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We are thankful to reviewers for their critical comments and interesting questions. The 

detailed answers for the points raised by referees are provided below.  

 

Reviewer #2 

 

1. The chemical structure of polyAnD should be shown. 

 

A figure with the chemical structure of polyAnD was added to the manuscript (p.8). 

  

2. In the introduction it is mentioned that polyAnD has a dithiocarbamate functional unit that 

can be used for further surface modification. However, it is not clear from the manuscript to 

what extent this functional unit is utilized in the present work where the enzymes were 

immobilized by "superficial adsorption". What is the advantage of polyAnD compared to 

polyaniline (or some other common conducting polymer) in the present work? 

 

Superficial adsorption or physisorption is the most simple and less destructive enzyme 

immobilization method. However, the biggest problems with this method are either too weak 

or too strong enzyme globule adhesion or improper enzyme orientation. We expected that 

such additional modification of aniline may result in a polymer with surface properties 

facilitating enzyme attachment and coordination. The main advantage of dithiocarbamate 

functional group is a possibility to modify the polyaniline layer  with different monomers by 

simple UV grafting (P.K. Ivanova-Mitseva, V. Fragkou, D. Lakshmi, M.J. Whitcombe, F. 

Davis, A. Guerreiro, J.A. Crayston, D.K. Ivanova, P.A. Mitsev, E.V. Piletska, S.A. Piletsky, 

Conjugated polymers with pendant iniferter units: versatile materials for grafting, 

Macromolecules, 44 (2011) 1856-1865). This gives opportunity to modify the polymer 

surface in a desired way. Additionally, it was shown, that polyAnD can be used as molecular 

imprinted polymer for amperometric determination of some organic compounds. These 

features seem useful and are more advantageous in comparison with other conducting 

polymers for construction and directional modification of electrode matrix. However, before 

trying to optimize polyAnD three-dimensional structure, one should study reactions of 

enzymes in contact with this polymer. As it is noted in the introduction, this was the 

principal scope of the present work. Another advantage of polyAnD that was found recently 

by our colleagues (data are not shown in present article) is that conductivity of polyAnD is 

less dependent on pH in comparison with polyaniline and other common conducting 

polymers. It opens the possibility to design sensors based on conducting polymers which can 

work in a broad pH range. Corresponding comment was added to the revised version (p. 6). 

 

 

3. Since polyAnD was chemically polymerized, how can you control where 

it is deposited on the 3D-IDEA? SEM pictures before and after 

deposition could help to illustrate this. 

 

*Response to Reviewers
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PolyAnD was deposited onto the whole electrode surface, which was immersed into the 

polymerization solution. As the polymer has green color, this can be easily controlled by 

optical microscopy. The electrode surface before (A) and after (B) polyAnD deposition. 

  
 

These figures are not provided in the submission, since the number of plots is already quite 

large. Corresponding comments are implemented in the text (p. 8). 

 

4. Please, check spelling of Nyquist (on several places in the manuscript). 

 

We are grateful to Reviewer for the comment, this mistyping was corrected.  

 

5. How is the resistance (R) in Figures 4-6 related to the equivalent circuit and impedance 

spectra? Is the value of R obtained by fitting or is it the impedance value at a certain 

frequency? This should be explained. 

 

The detailed answers to these questions are provided in the section 2.4 of the manuscript. 

The value of R was obtained by impedance spectra fitting. The resistance (R1) of polyAnD 

layer, obtained by spectra fitting to one of the equivalent circuits, is presented in Fig. 4-6.  

 

6. On top of page 14 it is stated that "Re-oxidation processes provoke partial reduction of 

polyAnD chain and thereby affect the electrical conductivity of the polymer layer registered 

by impedance measurements." This statement is in agreement with the Graphical Abstract 

showing electron transfer from PQQ to the conducting polymer. However, this means that 

the conducting polymer is reduced and therefore it is surprising that the resistance decreases 

(Fig. 6). This is a very crucial point that seems to contradict the suggested reaction 

mechanism. Unless the polymer (polyAnD) would be n-doped, one would expect an 

INCREASE in resistance when polyAnD is reduced, i.e. transfered to a less oxidized (less p-

doped, less conducting) state. This needs to be clarified, because it is important for the 

whole manuscript, including the graphical abstract. 

 

We agree with the Reviewer, that the resistance of polyAnD should increase when electrons 

from enzyme active site are released into the polymer layer, because conductive polyaniline 

form became nonconductive leucoemeraldine. However, our studies showed opposite 

results. This interesting phenomenon is not fully understood yet.  

As it is shown in Fig. 4 of the manuscript, the resistance of polymer goes down when the 

concentration of [Fe(CN)6]
4-

 ions, as well as the solution redox-potential, increases. The 

same occurs during enzyme catalyzed redox-reactions with and without potassium 
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ferricyanide. There are several possible explanations of this effect. 1) Pending group with 

dithiocarbamate moiety of polyAnD participates in redox-reactions. Pending group of 

polyAnD contains two nitrogen atoms, which can bound two protons and became positively 

charged. The protons as well as electrons can be released from enzyme active site during re-

oxidation processes. Thus, the environment close to the electrode surface became more 

acidic. Polyaniline conductivity is known to be induced by proton doping. This effect was 

applied in the case of “self-doped” polyanilines derivatives, when the charge compensation 

occurs at the expense of proton exchange, that occurs much more faster and do not limit the 

rate of the redox-process (A. Malinauskas, Self-doped polyanilines, J. Power Sources, 126 

(2004) 214-220). The first example of the sensor based on conductivity of polyaniline 

derivative exploiting this phenomenon was recently presented (E.A. Andreyev, M.A. 

Komkova, V.N. Nikitina, N.V. Zaryanov, O.G. Voronin, E.E. Karyakina, A.K. Yatsimirsky, 

A.A. Karyakin, Reagentless Polyol Detection by Conductivity Increase in the Course of 

Self-Doping of Boronate-Substituted Polyaniline, Anal. Chem., 86 (2014) 11690-11695). 

2) Resistance decrease can be explained by the following considerations. Properties of 

conducting polymers depend on where the redox-reactions with the environment occur: on 

the outer polymer/solution interface or within the polymer film bulk. If the reactions occur 

only on the polymer/solution interface without affecting the chemical composition of the 

bulk polymer, the environment oxygen can participate in the polymer surface oxidation 

processes and produce different reduced oxygen species, which can affect polymer 

conductivity (A. Malinauskas, R. Holze, An in situ spectroelectrochemical study of redox 

reactions at polyaniline-modified ITO electrodes, Electrochim. Acta, 43 (1998) 2563-2575).  

 

Corresponding explanations were added to the text (pp. 14-15). 

While preparing the revision of the manuscript we found that Figure 4 in the initial 

submission (Fig.5 in the revised version) had incorrect label (instead of [Fe(CN)6]
3-

/[Fe(CN)6]
4-

 it has [Fe(CN)6]
4-

/[Fe(CN)6]
3-

 label). This was corrected in the revised 

manuscript.  

 

Reviewer #3 

1) Correct the sentence "showed specific response in the presence of corresponding 

substrates with 1 μM sensitivity" to"showed specific response in the presence of 1 μM of the 

corresponding substrates". 

 

The sentence was corrected 

 

2) Analytical utility of EIS is not well documented. Additional references (especially review 

articles) should be added. In addition, excellent examples on the use of EIS to study changes 

of the biocatalyst's structure are notably missing. 

 

We are grateful for this comment and corresponding references [2-8] proving analytical 

utility of EIS were added to the revised version of the manuscript. Please refer to p. 3 in the 

document. 
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3) The meaning of the sentence "Oxidoreductases are the class of enzymes [14] and they 

catalyse selective oxidation or reduction of many organic compounds, which are of interest 

for various industry branches. Unfortunately, many oxidoreductases do not have DET [15] 

and only several electrode surface materials are suitable for DET [16]." is not clear. It needs 

editing. 

 

The following reformulation was done to provide for more clarity: Oxidoreductases are the 

class of enzymes [20] that catalyze selective oxidation or reduction of many organic 

compounds and this class is of interest for various industrial applications. The redox-active 

moiety of most of the oxidoreductases is deeply buried within the enzyme globule [21]. Such 

spatial isolation protects enzyme active site from surrounding and provides effective kinetic 

barrier for DET. Thus, due to unique three-dimensional structure only certain types of 

oxidoreductases may participate in DET and only on specific electrode materials [22].  

 

4) The sentence "2) the appropriate immobilization matrix compatible with enzyme on an 

electrode surface must be provided;" also needs editing. 

The following correction was made: 2) the enzyme immobilization matrix must provide for 

enzyme adhesion, stabilization and orientation,  

 

5) Correct "1.2-propandiol" to "1,2-propandiol" throughtout the manuscript. 

 

This was corrected.  

 

6) Correct the chemical formula of (NH4)3S2O8 to (NH4)2S2O8. 

 

Corresponding correction was made. 

 

7) The term "superficial adsorption" maybe replaced by the term "adsorption" or 

"physisorbed biomolecules". 

 

The term "superficial adsorption" was replaced with physisorption.  

 

8) Please check the upper limit of frequencies in the EIS experiments. Is that really so high 1 

MHz? If yes, please explain why. Typically frequency values up to 100 kHz are sufficient to 

describe the phenomena take place on the biomolecule-modified electrode/electrolyte 

interface. 

 

This remark holds for ordinary EIS measurements between two bulk electrodes immersed in 

the solution. However in the case of EIS measurements with 3D-IDEA we have measured up 

to 1 MHz in order to attain higher fitting precision from a broader range in Nyquist plot for 

the second semicircle. This is associated with the specific geometry of the sensor. 

Corresponding explanation was added to the text p. 9.  
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9) Correct the term "Nyquist" throughout the text. 

 

Corrections were made 

 

10) Correct to "chi-square". 

 

Corresponding correction was made. 

 

11) Correct to "potentiostatic" 

 

Correction was done. 

 

12) Correct the title of 3.2. 

 

Reformulation: Influence of solution redox-potential on polyAnD resistance  

 

13) The first sentence of paragraph 3.2 also needs editing. 

 

Reformulation: Conducting polymers based on polyaniline and its derivatives are able to 

enhance the speed of various redox-processes as well as to participate in electrocatalytic 

oxidation of certain biologically important compounds, such as coenzymes and 

cytochromes. 

 

14) The meaning of the sentence "his observation implies the relevance of using the same 

polymer material to register enzyme catalysed reactions in the conductive 

polymer." is not clear. Please explain or rephrase. 

 

This sentence was rephrased as follows: “This phenomenon led us to assume that the same 

polymer material may be used to register the enzyme catalysed redox reactions.” 

 

15) Replace "inhibition" by "deactivation" (Page 12, line 59) 

 

This was corrected. 

 

16) Paragraph 3.5. The increase of the background signal after the modification of gold 

electrodes with polyAnD indicates an increase of the electrode surface rather than the 

presense of electroactive groups. 

 

This sentence was reformulated: Modification of gold microelectrode by polyAnD with or 

without enzymes enhances the background current which indicates an increase of the 

electrode surface (curves (2) and (3)). 

 

17) The quality of the data presented in Fig.7 is not sufficient to support DET between the 

enzyme and the electrode surface through the polyAnD layer. In addition, the respective text 
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is also not clear for the reader. I would suggest authors to provide simple cyclic 

voltammetric experiment to document DET. 

 

We agree with the referee that cyclic voltammetry (CV) experiments may confirm DET. 

We have performed CV measurements with polyAnD and enzymes to prove DET. However, 

our CV results contained significant noise since the electrode surface was too small to 

provide for clear signal (gold microelectrode area was only 1.65 mm
2
). Because of these 

technical difficulties we decided not to present the experimental graphs in the manuscript 

and chronoamperometry data were presented in the manuscript as alternative.   

 

18) List of references should be checked. At least one reference is appearing twice; 

Biosensors Bioelectron., 24 (2008) 729-735 at Refs. 2 and 11. 

 

We would like to thank the Reviewer for careful reading. This issue was corrected and other 

references were thoroughly checked.  
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Abstract 

Novel label-free impedimetric platform based on a three-dimensional interdigitated electrode 

array (3D-IDEA) sensor and new conductive polymer as a transducer for oxidoreductases is 

introduced. This platform is cost-effective, simple to construct and miniaturize. Monomer of 

conductive polymer N-(N’,N’-diethyldithiocarbamoylethylamidoethyl)aniline (AnD) was 

deposited onto 3D-IDEA by chemical polymerisation. It was found that the polymer film 

resistance depends on the redox-potential of the solution. For the first time polyAnD was used as 

enzyme immobilisation matrix. Pyrroloquinolinequinone (PQQ) dependent alcohol and glucose 

dehydrogenases were immobilized on 3D-IDEA covered with polyAnD by two different 

methods. 3D-IDEA sensors with enzymes, which were immobilised by physisorption on 

polyAnD layer, showed specific response in the presence of 1 μM of the corresponding 

substrates. Obtained results revealed that PQQ dependent dehydrogenases can re-oxidize on 

polyAnD via direct electron transfer (DET) from enzyme active site to the polymer surface. This 

process can be monitored by methods of electrochemical impedance spectroscopy (EIS) and 

chronoamperometry. Presented study shows that EIS method gives a useful tool for research of 

re-oxidation process and interaction of electroactive enzymes with conducting materials giving 

information required to construct and develop analytical devices. 

 

Keywords: Interdigitated electrode array, DET, PQQ dependent enzyme, polyaniline, biosensor  
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1. Introduction 

Nowadays there are numerous fields such as medicine, microbiology, food and environmental 

protection where ultrasensitive and fast sensors for determination of various analytes are 

required. The sensors based on biocatalysts and electrochemical detection gained wide attention 

from researchers due to their unique sensitivity, cost-effectiveness, short-time analysis, 

capability of measurements in dispersed and nontransparent solutions. Moreover these devices 

are easy to miniaturize.  

There are different electrochemical methods, which are employed to construct  biosensors: 

amperometry, voltammetry, potentiometry, coulometry, conductometry and electrochemical 

impedance spectroscopy (EIS) [1]. EIS is a powerful analytical tool that is employed 

successfully in chemical and biochemical analysis [2-5], as well as to study biocatalysis on the 

surface of electrodes [6-8]. EIS is widely applied in physical and biological sciences especially 

in the field of biosensor research [9]. EIS can provide information on the changes of biocatalyst 

structure or electrode matrix structure [10, 11]. Moreover, in comparison with other 

electrochemical methods, EIS setup does not require a reference electrode and analysis can be 

performed without high potential treatment of the electrode surface, that can destroy thin and 

sensitive bioactive layer of the sensor [12]. Impedimetric biosensors are employed for 

quantitative and qualitative immunoanalysis [10], determination of nucleoacids, their mutations 

[13] and different redox-active compounds [14], e.g. H2O2. However, the possibility of 

impedance measurements often requires the presence of redox-active species in test solution, e.g. 

usually ferricyanide/ferrocyanide couple is used. In this case Faradaic charge transfer resistance 

is measured, which may be affected by interactions of a target biomolecule with a probe-

functionalized sensor surface [15]. To avoid addition of redox-agents and to be able to perform 

the measurements immediately on the area close to the electrode surface the capacitive 
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biosensors based on interdigitated electrode arrays (IDEA) were introduced [16]. In this case 

biochemical reactions at the sensor surface are registered as capacitance changes in non-Faradaic 

measurements. Planar microband electrodes of IDEA, between which the impedance is 

measured, are very closely situated, so that in this case changes in electrical properties of the 

interdigital space may affect the sensor impedance [15]. Several years ago the concept of a three-

dimensional interdigitated electrode arrays (3D-IDEA) with electrode fingers separated by an 

insulating barrier was proposed [9, 17]. The specific design of this sensor structure allows for 

enhancement of its sensitivity for biochemical reactions taking place at the sensor surface [18]. 

The principles and applications of 3D-IDEA sensors were recently discussed in [15].  

Another opportunity to avoid the addition of redox-compounds or special labels for analytes into 

the test solution is an application of electrochemical systems based on redox-active enzymes – 

oxidoreductases, since some of them can possess direct electron transfer (DET) from an enzyme 

active site to the electrode surface. The effective direct re-oxidation of enzyme onto electrode 

surface ensures the highest selectivity of analysis, independence of oxygen concentration in the 

media, analysis at lower potential and simplifies the sensor construction [19]. Due to this, DET 

became a phenomenon, which is extensively investigated during last several decades. 

Oxidoreductases are the class of enzymes [20] that catalyze selective oxidation or reduction of 

many organic compounds and this class is of interest for various industrial applications. The 

redox-active moiety of most of the oxidoreductases is deeply buried within the enzyme globule 

[21]. Such spatial isolation protects enzyme active site from surrounding and provides effective 

kinetic barrier for DET. Thus, due to unique three-dimensional structure only certain types of 

oxidoreductases may participate in DET and only on specific electrode materials [22].  

Broad applicability of 3D-IDEA sensors to study interactions of biomolecules [18] can be useful 

to apply this sensor type for investigation of oxidoreductases. A synergism of 3D-IDEA and 

unique selectivity of oxidoreductases can be promising to design label-free ultrasensitive new 
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impedimetric biosensor, based on determination of the changes only in the electrical properties 

of immobilised enzyme layer and enzyme immobilisation matrix. In order to construct such 

biosensor platform several requirements must be fulfilled: 1) the enzyme must possess DET; 2) 

the enzyme immobilization matrix must provide for enzyme adhesion, stabilization and 

orientation; 3) the immobilization matrix must have reasonable conductivity [23-26]. 

To address the first issue one can consider pyroloquinolinquinone (PQQ) dependent 

oxidoreductases which represent a unique group of enzymes that can act as electrocatalysts, 

facilitating the electron transfer between different conductive electrode materials and their 

substrate molecule with no mediator involved in the process [27-29]. It is important to note that 

PQQ dependent enzymes do not react with molecular oxygen and, consequently, they are 

attractive for construction of the third generation biosensors [19] based on the DET between 

enzyme and electrodes. Previous investigations showed that PQQ dependent enzymes exchange 

electrons with gold, silver, pyrolytic graphite, several organic polymers, glassy carbon and 

carbon paste electrodes [30-35]. In addition, the efficiency of the DET is highly dependent on the 

intrinsic properties of the electrode material.  

In order to address the second and the third issues one can apply various conducting polymers 

which are very attractive materials as their properties may be tuned chemically in a desired way 

to assist with electron transfer [36, 37]. 

Conducting polymers, especially polyanilines, have a great potential in electronics and optics 

[38, 39] and especially in the field of chemical sensors and biosensors [3, 37, 40, 41]. Due to 

their peculiar electrochemical and optical properties these materials can be used as components 

of different transducers in potentiometric, amperometric and impedimetric/conductimetric 

sensors [3]. They are frequently employed as sensitive elements of ―chemiresistors‖ for gas 

sensing [42]. These polymers were found to change their electronic conductivity in response to 

changes in pH or redox-potential of the solution in contact with the polymer [43, 44] and were 
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suggested to be applied as chemical or redox-sensors [45]. Biosensors with conducting polymers 

are most commonly used in amperometric detection [3], though conductimetric sensors with 

different enzymes have also been reported [46-48]. Recently new N-substituted aniline 

derivatives with interesting features were reported in the literature [36, 49]. These monomers 

contain two essential parts: aniline and methacrylamide or dithiocarbamate. Recently one of such 

monomers N-(N’,N’-diethyl dithiocarbamoyl ethyl amido ethyl)aniline (AnD) [36] is introduced. 

The aniline part of this substance can be polymerized in both chemical and electrochemical way 

and conductivity of the resulting polymer is similar to that of aniline. An attractive feature of 

polyAnD molecule is that each monomer unit has a dithiocarbamate ester moiety, and it can be 

used for further surface modification. UV grafting can be applied for grafting of other polymers 

over polyAnD via iniferter activation. Moreover, it was shown, that polyAnD can be used as 

molecular imprinted polymer for amperometric determination of certain organic compounds 

[50]. These features seem useful and are more advantageous in comparison with other 

conducting polymers for construction and directional modification of electrode matrix for design 

of bio-compatible enzyme immobilisation matrix with high surface area. 

In this study we introduce a novel label-free impedimetric platform based on 3D-IDEA sensor 

and new conductive polyaniline polymer polyAnD as a transducer for oxidoreductases. The three 

different PQQ dependent dehydrogenases were applied to test suitability of the proposed 

impedimetric platform for studying of electron transfer processes between enzymes and 

immobilization matrix and for biosensing purposes as well.  

2. Experimental 

2.1. Enzymes and chemicals 

Membrane bound PQQ dependent alcohol dehydrogenase (mADH) from Gluconobacter sp. 33, 

E.C. 1.1.5.5, was isolated and purified by the method reported in [51]. The activity of the 
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enzyme solution in 5 mM Tris buffer (pH 7.5) with 1 mM CaCl2, 0.02 % Triton-X-100 and 0.5% 

sucrose was 200 U/ml. Ethanol was used as default substrate for the mADH.  

Soluble PQQ dependent alcohol dehydrogenase (sADH) from Pseudomonas putida HK5, E.C. 

1.1.9.1, was isolated and purified by the method reported in [52]. The activity of the enzyme 

solution in 5 mM Tris buffer (pH 8.5) with 5 mM CaCl2 was 130 U/ml. 1,2-propandiol was used 

as the default substrate for the sADH.  

Soluble PQQ dependent glucose dehydrogenase (GDH) from Acinetobacter calcoaceticus, E.C. 

1.1.5.2, was isolated and purified by the method reported in [53]. The activity of the enzyme 

solution in 5 mM Tris buffer (pH 8.0) with 1 mM CaCl2 was 1800 U/ml. D-(+)-glucose was used 

as a default substrate for the GDH.  

All enzymes were purified at the Department of Molecular microbiology and biotechnology 

(Vilnius University, Institute of Biochemistry) (Lithuania) and were kindly provided by Dr. R. 

Meškys.  

Monomer of conductive polyaniline polymer N-(N’, N’-diethyl dithiocarbamoyl ethyl amido 

ethyl)aniline (AnD) was synthesized according to the method reported earlier [36].  

 

Sodium acetate, acetic acid, CaCl2 and 1,2-propandiol were obtained from J.T. Baker (Holland, 

the Nederland’s). Ethanol, KCl and D-(+)-glucose were purchased from Riedel-de Haen 

(Denmark). K3[Fe(CN)6], K4[Fe(CN)6], HCl, acetonitrile, N2, (NH4)2S2O8 (APS) were purchased 

from Sigma Aldrich (Germany). 

Three dimensional IDEA electrodes were fabricated at the IMB-CNM, CSIC (Spain) as 

described in [9]. The scheme of 3D-IDEA sensor is presented in Fig. 1.  

Gold microelectrodes (working area 1.64 mm
2
) were fabricated at the same facility by deposition 

of titanium (10 nm) and gold (100 nm) onto a silicon wafer covered with 1 µm thick silicon 

oxide layer. Electrodes were patterned using conventional lift-off technique. 
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FIG1 here 

 

2.2. AnD polymerisation 

Oxidative polymerization was performed following the method reported in [36] using APS under 

the following conditions: 0.018 M APS, 0.025 M AnD, 0.225 M HCl, 25% acetonitrile in water.  

The reaction mixture was prepared by mixing 250 µl of AnD (0.1 M in acetonitrile) with 207 µl 

of an aqueous solution of APS (0.0915 M), 230 µl of HCl (1 M), and 680 µl of water. The 

solution was transferred to the Eppendorf tube where a sensor was immersed and fixed 

vertically. Polymerisation was carried out during 1.5 h at room temperature in the dark resulting 

in the deposition of a thin, green layer of functionalized polyAnD coating over the electrode 

surface. This process was controlled with optical microscopy to ensure the uniform deposition of 

the polymer. PolyAnD structure is presented in Fig. 2. PolyAnD-coated transducers were washed 

in three cycles with de-ionised (DI) water and dried in a nitrogen flow. 

 

FIG2 here 

 

2.3. Immobilisation of enzymes 

Two methods were employed for enzyme immobilisation: entrapment in polyAnD and 

physisorption. Immobilisation of sADH enzyme by entrapment was performed as follows. The 

reaction mixture was prepared by mixing 250 µl of AnD (0.1 M in acetonitrile) with 207 µl of 

aqueous solution of APS (0.0915 M), 230 µl of HCl (1 M), and 690 µl of sADH solution (0.9 

mM). The solution was transferred to the Eppendorf tube where the sensor was immersed and 
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fixed vertically. Polymerisation was carried out during 1.5 h at room temperature in the dark. 

Enzyme and polymer modified electrodes were rinsed several times with DI water and dried in a 

nitrogen flow. 

Physisorption of enzymes was done as follows: 2 µl of enzyme solution were dropped onto pre-

modified with polyAnD electrode surface and kept at +4 
0
C for 1 h. Enzyme modified electrodes 

were carefully washed with DI water and dried in a N2 flow.  

 

 

2.4. Impedance measurements  

Characterisation of 3D-IDEA sensors was performed by impedance measurements in a 100 Hz – 

1000 kHz frequency range with a 25 mV (amplitude) voltage excitation using PARSTAT 2263 

Advanced Electrochemical System (Princeton Applied Research, USA) in 0.01 mM CaCl2 water 

solution. Such frequency range for measurements was chosen in order to attain higher fitting 

precision from a broader range in Nyquist plot. This is associated with the specific geometry of 

the sensor. The enzyme substrates solutions, containing 100 mM of ethanol, 100 mM 1,2-

propandiol or 100 mM of D-glucose were prepared using 0.01 mM CaCl2 as a background. Z-

Plot/Z-View software package (Scribner Associates, Southern Pines, NC, USA) was employed 

for data treatment and an equivalent circuit fitting. Fig. 3. shows two equivalent circuit models of 

3D-IDEA sensor. These models were applied for fitting of impedance spectra. 

 

FIG3 here 

 

The first equivalent circuit presented in Fig. 3 A (1) was used for spectra fitting when only one 

semicircle appears in a spectrum at high frequencies and the low frequency part on the Nyquist 
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plot is linear. In water solutions where the studied systems showed spectra with two semicircles 

as presented in Fig. 3 B (2), the second equivalent circuit was used to fit them. 

The parameter Rcont is the resistance of the electrodes contacts. Parallel combination of the C1-

R1 represents the resistance of the polyaniline layer and the geometrical capacitance of the IDEA 

sensor and CPE1 and R2 present the capacitance and resistance at the interface between the 

polymer and the solution. 

The quality of fit can be assessed with the chi-square parameter which is the sum of squares of 

the ratio of the standard deviation between the original data and the calculated spectrum. For all 

spectra measured in this work the chi-square parameter was typically smaller than 0.0025.  

 

 

2.5. Amperometric measurements  

The electrochemical system PARSTAT 2273 (Princeton Applied Research, USA) was employed 

for amperometric experiments. The system has a conventional three-electrode cell with saturated 

Ag/AgCl reference electrode, platinum plate auxiliary electrode and working gold 

microelectrode. 

Before the experiments gold microelectrodes were rinsed with DI water and sonicated in DI 

water for 10 min. Then they were electrochemically cleaned by potential scanning from -0.2 V to 

1.7 V (vs. Ag/AgCl) 10-20 times at 200 mV/s scan rate in 0.5 M H2SO4 water solution until 

reproducible gold oxide stripping peaks were obtained.  

Chronoamperometric measurements were employed to study the response of the biosensor to 

substrate addition. The conditions were as follows: potentiostatic mode at +400 mV (vs. 

Ag/AgCl) in a stirred 100 mM acetate buffer solution, pH 6.0, 10 mM CaCl2 and 10 mM KCl. 

The enzyme substrates were used as acetate buffer solutions, pH 6.0, containing 100 mM of 

ethanol, 100 mM 1,2-propandiol or 100 mM of D-glucose.  
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3. Results and discussion 

3.1. 3D-IDEA sensors modifications 

3D-IDEA sensors were modified with polyAnD polymer by chemical polymerisation. The 

impedance spectra before and after modification were measured in solutions of CaCl2 with 

different conductance and the results are presented in Fig. 4. As expected, spectra of the initial 

sensor before modification depend on the solution conductivity (curve 1 and 2). After deposition 

of the polymer film the sensor shows rather small interelectrode resistivity that is only slightly 

affected by changes in the solution conductivity (curve 3 and 4). This is due to the presence of a 

highly conductive film that shunts the electrodes and prevents penetration of the electric field 

into the solution. Adsorption of enzymes on the polyAnD provokes significant impedance 

changes (curve 5), which didn’t decrease during months after immobilisation. The resistance of 

the film composed of polyAnD and enzyme becomes several times higher. This means that there 

is an interaction between PQQ dependent enzymes and the conductive polymer that affects its 

electrical properties. However, as in the previous case, the sensor impedance was not affected by 

the solution conductivity (curves 5 and 6) and there were no differences between impedance 

spectra obtained in solutions with 4.62 µS/cm and 16.8 µS/cm conductivity. 

 

FIG4 here 

 

3.2. Influence of solution redox-potential on polyAnD resistance 

Conducting polymers based on polyaniline and its derivatives are able to enhance the speed of 

various redox-processes as well as to participate in electrocatalytic oxidation of certain 

biologically important compounds, such as coenzymes and cytochromes [54, 55]. 
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The enzymes studied in this work have quinone cofactor and one or more heme c in their active 

sites. In this case, it is possible, that polyAnD could also provoke re-oxidation of enzymes active 

sites during substrate oxidation. It is also known that polyaniline based polymers are sensitive to 

solution redox-potential changes. In this case electric properties of polyAnD should change in 

the presence of soluble electron acceptor in solution, when concentration of oxidised and 

reduced forms changes during the enzyme catalysed substrate oxidation.  

Firstly, the sensitivity of polyAnD to redox-potential was tested. The impedance spectra of 

polymer modified sensor were recorded in solutions with different ratio of [Fe(CN)6]
3-

/[Fe(CN)6]
4-

. These ions are chosen due to ferricyanide is known as good electron acceptor of 

heme containing enzymes, as sADH and mADH are. The resistance (R1) of the sensor was 

determined by fitting of impedance spectra by equivalent circuit model Fig. 2 A (1). The redox-

potentials of solutions were calculated using Nernst equation: 

]])([[

]])([[
ln

4

6

3

6
0 




CNFe

CNFe

Fn

RT
EE , 

where E0= 0.36 V is the standard redox-potential of the [Fe(CN)6]
3-

/[Fe(CN)6]
4-

 pair in water 

solution. Data are presented in the Fig. 5. The polymer film resistance goes down linearly as the 

redox-potential of the solution becomes more positive. This phenomenon led us to assume that 

the same polymer material may be used to register the enzyme catalysed redox reactions. 

 

FIG5 here 

 

3.3. Response of the sensor with soluble alcohol dehydrogenase (sADH) 

The bioelechtrochemical systems with sADH on the polyAnD modified 3D-IDEA sensors were 

constructed using enzyme immobilisation by entrapment (polyAnD+sADH) and by 
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physisorption (polyAnD_sADH). The response of both systems to addition of enzyme substrate 

was recorded in the presence and absence of water soluble electron acceptor K3[Fe(CN)6] in a 

small volume (500 µl) of reaction solution. 

The polyAnD_sADH system showed specific response to addition of 1,2-propandiol in the 

presence of K3[Fe(CN)6] resulting in the resistance decrease, similar to previous experiments 

with different ratio of [Fe(CN)6]
3-

/[Fe(CN)6]
4-

. These results show that sADH is able to change 

significantly K3[Fe(CN)6] concentration during biocatalysis. However, the (polyAnD+sADH) 

system with entrapped sADH showed no specific response to the presence of 1,2-propandiol, that 

can indicate deactivation of sADH during polymerisation process. 

The response of sensors with adsorbed and entrapped sADH and 3D-IDEA sensor covered with 

polyAnD to addition of 1,2-propandiol was measured without K3[Fe(CN)6] expecting that 

polyAnD could provoke re-oxidation of sADH active site. These results are shown in Fig. 6.  

 

FIG6 here 

 

The sensor with adsorbed sADH showed specific response to addition of the enzyme substrate 

(Fig. 6. B), while the sensor with entrapped enzyme showed no response (Fig. 6. A) in 

experiments with K3[Fe(CN)6]. From this we can conclude that the enzyme activity is affected 

by the polymerisation process. It was shown in ref. [56] that sADH exhibits 35 – 5% of its initial 

activity after 1 h storage in 25% acetonitrile water solution. In our case, the presence of organic 

solvent is accompanied by low solution pH and release of oxygen during chemical reactions 

which provoke an irreversible denaturation of sADH globule. This method of enzyme 

immobilisation was not used further in experiments.  
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3.4. Response of the sensors with membrane bound alcohol dehydrogenase (mADH) and 

soluble glucose dehydrogenase (GDH) 

Since enzyme immobilisation by entrapment in polyAnD resulted in a total loss of enzyme 

activity, PQQ dependent membrane bound alcohol dehydrogenase and soluble glucose 

dehydrogenase were immobilised onto polyAnD modified 3D-IDEA sensors by physisorption. 

As in the case of sADH, we recorded impedance spectra of obtained sensors in the presence of 

different concentration of enzymes substrates. The results of these experiments are presented in 

Fig. 7. Sensors with mADH and GDH show decrease in determined resistance (R1) upon 

addition of enzymes substrates. This suggests that all studied enzymes in this work can undergo 

direct re-oxidation on polyAnD.  

 

FIG7 here 

 

Enzymes re-oxidation means electron flow to the polymer from reduced enzyme active site. 

Reduction processes of the conducting polymer chains usually result in conductivity decrease. 

However, obtained results with [Fe(CN)6]
3-

/[Fe(CN)6]
4-

 (section 3.2) and all studied enzymes 

showed opposite behaviour. This interesting phenomenon is not fully understood yet. There are 

several possible explanations for this effect. First one can be attributed to pending group with 

dithiocarbamate moiety of polyAnD, which can participate in redox-reactions. Pending group of 

polyAnD contains two nitrogen atoms (Fig. 2), which can bound two protons and became 

positively charged. The protons as well as electrons can be released from enzyme active site 

during PQQ re-oxidation processes [57, 58]. Thus, the environment close to the electrode surface 

should become more acidic. Polyaniline conductivity is known to be induced by proton doping. 

This effect was applied in the case of ―self-doped‖ polyanilines derivatives, when the charge 
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compensation occurs at the expense of proton exchange inside the polyaniline molecule, that 

occurs much more faster and does not limit the rate of the redox-process [59]. The first example 

of the sensor based on conductivity increase of polyaniline derivative exploiting this 

phenomenon was recently presented in [60]. Another reason for decrease in resistance can be as 

follows. Properties of conducting polymers depend on where the redox-reactions with the 

environment occur: on the outer polymer/solution interface or within the polymer film bulk. If 

the reactions occur only on the polymer/solution interface without affecting the chemical 

composition of the bulk polymer, the oxygen from the ambience can participate in the polymer 

surface oxidation processes thus producing different reduced oxygen species, which can affect 

polymer conductivity [54]. 

3.5 Chronoamperometric measurements 

Chronoamperometric measurements were performed using gold micro-electrodes to ensure that 

PQQ dependent enzymes can directly re-oxidise on polyAnD surface. Modification of electrode 

with polyAnD was performed by the same method as presented before (section 2.5). 

Immobilisation of enzymes by physisorption was performed on initial gold microelectrodes and 

on gold microelectrodes covered with polyAnD. The response of these two types of sensors to 

stepwise addition of enzymes substrates (1,2-propandiol for sADH, ethanol for mADH and D-

glucose for GDH) were recorded. The results are presented in Fig. 8. 

Modification of gold microelectrode by polyAnD with or without enzymes enhances the 

background current which indicates an increase of the electrode surface (curves (2) and (3)). In 

the absence of enzymes in the solution the background current did not change significantly 

(curves (1) and (2)). In the cases when the enzymes sADH and mADH were immobilised 

directly on gold the sensors showed response in the presence of corresponding substrate (curve 

(3)). The possibilities of DET from sADH and mADH to gold metal surface have been reported 
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[30, 61]. Sensors with these enzymes immobilised on polyAnD also show response to their 

respective substrates, which may be regarded as a confirmation that the DET also occurs in this 

case (curve (4)). However, sensors with the GDH adsorbed on gold electrodes showed no 

response in the presence of glucose (curve (3)). The response appears only if the gold 

microelectrode is covered by the conductive polymer layer of polyAnD (curve (4)). This fact 

indicates that GDH can be directly re-oxidised on polyAnD, while this process is blocked on 

gold surface. Thus, obtained results of chronoamperometric measurements confirm the results 

obtained by EIS. Moreover, taking into consideration that GDH has no heme c active site in the 

enzyme molecule and the behaviour of all studied enzymes is similar, it may be concluded that in 

these enzymes – conductive polymer systems DET occurs from the PQQ moiety. However, in 

the case of alcohol dehydrogenases we cannot exclude that heme c also participates in the 

electron transfer to polyAnD as this is the energetically favorable way. 

 

FIG8 here 

 

4. Conclusions 

Label-free impedimetric platform based on 3D-IDEA sensor covered by new conductive 

polyaniline-type polyAnD polymer is proposed. Introduced impedimetric platform was applied 

to study biocatalysis of three different PQQ dependent enzymes. For the first time polyAnD was 

applied as enzyme immobilisation matrix. It was shown, that enzyme immobilisation onto 

polyAnD by entrapment resulted in total inactivation of enzymes, while enzymes immobilised by 

physisorption demonstrate specific response in the presence of the enzyme substrates with and 

without additional electron acceptor. Obtained results show that sADH, mADH and GDH can re-

oxidise on polyAnD via direct electron transfer from the enzymes active sites to the polymer 
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surface. Simple amperometric method was applied to confirm these results obtained by 

impedance spectroscopy. Application of the EIS method for investigation of redox-enzymes in 

contrast to amperometric method allows for obtaining not only indirect information about 

processes of biocatalysis at low potential (only 25 mV excitation potential was used during EIS 

experiments), but also gives information about modification of electrode surface, its structural 

and electrical changes. Introduced label-free impedimetric platform with PQQ dependent 

enzymes shows sensitivity to typical enzymes substrates at 1 µM level. Based on the presented 

results it would be possible to design label-free impedimetric biosensors for alcohols and sugars 

determination. However, the improvement and nano-scale modification of polyAnD layer onto 

3D-IDEA should be done to achieve higher surface area for enzyme immobilisation and to 

enhance sensor response.  

Presented study shows that EIS method applied to interdigitated electrode structures give a 

useful tool for research of re-oxidation process and interaction of electroactive enzymes with 

various conducting materials giving information required to construct and develop analytical 

devices.  
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Fig. 1. Design of 3D-IDEA sensor. (1) Insulating substrate (Si/SiO2), (2) electrode collector bar, 

(3) electrode digits, (4) silicon dioxide barriers between the electrode digits, (5) 4 µm thick SiO2 

layer, and (6 and 7) aluminium contact pads. 

 

 

 

 

 

Fig. 2. PolyAnD structure. 
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Fig. 3. Equivalent circuits of a 3D-IDEA sensor. A – Equivalent circuit models (1) and (2). B 

– Nyquist plot shows characteristic impedance spectra for these two equivalent circuits. 
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Fig. 4. The Nyquist plot of the impedance spectra of 3D-IDEA sensor modified by polyAnD 

and PQQ dependent enzyme in CaCl2 solutions with different conductivity. The curves 1 

and 2 represent spectra of an initial clean 3D-IDEA sensor; 3 and 4 – modified by polyAnD; 5 

and 6 – modified by polyAnD and the adsorbed enzyme. Curves 1, 3 and 5 were obtained in 10
-5 

M CaCl2 (4.62 µS/cm). Spectra 2, 4 and 6 were measured in 5·10
-5

 M CaCl2 with 16.8 µS/cm 

conductivity  
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Fig. 5. The resistance of modified by polyAnD 3D-IDEA sensor dependence of solution 

redox-potential. Dash line represents linear fitting of data points (r
2
=0.9734). 

 

 

 

 

Fig. 6. Response of modified by polyAnD sensor with immobilized sADH to addition of 1,2-

propandiol. Response of A – entrapped and B – adsorbed sADH to addition of substrate without 

soluble electron acceptor. 
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Fig. 7. Response of polyAnD modified sensor with adsorbed mADH (left) and GDH (right) 

to addition of enzymes substrates, ethanol and glucose, respectively. 

 

 

 

Fig. 8. Chronoamperometric measurements of gold electrodes with PQQ dependent 

enzymes and polyAnD. (1) – chronoamperogram of clean gold microelectrode, (2) – 

chronoamperogram after modification with polyAnD, (3) – chronoamperogram after 

modification with enzyme and (4) – chronoamperogram of gold microelectrode, which was 

modified by polyAnD and enzyme. The numbers in each graph show concentration of the 

corresponding enzyme substrate (M) after stepwise addition.  


