivξ +
1
2

vττ + φv = 0, φξ = (|u|2 + |v|2)τ ,� (3.10)

where u and v are two complex short-wave field envelopes and φ is again the real long-wave 
field. Using the bilinear Hirota method [46], one obtains readily the exact fundamental rogue 
wave solutions [109]

u = u0

{
1 − 2in2ξ + 2i(m − ω1)(τ − mξ) + 1

[n2 + (m − ω1)2][(τ − mξ)2 + n2ξ2 + 1
4n2 ]

}
,

v = v0

{
1 − 2in2ξ + 2i(m − ω2)(τ − mξ) + 1

[n2 + (m − ω2)2][(τ − mξ)2 + n2ξ2 + 1
4n2 ]

}
,

φ = b +
2[n2ξ2 − (τ − mξ)2 + 1

4n2 ][
(τ − mξ)2 + n2ξ2 + 1

4n2

]2 ,

�

(3.11)

where the initial plane waves u0 and v0 are defined by their respective amplitude (aj), wave-
number (kj), and frequency (ωj) ( j = 1, 2) according to

u0(ξ, τ) = a1 exp (−ik1ξ + iω1τ) ,
v0(ξ, τ) = a2 exp (−ik2ξ + iω2τ) .
� (3.12)

The dispersion relations for the above seeding plane waves are given by kj =
1
2ω

2
j − b.  

The real parameters m and n in (3.11) must satisfy
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m +
a2

1[n
2 − (m − ω1)

2]

[n2 + (m − ω1)2]2
+

a2
2[n

2 − (m − ω2)
2]

[n2 + (m − ω2)2]2
= 0,� (3.13)

1
2
+

a2
1(m − ω1)

[n2 + (m − ω1)2]2
+

a2
2(m − ω2)

[n2 + (m − ω2)2]2
= 0.� (3.14)

As a result, for given initial parameters, one can solve the algebraic equations  (3.13) and 
(3.14) for the values of m and n, hence determining the solutions (3.11). It is easy to show that 
when one field vanishes (e.g. let a2 = 0), these solutions can reduce to the ones (3.2), with m 
and n being explicitly given by (3.4) and (3.5).

For illustration, we plot in figure 12(a) the evolutions of m and n versus ω2 that are allowed 
by (3.13) and (3.14), for given ω1 = 0 and a1 = a2 = 1. It is interesting to note that, first, 
in such a multicomponent case, the rogue waves can exist in the whole domain, as m and n 
are allowed to have valid values everywhere, differently from the LWSW case that requires 
ω � 3ωn/2; second, when ω2 < 2.4600 (truncated to four decimal places), each nonzero ω2 
value yields two sets of valid (m, n) values which correspond to two different families of 
rogue waves. The former observation can be confirmed further using the baseband MI theory  
[75, 76], which states that rogue waves could occur whenever the dispersion relation

a2
1

Ω2/4 − (κ− ω1)2 +
a2

2

Ω2/4 − (κ− ω2)2 + κ = 0,� (3.15)

Figure 11.  Numerical simulations showing the evolution of the black rogue wave |u| 
and the coupled long-wave field φ for a = 1, b = 0 and ω ≈ 1.1ωn [107]: (a), (c) The 
unperturbed case (ε = 0); (b), (d) The perturbed case (ε = 0.002).
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has a non-real root κ in the limit Ω = 0. This is always the case, as seen in figure 12(b) which 
shows the MI growth rate γh = Ω|Im(κ)| versus Ω and ω2, obtained from the quintic equa-
tion (3.15) under the same parameter condition as in figure 12(a). Compared to that shown in 
figure 10, the baseband MI in figure 12(b), although quite involved, now extends to the whole 
domain, as expected from figure 12(a). Noteworthily, the MI map shown in figure 12(b) is made 
up of several baseband and passband parts which overlap partially. In the positive frequency 
region, the passband MI will also act a part in the rogue wave evolution. As regards the latter 
observation, it means that, for given initial background parameters, there may appear two coex-
isting rogue wave structures. For example, as ω1 = 0 and ω2 = −1.2469, equations (3.13) and 
(3.14) will give two valid values (m, n) = (−1.3514, 0.7803) and (−0.4287, 0.6442), speci-
fied by the red crosses and solid circles in figure 12(a), respectively. Substituting each pair of 
(m, n) into the solutions (3.11) gives rise to two different families of rogue wave structures 
as shown in figure 2 in [109]. This remarkable coexisting behaviors can be reminiscent of the 
bistable states occurred in soliton evolutions [130–133], although typically rogue waves are 
transients while solitons are stationary states.

We then solved the underlying model equations (3.10) numerically to inspect the stability of 
these coexisting rogue wave families. A small amount of white noises is initially added to the 
analytical solutions (3.11) at ξ = −5, by multiplying the real and imaginary parts of both the u 
and v fields and the real φ field with the factor [1 + εri(τ)] (i = 1, 2, · · · 5), respectively, where 
ri(τ) are uncorrelated random functions uniformly distributed in the interval [−0.5, 0.5], and ε is 
a constant defining the noise level (here we used ε = 10−4). The simulation results are illustrated 
in figure 13 (left and middle), whose (m, n) values are indicated in the caption, corresponding 
to the red crosses and solid circles in figure 12(a). It is revealed that these two coexisting rogue 
wave families are stable on an unstable background, despite the fact that the MI tends to interfere 
strongly with the trailing edge of the localized solutions after some propagation distance.

In order to see whether these two rogue wave solutions would coexist in realistic condi-
tions, we intended to excite them numerically by using initial conditions significantly dif-
ferent from the exact solution profiles. To reduce the number of variables to play with, we 
used the plane-wave solutions (3.12) at ξ = 0 as initial conditions for u and v, and used 
φ(ξ = 0, τ) = 0.4cos(2πτ/40)sech[(τ − 2)/8]. Surprisingly, for this set of initial conditions, 
we found it possible to excite both types of fundamental rogue waves on a background (see the 
right column in figure 13). It is clearly seen that, at around ξ = 10, there appear simultaneously 
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Figure 12.  (a) Evolution of allowed real parameters m and n versus ω2 for ω1 = 0 and 
a1 = a2 = 1 [109]. (b) The 3D surface plot of the MI gain related to (3.15). The red 
crosses and solid circles in (a) give two pairs of valid values (m, n) at ω2 = −1.2469.
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two markedly different rogue wave types, well separated and corresponding to those shown in 
figures 13 (left and middle). This demonstrates further, from the numerical perspective, that 
the coexistence of diverse fundamental rogue waves is possible. The evolution that follows 
features additional multiple rogue wave dynamics, all with a combination of both rogue wave 
types. These subsequent multiple rogue waves could also be triggered by the onset of MI, 
which promotes quasi-periodic structures by patterning the cw background.

3.2. Three-wave resonant interaction system

As is known, TWRI enjoys a prominent status in nonlinear science (e.g. plasma physics, 
optics, fluid dynamics, and acoustics) [134]. In optical contexts, TWRI describes different 
processes such as parametric amplification, frequency conversion, transient stimulated Raman 
scattering (SRS) and backward or forward stimulated Brillouin scattering (SBS). As such, 

Figure 13.  Numerical simulations confirming the stability of two fundamental rogue 
wave families, specified respectively by (m, n) = (−1.3514, 0.7803) (Left column) 
and (−0.4287, 0.6442) (Middle column), against initial white noise perturbation. The 
right column shows the numerical excitation of such two rogue wave families from 
a slight deterministic alteration to the otherwise identical background of the φ field. 
Figure adapted from [109].
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TWRI provides the basis for our understanding of diverse pattern-forming systems [134–138]. 
Other important domains of application of TWRI in nonlinear optics are group-velocity pulse 
control [139, 140], ultrashort pulse train generation [141], laser-plasma interaction [142], and 
so on.

As early as 1970s, the integrability of the governing equations was established, and soliton 
solutions were identified [134]. These solitons are coherent localized structures that result 
from a dynamic balance between the energy exchanges due to the nonlinear interaction and 
the convection due to the group velocity mismatch [143]. This is in contrast to the case of 
quadratic solitons, where the energy flow among the waves is counterbalanced by GVD (or 
diffraction) [144]. Interestingly, TWRI solitons propagate with a common (or locked) velocity, 
despite the fact that the three waves travel with different linear group velocities before being 
mutually trapped [145, 146]. This property makes such solitons very alluring in applications, 
since the walk-off caused by group-velocity mismatch, which usually limits the parametric 
frequency conversion efficiency, can be circumvented by nonlinear coupling. Moreover, when 
two optical waves are coupled to an acoustic wave via the SBS process, TWRI solitons may 
permit to considerably slow down the speed of light [139].

TWRIs can be conveniently classified according to the signs of the nonlinear coupling 
coefficients, as well as the ordering of the linear group velocities of each component wave. 
As discussed in [134], depending on these parameters, TWRIs may feature either soliton 
exchange (SE) dynamics (usually termed parametric three-wave mixing in the context of non-
linear optics) or stimulated backscattering (SB). TWRI may also exhibit an explosive behavior 
in that the coupled waves may develop a collapse in a finite time. Obviously, interactions of 
different types display very different behaviors. For instance, in the SE situation, velocity-
locked solitons possess bright structures [145], whereas in the SB situation their dark counter
parts would appear [147].

Recent works show that besides velocity-locked traveling solitons, TWRI equations also 
admit families of spatiotemporally localized solutions known as rogue waves [110–114]. In 
[110], fundamental rogue wave solutions were presented for SE-type interactions, modelling 
the sudden appearance of amplitude peaks in a basic multicomponent nonlinear wave system. 
In [113], the intriguing dynamics of watch-hand-like super-rogue waves were demonstrated to 
occur in such a three-wave mixing process. Once the group velocity of the two waves is equal, 
a pair of complementary rogue wave structures would appear [114]. Besides, it turns out that 
there exist rogue wave structures in the SB case as well, which behave differently from that in 
the SE case [112]. All these results will be systematically reviewed in this subsection.

3.2.1.  Rogue waves in parametric three-wave mixing and coherent stimulated scattering.  The 
TWRI equation that governs the propagation of three coupled waves in a weakly dispersive 
nonlinear medium can be written in dimensionless form [134]

u1τ + V1u1ξ = u∗2 u∗
3 , u2τ + V2u2ξ = −u∗1 u∗

3 , u3τ + V3u3ξ = u∗1 u∗2 ,� (3.16)

where un(ξ, τ) (n = 1, 2, 3) are the slowly varying complex envelopes of the three fields. From 
a physical standpoint, these fields may denote pump, signal and idler optical waves in the 
parametric mixing process that occurs in a quadratic medium [134–136], or describe the SBS 
(SRS) process where the optical pump wave scatters off a material acoustic (optical) phonon 
wave to form the Stokes wave [137, 138]. The coefficients Vn correspond to the relative group 
velocities of the three waves and we suppose V1,2 > V3. Below we consider a reference frame 
comoving with u3, hence V3 = 0. The above choice of signs before the quadratic terms is 
indicative of the nonexplosive character of the interaction [134]. Basically, as V1 > V2, the 
interaction features the SE property, whereas the condition V1 < V2 corresponds to the SB 
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process. In either situation, equation (3.16) admits exact rogue wave solutions because of its 
integrability and nonexplosive property [112]. Once V1 = V2, one then comes to the degen-
erate TWRI equation, whose rogue wave solutions exist as well [114]. We will discuss the 
degenerate case in section 3.2.3.

Considering the resonant conditions for the frequencies and momenta, the initial plane-
wave seeds that satisfy (3.16) can be expressed as

u10(ξ, τ) = a1 exp (−ik1ξ + iω1τ) ,
u20(ξ, τ) = a2 exp (ik2ξ − iω2τ) ,
u30(ξ, τ) = ia3 exp [i(k1 − k2)ξ − i(ω1 − ω2)τ ] ,
�

(3.17)

where

k1 =
ω1

V1
+

a2
2

δV1
, k2 =

ω2

V2
+

a2
1

δV2
, a3 =

a1a2

δ
,� (3.18)

with an (> 0) being the respective background heights. For convenience, we use

κ = ω1 + ω2, δ = ω1 − ω2, A = Γ1a2
1 + Γ2a2

2, B = Γ1a2
1 − Γ2a2

2,� (3.19)

with Γj =
Vj

V1−V2
 ( j = 1, 2 and the same below). Using the standard DT method [119, 120], we 

obtain the fundamental (first-order) rogue wave solutions [110]

u[1]1 = u10

[
1 +

3Λϑθ∗1/α
∗
1

|ϑ|2 + Γ1a2
1|θ1/α1|2 + Γ2a2

2|θ2/α2|2

]
,

u[1]2 = u20

[
1 − 3Λϑ∗θ2/α2

|ϑ|2 + Γ1a2
1|θ1/α1|2 + Γ2a2

2|θ2/α2|2

]
,

u[1]3 = u30

[
1 +

3δΛθ1θ
∗
2/(α1α

∗
2)

|ϑ|2 + Γ1a2
1|θ1/α1|2 + Γ2a2

2|θ2/α2|2

]
,

�

(3.20)

where

Λ = λ0 − λ∗
0 , ϑ = τ + β2ξ, αj = µ0 + λ0 −

(−1) j

2
δ, θj = ϑ− i

αj
.� (3.21)

Here and for later use, we define the parameters βn as

βn =
1

V1 − V2

(
a2

1

αn
1
+

a2
2

αn
2

)
, (n = 2, 3, 4).� (3.22)

Once the parameters λ0 and µ0 are known, the general second-order rogue wave solutions 
can be cast in the following compact form [112]

u[2]1 = u10

{
1 +

3iΛ[R∗
1(R0m22 − S0m21) + S∗

1 (S0m11 − R0m12)]

a1(m11m22 − m12m21)

}
,

u[2]2 = u20

{
1 +

3iΛ[R∗
0(R2m22 − S2m21) + S∗

0 (S2m11 − R2m12)]

a2(m11m22 − m12m21)

}
,

u[2]3 = u30

{
1 +

3Λ[R∗
2(R1m22 − S1m21) + S∗

2 (S1m11 − R1m12)]

a3(m11m22 − m12m21)

}
,

�

(3.23)

where

J. Phys. A: Math. Theor. 50 (2017) 463001



Topical Review

31

R0 = γ1 − iγ2φϑ, Rj =
aj

αj
(iγ1 + γ2φθj),

S0 = γ1p − iγ2φ
[
qϑ− 2β3(Λ + ϕ)ξ + β4φ

2ξ
]
+ γ3 − iγ4φϑ,

Sj =
iaj

α2
j

[
αjS0 + γ1(iφ2θj − Λ− ϕ)− γ2φ

(
q +

hj

α2
j

)
− γ4φ

]
,

φ =

[
Λ

(
α1 + α2 −

A + δ2

3µ0

)]1/2

, ϕ =
6Λλ0 − φ2

6µ0
,

hj = αj(2 + iαjϑ)(
i
3
φ2θj − Λ− ϕ) +

φ2

3
,

p = −φ2ϑ2

2
− iϕϑ− i(β2Λ− β3φ

2)ξ,

q = p +
φ2ϑ2

3
+

Λ− 2ϕ
6µ0

+
(Λ + ϕ)2

2φ2 ,

m11 = |R0|2 + Γ1|R1|2 + Γ2|R2|2,
m12 = R∗

0 S0 + Γ1R∗
1 S1 + Γ2R∗

2 S2 − m11 ≡ m∗
21,

m22 = |S0|2 + Γ1|S1|2 + Γ2|S2|2 − m12 − m21,

�

(3.24)

with γn (n = 1, 2, 3, 4) being four arbitrary complex constants. As the rogue wave structures 
strongly depend on γn, we will term these parameters structural parameters in this paper so as 
to distinguish them from the plane-wave parameters.

The specific spectral parameter λ0 in the above formulas is the complex root (with a 
nonzero imaginary part) of the discriminant condition

∆ = ς3 − �2 = 0,� (3.25)

under which the cubic equation

µ3 − 3ςµ+ 2� = 0,� (3.26)

will have a double root µ1 = µ2 = µ0. Here

ς = λ2 +
δ2

12
+

A
3

,� (3.27)

� = −λ3 +
1
4
(δ2 − 2A)λ+

δB
4

.� (3.28)

In general, equations (3.25) and (3.26) can be solved analytically, even with B �= 0, although 
in most cases the root expressions are quite lengthy. For convenience of reference, we have 
provided these analytical solutions in appendix A. Usually, the assumption of B = 0 or 
a2 = a1

√
V1/V2  may simplify the results greatly [112].

A close inspection of the cubic equation (3.26) as well as its discriminant (3.25) reveals 
that the rogue wave solutions for V1 > V2 could exist in the whole regime |δ| < +∞, while 
those for V1 < V2 only exist in the limited regime defined by

|δ| � {3
2
(A2 − B2)1/3[(−A − B)1/3 + (−A + B)1/3]− A}1/2 ≡ δm.� (3.29)

These parameter conditions can also be obtained by use of the baseband MI analysis. To 
check this, we add small-amplitude Fourier modes to the plane-wave solutions and express 
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them as un = un0{1 + pn exp[−iΩ(κτ − ξ)] + q∗n exp[iΩ(κ
∗τ − ξ)]} (n = 1, 2, 3), where pn 

and qn are small amplitudes of the Fourier modes, and the parameters Ω and κ are assumed to 
be positive and complex, respectively. A substitution of these perturbed solutions into (3.16) 
followed by linearization yields the dispersion relation

Ω2κ2 − 4κa2
1

κ− V2
−
[(

a2
1

κ− V2
+

a2
2

κ− V1

)
κ

δ
− δ

]2

= 0.� (3.30)

As a result of the baseband limit Ω = 0, equation  (3.30) reduces to a real-coefficient quartic 
equation (B �= 0) whose solution κ can be solved algebraically. It is easy to prove that as V1 > V2 
(the SE case), this quartic equation always permits a pair of complex conjugate roots in the whole 
regime of δ, whereas for V1 < V2 (the SB case), it only supports complex roots when the param
eter condition (3.29) is fulfilled, as predicted by the analytical solutions. On the other hand, one 
can solve the sextic equation (3.30) numerically for κ and get the MI gain map by defining it as 
γh = Ω|Im(κ)|. It follows from (3.30) that the MI map will be same if the frequency difference δ 
has the same absolute value, for given amplitudes and relative velocities. We provide in figure 14 
the MI map for the SB case. It is shown that the MI map in this case consists of baseband and 
passband parts, but only the baseband one determines the domain of rogue waves.

We need to point out that the fundamental solutions (3.20) and the second-order solutions 
(3.23) can apply to both the SE and SB processes. To give some specific examples, we illus-
trate in figure 15 the dark–dark–bright (DDB) triplets for the SB case (left column) obtained 
with a1 = 2, a2 = 1, V1 = 1, V2 = 4, and δ = 2, and the bright–dark–bright (BDB) triplets for 
the SE case (middle column), obtained with a1 = 1, a2 = 2, V1 = 4, V2 = 1, and δ = 1.949. 
In both situations, we set κ = 0, as the rogue wave structures do not depend on κ , and use 
the same structural parameters γ1 = 5, γ2 = 1, and γ3 = γ4 = 0. It is evident that there is a 
distinctly different evolution dynamics between the SE and SB rogue waves. On the other 
side, in the right column of figure 15, we provided the numerical results of the DDB rogue 

Figure 14.  MI map related to (3.30) in the SB case with a1 = 2, a2 = 1, V1 = 1, and 
V2 = 4 [112]. It has been separated into baseband and passband parts by a dashed white 
line. The green cross in the map indicates the maximum growth rate for |δ| = 2, which 
corresponds to a modulation frequency of Ωmax = 2.41.
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waves shown in the left column, under the same parameter conditions but imposing small 
amounts of white noise on initial profiles. As seen, in the presence of a tiny perturbation, the 
rogue wave triplets can still propagate very neatly for a rather long time, till eventually the  
spontaneous MI of the background fields grows up. Moreover, one can further compare  
the numerical simulations with the MI analysis, when the same initial plane-wave parameters 
are used. We note that in figure 14, when δ = 2, the maximum gain (green cross) corresponds 
to a modulation frequency of 2.41. Strikingly, in the right column in figure 15, it is shown that 
the period of the MI-induced waves is around 32/12, corresponding to a modulation frequency 
of 3π/4 � 2.36, almost the same as the former value. Once again a good consistency between 
numerics and theory is exhibited.

3.2.2.  Watch-hand-like super rogue waves.  In fact, about the SE case (V1 > V2), there is more 
to the story. We note that as B = 0 and A = 2δ2, or equivalently, under the parameter condition

|δ| =
√
Γ1a1 =

√
Γ2a2,� (3.31)

Figure 15.  Typical DDB (left column) and BDB (middle column) triplets formed at 
δ = 2 in the SB situation and at δ = 1.949 in the SE situation, respectively, with other 
parameters being specified in the text. The right column gives the simulation results 
of the DDB triplets perturbed by white noise of strength ε = 10−7 under otherwise 
identical parameters as in the left column. Figure adapted from [112].
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the cubic equation (3.26) will have a triple root µ1 = µ2 = µ3 = µ0 = 0, and meanwhile, the 
spectral parameter is given by λ0 = ±i

√
3δ/2.

In this special situation, the rogue wave solutions (3.20) and (3.23) still apply, but can be 
generalized to include polynomials of higher degree. Here we merely write the generalized 
second-order solutions as [113]

u[2]1 = u10

{
1 − 3

√
3α1[R∗

0(R1m22 − S1m21) + S∗
0 (S1m11 − R1m12)]

m11m22 − m12m21

}
,

u[2]
2 = u20

{
1 − 3

√
3α1[R∗

2(R0m22 − S0m21) + S∗
2 (S0m11 − R0m12)]

m11m22 − m12m21

}
,

u[2]
3 = u30

{
1 − 3

√
3α1[R∗

1(R2m22 − S2m21) + S∗
1 (S2m11 − R2m12)]

m11m22 − m12m21

}
,

�

(3.32)

where un0 are defined by (3.17) and (3.18), α1 =
√

3
2 − i

2, α2 = α∗
1, and

R0 = γ1 + 2γ2ϑ+ 4γ3(ϑ
2 + 2ϑ+ 3iρ),

Rj = γ1 + 2γ2(ϑ−
√

3αj) + 4γ3[ϑ
2 + 3iρ− 2i(−1) j(ϑ/αj −

√
3)],

S0 = γ1c0 + γ2d0 + γ3e0 + γ4 + 2γ5ϑ+ 4γ6(ϑ
2 + 2ϑ+ 3iρ),

Sj = γ1cj + γ2dj + γ3ej + γ4 + 2γ5(ϑ−
√

3αj)

+ 4γ6[ϑ
2 + 3iρ− 2i(−1) j(ϑ/αj −

√
3)],

m11 = |R0|2 + |R1|2 + |R2|2,
m12 = R∗

0 S0 + R∗
1 S1 + R∗

2 S2 − m11 ≡ m∗
21,

m22 = |S0|2 + |S1|2 + |S2|2 − m12 − m21,

�

(3.33)

with γn (n = 1, 2, · · · , 6) being arbitrary complex constants and j = 1, 2. The other functions 
are given by

ϑ =
√

3δ
[

i
(

1
α1V1

− 1
α2V2

)
ξ + τ

]
,

ρ =2δ
(

1
V2

− 1
V1

)
ξ, η = 2

√
3δ

(
1

V2
+

1
V1

)
ξ,

c0 =
1
6
ϑ3 + ϑ2 +

1
2
(η + 3iϑρ),

cj = c0 −
√

3
2

(ϑ2 + 3iρ)αj −
√

3(ϑ− 1)
αj

,

d0 =
1

12
ϑ4 + ϑ3 + ϑ2 +

4
3
ϑ− 9

4
ρ2 +

3i
2
ρϑ(ϑ+ 2) + ηϑ,

dj = d0 −
√

3
3

[ϑ2 + 5ϑ+ 9iρ+ (−1) ji(4αj −
√

3ϑ)]

× [αjϑ− (−1) ji]−
√

3αjη,

e0 =
1
9
ϑ[(ϑ2 + 6ϑ+ 9iρ)2 − 2

5
ϑ4 + 48ϑ+ 24] + 2i(3η + 2)ρ+ 2ηϑ(ϑ+ 2),

ej = e0 −
√

3αj(ϑ
2 + 3iρ)2 − 4

√
3η[αjϑ− (−1) ji]− 12

√
3i(ϑ− 1)ρ
αj

+ ϑ(ϑ3 − 6ϑ2 − 4) + (−1) j i
√

3
3

(ϑ− 2)(ϑ3 + 12ϑ− 4).

�

(3.34)
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We should point out that, in addition to the six structural parameters γn, the rogue wave 
solutions (3.32) only depend on the free parameters a1 and on the relative group velocities 
V1 and V2. Intriguingly, by choosing appropriate sets of structural parameters, the analytical 
solutions can exhibit highly asymmetric super rogue waves located around the origin, like the 
three hands of a watch. We now fall to discussing these novel watch-hand-like (WHL) super 
rogue waves, while leaving the discussion of other complex patterns such as doublets, quar-
tets, and sextets in section 3.3.3.

Here we simply choose γ3 = 1 (with all the other structural parameters set to zero), and let 
a1 = 1, a2 = 3, and a3 = 2

√
2, which implies that V1 = 9 and V2 = 1. Typical WHL rogue 

wave states are illustrated in figure 16, clearly showing that the three rogue wave components 
have a watch-hand-like distribution (see the contour plots (b), (d), and (f)). The watch trait will 
be more obvious if these three components are superimposed together in one image (see panel 
(g) where for comparison we have normalized the wave fields to have the same background 
height). We understand that the main spatiotemporal orientations of the WHL rogue wave 
components are determined by their relative group velocities. For instance, V3 = 0 implies 
that, in the reference frame of u3, the hump orientation of the component u3 is frozen at around 
ξ = 0 (see figure 16(f)). Also, as one can verify, increasing the value of V2 towards V1 would 
change the orientation of the other two field components, but still would maintain a watch 
trait, apart from its hands being extended significantly along the ξ dimension. Nevertheless, 
each rogue wave hand, although narrow in shape, always involves a highly asymmetric but 
still smooth profile. This unusual distribution is markedly different from the super rogue wave 
distributions that have been found to date in other coupled nonlinear systems [118–120], 
where the waves always feature a major overlap of their spatiotemporal distributions. In this 
regard, as they do not significantly overlap in time and space, the three components of such 
super rogue wave states could be efficiently separated using an appropriate filtering technique: 
this represents an important feature that would facilitate the experimental diagnostics and 
observation.

In addition to the above mentioned watch trait, all the three rogue wave components feature 
a giant wall-like hump, with a peak amplitude more than five times the respective background 
height. For illustration, we define an amplification factor g as the ratio of the peak amplitude to 
the average background. It is clearly seen in figures 16(a), (c) and (e) that, for the three rogue 
wave components, the corresponding g values are 5.43, 5.43 and 6.09, respectively. All of 
them are larger than 5, a characteristic value that the super (second-order) rogue waves in the 
scalar NLS equation can reach [18, 47]. Here we point out that, for other parameter scenarios 
where γ3 = 0, the g value is found to be smaller than 5, although usually a WHL distribution 
remains.

It should be mentioned that, under the parameter condition (3.31), the dispersion relation 
(3.30) resulting from MI analysis can be factorized into two cubic equations:

Ωκ(κ− V1)(κ− V2)± δ

[
(V1 − V2)

2

V1V2
κ2 + (κ− V1)(κ− V2)

]
= 0.� (3.35)

These cubic equations  can be exactly solved using the Cardano’s formulas and hence the 
growth rate γh = Ω|Im(κ)| can be readily calculated. Figure 16(h) shows the combined map 
of the MI gains in the plane (V2, Ω), calculated from (3.35) with given parameters a1 = 1 and 
V1 = 9. It is clear that the MI is of baseband type and as a result the WHL super rogue waves 
could exist for 0 < V2 < V1.

We finally simulated the governing TWRI equation  and showed that these WHL rogue 
waves are themselves stable despite the onset of MI activated by small amounts of white 
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Figure 16.  WHL rogue waves formed at a1 = 1, V1 = 9, V2 = 1 and γ3 = 1 (the 
other γn are set zero): (a), (c), (e) surface plots; (b), (d), (f) contour distributions. (g) 
illustrates the watch trait by superimposing the above three components in one image. 
(h) shows the MI map versus V2 and Ω for given a1 = 1 and V1 = 9, which results from 
calculations of two cubic equations in (3.35). Figure adapted from [113].
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noise (see figures 4 and 6 in [113]). It is even found that such WHL rogue waves can indeed 
be numerically excited from chaotic background fields. A typical result has been provided in 
figure 17, where we used otherwise identical parameters as in figure 16 except V2 = 4. The 
noise strength we imposed on the initial background is now ε = 5 × 10−4, much larger than 
that used in figure 15. It is clearly seen that with this amount of noise perturbation, millions 
of waves were generated from MI after several propagation units, among them there appear 
some highest amplitudes that certainly bear a resemblance to (although due to the surround-
ing interference not so high as) the analytical ones, see those selected by black ellipses in 
figure 17. This no doubt reinforces the stability of these WHL rogue waves and our view on 
their potential applications.

3.2.3. The degenerate case: complementary rogue waves.  Since the rogue waves in the SE 
and SB cases behave differently, as seen in the left and middle columns in figure 15, one may 
naturally ask whether the TWRI equation  (3.16) admits exact rogue wave solutions in the 
degenerate case V2 = V1 = V . The answer is of course affirmative, as revealed in [114]. By 
taking the limit V2 → V1 ≡ V  in (3.20), one can obtain the exact fundamental rogue wave 
solutions

u[1]1 = u10

{
1 +

2iδV[δ2Vτ − (δ2 + A)ξ]− δ2AV2/a2
1

[δ2Vτ − (δ2 + B)ξ]2 + 4δ2a2
3ξ

2 + A2V2/(4a2
3)

}
,

u[1]2 = u20

{
1 +

2iδV[δ2Vτ − (δ2 − A)ξ]− δ2AV2/a2
2

[δ2Vτ − (δ2 + B)ξ]2 + 4δ2a2
3ξ

2 + A2V2/(4a2
3)

}
,

u[1]
3 = u30

{
1 − 4iδ3V(Vτ − ξ) + A2V2/a2

3

[δ2Vτ − (δ2 + B)ξ]2 + 4δ2a2
3ξ

2 + A2V2/(4a2
3)

}
,

�

(3.36)

where un0 (n = 1, 2, 3) are specified as before by (3.17) with identical definitions for k1, k2, κ , 
δ and a3, but now A and B are defined by

A = a2
1 + a2

2, B = a2
1 − a2

2.� (3.37)

In the same way, the second-order rogue wave solutions can be found from (3.23), namely,

Figure 17.  Numerical excitation of WHL rogue waves (selected by black ellipses) 
from the plane-wave solutions (3.17) under identical initial parameter conditions as in 
figure 16 except V2 = 4 and being perturbed by a small amount of white noise.
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u[2]
1 = u10

{
1 − 4ia2R∗

1 [M4(|R2|2M∗
2 − M1) + R0M5]

δ(M2
1 + |R1R2M2|2)

}
,

u[2]
2 = u20

{
1 − 4ia1R2[M∗

3 (|R1|2M2 + M1) + R∗
0 M5]

δ(M2
1 + |R1R2M2|2)

}
,

u[2]
3 = u30

{
1 − 4iR1R∗

2 [|R1|2(2 + M∗
2 ) + |R2|2(2 − M2)]

M2
1 + |R1R2M2|2

}
,

�

(3.38)

where

R0 = γ1 + γ2ϑ, Rj =
aj

αj
(γ1 + γ2θj), (here and below j = 1, 2),

S0 = −iγ1ϕϑ+ γ2

(
qϑ− 4ia3ξ

δV

)
+ γ3 − iγ4ϑ,

Sj =
αjS0 + iγ1φ

2[θj − A/(2δ2a3)] + γ2(φ
2hj − iq)− γ4

αj(γ1 + γ2θj)
,

ϑ = τ −
[

1
V

(
1 +

B
δ2

)
+

2ia3

δV

]
ξ,

αj =
δ

2A
[B − 2iδa3 − (−1) jA], θj = ϑ− i

αj
,

hj =
[θj − 3A/(2δ2a3)](2 + iαjϑ)αj − i

3α2
j

,

φ =
2δ2a3

A2

√
A2 − 2B2 + 4iδBa3, ϕ =

iφ2A
2δ2a3

+
2ia3(δ

2 − A)
3A

,

q = −iϑϕ+
φ2

3
ϑ2 − A2φ2

4δ4a2
3
− 1

2
,

M1 = |R1|2 + |R2|2 > 0, M2 = S2 − S1,
M3 = S1R0 − S0 − 2R0, M4 = S2R0 − S0 − 2R0,

M5 = |R1|2M2 + |R2|2M∗
2 .

�

(3.39)

Here γn (n = 1, 2, 3, 4) are again four arbitrary complex constants. In what follows, we will 
assume ω1 > ω2 , i.e. δ > 0, without loss of generality.

It is of interest to note that the sum of the intensities of the components u1 and u2 will 
always be conserved and can be given by

|u1|2 + |u2|2 = a2
1 + a2

2 = A,� (3.40)

independently of what parameters γn we choose for deterministic rogue wave struc-
tures and whether or not their background heights are equal. As a matter of fact, the rela-
tion (3.40) is a natural consequence of the governing equation  (3.16) which suggests that 

( ∂
∂τ + V ∂

∂ξ )(|u1|2 + |u2|2) = 0 as V2 → V1 = V . Therefore, if the field u1 takes a bright 
Peregrine soliton [17, 34] or a bright triplet [148] structure, the field u2 will take the corre
sponding dark counterpart so that the intensity conservation (3.40) can be fulfilled. In other 
words, they are spatiotemporally complementary, hence the name complementary rogue 
waves. For illustration, we demonstrate in figure 18 the evolution dynamics of the second-order 
rogue waves with the same background height (see captions for specific parameter values). 
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Apparently, the former two butterfly-type patterns are spatiotemporally complementary (see 
figures 18(a) and (b)), while the third one, however, is always bright (see figure 18(c)).

It is easily concluded that the complementary rogue waves could exist in the whole para-
metric space. In fact, one can verify this using the baseband MI theory intended for rogue 
waves [75, 76], which equates the existence regime of rogue waves with that of nonzero MI 
gain at arbitrarily low modulation frequency. We note that, in this degenerate case, the disper-
sion relation (3.30) can now be simplified to a quartic equation

Ω2κ2 − 4κa2
1

κ− V
−
[

κA
δ(κ− V)

− δ

]2

= 0.� (3.41)

It is easy to find that, in the limit of Ω = 0, equation (3.41) always permits a pair of complex 
conjugate roots in the whole regime of δ (of course excluding δ = 0), as analytically predicted 
above. Figure 18(d) shows the MI gain map related to (3.41) in the plane (Ω, δ) for specific 
parameters a1 = 1, a2 =

√
3 and V = 4. It is clear that the baseband MI could extend over 

the whole range of δ, since the passband MI that occurs in coherent SB situation (refer to 
figure 14) is absent now. In particular, at δ = 1, the maximum of the growth rate γh will occur 
at the modulation frequency Ω � 1.23 (see the green cross in panel (d) or (e)).

Practically, of most concern to general soliton community is the stability of these rogue 
waves with respect to background broadband noise sources (e.g. quantum noise) [149, 150]. 
Recent work showed that the Fermi–Pasta–Ulam recurrence of Akhmediev breather solutions 
of the scalar NLS equation may eventually break down in the presence of competing sponta-
neous noise-activated MI [149]. For this reason, we perturbed the initial deterministic rogue 
wave profiles by small amounts of white noise, and inspected whether the complementary 
rogue waves are still observed in the presence of the MI activated by such quantum noise. As 
in [112, 113], we multiplied the real and imaginary parts of all three field components un at 
sufficient negative times by a factor [1 + εri(ξ)] (i = 1, . . . , 6), respectively, where ri are six 
uncorrelated random functions uniformly distributed in the interval [−1, 1] and ε is a small 
parameter defining the noise level. Figure 19 shows the numerical results intended for the fun-
damental rogue waves, either unperturbed (i.e. letting ε = 0) or perturbed by a small amount 
of white noise for which we choose ε = 10−8. It is clear that without any perturbations (see 
left column), numerical simulations produce almost identical results as predicted by solutions 
(3.36), hence giving evidence that the rogue wave solution is robust against numerical inte-
gration noise accumulation. On the other hand, in the right column, we showed that all three 
rogue wave components, under tiny perturbations, can still propagate very neatly for a rather 
long time, till eventually the MI of background fields grows up. Moreover, one can infer from 
the first figure in the right column that the period of the MI-induced periodic wave is around 
18/3.5, corresponding to a modulation frequency of 7π/18 � 1.22, almost the same as cal-
culated from the MI analysis, which has been indicated by the green crosses in figures 18(d) 
and (e).

Experimentally, we expect that there is a possibility to realize complementary rogue waves 
in a dual-mode optical fibre where a forward stimulated Brillouin scattering can occur [151]. 
In this case, the group velocity of the pump and Stokes optical waves can be nearly identical, 
while in comparison, the velocity of the acoustic wave is close to zero, resulting in an inter-
modal coupling governed by the degenerate TWRI equation. Under these circumstances, the 
complementary rogue wave dynamics would occur and one could observe in optical fibres 
two-color optical rogue waves of bright–dark type, thanks to the coupling with the acoustic 
wave and the relatively long interaction length.
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3.3.  Manakov system

Another coupled integrable model of great interest is the VNLS equation  (also known as 
Manakov system [115]), which usually takes the following dimensionless form

iuξ +
s
2

uττ +
(
|u|2 + |v|2

)
u = 0,

ivξ +
s
2

vττ +
(
|v|2 + |u|2

)
v = 0,

� (3.42)

where u(ξ, τ) and v(ξ, τ) are the complex envelopes of the two field components and the sign 
symbol s indicates the anomalous dispersion (s = 1) or the normal dispersion (s = −1) regime. 
It is easy to show that by changing the variable ξ → −ξ, the above equation can be equivalently 
transformed to the focusing or defocusing VNLS equation [20]. We remark that for integrability 

Figure 18.  (a)–(c) show the second-order rogue wave structures given by (3.38), for 
given parameters a1 = a2 = a3 = 1, V = 2, δ = 1, γ1 = −0.5, γ2 = 1, and γ3 = γ4 = 0. 
(d) gives the MI map related to (3.41) for a1 = 1, a2 =

√
3 and V = 4. (e) illustrates 

profiles of the growth rate γh versus Ω for several given δ. The same green cross in (d) 
and (e) indicates the maximum of the growth rate for given δ = 1, which occurs at a 
modulation frequency of about 1.23. Figure adapted from [114].
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condition, the ratio of the self-phase modulation to the cross-phase modulation in (3.42) should 
be equal to unity [111, 115, 152]. Albeit very special, such Manakov system has constituted 
a universal essential vector model for the fundamental exploration of complex coupled soli-
ton dynamics (e.g. dark–dark and dark–bright soliton pairs) [153–155]. From a practical per-
spective, it can model pulse propagation in elliptically birefringent optical fibres [156] or the 
crossing sea waves in open ocean [157]. Particularly, there has been an experimental report of 
observation of Manakov spatial solitons in AlGaAs planar waveguides [158].

In recent years, the fundamental and higher-order rogue wave solutions of different kinds of 
VNLS equations, either focusing or defocusing, have been found [75, 111, 116–120], with one 
or more field components exhibiting peculiar dark structures that are generally unattainable in 

Figure 19.  Numerical simulations of the fundamental rogue wave solutions (3.36) for 
given parameters a1 = 1, a2 =

√
3, δ = 1, and V = 4 [114]. Left column: unperturbed; 

Right column: perturbed by a white noise of strength ε = 10−8.
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the scalar NLS systems. Here, as in the TWRI case, we wish to present universal rogue wave 
solutions up to the second order applicable for both the anomalous and normal dispersion situa-
tions. We will highlight the dynamics of vector dark rogue waves and particularly the dynamics 
of vector dark three sisters that occur in the normal dispersion regime. We find that there is in 
fact an intimate relation between the solutions in the anomalous (normal) VNLS equation and 
those in the SE (SB) TWRI equation, if the field variables u1 and u2 of the latter are compared.

3.3.1. The unified rogue wave solutions and MI hallmarks.  For our present purpose, we define

A = (a2
1 + a2

2)/s, B = (a2
1 − a2

2)/s,� (3.43)

and again let κ = ω1 + ω2, and δ = ω1 − ω2, as in section 3.2. Then, by virtue of DT, the 
fundamental rogue wave solutions of the VNLS equation (3.42) can be obtained as

u[1] = u0

[
1 +

3Λθ∗1ϑ/α
∗
1

|ϑ|2 + (a2
1/s)|θ1/α1|2 + (a2

2/s)|θ2/α2|2

]
,

v[1] = v0

[
1 +

3Λθ∗2ϑ/α
∗
2

|ϑ|2 + (a2
1/s)|θ1/α1|2 + (a2

2/s)|θ2/α2|2

]
,

�

(3.44)

where Λ = λ0 − λ∗
0, ϑ = τ + β2ξ, αj = µ0 + λ0 − (−1) j

2 δ , and θj = ϑ− i
αj

, as defined in 

(3.21), but with β2 = s(µ0 + λ0 − κ/2). Here j = 1, 2 and the same below. u0 and v0 repre-
sent the seeding plane-wave solutions

u0(ξ, τ) = a1 exp (ik1ξ + iω1τ) ,
v0(ξ, τ) = a2 exp (ik2ξ + iω2τ) ,
� (3.45)

whose amplitudes (aj), frequencies (ωj), and wavenumbers (kj) are connected by 
kj = s(A − ω2

j /2). As one can verify, the complex parameters λ0 and µ0 in above formulas 
can be exactly determined by equations (3.25) and (3.26). Hence, for brevity, we do not pres-
ent them here again and one can refer to appendix A for solutions.

Also, for given values of λ0 and µ0, the second-order rogue wave solutions can be expressed 
in a compact form

u[2] = u0

{
1 +

3iΛ[R∗
1(R0m22 − S0m21) + S∗

1 (S0m11 − R0m12)]

a1(m11m22 − m12m21)

}
,

v[2] = v0

{
1 +

3iΛ[R∗
2(R0m22 − S0m21) + S∗

2 (S0m11 − R0m12)]

a2(m11m22 − m12m21)

}
,

�
(3.46)

where

R0 = γ1 − iγ2φϑ, Rj =
aj

αj
(iγ1 + γ2φθj),

S0 = γ1p − iγ2φ[qϑ+ s(Λ + ϕ)ξ] + γ3 − iγ4φϑ,

Sj =
iaj

α2
j

[
αjS0 + γ1

(
iφ2θj − Λ− ϕ

)
− γ2φ(q + hj/α

2
j )− γ4φ

]
,

m11 = |R0|2 +
|R1|2

s
+

|R2|2

s
,

m12 = R∗
0 S0 +

R∗
1 S1

s
+

R∗
2 S2

s
− m11 ≡ m∗

21,

m22 = |S0|2 +
|S1|2

s
+

|S2|2

s
− m12 − m21,

�

(3.47)
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with

φ =

[
Λ

(
α1 + α2 −

A + δ2

3µ0

)]1/2

, ϕ =
6Λλ0 − φ2

6µ0
,

hj = αj(2 + iαjϑ)(
i
3
φ2θj − Λ− ϕ) +

φ2

3
,

p = −φ2ϑ2

2
− iϕϑ− is[Λ(µ0 + λ0)− 3ϕµ0]ξ,

q = p +
1
3
φ2ϑ2 +

Λ− 2ϕ
6µ0

+
(Λ + ϕ)2

2φ2 ,

�

(3.48)

and γ1, γ2, γ3, and γ4 being four arbitrary complex constants.
We point out that the fundamental and second-order rogue wave solutions given above are 

universal and can apply to both the anomalous and normal dispersion situations. Moreover, 
as one can see, these solutions possess rogue wave structures very similar to those defined by 
TWRI solutions [111]; this is evident if one compare the solutions (3.44) or (3.46) with the 
TWRI solutions (3.20) or (3.23). To be more specific, the rogue wave hierarchy allowed by 
the anomalous VNLS equation is almost the same as occurred in the SE-type TWRI equation, 
whereas that allowed by the normal VNLS equation bears a striking resemblance to the one 
occurred in the SB-type TWRI equation. A slight difference is that in the TWRI situation, the 
rogue wave structures do not depend on the parameter κ , but in the VNLS situation they defi-
nitely depend on it, which has been included in β2 and hence in ϑ. Besides, there always exists 
a rogue wave hierarchy in the degenerate TWRI case, i.e. V1 = V2 = V  [114], but, however, 
no rogue wave solutions exist in the zero dispersion (s = 0) limit of the VNLS equation.

Apart from the above observations, we find further that, due to the two-wave coupling, 
the normally dispersive (or equivalently, defocusing) VNLS equation  can admit nonsingu-
lar rational solutions [75], as opposed to its scalar counterpart whose solutions are singular 
[94, 95]. However, in the normal dispersion regime, the rogue waves only develop under the 
parameter condition [75, 119]

|δ| � δm ≡
{

3
2
(A2 − B2)1/3[(−A − B)1/3 + (−A + B)1/3]− A

}1/2

,� (3.49)

differently from those in the anomalous dispersion regime which can occur in the 
whole parameter space. This parameter condition is identical to (3.29), as it is a natu-
ral result of equations  (3.25) and (3.26). One can also check it using the baseband MI 
theory [75, 76], which requires, as usual, for given plane wave solutions (3.45) being 
perturbed according to u = u0{1 + p1 exp[−iΩ(κξ − τ)] + q∗

1 exp[iΩ(κ
∗ξ − τ)]} and 

v = v0{1 + p2 exp[−iΩ(κξ − τ)] + q∗
2 exp[iΩ(κ

∗ξ − τ)]}, their dispersion relation

1
4
(µ2 + δ2 + 2A − Ω2)2 − µ2δ2 + 2µδB − A2 = 0, µ =

2κ
s

− κ,� (3.50)

should have a non-real root μ even in the limit Ω = 0. As usual, pn and qn (n = 1, 2) are small 
amplitudes of the Fourier modes. This is of course true, and for the sake of convenience, we 
give a detailed proof in appendix B.

On the other hand, for a visualized comparison, we plot in figure 20 the MI maps related 
to (3.50), which is defined by γh = Ω|slm(µ)|/2, for both the anomalous and normal disper-
sion situations (For simplicity, we only consider the B = 0 case so that the MI maps depend 
only on the absolute value of δ, as seen in (3.50)). It is shown that in the anomalous dispersion 
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regime (see figure 20(a)), the MI map consists of two segments, both of which have a base-
band gain spectrum that can occupy altogether the whole domain of δ. Particularly, one can 
find further that, although the passband gain spectrum does not determine the domain of exist-
ence of rogue waves, it may indeed contribute to the formation of rogue waves as long as it 
dominates over the baseband spectrum of other MI segments for given δ. By comparison, in 
the normal dispersion regime (see figure 20(b)), the MI map is composed of only one segment 
that comprises baseband and passband gain spectra. It is obvious that in this case, the base-
band spectrum only occupies the domain |δ| � δm, which is exactly the same as the parameter 
condition (3.49) for rogue-wave existence. However, contrarily to the former case, the pass-
band spectrum contributes little to the formation of rogue waves.

More interestingly, intriguing vector dark rogue wave dynamics can be observed in the 
normal dispersion regime, namely, the two polarization components can be kept being dark 
simultaneously. This behavior can be reminiscent of another class of closely-related nonlinear 
entities, vector dark solitons, which form as a result of a strong nonlinear coupling balanced 
by the normal dispersion [153, 155]. As one might know, such vector dark rogue wave states 
are absent in most focusing coupled systems [107, 109, 116, 118]. In the following, we are 
merely concerned about the normal dispersion (defocusing) regime where the vector dark 
rogue wave dynamics can occur.

3.3.2.  Vector dark rogue waves and recent experimental progress.  For simplicity, we  
consider the case of equal background height, a1 = a2 = a (i.e. B = 0), and let s = −1  
(i.e. normal dispersion). In this case, equations (3.25) and (3.26) can be exactly solved, with 
results given by (see appendix A)

λ0 =
i
4
η +

i(4A + δ2)

12η
, µ0 =

i
4
η − i(4A + δ2)

12η
,� (3.51)

Figure 20.  MI maps related to (3.50) for both the (a) anomalous dispersion (s = 1) and 
(b) normal dispersion (s = −1) situations, where a1 = a2 = a = 1 . The dash-dotted 
white lines separate the map into baseband and passband parts. The red cross gives the 
value of modulation frequency Ω ≈ 1.2512 for given |δ| =

√
3, where the growth rate 

can reach its maximum γmax
h ≈ 0.4568.
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where now A = −2a2 (< 0) and the parameter η is defined by

η = ±
[

2
√

A(A − 2δ2) + 2A − δ2
]1/2

, (for |δ| � δm = 2
√
−A).� (3.52)

For this special case, it follows easily that as 
√

−3A/2 � |δ| < δm , both field components 
could feature a dark structure. Particularly, as |δ| =

√
−3A/2, the rogue-wave intensity can 

exactly fall to zero at the dip center. We will dub such special dark rogue waves as being 
black, similar to the definition of the black soliton terminology in contemporary soliton sci-
ence [159]. This is nicely illustrated in figure 21, where we demonstrate both a vector dark 
Peregrine soliton given by (3.44) (see surface plots (a) and (b)) and a vector dark triplet given 
by (3.46) (see surface plots (c) and (d)), using the same set of initial plane-wave parameters 
a1 = a2 = a = 1, δ = −

√
3 , and κ = 1/2 (the values of γn for the triplet pattern are specified 

in the caption).
Concerning the intriguing triplet pattern shown in figures  21(c) and (d), one might be 

reminded of that there is a similar three-wave phenomenon occurring in Great Lakes known 
as the ‘three sisters’ [160], wherein the first wave will hit the ship and before its water drains 
away the second wave strikes, followed by the third wave. This sequential impact adds together 
suddenly overloading the deck with tons of water. These types of waves are now believed 
responsible for the sinking of the SS Edmund Fitzgerald on Lake Superior in 1975. Our vector 
dark triplets shown here can be thought of as the dark counterparts of these three-sister rogue 
waves. For this reason, we vividly term them ‘dark three sisters’.

Figure 21.  (a), (b) Vector dark fundamental rogue waves and (c), (d) vector dark three 
sisters formed at δ = −

√
3 , κ = 1/2, a1 = a2 = a = 1 and s = −1. The structural 

parameters in (c), (d) are specified by γ1 = −3i, γ2 = 1, γ3 = γ4 = 0. Figure adapted 
from [119].
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Numerical results of the vector dark triplets without white noise perturbation were dem-
onstrated in figures 22(a) and (b), using the analytical solutions (3.46) at ξ = −20 as initial 
conditions. It is clearly seen that the numerical solutions exactly reproduce the analytical 
solutions at least until ξ = 20, anticipating the stability of these dark triplets. We further 
numerically inspect the stability by perturbing the above initial condition. Specifically, we 
multiplied the real and imaginary parts of both the u and v components at ξ = −20 by a fac-
tor [1 + εri(τ)] (i = 1, · · · , 4), respectively, where ri are four uncorrelated random functions 
uniformly distributed in the interval [−1, 1] and ε is a small parameter defining the noise level 
(here we used ε = 10−4). Numerical results are provided in figures 22(c) and (d), showing that 
the former two sisters in either component can evolve as before, but the third one seems to be 
strongly disturbed by a complicated set of wave structures arising from the MI. This is not sur-
prising because the MI can grow exponentially with the propagation distance and eventually 
it will develop to a large value to form waves interfering with the third sister. In other words, 
the dark three sisters themselves are stable, although the backgrounds where they are built are 
always unstable. Moreover, we note from figure 22(d) that the period of the MI wave is around 
5, corresponding to a modulation frequency 2π/5 � 1.2566, a value very close to that given 
by the MI analysis above, see red cross in figure 20(b).

The experimental observation of an optical spatiotemporal dark rogue wave has been 
recently reported by using standard telecommunication equipment [161]. In this experiment, 
two orthogonally polarized cw pumps, provided by diode laser pumps, were injected in a 3 km 

Figure 22.  Numerical simulations of the vector dark three-sister rogue waves using 
otherwise identical parameters as in figures 21(c) and (d) [119]: (a), (b) the unperturbed 
situation; (c), (d) perturbed by initial white noise.
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long standard telecommunication fibre in normal chromatic dispersion and low polarization 
mode dispersion regime. Under these conditions, the nonlinear spatiotemporal propagation 
effects in the telecommunication fibre can be well described by the Manakov system [162]. 
When the total pump power injected in the fibre grows larger than a critical value, the band 
of unstable sideband frequency shifts extends down to zero, reaching the baseband MI condi-
tion [162]. It turns out that it is precisely such condition that admits the emergence of vector 
rogue waves. In addition, to excite a spatiotemporal dark rogue wave an input modulation is 
necessary to break the stability of the orthogonal pumps. When the modulating perturbation 
signals are present, the nonlinear reshaping of the polarized pumps leads to the generation of 
a periodic train of temporal black intensity notches, as shown in the numerical intensity plots 
in figure 23. Each of the generated notches matches well the shape of a single isolated optical 
dark rogue wave defined by the exact solutions (3.44), expressed in dimensional units.

The numerical and theoretical dark rogue wave predictions were confirmed by the experimental 
results. Figure 24 compares input and output (after 3 km of optical fibre) intensities from the exper-
iments with an input periodic intensity modulation, and as well as their corresponding numerical 
and analytical dark rogue wave solutions. As can be seen, an overall excellent quantitative agree-
ment is obtained between theory, numerics and experiments. Only slight discrepancies appear due 
to the non-ideal initial conditions used for the generation of the optical rogue waves.

3.3.3. The rogue wave doublets, quartets, and sextets.  Let us now give a final remark on the 
rogue wave solutions of Manakov system. We find that there exists a class of more general 
solutions when the parameter conditions B = 0 and A = 2δ2 are fulfilled, as in the TWRI 
case. It is easy to show that, under such conditions, which mean that s > 0 (i.e. anomalous 
dispersion) and

√
s|δ| = a1 = a2 ≡ a,� (3.53)

the cubic equation  (3.26) will have a triple root µ1 = µ2 = µ3 = µ0 = 0, and the spectral 
parameter satisfying the discriminant (3.25) is found to be λ0 = ±i

√
3δ/2.

As a result, one can generalize the second-order rogue wave solutions (3.46) as [120]

u[2] = u0

{
1 − 3

√
3α2[R∗

1(R0m22 − S0m21) + S∗
1 (S0m11 − R0m12)]

m11m22 − m12m21

}
,

v[2] = v0

{
1 − 3

√
3α1[R∗

2(R0m22 − S0m21) + S∗
2 (S0m11 − R0m12)]

m11m22 − m12m21

}
,

�

(3.54)

where u0 and v0 are still given by (3.45), α1 =
√

3
2 − i

2, α2 = α∗
1, and

R0 = γ1 + 2γ2ϑ+ 4γ3(ϑ
2 + 2ϑ+ 3iρ),

Rj = γ1 + 2γ2(ϑ−
√

3αj) + 4γ3

[
ϑ2 + 3iρ− (−1) j2i

(
ϑ

αj
−
√

3
)]

,

S0 = γ1c0 + γ2d0 + γ3e0 + γ4 + 2γ5ϑ+ 4γ6(ϑ
2 + 2ϑ+ 3iρ),

Sj = γ1cj + γ2dj + γ3ej + γ4 + 2γ5(ϑ−
√

3αj)

+ 4γ6

[
ϑ2 + 3iρ− (−1) j2i

(
ϑ

αj
−
√

3
)]

,

m11 = |R0|2 + |R1|2 + |R2|2,
m12 = R∗

0 S0 + R∗
1 S1 + R∗

2 S2 − m11 ≡ m∗
21,

m22 = |S0|2 + |S1|2 + |S2|2 − m12 − m21,

�

(3.55)
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with γn (n = 1, 2, · · · , 6) being arbitrary complex constants. The other functions are defined 
by

ϑ =
√

3δ
[ s

2
ξ
(
κ + i

√
3δ
)
− τ

]
, ρ = a2ξ,

c0 =
1
6
ϑ3 + ϑ2 +

3i
2
ϑρ, cj = c0 −

√
3

2
(ϑ2 + 3iρ)αj −

√
3(ϑ− 1)
αj

,

d0 =
1

12
ϑ4 + ϑ3 + ϑ2 +

4
3
ϑ− 9

4
ρ2 + 3iρ(

1
2
ϑ2 + ϑ+ 3),

dj = d0 −
√

3
3

[ϑ2 + 5ϑ+ 9iρ+ (−1) ji(4αj −
√

3ϑ)][αjϑ− (−1) ji],

e0 = 4iρ(10 + 9ϑ) +
1
9
ϑ[(ϑ2 + 6ϑ+ 9iρ)2 − 2

5
ϑ4 + 48ϑ+ 24],

ej = e0 −
√

3αj

[
(ϑ2 + 3iρ)2 +

12i(ϑ− 1)ρ
α2

j

]
+ ϑ(ϑ3 − 6ϑ2 − 4)

+ (−1) j

√
3

3

[
i(ϑ− 2)(ϑ3 + 12ϑ− 4) +

108ρ
α2

j

]
.

�

(3.56)

As can be inferred from the analytical solutions (3.54), there would occur rogue wave 
doublets, quartets, and sextets, when the condition γ6 �= 0 with γ1 = γ2 = γ3 = 0, the condi-
tion γ2 �= 0 with γ3 = 0, and the condition γ3 �= 0, are satisfied, respectively. Special atten-
tion here should be paid to the doublet states because in this case, the solutions (3.54) can 
be simplified to the first-order solutions [120]. For illustration, we demonstrate in figure 25 
the typical bright–bright doublets (see (a) and (b)), quartets (see (c) and (d)), and sextets (see 
(e) and (f)), with the same background parameters but with different structural parameters  

Figure 23.  Numerical solutions showing the dynamics of the modulated u and v 
polarized envelope components and the generation of a periodic train of dark rogue 
waves, obtained with a specific set of parameters used in experiments [161].
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(see caption). It is clearly shown that the constituents in these doublets, quartets or sextets 
are similar, but need not be identical; some have a peak amplitude more than twice the back-
ground height, but some do not, a few even having a double-peak structure. Also the position 
of the constituents is not fixed, which depends strongly on the choice of the structural param
eters involved.

4.  Multidimensional rogue waves

Echoing the multidisciplinary diffusion of soliton concepts a few decades ago, rogue-wave 
research has continued its expansion, while providing novel perspectives for the manifestation 
of extreme waves in a variety of nonlinear media. This requires the study of the propagation 
models that go beyond the scalar wave equations (see section 2) or vector multicomponent 
systems (see section 3). From the physical point of view, the extension of rogue wave mod-
els to higher dimensions is essential [15, 16, 163, 164]. Oceanic rogue waves are manifestly 
(2  +  1)D phenomena, whereas in the context of ultrafast optics, the propagation of intense 
light pulses in a nonlinear slab or bulk medium entails a complex multidimensional dynamics, 
where the spatial and temporal degrees of freedom can not be treated separately [165–167]. 
Further, the extension of nonlinear dynamics to a higher spatiotemporal dimensionality can 
never be considered as a trivial problem. For instance, a pure χ(3) Kerr medium, which is 
appropriate for transverse optical confinement in the 1D case, does not provide stable con-
finement for higher dimensions due to wave collapse [165]. This situation explains why the 
practical quest of spatiotemporal solitons in higher dimensions, also termed light bullets, has 
become a holy grail for nonlinear optics [168–179].

Figure 24.  (a), (b) Intensity temporal profiles in the u and v polarization modes at the 
input of the telecom fibre. (c), (d) Output intensities after 3 km of propagation in the 
optical fibre. Open circles represent the analytical dark rogue wave profiles, blue solid 
lines the numerical traces, and red dotted lines the experimental measurements.
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Concerning spatiotemporal dimensionality, analytical rogue wave investigations have been 
mostly confined to (1  +  1)D models so far, due to the difficulty in finding integrable models 
in higher dimensions. Typically, a natural extension of the scalar NLS equation (2.1) is the 
(2  +  1)D NLS equation:

iuz +
1
2

uxx +
β

2
utt + σ|u|2u = 0,

�

(4.1)

Figure 25.  Diverse rogue wave structures given by solutions (3.54) formed at δ = −a, 
with a = 1, κ = 0, and s = 1: (a), (b) bright–bright rogue wave doublets obtained with 
γ5 = 12 and γ6 = 1; (c), (d) bright–bright rogue wave quartets obtained under γ1 = 5i, 
γ2 = 1, and γ5 = 500; and (e), (f) bright–bright sextets, with γ3 = 0.5 and γ4 = 4000. 
The other unshown γn in each case are all set to zero. Figure adapted from [120].
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which has great potential in applications, e.g. providing a standard description for the propa-
gation of optical pulses in planar waveguides [167, 180]. However, this model equation  is 
non-integrable and has no exact rogue wave solutions with the help of IST or DT. But this is 
not the end, just the beginning of the full story. To seek for an integrable fungible version of 
equation (4.1), several significant efforts were taken.

The best known integrable example is the DS equation [6, 181, 182]

iuz +
1
2

uxx +
β

2
utt + (σ|u|2 − 2φ)u = 0, φxx − βφtt = σ(|u|2)xx,

� (4.2)
which models the evolution of a 2D wave packet on water of finite depth in the shallow water 
limit [183, 184], or describes the propagation of acoustic-ion waves in a magnetized plasma 
[185]. The DS equation (4.2) can be divided into the DSI and DSII equations [6, 181]. In the 
context of fluid dynamics, DSI corresponds to β = 1, which occurs for water depths where 
surface tension dominates, while DS II corresponds to β = −1, which occurs for water depths 
where surface tension can be neglected. In the infinite depth limit, however, the DS equa-
tion can be reduced back to the (2  +  1)D NLS equation (4.1) that is non-integrable. A major 
development in the understanding of DS equations came in 1988, with the discovery of a class 
of exponentially localized 2D solutions—‘dromions’ [186–188]. Lately, rogue wave solutions 
were discovered for both the DSI and DSII equations [189, 190], revealing novel spatiotempo-
ral rogue wave dynamics. We need to mention here that there were also research activities on 
the third-type DS equation [191–193] whose rogue wave solutions exist as well [194].

Recently, another integrable extension of equation (4.1) was derived, first from the basic 
hydrodynamic equations [195] and then from the dynamics of ion acoustic waves in a magnet-
ized plasma [196], namely,

iuz +
1
2

uxt + iu(uu∗t − u∗ut) = 0.� (4.3)

In this extended (2  +  1)D NLS equation, while the second term accounts for the diffraction 
and dispersion effects, the third term has been justified to serve as an effective Kerr nonlinear-
ity [195, 196]. Owing to integrability, the corresponding rogue wave solutions of (4.3) have 
been explored in a recent work [197].

On the other side, by using the multiscale method, equation (4.1) can also be transformed 
to the KP equation [198], up to the first-order approximation [199–201]:

3βuxx = (uz + 6uut + uttt)t.� (4.4)

As an integrable (2  +  1)D extension of the KdV equation, the KP equation plays a fundamen-
tal role in nonlinear wave theory, allowing the formation of stable solitons or rational localized 
solutions pertinent to systems involving quadratic nonlinearity, weak dispersion, and slow 
transverse variations [202]. As in the DS equation (4.2), the KP equation has two distinct ver-
sions (KP-I for β = 1 [203–206] and KP-II for β = −1 [207, 208]), which bear a similarity in 
form but differ significantly in their underlying mathematical structure and the corresponding 
solution dynamics. Particularly, intriguing original nonsingular lump solutions of the KP-I 
equation were highlighted in the literatures [203–206].

Besides the above typical circumstances, there are also other possible interesting inte-
grable extensions of (4.1), for instance, taking the (2  +  1)D differential–integral form as in  
[209, 210] to account for the nonlocal nonlinearity. For our present purposes, in this section, we 
wish to only overview those interesting high-dimensional rational solutions allowed by equa-
tions (4.2)–(4.4). For convenience, we will normalize the dispersion parameter β and the non-
linearity parameter σ in the above equations to be ±1, without loss of generality. Specifically, 
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we begin with the rogue wave dynamics in the DS equations, and then make an attack on the 
higher-dimensional rogue waves defined by a composite (2  +  1)D model. The latter model is 
a combination of the Hirota equation and the complex mKdV equation expressed in different 
dimensions [59], which can yield the extended (2  +  1)D NLS equation (4.3) and the KP-I 
equation  (4.4), respectively. Naturally, once the rogue wave solutions of such a composite 
model are obtained, they should also satisfy both (4.3) and (4.4). Finally, we will show further 
that the KP-I equation in fact admits a general hierarchy of nonsingular lump solutions, but 
only a limited number of solutions can be identified as rogue waves.

4.1. The Davey–Stewartson equation

Among the deterministic and stochastic models describing ocean waves as well as their 
destructive influence, the DS equation  [183] plays an important role in the areas of fluid 
dynamics because of its integrability [181]. It results from a multiple-scale analysis of modu-
lated nonlinear surface gravity waves propagating over a horizontal sea bed. In normalized 
forms, it can be expressed by the model equation (4.2). Here we should stress that, in oceanog-
raphy, z represents the evolution time, x and t stand for the two-dimensional space coordinates, 
and correspondingly, u and φ give the meanings of the surface wave elevation and the particle 
velocity along the dominant wave direction, respectively [6]. It is now known that this model 
equation has many identifiable coherent structures and waves, including solitons, dromions, 
Stokes waves, and velocity-dependent vortices [186–188]. Of most concern for our present 
purposes are those coherent structures referred to as rogue waves, which exist as well for DS 
equations [189, 190]. To proceed, let us first inspect the existence condition of rogue waves 
following the baseband MI analysis.

The plane-wave solution of the DS equation (4.2) can be expressed as

u0 = a exp(ikz + iκx + iωt), φ = b,� (4.5)

where k = a2σ − βω2/2 − κ2/2 − 2b, with b being the background of the φ field. Adding 
small-amplitude Fourier modes to the plane-wave solution (4.5) gives

u = u0{1 + p exp[−iΩ(µx − t + κz)] + q∗ exp[iΩ(µx − t + κ∗z)]},
φ = b + s exp[−iΩ(µx − t + κz)] + s∗ exp[iΩ(µx − t + κ∗z)],

�
(4.6)

where p, q, and s are small complex amplitudes, and κ is a complex propagating constant 
while Ω and μ are real. Substitution of (4.6) into the DS equation (4.2) followed by lineariza-
tion yields the dispersion relation:

(µ2 − β)(βω − µκ − κ)2 = (µ2 + β)2[Ω2(µ2 − β)/4 + a2σ],� (4.7)

which is a quadratic equation of κ. In the baseband limit Ω = 0, this quadratic equation admits 
a pair of complex roots if and only if the discriminant satisfies

∆ = 4a2σ(µ2 − β)(µ2 + β)2 < 0.� (4.8)

According to the baseband MI conjecture repeatedly confirmed in previous sections, equa-
tion (4.8) will give the existence condition of rogue waves associated with DS equations. It is 
evident that in the DSI equation (β = 1), the inequality condition (4.8) can be always met for 
specific μ values independently of whether σ = 1 or −1, suggesting that there always exist 
rogue wave solutions in either case. However, in the DSII equation (β = −1), this condition 
holds only when σ = −1, which means that the rogue wave solutions exist solely for σ = −1. 
As will be shown below, the σ = 1 case gives rise to singular rational solutions, which are 
physically irrelevant.

J. Phys. A: Math. Theor. 50 (2017) 463001



Topical Review

53

For further illustration, we solve (4.7) directly for the growth rate, which is defined as 
before by γh = Ω|Im(κ)| (here we assume Ω > 0 without loss of generality). The MI maps for 
either β = 1 (DSI) or β = −1 (DSII) situation were shown in figure 26, under given parameter 
conditions κ = ω = 0 and a = 1. For better view, we plotted the logarithmic gain, i.e. ln(γh) 
in the DSI equation situation (see figures 26(a) and (b)), while in the DSII equation situation 
we used γh for the MI map (see figure 26(c)). It is clear that for given constant background 
(κ = ω = 0) the MI that is responsible for the rogue wave generation can occur in the DSI 
equation, whatever sign the σ takes, but, however, only exists for the DSII equation  with 
σ = −1. This conclusion can indeed apply to all background field scenarios, as confirmed by 
calculations.

On the other side, to seek for the rogue wave solutions, one can convert the DS equa-
tion (4.2) into the following Hirota bilinear forms

(2iDz + D2
x + βD2

t )G · F = 0,� (4.9)

(D2
x − βD2

t )F · F = 2σ(F2 − |G|2),� (4.10)

by using the substitutions

u =
G
F

, φ =
σ

2
− (lnF)xx,� (4.11)

where F and G are functions of z, x and t (G is complex, but F should be real), and D is the 
Hirota bilinear differential operator defined by

Dn
x f · g =

(
∂

∂x
− ∂

∂x′

)n

f (x)g(x′)
∣∣∣∣
x′=x

.� (4.12)

Then, in terms of the new variables,

Figure 26.  MI maps versus Ω and µΩ related to (4.7) under given parameter conditions 
κ = ω = 0 and a = 1, for (a) the DSI equation  with β = 1, σ = 1; (b) the DSI 
equation with β = 1, σ = −1, and (c) the DSII equation with β = −1, σ = −1. There 
will be no MI maps with β = −1 and σ = 1. The dash-dotted red lines give the marginal 
instability defined by (µ2 − β)Ω2 + 4a2σ = 0.
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θ1 =
1
2
(x +

t√
β
), θ−1 =

σ

2
(x − t√

β
), θ2 =

i
4

z, θ−2 = θ∗2 ,� (4.13)

the Hirota bilinear forms (4.9) and (4.10) can be expressed as

(D2
θ1
− Dθ2 + D2

θ−1
+ Dθ−2)G · F = 0,� (4.14)

(Dθ1 Dθ−1 − 2)F · F = −2|G|2.� (4.15)

As the bilinear equation (4.14) is hard to solve, we can narrow the range of solutions by sepa-
rating it into two parts

(D2
θ1
− Dθ2)G · F = 0,� (4.16)

(D2
θ−1

+ Dθ−2)G · F = 0.� (4.17)

Now equations (4.15)–(4.17) can be readily solved, with solutions given in terms of the deter-
minants τn that should satisfy τ∗n = τ−n, for details see [41, 189, 190]. We do not repeat the 
derivations here but write the rational solutions as below.

The DSI equation case (β = 1). It is clear that both θ1 and θ−1 are now real. As shown in 
[189], the nonsingular rational solutions can be constructed as

F = τ0, G = τ1,� (4.18)

where τn (n = 0, 1) is an N × N  determinant

τn = det1�j,k�N (m(n)
jk ),� (4.19)

with the matrix elements m(n)
jk  given by

m(n)
jk =

nj∑
ι=0

cjι(εj∂εj + ξj + n)nj−ι
nk∑

l=0

c∗kl(ε
∗
k∂ε∗k + ξ∗k − n)nk−l 1

εj + ε∗k
,� (4.20)

ξj = εjθ1 − ε−1
j θ−1 + 2(ε2

j θ2 − ε−2
j θ−2).� (4.21)

Here, nj are arbitrary non-negative integers and εj  and cjι are arbitrary complex constants. 
The shorthand notation ∂εj(ε∗j )

 signifies the differentiation with respect to εj  (or ε∗j ). As 

m(n)∗
jk = m(−n)

kj , the condition τ∗n = τ−n can be satisfied by the property that a matrix has the 
same determinant as its transpose. In appendix C of [190], the proof of the nonsingularity of 
the solutions, F = τ0 > 0, was also given.

The DSII equation  case (β = −1). In this case, θ−1 = σθ∗1, and thus the nonsingular 
rational solutions need to be carefully constructed. As shown in [190], the solutions can still 
be given by (4.18), but the determinants τn are made to be 2N × 2N  order, namely,

τn =

∣∣∣∣∣
(m(n)

jk ) (m̂(n)
jk )

σ(m̂(−n)
jk )∗ (m(−n)

jk )∗

∣∣∣∣∣ , ( j, k = 1, 2, · · · , N),� (4.22)

where

m(n)
jk =

nj∑
ι=0

cjι(εj∂εj + ξj + n)nj−ι
mk∑

l=0

dkl(�k∂�k + ηk − n)mk−l 1
εj + �k

,� (4.23)
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m̂(n)
jk =

nj∑
ι=0

cjι(εj∂εj + ξj + n)nj−ι
mk∑

l=0

d∗
kl(�

∗
k∂�∗

k
+ η∗k + n)mk−l 1

εj�∗k + σ
,

�

(4.24)

ξj = εjθ1 − ε−1
j θ−1 + 2(ε2

j θ2 − ε−2
j θ−2),� (4.25)

ηj = �jθ1 − �−1
j θ−1 − 2(�2

j θ2 − �−2
j θ−2).� (4.26)

As in the DSI case, the constant parameters cjι, dkl , εj , and �k are all arbitrarily complex. With 
the help of the property of block matrices
∣∣∣∣
A B
C D

∣∣∣∣ = det(A)det(D − CA−1B) = det(D)det(A − BD−1C),� (4.27)

one can easily show that the determinants (4.22) fulfil τ∗n = τ−n entirely. Particularly, as n = 0, 
one can find that only in the case of σ = −1 does the denominator F = τ0 become positive 
definite everywhere, see appendix B in [190]. This suggests that the DSII equation admits the 
rational solutions only for σ = −1, differently from the DSI equation that admits rogue wave 
solutions for σ = ±1. This finding is completely consistent with our baseband MI analysis 
presented above, see figure 26.

Hence, the rogue wave solutions of the DS equation (4.2) are given by (4.11) and (4.18), 
with τn given by (4.19) for the DSI equation and that given by (4.22) for the DSII equation, 
each followed by substitution of (4.13) into the determinants. A special note is that all these 
rational solutions are built on constant background fields (4.5), with k = κ = ω = 0. As dem-
onstrated in [189, 190], there are plenty of interesting rogue wave structures related to these 
solutions, for example, line rogue waves and even exploding rogue waves. We do not repro-
duce these results here and one can refer to [189, 190] for more information.

Lastly, we wish to conclude this section with explicit fundamental rogue wave solutions 
obtained from the above general solutions. Let N = 1, n1 = 1, and m1 = 0 in (4.20), (4.23) 
and (4.24), one can get the fundamental rational solutions

u = 1 − ϑ− ϑ∗ + 1
|ϑ|2 + α

,

φ =
σ

2
− |ε− σ/ε|2

2(|ϑ|2 + α)
+

[(ε− σ/ε)ϑ∗ + (ε∗ − σ/ε∗)ϑ]2

4(|ϑ|2 + α)2 ,
�

(4.28)

where

ϑ =
1
2

(
ε− σ

ε

)
x − 1

2
√
β

(
ε+

σ

ε

)
t +

i
2

(
ε2 +

1
ε2

)
z,� (4.29)

α =




|ε|2
(ε+ε∗)2 , as β = 1 (DSI),

− σ|ε|2
(|ε|2−σ)2 , as β = −1 (DSII).

� (4.30)

Here ε is an arbitrary complex constant with nonzero real part. It is easily seen from these fun-
damental solutions that only when α > 0 do the rogue waves exist, which is sufficiently met in 
the DSI equation, but holds true only for σ = −1 in the DSII equation, once again confirming 
our baseband MI conjecture.

J. Phys. A: Math. Theor. 50 (2017) 463001



Topical Review

56

4.2. The composite (2  +  1)D wave equation and the rogue wave bullet concept

Let us now consider an otherwise naive combination of two 1D wave equations:

uz + uttt + 6|u|2ut = 0, iux +
1
2

utt + |u|2u − iε(uttt + 6|u|2ut) = 0,� (4.31)

which are expressed in different dimensional spaces, but with a common time variable t. It is 
seen that the first equation of (4.31) is the complex mKdV equation [211] and the second one 
the Hirota equation [46], both of which are integrable [56, 212]. Here, ε is a constant param
eter characterizing the perturbation to the NLS equation (we usually let ε > 0 below, unless 
otherwise stated). We recall that, if considered separately, either the Hirota or the complex 
mKdV equation has significant implications in modelling the propagation of ultrashort optical 
pulses in a general medium [213, 214].

The physical significance of the composite model (4.31) can be viewed in a different light. 
On one side, by changing variables to Z = z − εx, X = x, and T = t, and with the chain rule 
∂
∂x = ∂

∂X − ε ∂
∂Z , ∂∂z = ∂

∂Z , and ∂∂t =
∂
∂T , this composite equation gives

iuZ + 2uXT − 4|u|2uφT = 0, φ = arg(u),� (4.32)

which is none other than the extended (2  +  1)D NLS equation (4.3). It was reported that this 
single (2  +  1)D equation is suitable for modelling the capillary fluid waves [128, 195], opti-
cal cavity waves [215], and ion acoustic waves [196]. On the other side, defining an intensity 
quantity E = |u|2, one can also obtain another (2  +  1)D integrable equation:

3EXX = (EZ + 3EET +
1
4

ETTT)T ,� (4.33)

which is nothing but the KP-I equation defined by (4.4), in addition to having different equa-
tion coefficients which can be made identical by rescaling variables. Since originally proposed 
for modelling the ion-acoustic waves in plasmas [198], this equation has now been obtained 
as a reduced model in hydrodynamics, ferromagnetics, nonlinear optics, Bose–Einstein con-
densates, and string theory [202, 216–221]. Therefore, once the rogue wave solutions of the 
composite equation (4.31) are obtained, they should also satisfy the above single (2  +  1)D 
wave equations (4.32) and (4.33), as the latter two can be directly derived from the former. 
The reverse may not be true, but this does not degrade the intrinsic interest of the combined 
model (4.31).

We note that the integrable system (4.31) can be cast into a 2 × 2 linear eigenvalue prob-
lem, with the following Lax triad [59]:

Rt = UR, Rz = VR, Rx = WR,� (4.34)

where R = [r, s]T  (T means a matrix transpose), and

σ3 = diag(1,−1), Q =

[
0 −u
u∗ 0

]
,

K = QtQ − QQt − Qtt + 2Q3,
U = −iλσ3 + Q,

V = 4λ2U − 2iλσ3(Q2 − Qt) + K,

W = λU − i
2
σ3(Q2 − Qt)− εV,

�

(4.35)
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with λ being the spectral parameter. It is easy to check that (4.31) can be exactly reproduced 
from the compatibility conditions based on the Lax triad (4.34).

In terms of the above Lax triad, a DT can be constructed, which is similar to that for the 1D 
scalar NLS equation. Hence, for the initial plane-wave seeds

u0(z, x, t) = a exp (ikz + iκx + iωt) ,� (4.36)

where κ = a2K − ω2(εω + 1
2 ) and k = ω3 − 6a2ω, with K = 6εω + 1, one can obtain readily 

the fundamental (first-order) rogue wave solutions of (4.31):

u[1] = u0

{
1 +

8iξ − 4/a2

[τ + (ω − 2a2/ω)ξ]2 + 4a2ξ2 + 1/a2

}
,� (4.37)

where

ξ = 6ωz − Kx, τ = 2t − (ω + 2a2/ω)x.� (4.38)

Similarly, the general second-order rogue wave solutions u[2] can be given by

u[2] = u0

[
1 − 4R∗

2(R1m22 − S1m21) + 4S∗
2 (S1m11 − R1m12)

m11m22 − m12m21

]
,� (4.39)

where

R1 = 2γ1 − 2γ2ϑ, R2 = R1 − 4γ2,

S1 = γ1ϑ
2 − γ2

[
ϑ3

3
+ ϑ+

32a3x
3ω

+ 8a2(i +
4a
3ω

)ξ

]
+ 8γ3 − 2γ4ϑ,

S2 = S1 − 2γ2ϑ
2 + 4(γ1 − γ2)ϑ+ 2(2γ1 − γ2 − 2γ4),

ϑ = a(
2a2

ω
− ω + 2ia)ξ − aτ − 2,

m11 = |R1|2 + |R2|2, m12 = R∗
1 S1 + R∗

2 S2 − m11,

m21 = m∗
12, m22 = |S1|2 + |S2|2 − m12 − m21.

�

(4.40)

Here γn (n = 1, 2, 3, 4) are arbitrary complex constants. We note that, apart from its propaga-
tion factor, the fundamental solution (4.37) can be expressed as a Peregrine soliton form [17, 
33, 34] in terms of the combined variables ξ and τ, while the second-order solution (4.39) 
depends also on x besides ξ and τ. However, it should be stressed that these rogue wave solu-
tions can not be factorized into a trivial product of two rogue waves obtained from the Hirota 
and the complex mKdV equations  separately; they are totally inseparable. Moreover, both 
rogue wave solutions (4.37) and (4.39) can exactly satisfy (4.32) and (4.33) after a change of 
variables, as pointed out above.

Let us take a close look at the MI of the background fields for such a composite sys-
tem. By adding small-amplitude Fourier modes to the plane-wave solution (4.36), i.e. 
u = u0{1 + p exp[−iΩ(µx − t + κz)] + q∗ exp[iΩ(µ∗x − t + κ∗z)]} (where p and q are small 
amplitudes of perturbations, Ω is the modulation frequency (Ω � 0), and μ and κ are complex 
propagation parameters), one can obtain, after linearizing operations, two dispersion relations 
that μ, κ, and Ω should satisfy,

[
µ− K2 − 1

12ε
+ ε(6a2 − Ω2)

]2

+
K2

4
(4a2 − Ω2) = 0,� (4.41)
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(
κ− 6a2 +Ω2 + 3ω2)2

+ 9ω2(4a2 − Ω2) = 0.� (4.42)

It is obvious that in the baseband limit Ω = 0, both equations always involve non-real roots 
μ or κ for arbitrary ω (of course excluding ω = − 1

6ε or 0), suggesting that the MI will be of 
baseband type. This will be seen by MI maps in figure 27, where we define the MI growth 
rates by γx = Ω|Im(µ)| and γz = Ω|Im(κ)|,

γx =
Ω

2

√
K2(4a2 − Ω2), γz = 3Ω

√
ω2(4a2 − Ω2).� (4.43)

Therefore, it is easily concluded that the rogue wave states would occur in the whole domain 
of ω. Specially, as ω = −(6ε)−1 or 0, they can be manifested as the line rogue wave forms in 
the plane (t, x) or (t, z) [189, 190].

The typical 3D intensity distributions of the fundamental and second-order rogue wave 
solutions are demonstrated in figure 28, each plotted in (t, z), (t, x), and (x, z) planes, respec-
tively. It is shown that the fundamental rogue wave in either plane takes the form of Peregrine 
soliton (see intensity plots (a)–(c)), while the second-order rogue wave could take a triplet 
structure [44, 49, 148] consisting of three Peregrine solitons as γ2 �= 0 (see intensity plots 
(e)–(g)). The isosurface plots presented in figures 28(d) and (h) reveal that both the fundamen-
tal and second-order rogue waves have a directional preference or a bullet nature by which 
we mean they can propagate in a certain direction ζ with transverse double localization (see 
figure 28(d)). For this reason, we prefer to term such a special 3D rogue wave behavior a 
rogue-wave bullet. Basically, the propagation direction ζ of Peregrine rogue-wave bullet can 
be determined by the spatial line

6z
K

=
x
ω

=
2t

ω2 + 2a2 ,� (4.44)

which passes through the origin, as indicated by ξ = 0 and τ = 0 in (4.38). So is the case with 
the rogue wave triplet, for which its three rogue wave components can propagate almost along 
the direction vector (K

6 , ω, a2 + ω2

2 ) of the spatial line (4.44), as seen in figure 28(h). However, it 
may become involved for other second-order rogue wave states, as their directional preference 
depends also on the choice of γn.

Figure 27.  3D and contour plots showing the MI gain maps related to (4.41) and (4.42) 
versus (Ω,ω) for a = 1 and ε = 1/2 [59].
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The robustness of these rogue-wave bullets has been confirmed numerically, in spite of the 
onset of spontaneous MI, see for example figure 4 in [59]. One may draw an analogy between 
these unusual rogue-wave-shaped bullets and the peculiar X-shaped light bullets that were 
discovered in 2-component quadratic media [222]. Besides departing from a conventional 
bell-shaped pulse, in both cases, the localization of the light bullet requires feeding from a 
substantial background field. Moreover, the combination of a rogue wave and a bullet-like 
propagation may also echo the question arose whether one could launch a rogue wave onto a 
target [223]. On the other hand, there is also a possibility to realize such kind of rogue wave 
bullets in laboratory, owing to their good stability against the spontaneous MI [59]. In higher-
dimensional media, the experimental complexity multiplies in both material fabrication and 
pulse characterization aspects. However, experimental advances have recently provided a 
strong incentive in the area of rogue wave investigation in complex media. As examples, the 
deterministic dark counterparts of optical rogue waves predicted for the (1  +  1)D VNLS equa-
tion [116] have just been observed in a telecommunication fibre [161]; the 3D optical rogue 
waves arising from inhomogeneity have also just recently been generated in a linear spatial 
system [224]. In the wake of these developments and particularly in view of the close link of 
the composite model (4.31) to the widely-used KP-I equation [199, 217], we anticipate that 
the prediction of rogue wave bullets may spark significant experimental research on the gen-
eration of 3D rogue waves in nonlinear optical or hydrodynamic systems.

4.3. The Kadomtsev–Petviashvili I equation

We mentioned in section 4.2 that the rational solutions of the composite (2  +  1)D model (4.31) 
definitely satisfy the KP-I equation, but the reverse may not be true. Let us now clarify this 
last yet interesting issue. As a matter of fact, the search for the nonsingular rational solutions 
to the KP-I equation has been a subject of much interest and was extensively studied over the 
past decades [203–206]. However, these solutions are mostly built on the zero background. In a 
recent work [225], a family of nonsingular lump solutions that propagate on a finite background, 

Figure 28.  Surface intensity plots of the 3D rogue waves in (t, z), (t, x), and 
(x, z) planes, respectively, for given parameters ω = 1 and a = 2ε = 1. (a)–(c) The 
fundamental rogue wave; (e)–(g) The second-order rogue wave. Other parameters used 
in (e)–(g) are γ1 = 4i, γ2 = 1, γ3 = 20, and γ4 = −10. (d) and (h) show the isosurface 
plots of the corresponding rogue wave states, both given at |u|2 = 4 [59].
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with the order extended to infinity, were presented. It is shown that these compact solutions 
enable us to gain an insight into the complicated multi-lump spatiotemporal dynamics, as well 
as the rogue-wave bullet dynamics that they may exhibit under a certain parameter condition.

For this end, we write the KP-I equation as

3uxx = (uz + 6uut + uttt)t,� (4.45)
where u(z, x, t) is a scalar function describing a nonlinear long wave of small amplitude propa-
gating along the distance z, but with an asymmetric dependence on the coordinates t and x. It 
should be pointed out that the above interpretation of dependent variable u and of the coor-
dinate variables can be adapted to the particular applicative contexts [199, 202, 217, 218]. In 
addition, by rescaling variables, equation (4.45) can be transformed to other equivalent forms 
with different coefficients in front of each term.

Before proceeding, we should point out that equation (4.45) is invariant with respect to the 
Galilean transformation [226]

t → χ ≡ t − 2ωx + 12ω2z,� (4.46)

x → ρ ≡ x − 12ωz,� (4.47)

z → z, and u(z, x, t) → u(z, ρ,χ),� (4.48)

where ω is an arbitrary real parameter. In other words, if u(z, x, t) is a solution of equa-
tion (4.45), so is u(z, ρ,χ), which can be obtained by simply replacing the original variables t 
and x with χ and ρ, respectively. As we will see, this property is very helpful for generalizing 
the special solutions.

Besides, one can recall that the KP-I equation (4.45) can be cast into a linear eigenvalue 
problem, with the Lax pair defined through [227]

iψx + ψtt + uψ = 0,
ψz + 4ψttt + 6uψt + wψ = 0,
� (4.49)

where u is the scattering potential, ψ is the eigenfunction, and w is defined by wt = 3utt − 3iux . 
Obviously, the compatibility of equations (4.49) requires that the potential u must satisfy the 
KP-I equation (4.45).

In terms of the above Lax pair, the binary DT [206, 227] can be constructed to give the 
solutions. To be specific, letting w = 0 and the initial solution be u = a, one can find from 
(4.49) the corresponding eigenfunction ψ,

ψ = exp[Φ(z, x, t)],� (4.50)

with

Φ = κt + i(κ2 + a)x − 2(2κ3 + 3aκ)z + φ(κ),� (4.51)

where φ is a complex function of the spectral parameter κ. Here without loss of generality, we 
assume κ to be real, as any imaginary part of κ can be removed by the Galilean transformation 
defined above. Consequently, a repeated use of the binary DT gives the nth-order solution u(n) 
of (4.45) and the corresponding ψ(n):

u(n) = u + 2[ln(det M)]tt, ψ(n) =
det M′

det M
,� (4.52)

where det M(M′) denotes the determinant of the matrix M(M′).
Usually, there are two ways to define M, and hence M′. One convenient choice is to use the 

differential form called Wronskian representation [228]
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det M = W(ψ1,ψ2, · · ·ψn),� (4.53)

det M′ = W(ψ1,ψ2, · · ·ψn,ψ),� (4.54)

where ψm (m = 1, 2, · · · n) are the linearly independent solutions of equations (4.49) for given 
seed u at specific κ = κ0, and W is the Wronskian defined by W = det A, with the matrix 

element Ajm = ∂ j−1ψm
∂t j−1  [227]. However, this approach may result in complex and singular 

solutions that are physically irrelevant [229], unless the functions ψj are carefully constructed 
so that M is positive definite, for example, separating each ψj into two according to equa-
tions (13) and (14) in [230]. The other efficient way is to use the integration form proposed in 
[206] for the matrix M that will be intrinsically positive definite. Usually, M has many pos-
sible constructions in terms of integrals [206]. Here we adopt the simplest integration form

det M =

∫ t

|ψn|2dt′,� (4.55)

det M′ = ψ

∫ t

|ψn|2dt′ − ψn

∫ t

ψψ†
ndt′,� (4.56)

where

ψm =
∂mψ

∂κm

∣∣∣∣
κ=κ0

= �mψ,� (4.57)

with m = 1, 2, · · · , n and ψ given by (4.50). The dagger in (4.56) indicates the complex con-
jugate transpose and for the scalar function, ψ†

m = ψ∗
m. Obviously, �m  will be a polynomial of 

degree m in t, x, z and satisfies the recursion relation

�m+1 =
∂Φ

∂κ
�m +

∂�m

∂κ
, with �0 = 1.� (4.58)

Here and in what follows, we suppressed the 0 from κ0 for the sake of brevity. For conve-
nience, the polynomials �m  up to m = 6 are provided below:

�1 = ξ, �2 = ξ2 + ϑ, �3 = ξ3 + 3ξϑ+ η,� (4.59)

�4 = ξ4 + 6ξ2ϑ+ 4ξη + 3ϑ2 + γ4,� (4.60)

�5 = ξ5 + 10ξ3ϑ+ 10ξ2η + 5ξ(3ϑ2 + γ4) + 10ϑη + γ5,� (4.61)

�6 = ξ6 + 15ξ4ϑ+ 20ξ3η + 15ξ2(3ϑ2 + γ4) + 6ξ(10ϑη + γ5)

+ 15ϑ(ϑ2 + γ4) + 10η2 + γ6,
�

(4.62)

where

ξ = t + 2iκx − 6(2κ2 + a)z + γ1 =
∂Φ

∂κ
,� (4.63)

ϑ = 2ix − 24κz + γ2 =
∂2Φ

∂κ2 ,� (4.64)

η = −24z + γ3 =
∂3Φ

∂κ3 ,� (4.65)

J. Phys. A: Math. Theor. 50 (2017) 463001



Topical Review

62

γm =
∂mΦ

∂κm , (m � 4).� (4.66)

Then, substituting (4.55) into the first equation of (4.52) followed by some manipulations, we 
obtain

u(n) = a + 2(lnFn)tt,� (4.67)

where Fn is a positive polynomial of 2n degree, given by a sum of n + 1 absolute squares,

Fn =

n∑
k=0

[k!
(n

k

)
]2

ε2k

∣∣∣∣∣
n∑

m=0

(−1)mm!
(k+m

k

)(n−k
m

)
εm �n−k−m

∣∣∣∣∣
2

.� (4.68)

Here 
(n

k

)
= n!

k!(n−k)!  is the binomial coefficient and ε = 2κ. The resultant general solution 
u(n)(z, x, t) follows after trivial replacement operations t → χ and x → ρ, with χ and ρ defined 
by (4.46) and (4.47). Note here that the polynomials defined by (4.68) will not be the sole 
rational expressions satisfying the KP-I equation (4.45) [206, 231], as they are obtained from 
the specific M form (4.55).

4.3.1.  Abnormal lump evolution dynamics.  Inspection on the evolution of the lump structures 
with z reveals that the lump components always tend to locate parallel to the χ = 0 direction 
at z = −∞ but along the ρ = 0 direction at z = +∞, independently of the choice of struc-
tural parameters. This abnormal transition is contrary to what might be normally expected in 
soliton collisions [20] where the horizontally propagating solitons could still propagate hori-
zontally after a collision. We note also that the two-lump interaction demonstrated in [231] 
is a normal process where a t (or x)-aligned lump distribution is still t (or x)-aligned after the 
collision, distinctly different from the case under discussion. Moreover, we find that, despite 
the complexity of the lump patterns, the central location of each lump component can be accu-
rately given by the real roots of the n-degree polynomial equation:

n∑
m=0

(−1)mm!
(n

m

)
εm �n−m = 0.� (4.69)

Usually, for the polynomial degree higher than three, one needs to resort to some routines to 
solve such an algebraic equation. However, compared with the lengthy polynomial (4.68), 
equation (4.69) provides a more efficient pathway to insight into the complicated multi-lump 
spatiotemporal dynamics.

To exemplify the spatiotemporal dynamics, we consider the sixth-order lump solutions, 
whose polynomial F6 is given by [225]

F6 =

∣∣∣∣�6 −
6
ε
�5 +

30
ε2 �4 −

120
ε3 �3 +

360
ε4 �2 −

720
ε5 �1 +

720
ε6

∣∣∣∣
2

+
62

ε2

∣∣∣∣�5 −
10
ε
�4 +

60
ε2 �3 −

240
ε3 �2 +

600
ε4 �1 −

720
ε5

∣∣∣∣
2

+
302

ε4

∣∣∣∣�4 −
12
ε
�3

+
72
ε2 �2 −

240
ε3 �1 +

360
ε4

∣∣∣∣
2

+
1202

ε6

∣∣∣∣�3 −
12
ε
�2 +

60
ε2 �1 −

120
ε3

∣∣∣∣
2

+
3602

ε8

∣∣∣∣�2 −
10
ε
�1 +

30
ε2

∣∣∣∣
2

+
7202

ε10

∣∣∣∣�1 −
6
ε

∣∣∣∣
2

+
7202

ε12 .

�

(4.70)
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One can refer to appendix C for other low-order polynomials. Figure 29(a) shows the isosur-
face plot of the sixth-order lump for arbitrary set of given parameters a = 1, ε = 1, ω = 0, 
γ1 = 1, and γ2 = −60, clearly indicating that as z increases, its six components can change 
from a vertical distribution (see figure 29(c)) into a horizontal distribution (see figure 29(d)), 
both with respect to the t axis. This intriguing evolution can be seen by the t-z view in 
figure 29(b), where the lump distribution tends to be perpendicular to the (t, z) plane at large 
negative z, but will be parallel to the (t, z) plane at large positive z, as suggested by the green 
arrows in figure 29(a). We should point out that for a nonzero ω value, the lump distribution at 
z = ±∞ is still horizontally or vertically aligned, but in the (χ, ρ) plane. If converting back to 
the original (t, x) plane, the lump distribution will be obliquely aligned parallel to the straight 
line t = 2ωx  at z = −∞, but still horizontally aligned at z = +∞. This is a trivial result of 
the Galilean transformation invariance of the KP-I equation.

4.3.2.  Existence of higher-dimensional rogue waves.  We note that each lump component 
exhibits a Peregrine-like structure [17, 94], namely, a hump flanked by two dips on a nonzero 
background. However, contrarily to the genuine Peregrine soliton, the two dips of the lump are 

Figure 29.  (a) Isosurface plot of the sixth-order lump defined by (4.67) and (4.70) at 
u = 1.2, with its t-z view being shown in (b). (c) and (d) illustrate the lump structures 
at z = −15 and 15, respectively [225]. The parameters are specified by a = 1, ε = 1, 
ω = 0, γ1 = 1, and γ2 = −60 (the other unshown γm  are all set zero).
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not necessarily to be of zero amplitude, and its peak amplitude does not have a fixed factor of 
the background height, both of which depend on the value of the free parameter ε [199]. One 
may now wonder if these rational nonsingular solitons could be identified as rogue waves. Let 
us now address this interesting issue below.

We take the first-order lump solution as an example. Inserting the polynomial F1 (refer to 
(C.1) in appendix C) into (4.67) followed by the replacement t → χ and x → ρ, we obtain the 
general explicit fundamental solution:

u = a +
4{ε2ρ2 − [χ− 3(ε2 + 2a)z]2 + 1/ε2}
{ε2ρ2 + [χ− 3(ε2 + 2a)z]2 + 1/ε2}2 ,� (4.71)

where χ and ρ are again defined by (4.46) and (4.47). We note that in (4.71) the parameter γ1 
has been removed by the coordinate translation so that the lump peak is located at the center. 
It is clear that this lump solution involves a free parameter ε besides a and ω, and therefore 
involves a variable peak amplitude and two variable minimums, which are given respectively 
by

umax = a + 4ε2, umin = a − ε2/2.� (4.72)

Figure 30.  Fundamental lump solution (4.71) identified as the intensity of Peregrine 
solitons as ε =

√
2a (a = 1), for (a), (c) ω = 0 and (b), (d) ω = 1/2 [225]. The 

isosurface plots in (c) and (d) are specified by u = 4.
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Apparently, this feature does not match with the strict definition of the Peregrine soliton solu-
tion of the NLS equation, as the latter has a peak amplitude fixedly three times the background 
height and two side holes that can fall to zero in the dip center [17, 94]. In this regard, the solu-
tion (4.71) resembles a soliton in dynamical structure more than a rogue wave, hence often 
termed the lump in the early papers [204, 205].

However, a recent work [59] showed that the KP-I equation nevertheless allows rogue wave 
solutions as well. It suggests that the solution (4.71) may be closely related to the Peregrine 
soliton profile. In fact, by letting ε =

√
2a, we find that this fundamental solution can be 

expressed as the intensity of a typical Peregrine soliton, namely,

u = |ϕ(z, x, t)|2,� (4.73)

where ϕ(z, x, t) is the (2  +  1)D Peregrine soliton given by

ϕ =
√

a
[

1 − 8iaρ+ 4
2a(χ− 12az)2 + 4a2ρ2 + 1

]
ei(ωt+κx−4kz),� (4.74)

with the dispersion relations κ = a − ω2 and k = 3aω − ω3. It is not surprising because the 
latter is the exact solution of the following complex mKdV and NLS equations:

ϕz + 4ϕttt + 12|ϕ|2ϕt = 0, iϕx + ϕtt + |ϕ|2ϕ = 0,� (4.75)

which can give birth to the KP-I equation (4.45) through the relation (4.73) [59].
Figure 30 illustrates this special fundamental lump structure (ε =

√
2a) at z = 0, with 

either ω = 0 or ω = 1/2. It is clear that the lump structure can take the shape of the typi-
cal Peregrine soliton intensity (see figures 30(a) and (b)), but exhibit an extra traveling wave 
behavior, as seen in figures 30(c) and (d). In [59], we termed such a special structure a rogue-
wave bullet in the context of nonlinear optics, by which we mean a nonlinear wave packet that 
has a characteristic rogue-wave profile in two dimensions, while it propagates without dist
ortions in a third dimension, analogous to the X-shaped light bullet in a normally dispersive 
nonlinear medium [222].

5.  Conclusion

In conclusion, we presented a timely and comprehensive review of rogue wave dynamics 
occurring in diverse physical systems ranging from scalar and vector integrable models to 
high-dimensional ones. We mainly focused on the analytical and numerical predictions of 
these rogue wave structures, as well as on their versatile evolution dynamics, while including 
reference to relevant up-to-date experimental results. The contents are multifarious, covering 
almost all the latest developments on this horizon. In this review, we attempted to organize 
these diverse results while clarifying several fundamental questions posed on rogue waves. 
They are summarized as below.

First, we addressed the controversial topic concerning the rogue wave origin and inquired 
whether a self-defocusing nonlinearity could allow for rogue wave solutions as well. For this 
end, we began with the simple scalar integrable models, which can be classified as two differ-
ent frameworks, namely, the infinite NLS hierarchy (see section 2.1) and the general CQ NLS 
equation (see section 2.2), with both the focusing and defocusing nonlinearities being con-
sidered. In the former NLS hierarchy (e.g. NLS equation [33], Hirota equation [56], infinite 
NLS equation [61]), we showed by analytical examples that there occurs a typical Peregrine 
soliton structure with focusing nonlinearity, but no rogue wave structures exist in the defocus-
ing regime. So is the case with the Sasa–Satsuma equation [65–67], although its rogue wave 
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structures may be more complicated. However, in the latter CQ NLS framework, due to the 
presence of the self-steepening effect (which is not balanced out by the TOD), a special type 
of fundamental rogue wave of Peregrine-like structure could exist in both the focusing and 
defocusing regimes. As it usually acquires an instantaneous frequency shift (i.e. chirping) 
during evolution, we dubbed this type of rogue wave the chirped Peregrine soliton [94], analo-
gous to the chirped soliton concept which was coined with respect to the soliton in nonlinear 
photonics. Why are there so different behaviors for two scalar models of seemingly minor dif-
ference (for instance, the Hirota equation as compared to the CLL equation)? Guided by this 
curiosity, we intended to explore the fundamental origin of rogue waves, and introduced two 
important topics recently developed. One is the analysis of the MI gain spectrum [75, 76] that 
equates the rogue wave existence with that of the baseband MI as its frequency approaches 
zero (see section 2.1.5), the other is the integrable soliton turbulence [82, 83] which has also 
been thought as an origin of rogue wave generation (see section 2.1.6). Both mechanisms are 
deeply addressed and confirmed by numerical simulations.

In the above discussion, there is an unheeded fact that in scalar models, even those with 
defocusing nonlinearity, no dark counterparts of Peregrine solitons exist. However we had 
clues to suppose the existence of dark rogue waves in coupled or vector integrable systems. 
To address this basic question, we explored the vector rogue wave dynamics within three 
multicomponent systems, i.e. the LWSW, TWRI, and VNLS equations. We showed both ana-
lytically and numerically that in vector systems, there definitely appear dark structures in 
field components. The reason is that in vector systems, the energy is able to transfer among 
additional degrees of freedom, hence leading to intricate vector rogue wave dynamics. Among 
those vector dynamics, the most interesting are: rogue wave coexistence [109], by which we 
mean different rogue waves structures could coexist simultaneously on the same background 
(see section 3.1.2); the super WHL rogue waves [113] that are endowed with three rogue wave 
components extending in different directions (see section 3.2.2); the complementary rogue 
waves [114] that occur as a result of optical wave interactions of equal group velocity (see 
section 3.2.3); and the vector dark three sisters [119], which were coined to reflect the dark 
characteristic of the realistic ‘three sisters’ phenomenon occurring in Great Lakes in North 
America (see section 3.3.2). All these dynamics are discussed in detail, and their existence is 
confirmed by numerical simulations as well as by the baseband MI analysis. In particular, we 
verified that in vector systems, the rogue wave existence condition is still well consistent with 
that of the baseband MI, although the MI maps become in these cases more complex due to 
the appearance of passband MI. Additionally, we also reviewed the recent experimental pro-
gress on observing vector dark fundamental rogue waves using standard telecommunication 
equipment [161, 162].

Finally, in view of practical implications (e.g. considering that oceanic rogue waves are 
manifestly (2  +  1)D phenomena), one may wonder if the higher dimensional integrable sys-
tems support rogue wave solutions. Therefore, it is justified to consider the high-dimensional 
rogue waves, as a key ingredient of this review. For illustrative purposes, we merely discussed 
the three closely-related (2  +  1)D nonlinear systems, i.e. the DS equation (see section 4.1), 
the composite (2  +  1)D NLS equation  (see section  4.2), and the KP-I equation  (see sec-
tion 4.3), by presenting the exact explicit nonsingular rational solutions. Novel spatiotemporal 
dynamics, such as linear rogue waves [189, 190, 194], lumps [203–206, 225], and dark-lump 
waves [199], are unveiled. Particularly, in the study of a composite model, we highlighted the 
concept of rogue wave bullets [59] by combining concepts in nonlinear optics. We anticipate 
that the prediction of rogue wave bullets may spark experimental research on the generation of 
3D rogue waves that has already been a topic among experimental physicists [224].
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We should point out that this review is solely centered on the rogue wave dynamics in 
integrable systems, whether they are scalar, vector, or high-dimensional. However, from 
the experimental perspective, integrable models are too ideal to be real, particularly when 
additional factors must be considered in a laboratorial environment, which usually destroy 
the exact integrability [20, 232]. In recent years, by awaking to the relevance and impor-
tance of nonintegrable models, there has been an increasing trend of rogue wave research on 
non- or near-integrable systems [23, 199–201, 233, 234]. It might be expected that this will 
become one of the future possible directions of theoretical research in the field of rogue waves. 
Actually, as we have highlighted in the review, the baseband MI analysis furnishes a route to 
predicting rogue waves in such nonintegrable systems.
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Appendix A.  Analytic solutions of equations (3.25) and (3.26)

We note that the complex-coefficient cubic equation  (3.26) will have a double root 
µ1 = µ2 = µ0 if its discriminant (3.25) becomes zero. For the sake of convenience, we rewrite 
these two equations explicitly as below

∆ =

(
λ2 +

δ2

12
+

A
3

)3

−
[
λ

4
(δ2 − 2A)− λ3 +

δB
4

]2

= 0,� (A.1)

µ3 −
(

3λ2 +
δ2

4
+ A

)
µ− 2λ3 +

λ

2
(δ2 − 2A) +

δB
2

= 0,� (A.2)

where δ, A, and B are defined in (3.19). Here, to make our analysis sufficiently general, we let 
δ, A, and B be arbitrary variables. Obviously, the parameter λ in the discriminant condition 
(A.1), which is a quartic equation, should be complex so as to generate valid rogue wave solu-
tions. One can solve equation (A.1) readily, with solutions:

λ± =
−B ± g

6δ
+

i
6δ

√
g2 + c ± 2e

g
,� (A.3)

where

c = 2A2 + 10δ2A − δ4 − 3B2, e = B[B2 − (A − 2δ2)2],� (A.4)

K = (A + δ2)3, H = 27δ2(A2 − B2),� (A.5)

F =
1
2
(H − 4K)3/2

√
H, G = K2 − 5KH − 1

2
H2,� (A.6)
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g =

√
3

3
[(G + F)1/3 + (G − F)1/3 − c]1/2.� (A.7)

Special attention should be paid on that in order for g to be positive, (G + F)1/3 + (G − F)1/3 
should be always kept real. Hence, this gives the parameter condition for rogue wave exis-
tence. One can verify that, while G is always real, F will be purely imaginary for A > 0, but 
real for A < 0 and for a limited domain of δ defined by

|δ| �
{

3
2
(A2 − B2)1/3[(−A − B)1/3 + (−A + B)1/3]− A

}1/2

≡ δm.� (A.8)

It is worth noting that equation (A.8) is a natural result of the inequality H − 4K > 0 which 
enables F to be real when A < 0. Accordingly, as A > 0 (e.g. SE-type TWRI, focusing 
VNLS), one can get certainly that g > 0 in the whole domain of δ. However, in the case of 
A < 0 (e.g. SB-type TWRI, defocusing VNLS), g can only be positive under the above condi-
tion (A.8). Of course, in the latter case, one should take the real of the cubic roots of G + F 
and G − F so as to get a real g [119].

On the other hand, once the roots λ± are known, one can substitute each of them into the 
cubic equation (A.2) and find the double root µ0. Let us define

µ± =
√
λ2
± + δ2/12 + A/3.� (A.9)

Then, as one can check, the solutions (λ0,µ0) that satisfy both (A.1) and (A.2) can be given by 
two of the four combinations (λ+,±µ+) and (λ−,±µ−).

However, in the special case B = 0, the above solutions can be greatly simplified. 
Specifically, these solutions can be expressed as below:

λ0 =
iη
4
+

i(4A + δ2)

12η
, µ0 =

iη
4
− i(4A + δ2)

12η
,� (A.10)

where

η = ±[2
√

A(A − 2δ2) + 2A − δ2]1/2.� (A.11)

It should be noted that, as A > 0, the value of η will be real for |δ| �
√

A/2, but it becomes 
complex when |δ| >

√
A/2. However, as A < 0, η will always be real in the regime 

|δ| � δm ≡ 2
√
−A . Further, if B = 0 and A = 2δ2 are met, one can readily get λ0 = ±i

√
3δ/2, 

and the cubic equation (3.26) or (A.2) will have a triple root µ0 = 0.

Appendix B.  Baseband MI analysis of equation (3.50)

In the baseband limit Ω = 0, the quartic equation (3.50) can be rewritten as

µ4 + pµ2 + qµ+ r = 0,� (B.1)

where p = 4A − 2δ2, q = 8δB, and r = (2A + δ2)2 − 4A2, with A = (a2
1 + a2

2)/s and 
B = (a2

1 − a2
2)/s as defined before. The discriminant of equation (B.1) is given by

∆ = 46δ2(A2 − B2)[(4A + δ2)(A − 2δ2)2 + 27δ2B2].� (B.2)

For this real-coefficient quartic equation (B.1), one can identify whether or not its root is com-
plex according to the criterion proposed in [235]. Specifically, equation (B.1) will have at least 
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a pair of complex roots if and only if: 1) the discriminant satisfies ∆ < 0; 2) the discriminant 
satisfies ∆ > 0, but with p � 0 or r − p2/4 > 0. Apparently, for the normal dispersion s < 0, 
the discriminant (B.2) is always non-positive if

|δ| �
{

3
2
(A2 − B2)1/3[(−A − B)1/3 + (−A + B)1/3]− A

}1/2

,� (B.3)

which is just the parameter condition (3.49) for rogue waves to develop. However, in the 
anomalous dispersion regime (s > 0), one can find that the discriminant (B.2) is always posi-
tive because of A > 0 and A2 > B2. Meanwhile, among the two conditions r − p2/4 > 0 and 
p � 0, at least one of them holds true, since, if A < 2δ2, the former condition is true, other-
wise the latter condition is met. That is to say, in the anomalous dispersion regime, the rogue 
waves can exist in the whole parameter space.

Appendix C. The first five low-order polynomials Fn

By use of equation (4.68), one can obtain the polynomials Fn of any order. For convenience, 
we would like to present below the first five low-order polynomials, which are expressed in 
terms of the functional variables ξ, ϑ, and η, as well as �n:

F1 =

∣∣∣∣ξ −
1
ε

∣∣∣∣
2

+
1
ε2 ,� (C.1)
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