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RESUMEN

La fijación biológica de nitrógeno, es decir, la reducción del nitrógeno (N2) 
a amonio, es un proceso fundamental ya que representa una fuente de nitrógeno 
para la vida marina en áreas donde este elemento es limitante, posibilitando la 
producción primaria y por tanto la exportación de carbono al océano profundo.  Este 
proceso se lleva a cabo por microorganismos procariotas, los llamados diazotrofos. 
Sin embargo, aún sabemos muy poco sobre la identidad y la ecología de estos 
microorganismos, lo que limita enormemente nuestra comprensión de la importancia 
global de este proceso, y nuestra capacidad de predecir cambios en la fijación de N2 
ligados a cambios en el ambiente. El objetivo de esta tesis, por tanto, fue ahondar 
en el conocimiento de la diversidad, ecología y evolución de los microorganismos 
diazotrofos en el océano.

La mayoría del conocimiento actual sobre la diversidad de diazotrofos se 
deriva del gen marcador nifH, que codifica una proteína estructural del complejo 
enzimático responsable de la fijación de nitrógeno. Por tanto, en el Capítulo 1 
realizamos una exploración global del gen nifH usando datos metagenómicos de 
68 estaciones muestreadas durante la campaña oceanográfica Tara Oceans. Nuestra 
aproximación se diferencia de los estudios anteriores ya que no se basa en el uso de 
cebadores para detectar el nifH y posibilita por tanto una cuantificación más precisa 
de la diversidad real. Este estudio representa el primer mapa global (no basado en 
cebadores) de la distribución de diazotrofos en el océano desde superficie hasta el 
mesopelágico. Aunque la abundancia de diazotrofos fue muy baja en general, era 
significativamente mayor en el océano profundo. Asimismo, descubrimos nuevos 
diazotrofos que habían pasado desapercibidos en los estudios basados en cebadores: 
más de la mitad de los diazotrofos detectados no se capturan por los cebadores para 
el nifH. Esto sugiere que la mayoría de estudios previos pueden haber obviado una 
fracción importante de las comunidades de fijadores de nitrógeno.

Entre los diazotrofos detectados en el Capítulo 1, el más abundante fue la 
cianobacteria unicelular Candidatus Atelocyanobacterium thalassa (UCYN-A), que 
vive en simbiosis con un alga primnesiofita y que juega un papel importante en la 
fijación de nitrógeno. En los capítulos 2 y 3 nos dedicamos a estudiar en detalle los 



2

aspectos relacionados con la ecología, diversidad y evolución de este diazotrofo. 
Mediante el análisis de metagenomas y de técnicas de visualización microscópicas 
como el CARD-FISH pudimos detectar UCYN-A en el atlántico sur, revelando que 
UCYN-A1 y UCYN-A2, dos linajes diferentes de UCYN-A, viven en simbiosis con 
dos hospedadores diferentes, dos primnesiofitas de tamaños distintos. Además, el 
análisis del perfil de expresión del genoma de ambos linajes mostró una dedicación 
optimizada a la fijación de nitrógeno. La edad de divergencia de UCYN-A se estimó 
en unos 100 millones de años, y presumiblemente ocurrió bajo presiones evolutivas 
de tipo estabilizadora. Por último, en el Capítulo 3, nos centramos en el estudio de 
UCYN-A3, otro linaje del que se sabe muy poco. Mediante el uso de varios métodos 
(PCR, qPCR, CARD-FISH y metagenomas) se logró visualizar e identificar por 
primera vez el linaje UCYN-A3 asociado con una alga de tamaño diferente, lo que 
sugiere que los distintos linajes de UCYN-A ocupan diferentes compartimentos 
planctónicos que no siempre se consideran en estudios de diversidad de nifH o de 
fijación de nitrógeno. Finalmente, pudimos reconstruir una fracción importante del 
genoma de UCYN-A3, estableciendo que  representa una especie genómica diferente 
a las anteriores.

En definitiva, esta tesis ha contribuido significativamente al conocimiento de 
los diazotrofos en el océano mediante el descubrimiento de nueva diversidad como 
de nuevos compartimentos del plancton donde puede darse la fijación de nitrógeno 
y que podrían ayudar a entender mejor el ciclo marino del nitrógeno.
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SUMMARY

Biological N2  fixation, the reduction of dinitrogen (N2) gas to biologically 
available nitrogen, is a fundamental process since it represents a source of new 
nitrogen for marine life in areas where this important element can be limiting, 
supporting primary productivity and thus biological carbon export to the deep ocean. 
This process is performed by the nitrogen-fixing prokaryotic microorganisms (the 
so-called diazotrophs). However, very little is still known about the identity and 
ecology of diazotrophs, which largely limits our capacity to understand the global 
significance of this process, and to predict potential variations in nitrogen fixation 
upon changes in environmental conditions. In this thesis, we aimed at improving 
the knowledge on the diversity, ecology and evolution of the marine nitrogen-fixing 
microorganisms in the open ocean.

Most current knowledge on diazotrophic diversity has been obtained using the 
nifH marker gene, which encodes for a structural protein of the enzymatic complex 
that performs the N2  fixation reaction. Thus, in Chapter 1 we first conducted a 
global exploration of the nifH gene extracted from metagenomic data derived from 
68 globally distributed stations collected during the Tara Oceans expedition. This 
approach differs from previous studies in that it does not rely on primers to detect 
the nifH genes, and thus allows a more quantitative estimation of the contribution 
of these microorganisms and a more realistic view of their diversity. This study 
provides a first ‘primer-free’ global map of the distribution of open ocean diazotrophic 
communities across ocean basins and throughout the water column, showing that 
diazotrophs often occurred at very low abundances, and that in general they were 
significantly more abundant in the mesopelagic than in photic waters. Likewise, 
we uncovered novel diversity that had remained unnoticed in all previous primer-
based studies, since we demonstrate that more than half of the detected nifH variants 
cannot be captured by the primers used. This suggests that most diazotroph diversity 
studies may be disregarding an important fraction of the nitrogen-fixing community 
members.
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Among the diazotrophs detected in Chapter 1, the most abundant was the 
unicellular cyanobacterium C. Atelocyanobacterium thalassa (UCYN-A), which 
lives in symbiosis with a prymnesiophyte alga and has been shown to be a relevant 
player in nitrogen fixation. Thus, in Chapter 2 and Chapter 3, we explored aspects 
related to the ecology, diversity and evolution of this remarkable microorganism. 
We detected UCYN-A in the South Atlantic Ocean using not only metagenomic 
approaches but also microscopic visualization techniques (CARD-FISH). This 
allowed us to unveil that different UCYN-A lineages, UCYN-A1 and UCYN-A2, 
live in symbiosis with two distinct prymnesiophyte partners of different sizes. Both 
UCYN-A lineages showed a streamlined genome expression towards nitrogen 
fixation. We estimated that these two lineages diverged almost 100 Mya under a 
strong purifying selection process. Finally, in Chapter 3 we focused on the study of 
UCYN-A3, another lineage of which very little was known, to gain insight into its 
ecology. Using an array of methods (PCR, qPCR, CARD-FISH and metagenomes) 
we could visualize and identify for the first time UCYN-A3 and its association with 
an alga of different size, which suggests that different UCYN-A lineages occupy 
different planktonic compartments that are not always considered when nitrogen 
fixation of nifH diversity are studied. Finally, we manage to reconstruct a significant 
fraction of its genome, establishing that this lineage constitutes a new UCYN-A 
genomic species.

Overall, this thesis has significantly contributed to expand the knowledge 
on marine diazotrophic organisms, unveiling new diversity and new planktonic 
compartments that could potentially lead to a better understanding of the marine 
nitrogen cycle.



5





Introduction

7

General Introduction 





Introduction

9

GENERAL INTRODUCTION

The nitrogen cycle and the relevance of nitrogen fixation in the ocean

Global nutrient cycling cannot be understood without microbes, which act as 
microscopic agents of change by transforming carbon and nutrients, such us nitrogen 
and phosphorous, throughout the Earth`s biomes (Arrigo, 2005). Within the Earth`s 
biomes, the oceans occupy a central feature of the biosphere, with biogeochemical 
connections to the land and atmosphere. Therefore, because the oceans represent the 
largest biome on Earth covering almost three quarters of the Earth`s surface, those 
chemical transformations happening in the ocean, both biotic and abiotic, are of 
fundamental importance for the functioning of the whole system.

Of the Earth`s elements, nitrogen comprises the majority of the atmosphere 
(78%) and is the fourth most abundant element in cellular biomass and, thus, an 
essential element for all life forms. Likewise, in marine environments, more than 
95% of nitrogen mostly occurs as inert dissolved N2 gas, but this form of nitrogen 
is unavailable for the majority of living organisms. The nitrogen cycle in the ocean 
is driven by complex microbial transformations and consists of five accepted 
nitrogen-transformation flows (Figure 1): (i) ammonification, including nitrogen 
fixation, and assimilatory and dissimilatory reduction of nitrite; (ii) nitrification; 
(iii) denitrification, including canonical, nitrifier-dependent and methane-oxidation-
dependent denitrification; (iv) anammox, as a form of coupled nitrification-
denitrification; and (v) nitrite–nitrate interconversion. The general processes of 
organic matter mineralization and assimilation by living organisms complete the 
movement of reactive nitrogen throughout the water column (Figure 1)(Stein and 
Klotz, 2017). All these nitrogen transformations are coupled to the marine cycling 
of oxygen, phosphorus, and carbon, and thus the nitrogen cycle is considered as a 
critical component of the biogeochemical processes in the ocean (Zehr and Kudela, 
2011).
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Due to the general unavailability of nitrogen for marine organisms, two 
biological processes are of fundamental importance in oceanic environments: 
nitrogen fixation, which is the conversion of atmospheric N2 gas to ammonia, and 
denitrification, i.e. the conversion of nitrate to N2. The balance of these two processes 
ultimately determines the size of the oceanic inventory of bioavailable nitrogen, and 
consequently, marine productivity (Capone et al., 2008). In particular, biological 
nitrogen fixation is responsible for approximately 50% of the total nitrogen sources 
in the ocean (Karl et al., 2002), supporting primary productivity in sites where there 
would be no available nitrogen otherwise, highlighting the need of understanding all 
aspects related to this process. Although there have been some estimates of global 
ocean N2 fixation, which are in the range of 100–200 Tg N yr−1 (Karl et al., 2002), 
the current methodologies used to measure nitrogen fixation, i.e., the 15N2-tracer 
addition method (Montoya et al., 1996; Capone and Montoya, 2001) or the acetylene 

Figure 1. Conceptual diagram highlighting and comparing the major nitrogen-cycle processes in (a) the typical oceanic 
water column to that in (b) oxygen minimum zones. The oxidation of ammonium to nitrate is called nitrification but 
includes the processes of ammonia oxidation and nitrite oxidation, catalysed by different microorganisms. DNRA, 
dissimilatory nitrate reduction to ammonia; PN, particulate nitrogen. From Zehr and Kudela, 2011.
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reduction assay (ARA) (Hardy et al., 1968), have been shown to underestimate 
nitrogen fixation rates (Mohr et al., 2010; Grokopf et al., 2012), which makes it 
very difficult to accurately estimate the magnitude of the bioavailable nitrogen 
budget. But more importantly, a major limitation for our capacity to understand 
this component of the nitrogen cycle relies on our current lack of knowledge on the 
identity and ecology of the organisms involved in N2 fixation (Horner-Devine and 
Martiny, 2008; Monteiro et al., 2010). There is therefore an urgent need for gaining 
insight into the diversity, ecology and distribution of the organisms responsible for 
nitrogen fixation before we can accurately understand the global significance of this 
process, and in order to eventually predict potential variations in nitrogen fixation 
rates upon changes in environmental conditions. 

Diversity of nitrogen-fixing microorganisms

The biochemical process of fixing nitrogen is confined to a diverse but 
limited number of bacterial and archaeal lineages, the so-called diazotrophs, which 
are found widely, though paraphyletically, distributed across both the bacterial and 
archaeal domains (Figure 2) (Raymond et al., 2004). The capacity of diazotrophs 
for nitrogen fixation relies solely on their oxygen-sensitive nitrogenase enzyme 
system, which, at 16 ATPs hydrolysed per N2  fixed, carries out one of the most 
metabolically expensive processes in nature (Simpson and Burris, 1984). These 
diazotrophs contribute up to 50% of the total nitrogen sources in the global marine 
nitrogen budget and thus comprise the dominant source of new nitrogen to the open 
oligotrophic ocean (Gruber and Sarmiento, 1997; Karl et al., 2002).

The first marine microorganisms identified as diazotrophs were heterotrophic 
bacterial isolates growing on (N)-free media (Waksman et al., 1933). However, 
after the observation that some heterocystous cyanobacteria were diazotrophs 
(Fogg, 1942), most efforts were devoted to find marine representatives of such 
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cyanobacteria, mainly in near shore ecosystems (Fogg, 1978; Stewart, 1965). The 
N2 fixation performed by these microorganisms relies on the heterocysts, which are 
specialized  cells where a micro-anaerobic environment is created to prevent the 
inactivation of the oxygen-sensitive nitrogenase enzymatic complex. However, with 
the exception of some cyanobacterial symbionts of various open ocean diatoms 
(Villareal, 1992), the distribution of heterocystous cyanobacteria is mostly confined 
to fresh and brackish waters and benthic environments (Stal, 2009). 

Figure 2. Phylogenetic tree showing the diversity of diazotrophs. 16S rRNA gene tree indicating position of 
diazotrophs within the major clades. Bold lines indicate lineages with the nif operon. Dashed lines have nif homologues. 
Shaded major phyla indicated those containing diazotrophs. From Raymond et al., 2004.

Later, in 1961, it was discovered that the planktonic non-heterocystous 
cyanobacterium Trichodesmium was also a diazotrophic microorganism (Dugdale 
et al., 1961). Although Trichodesmium had been studied for decades and its 
cosmopolitan distribution through the global oligotrophic ocean was well known 
(Carpenter, 1983), the absence of heterocystous in their trichomes and its distribution 
along aerobic environments made it very difficult to understand how this organism 
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was able to fix nitrogen (Carpenter and Price, 1976; Bergman et al., 2013). Indeed, 
with the exception of the filamentous heterocyst-forming cyanobacteria, it is actually 
impossible to identify N2-fixing cyanobacteria strictly based on morphology. 
Therefore, this motivated the search for marker genes that allowed estimating 
the diversity of N2-fixing microorganisms. The application of molecular biology 
approaches, specifically the sequencing of nifH genes amplified by the polymerase 
chain reaction (PCR), was the crucial step that revolutionized our knowledge of the 
diversity of diazotrophs. 

The nitrogenase itself is an ATP-hydrolyzing, redox-active complex of two 
component proteins, the dinitrogenase α2β2  heterotetramer (where α = NifD and 
β = NifK proteins) and the dinitrogenase reductase γ2 homodimer (NifH protein). 
Initially, the sequences of the nifH gene as well as those of related genes (hetR, nifD, 
nifK) composing this nitrogenase enzyme system were used to build phylogenetic 
trees. The resulting nifH phylogenetic trees were very congruent with analyses based 
on 16S rRNA genes (Zehr et al., 2003), and therefore the nifH gene sequences were 
selected as the marker gene to address the studies of biodiversity of diazotrophs. 
Since then, sequencing of this marker has provided a large rapidly expanding 
database of diazotroph sequences from diverse terrestrial and aquatic environments 
(Heller et al., 2014). 

The sequencing of nifH genes amplified by PCR was initially used to study 
nitrogenase gene sequences from the cyanobacterium Trichodesmium thiebautii in 
the Caribbean Sea (Zehr and McReynolds, 1989). However, this also resulted in 
the discovery of previously unknown diversity of uncultivated marine prokaryotes 
capable of diazotrophy, including heterotrophic (non-cyanobacterial prokaryotes) 
and autotrophic prokaryotes (mainly cyanobacteria) (Figure 3) (Zehr et al., 1998, 
2003). Currently, five major clusters can be defined based on the phylogenetic 
relationships established between the nifH diversity (Zehr et al., 2003; Raymond et 
al., 2004). Only three of them, however, clusters I, II and III, code for true functional 
nitrogenase (Zehr et al., 2003; Raymond et al., 2004). The remaining two clusters 
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(clusters IV and V) are formed by paralogs of nifH not involved in nitrogen fixation 
and include genes of various functions, such as some involved in photopigment 
biosynthesis and certain electron transport reactions (Raymond et al., 2004; Staples 
et al., 2007; Young, 2005). 

Among the three functional clusters, cluster I is composed by Cyanobacteria, 
alpha-, beta- and gamma-Proteobacteria, and also by certain Firmicutes and 
Actinobacteria. This cluster I is formed by genes encoding conventional Fe-
Mo nitrogenases, and mostly contains sequences retrieved by cloning and high-
throughput sequencing from marine surveys (Farnelid et al., 2011). Indeed, most of 
the known diversity of marine diazotrophs so far is contained within this cluster I. 
Cluster II is composed by relatively few nifH genes, among them those belonging 
to methanogenic archaea, coding for ‘alternative’ nitrogenases (Fe-Fe and Fe-V 
cofactor nitrogenases). Finally, cluster III is basically formed by obligate anaerobic 
bacteria and archaea, including Firmicutes, Spirochetes, sulfate-reducing delta-
Proteobacteria, and methanogens. 

The heterotrophic players of marine nitrogen fixation

Heterotrophic diazotrophs are believed to be active members of the 
bacterioplankton community. For example, several recent studies have shown 
that the abundance of heterotrophic diazotrophs or nitrogen fixation increase after 
nutrient additions (Moisander et al., 2012; Bonnet et al., 2013). Moreover, other 
studies have found that this group of diazotrophs includes populations thriving 
in environments such as aphotic, N-rich oxygenated waters (Rahav et al., 2013; 
Benavides et al., 2015), oxygen-deficient waters such as the oxygen minimum zones 
(OMZ) (Loescher et al., 2014), or the ultra-oligotrophic South Pacific Gyre (Halm 
et al., 2012), pointing to their widespread distribution.
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Figure 3. Phylogenetic analysis of nifH genes obtained from oceanic picoplankton and zooplankton in 1998. The 
phylogeny includes nifH sequences from cultivated organisms (genus and species) and uncultivated organims (e.g, 
from termites and from marine [e.g., Tomales Bay] samples). GenBank sequence numbers are indicated). The data 
set was bootstrapped 100 times, and bootstrap values greater than 50% are indicated at the relevant methods (distance 
and parsimony methods are represented by values above and below the nodes, respectively). GP, gram positive;  , 
diatom associated; w, picoplankton; ★, zooplankton associated. From Zehr et al., 1998.
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Within the heterotrophic diazotrophs, the most studied case corresponds to 
the phylotype Gamma-A (Bird et al., 2005). Although Gamma-A have been found in 
all major ocean basins along the water column up to mesopelagic depths, the highest 
abundances have been observed within the warm, oligotrophic, fully oxygenated 
surface waters of tropical and subtropical latitudes (Langlois et al., 2015). In particular, 
in the Eastern Tropical South Pacific (ETSP), the nifH sequences detected belonged 
to heterotrophic groups within Clusters I and III, whereas almost no cyanobacterial 
phylotypes were found (Bonnet et al., 2013; Turk-Kubo et al., 2014; Loescher et 
al., 2014), and detectable rates of nitrogen fixation have been detected in ETSP area 
throughout the water column (Fernandez et al., 2011; Bonnet et al., 2013; Loescher 
et al., 2014). However, it has not been possible to demonstrate a direct link between 
nitrogen fixation rates and heterotrophic diazotroph phylotypes in this particular 
area (Turk-Kubo et al., 2014). Therefore, despite the huge diversity and widespread 
distribution reported for heterotrophic diazotrophs, which have been detected in all 
the major oceanic regions (Bombar et al., 2016), there is still not enough evidence 
supporting a significant role of heterotrophic diazotrophs in marine nitrogen fixation 
(Turk-Kubo et al., 2014). 

In terms of abundance contribution to the bacterioplankton community, 
phylotypes associated with Gamma A populations have shown maximal abundances 
of 104 nifH gene copies per liter, likewise several other heterotrophic diazotrophic 
phylotypes (Moisander et al., 2014; Shiozaki et al., 2014), with only sporadic 
exceptions of higher abundances that can reach up to 107 nifH gene copies per liter 
(Halm et al., 2011; Church, Jenkins, et al., 2005; Zhang et al., 2011). However, even 
at such ‘high’ abundances, these diazotrophs only account for up to about 1% of 
the local bacterial community. In any case, low abundances of a particular species 
do not necessarily mean a low contribution or significance of these species in the 
functioning of the ecosystem, since rare populations can act as keystone microbial 
species with disproportionately large effects on ecosystem services (Giovannoni and 
Stingl, 2005). In general, however, the commonly found low abundance of marine 
heterotrophic diazotrophs, together with a supposed lack of pigment fluorescence, 
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makes their study through techniques such as flow cytometry cell sorting coupled 
with metagenomics or fluorescence in situ hybridization (FISH) much more difficult 
than in the case cyanobacterial diazotrophs. In consequence, the significance of 
heterotrophic diazotrophs for oceanic nitrogen fixation remains poorly understood, 
even in regions where they dominate the diazotrophic community, and further efforts 
are need to better understand the ecology of these diazotrophs.

Cyanobacterial diazotrophs in the ocean

Unlike their heterotrophic counterparts, the different cyanobacterial 
diazotrophs inhabiting the open ocean are much more diverse in terms of morphology 
(they can be coccoid, filamentous or can develop specialized cells, i.e., heterocysts). 
Some cyanobacterial diazotrophs are free-living, but they can also occur associated 
with particles or with other organisms in a symbiosis. They are distributed widely 
throughout tropical and subtropical waters (Figure 4) (Zehr, 2011) and rarely found 
in high polar latitudes (Blais et al., 2012; Díez et al., 2012; Shiozaki et al., 2017). 
Cyanobacterial diazotrophs can be classified into four major groups differing in 
their morphologic characteristics and main lifestyles: (1) the free-living filamentous 
non-heterocyst-forming Trichodesmium, (2) the filamentous heterocyst-forming 
symbionts with unicellular eukaryotic algae like for instance Richelia or Calothrix, 
(3) free-living unicellular cyanobacteria such as UCYN-B, (4) and finally unicellular 
symbiotic cyanobacteria such as Candidatus Atelocyanobacterium thalassa 
(UCYN-A) (Figure 5) (Thompson and Zehr, 2013).

Free-living filamentous non-heterocyst-forming Trichodesmium

Trichodesmium spp. had initially been assumed to represent the most important 
nitrogen-fixing cyanobacterium in the ocean. However, this ‘ranking’ is currently 
under debate because a comparable importance has been attributed to unicellular 
nitrogen-fixing cyanobacteria (Martínez-Pérez et al., 2016). Trichodesmium 
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representatives have consistently been shown to be stable components of tropical 
and subtropical segments of the Atlantic, Pacific, and Indian Oceans (Figure 4a). 
Genetic and morphological markers argue that the different Trichodesmium strains 
form only two major distinct clades, and it has been suggested that they display 
different ecological distributions (Orcutt et al., 2002; Hynes et al., 2012; Bergman et 
al., 2013). An important characteristic of Trichodesmium spp. is that they can control 
buoyancy and their depth in the water column through its ability to generate gas 
vacuoles and, consequently, allowing a vertical migration to optimize light intensity 
or to obtain nutrients from deeper waters (Villareal and Carpenter, 2003). They are 
well-known contributors to sustaining marine life via active release of key nutrients, 
hence making this fully photoautotrophic genus a vital player in the biogeochemical 
cycling in the oceans (Carpenter and Capone, 2008).

Filamentous heterocyst-forming symbionts 

Heterocyst-forming filamentous cyanobacteria are mainly found in estuaries 
and in the Baltic Sea, but they are not extremely abundant in oligotrophic oceans for 
several reasons. For example, they are known to be sensitive to turbulence (Howurth 
et al., 1993), and nitrogen fixation by heterocysts has been suggested to be limited by 
oxygen concentration and flux into the cell in tropical areas (Stal, 2009; Staal et al., 
2007), being outcompeted by non-heterocyst-forming diazotrophic cyanobacteria. 
However, the heterocyst might be of advantage in the microenvironment of a 
photosynthetic symbiotic partner cell, since heterocyst-forming cyanobacterial 
symbionts are commonly found associated with several oceanic diatom genera 
(Figure 4c) (Carpenter, 2002; Foster et al., 2009). Among these, the heterocyst-
forming cyanobacteria of the genera Richelia and Calothrix are symbiotically 
associated with different genera of diatoms, including Rhizosolenia and Hemiaulus 
(living within the diatom frustule but outside the cell wall), and Chaetoceros (living 
externally associated to the frustule) (Zehr, 2011), all diatoms that can form blooms 
or occur in transient high concentrations after river discharge, mesoscale features, or 
mixing (Dore et al., 2008; Fong et al., 2008). Their rapid sink after blooming and the 
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subsequently export of carbon to the deep ocean (Scharek et al., 1999; Subramaniam 
et al., 2008) makes these heterocyst-forming symbiotic cyanobacteria some of the 
most ecologically important diazotrophic cyanobacteria in the oceans.

Figure 4. Distribution of major groups of oceanic N2-fixing cyanobacteria targeted by quantitative PCR 
assays. The occurrence of these phylotypes in clone libraries and FISH-based observations of the UCYN clades 
are also included. (a) Trichodesmium, (b) unicellular N2-fixing cyanobacteria, (c) heterocyst-forming cyanobacteria 
symbionts of diatoms. Colours: blue, cyanobacteria were observed by microscopy; green, detection by qPCR but at 
low concentrations and were not quantifiable (DNQ); red, cyanobacteria were quantified by qPCR; pink, detected by 
PCR amplification, cloning and sequencing; black, samples collected for qPCR, but cyanobacteria were not detected 
(UD). Abbreviation: EQ, equator. From Zehr, 2011.
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Free-living unicellular cyanobacteria

The third group of cyanobaterial diazotrophs is formed by the unicellular 
free-living (although they can also interact indirectly with other microbes) clades 
called UCYN-B and UCYN-C (Zehr, 2011; Taniuchi et al., 2012). UCYN-B, or 
Crocosphaera spp., although originally isolated from the South Atlantic Ocean, have 
been successfully isolated from multiple ocean basins and found widely distributed 
in tropical and subtropical oceans (Figure 5, 4b). These cyanobacteria can be 
easily observed by microscopy because they contain the photosynthetic pigment 
phycoerythrin, and were detected for the first time in very oligotrophic waters of the 
central southern tropical Pacific by fluorescence activated cell sorting (FACS)(Neveux 
et al., 1999). Differently to Trichodesmium, to the heterocyst-forming Richelia and 
Calothrix cyanobacteria or to UCYN-A, Crocosphaera fixes the nitrogen during 
the night hours. Crocosphaera  strains exhibit phenotypic differences, but genetic 
comparisons have found high sequence conservation among cultivated strains and 
environmental sequences. In this context, it seems that Crocosphaera strains diverge 
and maintain genetic diversity through genetic rearrangements and by incorporating 
strain-specific sequences (Zehr et al., 2007; Bench et al., 2011). In addition to its 
free-living state, Crocosphaera-like cells can be associated with diatoms (Carpenter 
and Janson, 2000; Foster et al., 2011), or with aggregates (Sohm, Webb, et al., 2011; 
Foster et al., 2013). Cultivated  strains can be divided into two broad phenotypic 
and genomic categories: (i) those that have larger cell diameters (>4 μm) and larger 
genomes characterized by some genetic redundancy and potentially increased 
adaptations to iron and phosphorous limitations,and (ii) those that show the 
opposite pattern, i.e. smaller cell diameters(<4  μm) and smaller genomes, and a 
relative loss of genetic capabilities (Webb et al., 2009; Sohm, Edwards, et al., 2011; 
Bench et al., 2013). These two Crocosphaera categories have shown to present 
distinct distributions in the North and South Pacific Ocean (Bench et al., 2016), 
which supports the adaptation of Crocosphaera to diverse oceanic habitats, with 
presumably different contribution to nitrogen fixation.
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The unicellular Cyanothece, or UCYN-C group, also belongs to the lineages 
of unicellular diazotrophic bacteria with representatives in the open ocean, mainly 
in tropical oceans, but they are much less abundant that UCYN-A and UCYN-B 
(Falcon et al., 2002; Foster et al., 2007; Langlois et al., 2008). As it happens with 
Crocosphaera, Cyanothece fixes the nitrogen during the night hours separating 
nitrogen fixation temporally from photosynthesis (Sherman et al., 1998). In general, 
although few, the available estimates of abundances and geographic distribution 
of the free-living unicellular nitrogen-fixers (particularly those of Crocosphaera) 
suggest that these microorganisms are also significant contributors to global nitrogen 
fixation.

Figure 5. The spectrum of cellular interactions engaged in by marine diazotrophic cyanobacteria. Dashed lines 
show features that are uncertain, such us the location of symbionts relative to host inner or outer membranes and the 
presence of calcareous plates on the Candidatus Atelocyanobacterium thalassa (UCYN-A) host. From left to right, 
other features include: free-living Crocosphaera cells (double cells are dividing); Trichodesmium with associated 
microbiota (gray); Calothrix with terminal heterocyst (brown) and vegetative cells (green); UCYN-A in relation to 
its host membranes; colonial aggregates of Crocosphaera-like cells in association with a diatom; and Richelia with 
terminal heterocyst (brown) and vegetative cells (green). From Thompson and Zehr, 2013.
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Unicellular symbiotic cyanobacteria: The case of Candidatus Atelocyanobacterium 
thalassa (UCYN-A)

The discovery of UCYN-A, formally C. Atelocyanobacterium thalassa, is 
completely rooted in the molecular era, and was based on a short nifH gene sequence 
in 1998 (Zehr et al., 1998). Since then, much knowledge has been gained about 
this organism, and now it is well known that UCYN-A is a widely distributed key 
nitrogen-fixer in the ocean, at least as important as Trichodesmium (Zehr et al., 
2016). A wide variety of cultivation-independent approaches, including PCR-based 
techniques, fluorescence in situ hybridization (FISH), genome sequencing coupled 
to flow cytometry, nanoscale secondary ion mass spectrometry (nanoSIMS), 
metagenomics and metatranscriptomics have been employed to gain insight into 
the distribution and ecology of UCYN-A, confirming its global importance in the 
nitrogen cycle (Figure 6) (Zehr et al., 2016).

Two key molecular approaches have been crucial to detect UCYN-A in a 
large number of ocean basins: the PCR or quantitative PCR (qPCR) of the nifH gene 
and 16S rRNA gene (Thompson and Zehr, 2013; Zehr et al., 2016), and the visual 
quantification of their abundances through the FISH assay (Biegala and Raimbault, 
2008; Bonnet et al., 2009; Le Moal and Biegala, 2009; Krupke et al., 2013). The 
more it was learned about this diazotroph, however, the more intriguing it seemed. 
For example, the first attempts to evaluate the abundance and the patterns of nitrogen 
fixation by quantitative reverse-transcriptase PCR (qRT-PCR) in UCYN-A gave 
enigmatic results: Generally, diazotrophic cyanobacteria separate photosynthesis 
and nitrogen fixation either spatially or temporally by fixing nitrogen at night, when 
the oxygen-evolving photosystem II (PSII) apparatus is not active and therefore 
the inactivation of the nitrogenase complex can be avoided (Fay, 1992; Berman-
Frank et al., 2003). However, contrary to the pattern shown by UCYN-B with the 
expected night-time nitrogen fixation for unicellular cyanobacteria, UCYN-A was 
shown to display the highest level of nifH transcriptional activity during the light-
hours (Church, Short, et al., 2005). This controversial nitrogen fixation pattern was 
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clarified thanks to the sorting of an environmental UCYN-A population by flow 
cytometry and its subsequent whole-genome amplification and high-throughput 
DNA sequencing. By these means, it was shown that UCYN-A lacked all the 
genes for PSII and, consequently, did not evolve O2, allowing the expression of 
the nitrogenase complex during the light hours (Zehr et al., 2008). Moreover, the 
UCYN-A genome was shown to be so reduced that it was missing cyanobacterial 
defining features such us the RuBisCO (ribulose-1,5-bisphosphate carboxylase/
oxygenase) for carbon fixation or the entire tricarboxylic acid (TCA) cycle among a 
variety of other metabolic pathways (Tripp et al., 2010). 

Figure 6. A timeline detailing major publications leading from the discovery of UCYN-A to genome sequencing 
and visualization of cells, and the detection in different regions of the world`s oceans. Superscript numbers 
indicate references in Zehr et al, 2016. References numbers 42 and 43 are contributions derived from this thesis. From 
Zehr et al, 2016.

These unexpected findings raised the question of how UCYN-A could thrive in 
oligotrophic environments lacking such important biosynthetic pathways. Although 
Tripp et al., (2010) had proposed that the reason might be a symbiotic lifestyle, 
Thompson and Foster et al. were the ones answering this question in 2012, unveiling 
the symbiotic association of UCYN-A with a prymnesiophyte single-celled alga 
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closely related to Braarudopshaera bigelowii. This was possible because availability 
of the UCYN-A genome allowed to design a UCYN-A-specific 16S rRNA gene 
FISH probe that permitted to visualize this symbiosis for the first time (Figure 7) 
(Thompson et al., 2012). In this study, they also showed, by means of stable isotope 
experiments and nanoscale secondary ion mass spectrometry (nanoSIMS), that 
UCYN-A fixed N2, and rapidly exchanged N with the prymnesiophyte partner. In 
exchange, the fixed carbon through the photosynthetic activity of the prymnesiophyte 
alga was transferred to UCYN-A, establishing the mutualistic basis of this symbiosis 
(Figure 7) (Thompson et al., 2012).

Figure 7. Microscopy and elemental composition of two UCYN-A partner cells and their associated UCYN-A 
cells detected in samples from sorted picoeukaryotes analysed by HISH-SIMS. (A)  19F/12C (HISH) labelling 
of UCYN-A. Inset displays labelling of the same UCYN-A cells by catalysed reporter deposition–fluorescence in 
situ hybridization (green) and DAPI (4′,6-diamidino-2-phenylindole) staining of partner cell nucleus (blue). (B) 
The 13C/12C ratio image of UCYN-A and partner cell. (C) The 13C/12C and 15N/14N in 10 selected partner cells and their 
associated UCYN-A cells (table S6). (D) The 15N/14N image ratio of UCYN-A and partner cell. The white lines define 
regions of interest that were used for calculating 13C/12C and 15N/14N ratios. UCYN-A cells are indicated by white 
arrows in (B) and (D). Scale bar, 3 μm. From Thompson and Foster et al, 2012.
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Recently, the genome of a second UCYN-A genome lineage, called UCYN-A2 
was also obtained (Bombar et al., 2014). This new lineage was detected off Scripps 
Pier in San Diego, California, and allowed to open new questions about the UCYN-A 
symbiotic system. The two genomes of UCYN-A1 and UCYN-A2 lineages were 
extremely similar, lacking the same metabolic genes, which suggested a similar 
symbiotic strategy (Bombar et al., 2014). The host of UCYN-A2 was later identified 
by the 18S rRNA gene sequence, and was closely related to the UCYN-A1 host but 
closer to a prymnesiophyte strain detected in Japanese coastal waters ( Hagino et al., 
2013; Thompson et al., 2014). It is now clear that there are several distinct hosts and 
UCYN-A lineages, although the specificity of these associations or whether more 
unexplored diversity is involved in this symbiotic system remains to be resolved. It is 
also unknown whether the number of symbiont cells per host is constant or whether 
it is specific to each lineage, as well as the consequences on the physiology of the 
host. Therefore, due to its global importance in the marine nitrogen cycle and the 
particularity of the system, the deep exploration of these symbionts at a global scale 
can shed light into the ecology and evolution of this remarkable symbiotic system. 
In addition, because of the particular symbiotic life-style of UCYN-A, this organism 
has been considered a possible model for understanding organelle evolution (Zehr 
et al., 2016), which highlights the relevance of gaining insight into the evolutionary 
and ecological processes leading to the establishment of these unusual relationships.

Who contributes more to nitrogen fixation in the ocean?

Cyanobacterial diazotrophs have long been considered the most important 
diazotrophs in warm, oligotrophic, surface ocean waters (Zehr, 2011; Karl et al., 
2002), but this paradigm is not so clear now. Heterotrophic diazotrophs appear to 
be almost ubiquitous in marine waters, even in high-latitude, deep, cold, or coastal 
waters where cyanobacteria, with some exceptions, are few or absent (Fernandez et 
al., 2011; Blais et al., 2012; Díez et al., 2012; Bonnet et al., 2013; Farnelid et al., 
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2013; Bombar et al., 2017). A recent global analysis done using nifH PCR amplicon 
sequences from samples taken around the surface ocean unveiled that phylotypes 
of heterotrophic diazotrophs, particularly proteobacterial phylotypes from cluster I, 
dominated the diazotrophic community (Figure 8) (Farnelid et al., 2011). However, 
two important points have to be taken into account about this particular study; 
first, important filamentous diazotrophic cyanobacteria such as Trichodesmium 
were excluded from the analysis because samples were pre-filtered by 10 μm size-
pore filters and thus their contribution to the diazotrophic community could not be 
assessed; and second, it was shown that the relative contribution of nifH transcripts, 
which represent the expressed nifH genes, was higher in the case of cyanobacterial 
diazotrophs than in the case of heterotrophic diazotrophs, suggesting that in terms of 
activity the cyanobacteria might be more important contributors to nitrogen fixation. 

Figure 8. World map of sampling locations showing the distribution of nifH Clusters. Pie charts display the 
distribution of  nifH  Clusters within each sample. Clusters containing <10 sequences (shown in grey) were not 
phylogenetically designated. Note that Cluster I is split into Proteobacteria and Cyanobacteria, but that Cluster III 
also contains some Proteobacteria. For the Sargasso Sea samples, which were prefiltered (10 µm) to avoid filamentous 
cyanobacteria, the pie charts for DNA and cDNA samples are shown in the bottom left corner. From Farnelid et al. 
2011.
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Another important aspect to consider is that studies using PCR-based 
techniques hinder the comparison between samples in terms of the contribution of 
diazotrophs to total microbial community because the diversity obtained from the 
amplified gene (or gene fragment) only considers the diazotrophic community but 
does not allow knowing which fraction of the total prokaryotic community they 
represent. Furthermore, it is well known that PCR-based approaches can impact 
the diversity and relative abundance of the amplified gene (Acinas et al., 2005). 
Such biases have been shown to either exclude the discovery of certain diazotrophic 
lineages (Bürgmann et al., 2004), or to alter the ratios of sequence abundance in the 
products relative to the templates of PCR (Suzuki and Giovannoni, 1996; Sipos et al., 
2007). It is thus possible that the use of PCR-based techniques for the detection of the 
diazotrophic communities is giving a biased view of the actual contribution of these 
organisms within prokaryotic communities, which thus precludes linking changes in 
diazotrophic diversity to the measured nitrogen fixation rates. For example, a recent 
study comparing nitrogen fixation rates with the diazotrophic diversity (assessed via 
PCR-based nifH sequencing) in different regions found that although the diazotrophs 
detected were nearly omnipresent in marine waters, the nitrogen fixation process 
was regionally restricted, i.e., occurred at very few stations (Gradoville et al., 2017). 
One possible explanation is that the aforementioned PCR biases cause the detection 
of extremely rare diazotrophic taxa that are not actually contributing to the process 
because their abundances are negligible at the community level, or that nitrogen 
fixation occurs only under particular conditions and the detection of diazotrophic 
taxa does not imply that they are active. Therefore, there is not yet a clear answer 
concerning the relative contribution of different phylogenetic groups of diazotrophs 
in the marine environment, and there is a need for conducting alternative quantitative 
studies (such as metagenomic approaches) to have a more accurate description of 
the actual distribution of different diazotrophic species.
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Aims and outline of the thesis

The main goal of this thesis is to gain insight into the diversity, ecology and 
evolution of the marine nitrogen-fixing microorganisms in the open ocean. The 
contribution of this thesis to the knowledge on this topic has been structured in three 
chapters. In the first chapter, we analyzed the metagenomic dataset from the global 
circumnavigation expedition Tara Oceans in order to explore the biogeography of 
different groups of nitrogen-fixing bacteria across oceanic basins and throughout 
the water column, from surface to mesopelagic layers. The recruitment of nifH gene 
sequences from the metagenomic dataset to explore the diversity of diazotrophs 
avoids the primer bias of the PCR-based approaches used in most studies. By this 
means we could not only to uncover new nitrogen-fixing groups but also but also 
quantify the relative abundance of diazotrophs within bacterioplankton communities 
(Chapter 1). The results obtained in the first chapter identified and confirmed the 
presence of the uncultivated symbiotic cyanobacteria UCYN-A as one of the key 
nitrogen-fixing players in the ocean. Consequently, the next two chapters were 
devoted to explore in detail the UCYN-A diversity, ecology and evolution as well as 
its relationship with its host. This was carried out through the combination of different 
visualization techniques (CARD-FISH) and metagenome and metatranscriptome 
analyses (Chapter 2).  In the last chapter, we obtained different views of the UCYN-A 
lineage composition in particular environmental samples depending on the approach 
used for the identification (PCR, qPCR, CARD-FISH, metagenomes), which led to 
new information on the diversity of the UCYN-A symbiosis. We uncovered a new 
UCYN-A genomic species and unveiled that the emerging novel diversity of the 
UCYN-A group is distributed along different size fractions of the plankton, which 
places the nitrogen fixation in novel planktonic compartments (Chapter 3).
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The thesis outline can be further organized in the following two major objectives 
that can each be subdivided into several specific ones:

Objective 1: To assess the contribution of diazotrophs to the total microbial 
community structure in the global ocean

Understanding the contribution of heterotrophic versus cyanobacterial 
diazotrophs to total marine microbial nitrogen fixers has been rarely addressed and 
a consensus is still far to be reached because opposite results have been obtained to 
date.

In Chapter 1 a global exploration of the diazotrophic community was carried 
out for the first time using a non-PCR biased approach. It consisted in the extraction 
of the nifH genes from the metagenomic data from the Tara Oceans expedition with 
the following aims:

-	 To obtain a comprehensive view of the contribution of diazotrophs across ocean 
basins.

-	 To assess the contribution of different autotrophic and heterotrophic diazotro-
phic groups across basins and along the water column.

-	 To uncover novel diazotrophic groups.

Objective 2: To gain insight into the diversity, ecology and evolution of the uncultured 
nitrogen-fixing cyanobacteria UCYN-A

UCYN-A is one of the major players in the marine nitrogen fixation process 
and lives in symbiosis with a single-celled prymnesiophyte. Different lineages of 
both symbionts and hosts have been described. However, the few environmental 



Aims of the Thesis

33

metagenomic sequences available to date, together with the absence of lineage-
specific probes for visualizing the symbiosis under microscopy make difficult the 
description of the UCYN-A symbiotic system.

In Chapter 2, using samples from two stations of the Tara Oceans expedition where 
this symbiosis was significantly abundant, as well as a combination of microscopy 
and genomic methods, the next specific objectives were addressed:

-	 To design CARD-FISH probes to explore microscopically the symbiotic asso-
ciation involving UCYN-A and prymnesiophytes.

-	 To explore whether different UCYN-A genomic species are in symbiosis with 
different hosts.

-	 To decipher whether distinct lineages, in association with distinct partners, ex-
hibit different expression patterns.

-	 To evaluate the evolutionary forces acting on UCYN-A.

In Chapter 3, we focused on a deep exploration of the diversity of the UCYN-A 
clade with the following objectives:

-	 To evaluate the specificity of the methods applied in the study of the UCYN-A 
symbiosis.

-	 To design a strategy to explore new divergent genomes of UCYN-A in environ-
mental samples.

-	 To explore new UCYN-A diversity in different fractions of the plankton. 
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Abstract

Nitrogen-fixing microorganisms (diazotrophs) are key members of marine 
ecosystems because they act as suppliers of bioavailable nitrogen for primary 
producers in the oceans. Although numerous studies have addressed the diversity, 
abundance and distribution of diazotrophs in marine systems, a consensus does 
not exist concerning the relative importance of different groups to marine nitrogen 
fixation. Since most of the previous studies are founded on the amplification of 
the nifH marker gene (PCR, qPCR), the lack of consensus could come from the 
methodological biases associated with the use of primers. Here we explored the 
diversity and abundance of marine diazotrophic microorganisms across the global 
ocean using the Tara Ocean’s metagenomic dataset, in an approach that does not rely on 
primers. Twenty-eight nifH gene sequences were designated using a 95% nucleotide 
sequence similarity cut-off from the Ocean Microbial Reference Gene Catalog (OM-
RGC), mostly non-cyanobacterial variants. Among them, 18 non-cyanobacterial 
gene sequences presented mismatches with the ‘nifH4’ primer commonly used 
in marine diazotrophic diversity studies, and we proposed a modification of this 
primer. In general, diazotrophs were found in the rare biosphere (<0.1% relative 
abundance) with significant higher abundances in the mesopelagic than in photic 
surface or DCM waters. Interestingly, some groups showed contrasting habitat 
preferences, photic waters for cyanobacterial diazotrophs and mesopelagic waters 
for gamma- and alphaproteobacterial diazotrophs. Finally, for five of the nifH gene 
sequences we identified its corresponding 16S rRNA gene via correlation analysis 
between the abundance profiles of both markers in 135 metagenomic samples. Our 
results provide the first primer-free global survey of the diversity, abundance and 
distribution of diazotrophs in the oceans that includes the mesopelagic realm and 
unveils new nifH variants that were previously missed by the use of primers.
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Introduction

The amount of bioavailable nitrogen supplied via the biological nitrogen 
fixation process, i.e., the reduction of dinitrogen (N2) gas to ammonium, is a 
globally relevant process that often limits primary productivity in wide areas of the 
oligotrophic oceans and, consequently, affects the carbon export from the photic 
ocean (Karl et al., 2002). The balance between nitrogen fixation and denitrification 
(i.e., the conversion of nitrate to N2) determines the size of the oceanic inventory of 
bioavailable nitrogen and thus primary productivity (Capone et al., 2008). However, 
global-scale estimates of the marine nitrogen budget suggest that the nitrogen losses 
via denitrification exceed the nitrogen inputs through nitrogen fixation (Mahaffey et 
al., 2005), making it very difficult to have accurate estimation of the magnitude of 
the bioavailable nitrogen budget. Although the imbalance of the budget may be due 
to the limitations of the methods used for measuring nitrogen fixation (Mohr et al., 
2010; Grokopf et al., 2012; Dabundo et al., 2014), it is also possible that the scarce 
knowledge of the organisms responsible for biological nitrogen fixation, i.e. the 
nitrogen-fixing microorganisms or diazotrophs, is also limiting our understanding of 
this fundamental process (Zehr and Kudela, 2011). It is therefore of critical importance 
to gain insight into the diversity, distribution and ecology of the members making up 
the diazotrophic communities in the ocean in order to have a better understanding of 
the marine nitrogen cycle.

Diazotrophic organisms are exclusively found among members of the 
Domains Archaea and Bacteria (Zehr et al., 2003). The current knowledge of the 
diazotrophic diversity has been obtained using the nifH marker gene, which encodes 
for a key structural protein of the nitrogenase enzymatic complex that performs 
the N2  fixation reaction (Zehr and Paerl, 1998). Among the marine diazotrophic 
members, those belonging to the phylum Cyanobacteria have long been considered 
as the main players in surface waters of the warm oligotrophic ocean (Zehr, 2011). 
However, the relative contribution of cyanobacterial and non-cyanobacterial 
diazotrophs to the diazotrophic community is not so clear now; for example, it 
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has been recently shown that the heterotrophic diazotrophs can occupy a broader 
variety of habitats, including high-latitude, deep, cold, or coastal waters where 
cyanobacterial diazotrophs are rarely found (Bombar et al., 2017). Furthermore, 
heterotrophic diazotrophs can dominate the diazotrophic community in vast regions 
of the ocean, as shown by nifH PCR (polymerase chain reaction)-based amplicon 
surveys (Farnelid et al., 2011; Turk-Kubo et al., 2014; Gradoville et al., 2017; 
Bombar, et al., 2017). It is thus possible that these heterotrophic diazotrophs play 
more important roles than previously thought, and indeed numerous studies have 
tried to assess the contribution of cyanobacterial and non-cyanobacterial diazotrophs 
based on nifH-based abundances from qPCR assays (Luo et al., 2012; Bombar et al., 
2017). However, all of these studies rely on the use of primers, which is known to give 
a biased view of the diversity and relative abundance of microorganisms (Acinas et 
al., 2005), including the diazotrophic taxa (Gaby and Buckley, 2017). This inaccurate 
depiction and quantification of the diversity could explain the uncoupling between 
diazotroph community composition and nitrogen fixation rates often found (Turk-
Kubo et al., 2014), and thus there is a need for conducting alternative quantitative 
surveys of the diversity of these relevant microorganisms.

The first attempt to recruit marine nifH gene sequences from a non primer-
based approach was using a single marine metagenomic sample from the Sargasso 
Sea (Venter et al., 2004). Interestingly, only 41 genes out of the 1.2 million genes 
generated from the whole-shotgun genome sequencing were classified as nifH genes 
(Meyer, 2004), but a more detailed examination of these nifH genes showed them to 
be more closely related to photosynthetic electron transfer proteins in cyanobacteria 
(e.g. 91% identical to protochlorophyllide reductase of Prochlorococcus marinus) 
than to nifH genes (Johnston et al., 2005). Other marine metagenomic studies have 
identified diazotrophs attached to plastic debris (Bryant et al., 2016) or as part of 
the microbiome of isolated colonies of Trichodesmium (Gradoville, Crump, et al., 
2017) but none of these studies detected diazotrophs directly in seawater. This lack 
of success in recovering diazotrophic diversity may be due to the shallow sequencing 
depth used in that study, because it is believed that diazotrophic organisms exist in 
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low abundance in natural communities (Johnston et al., 2005). Fortunately, the recent 
global oceanographic expedition Tara Oceans (2009-2012)(Karsenti et al., 2011) 
has provided the deepest sampling and metagenomic sequencing effort performed to 
date in open ocean (Sunagawa et al., 2015), which is now publicly available for the 
exploration of the diversity and distribution of functionally relevant groups such as 
marine nitrogen-fixing microorganisms.

In the present study, we aimed to obtain a global overview of the diversity 
and a quantitative estimate of the abundance of marine planktonic diazotrophs in the 
photic and aphotic layers of the ocean. In order to do so, we explored the metagenomic 
data generated in the Tara Oceans project looking for nifH genes across 135 globally 
distributed samples collected at surface, DCM and mesopelagic waters. This study 
represents the first attempt to characterize the taxonomic composition and to quantify 
the relative abundance of nitrogen-fixing microorganisms using an approach that 
does not rely on the use of primers, and which is thus thought to provide a more 
realistic view of these diazotrophs in the global ocean.

Material and methods

Study area and sample collection

From 2009 to 2013, the Tara Oceans expedition collected biological samples 
across all the major oceanic basins (Karsenti et al., 2011; Sunagawa et al., 2015). 
Sample location for the data used in this paper is shown in Figure 1. A total of 
135 samples from 68 globally distributed stations including surface (n=63), deep 
chlorophyll maximum (DCM) (n=42) and mesopelagic (n=30) seawater samples 
were collected for metagenomic sequencing during the Tara Oceans expedition 
encompassing two different size fractions (i.e., 0.2–1.6 μm from stations TARA_004 
to TARA_052 and 0.2–3 μm from stations TARA_056 to TARA_152) (Sunagawa 
et al., 2015) that mostly represent free-living prokaryotic communities. In principle, 
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the 0.2-1.6 mm fraction was going to be used during the whole campaign, but the type 
of material of the 1.6 mm size-pore prefilter, i.e., glass microfiber, was not resistant 
enough for supporting the volume of seawater needed for metagenome sequencing 
(ca. 100 liters) and these prefilters were replaced by 3 mm size-pore polycarbonate 
filters from station TARA_052 until the end of the cruise.

Nucleic acid extractions and sequencing

The 0.2 mm filters were cut into small pieces with sterile razor blades and half 
of each filter was resuspended in 3 ml of lysis buffer (40 mM EDTA, 50 mM Tris-
HCl, 0.75 M sucrose). Lysozyme (1 mg ml-1 final concentration) was added and the 
samples were incubated at 37ºC for 45 min with slight movement. Then, sodium 
dodecyl sulfate (SDS, 1% final concentration) and proteinase K (0.2 mg ml-1 final 
concentration) were added and the samples were incubated at 55ºC for 60 min under 
slight movement. The lysate was collected and processed with the standard phenol-
chloroform extraction procedure: an equal volume of Phenol:CHCl3:IAA (25:24:1, 
vol:vol:vol) was added to the lysate, carefully mixed and centrifuged 10 min at 
3,000 rpm. Then the aqueous phase was recovered and the procedure was repeated. 
Finally, an equal volume of CHCl3:IAA (24:1, vol:vol) was added to the recovered 
aqueous phase in order to remove residual phenol. The mixture was centrifuged and 
the aqueous phase was recovered for further purification. The aqueous phase was then 
concentrated by centrifugation with a Centricon concentrator (Millipore, Amicon 
Ultra-4 Centrifugal Filter Unit with Ultracel-100 membrane). Once the aqueous 
phase was concentrated, this step was repeated three times adding 2 ml of sterile 
MilliQ water each time in order to purify the DNA. After the third wash, between 100 
and 200 μl of purified total genomic DNA product per sample could be recovered. 
The extracted DNA was quantified using a Nanodrop ND-1000 spectrophotometer 
(NanoDrop Technologies Inc, Wilmington, DE, USA) and the Quant_iT dsDNA HS 
Assay Kit with a Qubit fluorometer (Life Technologies, Paisle).
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All the information concerning metagenome sequencing can be found in 
Sunagawa et al. (2015) and in Alberti et al. (2017). Briefly, the extracted DNA 
samples were sequenced using the Illumina technology as overlapping paired reads 
of ∼100/108 bp. After quality control, reads were merged using FLASH v1.2.7 with 
default parameters (Magoč and Salzberg, 2011) and cleaned based on quality using 
CLC QualityTrim v4.10.86742 (CLC Bio), resulting in 100–215-bp fragments. The 
location and sequencing effort of all metagenomic samples can be found in Table W2 
from Sunagawa et al. (2015). All metagenomes and the corresponding environmental 
parameters measured during the Tara Oceans expedition are available online (www.
pangaea.de).

Identification of nifH gene sequences from metagenomic datasets

Reads coming from the Tara Ocean metagenomes were assembled to build 
contigs and to predict genes within these contigs to, afterwards, generate the Ocean 
Microbial Reference Gene Catalog (OM-RGC), a non-redundant set of 40,154,822 
genes clustered at 95% identity (Sunagawa et al., 2015). The set of non-redundant 
genes were functionally annotated by blasting the protein sequences of the genes 
against eggNOG v3 (Powell et al., 2012) and KEGG v62 (Kanehisa et al., 2012) 
using SMASH v1.6 (Arumugam et al., 2010). We took advantage from the OM-
RGC (Sunagawa et al., 2015) to explore the presence of the marker gene used 
for identifying diazotrophic microorganisms, the nifH gene. In this sense, within 
the OM-RGC we screened both the gene sequences annotated using the eggNOG 
database as COG1348 (nitrogenase reductase subunit NifH (ATPase)) and the gene 
sequences annotated using the KEGG database (Kyoto Encyclopedia of Genes and 
Genomes) as K02588 (nifH, nitrogenase iron protein NifH).

Abundance patterns of nifH gene sequences in the Tara Oceans dataset

After generating the reference gene catalog, reads from each sample were 
mapped to the catalog to estimate functional and taxonomic abundances (Sunagawa et 
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al., 2015). For each sample (n=135), the abundance of each gene sequence in the OM-
RGC was determined using MOCAT (Kultima et al., 2012). Based on the functional 
annotations of the OM-RGC, these gene sequence abundances were summarized 
at the level of: (i) eggNOG gene families (genes annotated to the eggNOG version 
3 database (Powell et al., 2012)), (ii) KEGG orthologous groups and (iii) KEGG 
modules (Sunagawa et al., 2015). We downloaded the abundance profiles based on the 
KEGG annotation and extracted the information concerning to KOs K02588 (nifH, 
nitrogenase iron protein NifH) and K03553 (recA, recombination protein RecA). We 
used the abundance of K03553 (recA–based total bacterial abundance) to normalize 
the abundance of K02588 (nifH–based diazotrophs abundance). Since both nifH 
and recA are single-copy genes, the gene-based abundance approach can be easily 
used to estimate the relative contribution of diazotrophs to total bacterioplankton 
community. Additionally, the abundances across samples were also obtained for 
each individual nifH gene sequence detected in the OM-RGC.

Statistical analyses

Statistically significant (p< 0.05) differences in relative abundance of nifH gene 
sequences between photic (surface and DCM) and aphotic layers were assessed using 
one-way ANOVA and post hoc analyses (Tukey’s honestly significant difference 
test). All analyses were performed using JMP 9.0.1 (SAS Institute, NC, USA) or 
R 3.0.0 software (R Core Team, 2013). In order to assign a taxonomic level to the 
28 nifH gene sequences extracted from the OM-RGC, linear regression analyses  
(lm function of the R stats package) were performed between the abundance of 
Operational Taxonomic Units (OTUs) based on 16S miTAGs extracted from the 135 
metagenomes (Sunagawa et al., 2015) and the normalized abundances of the 28 nifH 
gene sequences.
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Results and discussion

Identification of nifH gene sequences from the Ocean Microbial Reference Gene 
Catalog (OM-RGC)

Our first attempt to recruit nifH gene sequences from the OM-RGC was based 
on the eggNOG annotation (eggNOG version 3 database (Powell et al., 2012)). We 
screened the gene sequences annotated within the OM-RGC with the eggNOG code 
‘COG1348’, defined as nitrogenase reductase subunit NifH (ATPase). The eggNOG 
annotation has been used in previous metagenomic studies to detect diazotrophs 
in a variety of environments such as cave, soils, rhizosphere, groundwater, 
wetlands, wastewater treatment plants or oceans (Ortiz et al., 2014; Wang et al., 
2014; He et al., 2015; Hemme et al., 2015). In the OM-RGC, we retrieved 701 
gene sequences annotated as COG1348. However, we found that the search based 
on COG1348 classification recruited not only nifH gene sequences but also other 
genes not involved in nitrogen fixation. Since these genes were also annotated with 
the KEGG classification, we explored how many different KOs corresponded with 
COG1348. We found that among the 701 gene sequences annotated as COG1348, 
only 19 genes were assigned to K02588 (nifH, nitrogenase iron protein NifH). 
Among the remaining 682 gene sequences, 476 were assigned to K04037 (chlL, 
light-independent protochlorophyllide reductase subunit L) and 206 were annotated 
as K11333 (bchX, 3,8-divinyl chlorophyllide a/chlorophyllide a reductase subunit 
X). For instance, the gene chlL, annotated as COG1348, is involved in the synthesis 
of the Protochlorophyllide reductase, an enzyme widespread among photosynthetic 
microorganisms such as the abundant Prochlorococcus (Partensky et al., 1999; 
Fujita and Bauer, 2000). Therefore, the assessment of nitrogen fixation based on 
eggNOG annotation can give an overestimated view of the nitrogen fixation process 
in the ocean. 

In order to avoid this problem, we opted for the KEGG classification instead 
of using the eggNOG approach. Surprisingly, we recruited 28 nifH gene sequences 
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from the OM-RGC annotated as K02588 (Table 1), which means 9 nifH genes more 
than those recruited with the eggNOG approach. Therefore, the eggNOG-based 
approach does not only overestimate the number of nifH genes involved in nitrogen 
fixation but also fails to identify some of the actual nitrogen fixation genes.
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Table 1. Phylogenetic distribution of nifH genes recruited from the OM-RGC. nifH genes recruited from the 
OM-RGC were assigned to major nifH clusters based on the classification of Zehr et al. (2003). The closest nifH gene 
reference protein sequences found in NCBI (refseq_protein database) are shown. The closest nifH gene sequence 
found in NCBI (nr/nt database) is shown for those nifH genes sharing identity values lower than 95% with sequences 
in the refseq_protein database. For each nifH gene sequence recruited from the OM-RGC, the number of mismatches 
with the primers that most of studies use to assess the diversity of diazotrophs in marine samples, i.e., the primers 
nifH1, nifH2, nifH3 and nifH4 (Zehr and McReynolds, 1989; Zani et al., 2000), are indicated in the last column. NA 
means that the recruited gene sequence does not overlap with the primer region.
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We assigned a phylogenetic identity to the 28 nifH gene sequences recruited 
from the OM-RGC. These sequences were classified into canonical nifH Clusters 
(Zehr et al., 2003), and we found that 18 nifH gene sequences belonged to Cluster I, 
and the remaining nifH sequences were classified into Cluster III (Table 1). Among 
the Cluster I nifH genes, only two of them were cyanobacterial sequences, whereas the 
rest belonged to the phylum Proteobacteria, specifically to class Alphaproteobacteria 
(n=5), Gammaproteobacteria (n=10) and Epsilonproteobacteria (n=1). The nifH 
sequences classified into Cluster III belonged to Deltaproteobacteria (n=7) and 
phylum Firmicutes (n=3). Interestingly, some of the recruited nifH gene sequences 
showed high divergence with their closest match in the NCBI database, both at 
the amino acid and nucleotide level (Table 1), suggesting that they represent novel 
diazotrophic diversity not found in previous studies. 

Adequacy of the commonly used nifH primers to assess diazotrophic diversity

All the previous studies assessing the diversity of marine diazotrophic 
microorganisms (e.g. (Luo et al., 2012; Bombar et al., 2017)) have been based on 
the use of a set of four primers, i.e., nifH1, nifH2, nifH3 and nifH4 primers (Zehr and 
McReynolds, 1989; Zani et al., 2000). These primers are used in two consecutive 
steps in nested PCR: one first PCR step using the external pair of primers nifH4 and 
nifH3, and a second PCR step using the primer pair nifH1/nifH2 (Zani et al., 2000). 
Conversely, our approach reconstructs the nifH genes from the metagenomes and 
thus is free from the general biases associated to the use of primers (Acinas et al., 
2005), which also in the case of diazotrophic microorganisms has been shown to lead 
to an inaccurate view of their actual diversity (Gaby and Buckley, 2017). We thus 
evaluated whether these four primers would amplify the nifH gene variants obtained 
by our approach. Our analysis revealed that the nifH4 presented 1 or 2 mismatches 
with 18 nifH gene sequences (out of 28) (Table 1). This number might be even higher 
because in some cases the nifH4 primer-binding site region in the recruited genes 
was not covered. Additionally, three nifH gene sequences showed 1 or 2 mismatches 
with the nifH1 primer; one nifH gene sequence showed 4 mismatches with the 
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nifH2 primer; and finally, another nifH gene sequence showed 1 mismatch with the 
nifH3 primer (Table 1). Except for the OM-RGC.v1.038254821 nifH sequence that 
showed one mismatch in the fourth position of the nifH4 primer (C instead of T), 
and the OM-RGC.v1.031513582 nifH sequence that had two mismatches with the 
nifH4 primer (G instead of T in 1st position and A instead of G/T in 3rd position), 
the remaining sequences showed all the same mismatch: A instead of T in the first 
position of the nifH4 primer. Since, as stated above, the nifH4 primer has been used 
in the initial PCR step of all nifH diversity studies, its use may have led to a wrong 
view of the key nitrogen-fixing players. The nifH1/nifH2 primer pair was originally 
designed for the detection of Trichodesmium (Zehr and McReynolds, 1989) and the 
nifH3/nifH4 primer pair to evaluate the diazotrophic assemblages in lakes (Zani 
et al., 2000). Therefore, it can be expected, and now it is demonstrated, that the 
diversity recruited by these primers may be somehow biased towards diazotrophs 
that do not represent the key members of nitrogen fixation in marine systems. In 
fact, one of the reasons behind the lack of link between nitrogen fixation rates and 
diazotrophic diversity (Turk-Kubo et al., 2014; Gradoville, Bombar, et al., 2017) 
could be such biased representation of the diazotrophic diversity caused by the use 
of primers. This biased view, however, is particularly problematic when evaluating 
the heterotrophic diazotrophs, particularly the gammaproteobacterial (Cluster I) 
and deltaproteobacterial (Cluster III) diazotrophs (Table 1). However, for the key 
cyanobacterial diazotrophic members (Trichodesmium and UCYN-A) the nifH1-4 
primers did not show any mismatch (Table 1). After this analysis of the recovered 
nifH diversity, we propose a modification of the primer nifH4 as follows:

5’ – TTY TAY GGN AAR GGN GG -3’ (nifH4) (Zani et al., 2000)

5’ – WTY TAY GGN AAR GGN GG -3’ (nifH4_mod) (this study)

The modification of this primer should allow detecting some heterotrophic nifH 
variants whose existence has remained hidden until now.
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Contribution of diazotrophs across ocean basins

We carried out an exploration of nifH-based abundance in order to determine 
the importance of diazotrophs within the studied bacterioplankton communities 
(recA-based abundance) at the global scale. To our knowledge this is the first 
global quantification of the relative abundance of different nifH variants in the 
ocean that does not rely on the use of primers, and thus may represent the most 
accurate quantification of the diazotroph contribution to communities conducted 
so far. We found diazotrophs distributed across all the studied oceanic regions and 
in most of the samples: their presence was detected in 46 surface samples (out of 
63), 30 DCM samples (out of 42) and 29 mesopelagic samples (out of 30) (Fig. 
1). However, their relative abundance was generally low (always below 0.6% of 
the communities), and in general their abundances were highest in the Atlantic and 
Pacific oceans and lowest in the Mediterranean Sea, the Red Sea and the Indian 
Ocean (Fig. 1). We observed significantly higher relative abundances of diazotrophs 
in mesopelagic (0.07% of the bacterioplankton community) than in surface (0.04%) 
or DCM waters (0.02%) (Fig. 2a). Pooling all samples together, the majority of nifH 
gene sequences were associated to gammaproteobacterial diazotrophs from Cluster 
I (63% of nifH sequences), followed by Cluster I cyanobacterial diazotrophs (16%) 
and deltaproteobacterial (Cluster III) nifH sequences (12%) (Fig. 2b). The relative 
contribution of the different clusters also varied with depth, and some of them 
showed a clear preference for a particular layer: For example, whereas cyanobacterial 
phylotypes showed their maximum contribution to diazotrophic communities in 
surface waters, Firmicutes did so in DCM and Alphaproteobacteria nifH phylotypes 
are preferentially located in mesopelagic waters (Fig. 2b). In all cases, however, the 
total pool of nifH sequences was dominated by gammaproteobacterial taxa, which 
ranged from 46% of the nifH sequences in surface to 81% in mesopelagic waters 
(Fig. 2b). These results are in agreement with the only global high-throughput nifH 
amplicon sequencing study, which showed a dominance of heterotrophic diazotrophs 
in all marine regions assessed (Farnelid et al., 2011), and with the observation that 
gammaproteobacterial diazotrophs are often dominant (Turk-Kubo et al., 2014). 
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Figure 1. Contribution of diazotrophs to total bacterioplankton community in the global ocean. The upper panel 
shows the stations sampled during the Tara Ocean cruise. The lower panel shows the % of abundance of diazotrophs 
in the Tara Oceans samples, and is expressed as % of the total recA sequences per community. The absence of sample 
is indicated by the gray color.
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Figure 2. a) Relative contribution of total nifH sequences to prokaryotic communities between the different oceanic 
layers. Abundance values are expressed as % of the recA sequences per community. Different letters indicate significant 
differences (Tukey’s post hoc test; P < 0.05) between depths. b) Relative contribution of the different nifH canonical 
clusters to the total nifH sequences considering the total dataset (Total) or each oceanic layer.

In terms of their contribution to the community, we observed significant 
differences between depths only in the case of Gamma- and Alphaproteobacteria, 
both of which showed higher relative abundances in mesopelagic waters than in 
surface and DCM waters (Fig. 3). Interestingly, the opposite pattern was previously 
found for the gammaproteobacterial phylotype Gamma A, showing that its 
ecological niche apparently overlaps with that of cyanobacterial diazotrophs, i.e., 
within the warm, oligotrophic, fully oxygenated surface waters of subtropical and 
tropical latitudes (Langlois et al., 2015). However, this particular Gamma A clade 
was not detected in our dataset (see below). Finally, Deltaproteobacteria diazotrophs 
showed higher relative abundances in surface waters, but these differences were not 
statistically significant (Fig. 3). 

Surprisingly, even though nitrogen is considered as a limiting nutrient 
for primary productivity in the open ocean (Karl et al., 2002), we did not find a 
homogenous abundance contribution of diazotrophs to total bacterioplankton 
communities across ocean basins (Figure 1). In this sense, although biological 
nitrogen fixation is an important mechanism for new nitrogen supply (Capone et al., 
2005; Mouriño-Carballido et al., 2011; Painter et al., 2013; Martínez-Pérez et al., 



Chapter 1

51

Figure 3. Relative contribution of the different nifH clusters to total communities across the different oceanic 
layers. Abundance values are expressed as % of the recA sequences per community. Different letters indicate 
significant differences (Tukey’s post hoc test; P < 0.05) between depths. Note the different Y axes.

2016), turbulent diffusion across the nitracline has long been considered the dominant 
source of new nitrogen to the surface ocean and, consequently, it could explain 
the non-homogeneous contribution of diazotrophs across basins. For instance, in 
a recent study using data collected from the global Malaspina2010 expedition, the 
relative contribution of nitrate diffusive fluxes (due both to mechanical turbulence 
and salt fingers) to the new nitrogen supply was much higher (ca. 85%) than that 
of the nitrogen  fixation (ca. 15%)(Fernández-Castro et al., 2015). In that study, 
the biological nitrogen fixation was highest at the South Atlantic Gyral province 
(SATL), which is in agreement with our results on diazotrophic abundances, being 
the sampling station TARA_078 located at the SATL province the one showing the 
highest contribution of diazotrophs to the total bacterioplankton community (Figure 
1). In general, however, we could not find any clear correlation between the total nifH 
abundances or those of the different clusters or phylotypes with any of the measured 
physico-chemical variables measured during the Tara Ocean cruise (environmental 
data in Sunagawa et al., 2015).
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Contribution of diazotrophic phylotypes across ocean basins

In addition to exploring the abundance of diazotrophs at the nifH canonical 
cluster level, we also addressed the distribution of these diazotrophs at the sequence 
level (Fig. 4). Although we detected a total of 28 distinct nifH gene sequences, the 
number of nifH gene sequences per sample was much lower: 3 nifH variants on 
average, ranging between 0 (e.g. TARA_085 mesopelagic or TARA_056 surface) 
and 11 (TARA_122, mesopelagic). Interestingly, the highest relative abundance of 
diazotrophs in mesopelagic waters (Fig. 2) was also accompanied by a higher number 
of nifH gene sequences per sample in mesopelagic waters (~5 genetic variants per 
sample) than in the surface (~3) or DCM (~2) waters (Fig. 4). Moreover, we observed 
that some nifH gene sequences appeared only in one sample, like for example 
OM-RGC.v1.007436991 (Cluster I Gamma.), OM-RGC.v1.006859767 (Cluster I 
Epsilon.), OM-RGC.v1.008691244 (Cluster III Delta.) or OM-RGC.v1.031513582 
(Cluster III Firmicutes). Interestingly, although different gammaproteobacterial nifH 
genetic variants accounted for a significant fraction of the nifH abundance (e.g., the 
OM-RGC.v1.007595848 (14.6%) or OM-RGC.v1.007601814 (14.4%) genes), the 
globally distributed group of marine gammaproteobacterial diazotroph Gamma A 
(Church et al., 2005; Langlois et al., 2015) was not detected in our dataset. 

Among the different nifH variants detected, the most abundant was the 
cyanobacterial gene OM-RGC.v1.007828191 (16.2%). The OM-RGC.v1.007828191 
gene was 100% identical to the nifH gene of the uncultured unicellular symbiotic 
cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A), in particular, 
to the UCYN-A1 sublineage (Thompson et al., 2012) (Table 1). The UCYN-A clade 
is known to be one of the most widespread and important nitrogen fixers of the 
oligotrophic oceans (Zehr et al., 2016). However, although UCYN-A1 was the most 
abundant nifH gene sequence in the Tara Oceans dataset, its presence was confined to a 
few samples (12 out of 135). Moreover, at least three different UCYN-A sublineages 
exist based on the diversity of the nifH gene (Thompson et al., 2014), and we know 
that the nucleotide divergence between the nifH-based UCYN-A lineages is lower 
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than 5%. In our study, we have explored the nifH genetic diversity using the OM-
RGC (Sunagawa et al., 2015) and, although the amount of genetic information is 
of great value, microdiversity signals such as the one shown for the UCYN-A nifH 
sublineages could be hidden or masked behind the 95% identity clustering threshold 
applied for the OM-RGC construction. This fact calls for the necessity of working 
directly with the metagenomic reads, besides with the reconstructed genes, in order 
to evaluate whether different nifH genetic variants can emerge from the available 
metagenomes.

As previously mentioned, in the Eastern Tropical South Pacific (ETSP) 
heterotrophic diazotrophs dominate the diazotrophic community throughout the 
water column (Fernandez et al., 2011; Bonnet et al., 2013; Turk-Kubo et al., 2014; 
Loescher et al., 2014; Gradoville et al., 2017). However, a direct link between nitrogen 
fixation rates and heterotrophic diazotroph phylotypes in this particular area has not 
been demonstrated (Turk-Kubo et al., 2014; Loescher et al., 2014). In our study, 
we detected in the ETSP some nifH variants that presented 1 or more mismatches 
with the nifH primer pairs used to assess the diversity (Table 1). In particular, the 
gammaproteobacterial diazotroph corresponding with the OM-RGC.v1.007667460 
gene showed a marked high abundance in this area (>0.1% relative abundance in 
TARA_102 mes. and TARA_110 surf.) (Fig. 1). So, we analysed whether the qPCR 
probes designed and used in Loescher et al., 2014 to quantify diazotrophic abundance 
in this area would detect the OM-RGC.v1.007667460 sequence and, interestingly, 
they did not match with this specific phylotype. Therefore, a feasible hypothesis 
explaining this lack of connection between nitrogen fixation and diazotrophic 
diversity can be the biased view of the diazotrophic diversity obtained by the use of 
primers and probes.
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Figure 4. Distribution of nifH phylotypes detected in the Tara Oceans expedition. Relative contribution per 
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Identification of the 16S rRNA gene of diazotrophs

One difficulty in advancing towards a better understanding of the ecology 
of the marine diazotrophic players is, in most of the cases, the impossibility to 
get them in culture. In this sense, genome sequencing through single-cell sorting 
techniques and microscopic approaches has helped to understand the ecology of 
important diazotrophic players (Zehr et al., 2008; Tripp et al., 2010; Thompson et 
al., 2012). However, a limiting step for applying visualization techniques such as the 
CARD-FISH (Catalyzed Reporter Deposition-Fluorescence in situ Hybridization) 
assay (Pernthaler et al., 2004) lies on the identification of the 16S rRNA gene for the 
design of specific molecular probes. In this context, we tried to assign a 16S rRNA 
genetic identity to the nifH genes detected in the OM-RGC through correlation 
analysis of the nifH genes with the OTUs based on 16S miTAGs of the Tara Oceans. 
We obtained positive and significant correlations with 16S OTUs in 5 cases (Fig. 5):

1. The OM-RGC.v1.007828191 nifH gene shared a 100% identity at the amino 
acid level with C. Atelocyanobacterium thalassa (UCYN-A) (Table 1) and was 
significantly correlated with the 16S rRNA gene of the UCYN-A1 sublineage (Fig. 
5). The largest metagenomic contig of the Tara Ocean dataset containing the OM-
RGC.v1.007828191 nifH gene was recruited from the TARA_078 surface sample 
and was 100% identical in its entire length (236.3 Kb) to UCYN-A1 sublineage 
(NC_013771.1).

2. The OM-RGC.v1.007482987 nifH gene shared a 100% identity at 
the amino acid level with Pseudodesulfovibrio profundus (Table 1) and was 
significantly correlated with the 16S rRNA gene of Desulfovibrio profundus DSM 
11384 (AF418172.1) (Fig. 5). The closest genome in NCBI (refseq_genomes) was 
Desulfovibrio profundus 500-1 (NZ_LT907975.1) that showed, at nucleotide level, 
99.87% and 99.04% identity with the 16S rRNA gene of Desulfovibrio profundus 
DSM 11384 and the OM-RGC.v1.007482987 nifH gene, respectively. The largest 
metagenomic contig obtained from the Tara Ocean dataset associated with this 
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nifH phylotype had a length of 23.6 Kb and was recruited from the 0.45-0.8 mm 
size fraction of the TARA_123 surface sample. In this case, the contig was 98% 
identical to Desulfovibrio profundus 500-1 but it only covered the 68% of the contig 
length. The remaining 32% of the contig (7.5 Kb) showed lower nucleotide identity 
(65-70%) with other Desulfovibrio spp. such as Desulfovibrio brasiliensis (NZ_
BBCB01000062.1) or Desulfovibrio frigidus DSM 17176 (NZ_JONL01000001.1) 
suggesting that the OM-RGC.v1.007482987 nifH gene belonged to a lineage close 
but different to Desulfovibrio profundus 500-1.

3. The OM-RGC.v1.007601814 nifH gene was 98% identical at the amino acid 
level to Marinobacterium litorale (Table 1) and was significantly correlated with the 
16S rRNA gene of an uncultured gammaproteobacterium (FJ497479.1) (Fig. 5). The 
closest genome to the 16S rRNA gene (FJ497479.1) was Marinomonas sp. MED121 
(NZ_CH672429.1) and showed 79% identity. Likewise, the closest genome to the 
OM-RGC.v1.007601814 nifH gene was Marinobacterium litorale DSM 23545 
(NZ_AUAZ01000022.1) with 86% of identity. The largest metagenomic contig 
obtained from the Tara Ocean dataset containing this nifH variant had a length of 
102.8 Kb and was recruited from mesopelagic waters (TARA_132). This contig 
was 79% identical to the gammaproteobacteria Oceanobacter kriegii DSM 6294, 
although it only covered 46% of the contig length. Therefore, this diazotroph likely 
represents a new divergent genome.

 4. The OM-RGC.v1.008734443 nifH gene showed 96% identity with 
Desulfospira joergensenii (Table 1) and significantly correlated with the 16S rRNA 
gene of an uncultured bacterium (FJ545634.1) (Fig. 5). Desulfobacter postgatei 2ac9 
(NZ_CM001488.1) was the closest nifH-gene containing genome with 84% identity 
with the OM-RGC.v1.008734443 nifH gene. Interestingly, the 16S rRNA gene was 
related to members of the Candidate Phylum TM6. A recent study comparing the 
seven genomes available to date of this phylum revealed several features that may 
indicate that parasitism is widespread within this phylum, like for instance small 
genome size (1.0–1.5 Mb), lack of complete biosynthetic pathways, presence of 
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Figure 5. Correlation analysis between nifH variants and 16S rRNA genes in Tara Oceans. A total of 135 samples 
were used to perform a regression analysis between the abundance of nifH variants and that of 16S rRNA genes. Five 
nifH variants were significantly correlated with 16S rRNA genes (P value, regression line, and Adjusted R2 values are 
shown). Abundances are represented in log-10 scale. Identification code in the OM-RGC of the nifH variants and and 
accession numbers for the 16S rRNA genes are shown between parenthesis.

ATP/ADP translocases for parasitizing host ATP pools, or protein motifs to facilitate 
eukaryotic host interactions (Yeoh et al., 2016). Moreover, none of these genomes 
showed nitrogen fixation genes. Unfortunately, the largest metagenomic contig 
obtained from the Tara Ocean dataset associated with this nifH phylotype was small 
(1 Kb) and, thus we could not explore, as in the previous cases, whether other genes 
were closely related to members of the Candidate Phylum TM6.
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5. Finally, the OM-RGC.v1.013419284 nifH gene was 54% identical at the 
amino acid level to Clostridium sp. NCR (Table 1) and was significantly correlated 
with the 16S rRNA gene of an uncultured bacterium (HQ721336.1) (Fig. 5). The 
associated 16S rRNA gene was related to members of the phylum Deferribacteres, 
which has not known diazotrophic members. Although the closest nifH gene belonged 
to the phylum Firmicutes, the phylogenetic distance was large enough not to be able 
to secure the taxonomical assignment to this group. Moreover, at the nucleotide level, 
the closest nifH was an uncultured bacterium that only covered 56% of the OM-
RGC.v1.013419284 nifH gene length and shared 81% identity (Table 1). Therefore, 
a deeper exploration is needed to clarify whether the OM-RGC.v1.013419284 gene 
is a true nifH gene.

Concluding remarks

To our knowledge this is the first global study evaluating the significance 
of diazotrophs based on a non primer-biased approach. Numerous studies have 
tried to assess the contribution of cyanobacterial diazotrophs based on nifH-based 
abundances from qPCR assays (Luo et al., 2012), but quantitative data on heterotrophic 
diazotrophs is, in contrast, scarce with the exception of the heterotrophic diazotroph 
phylotype Gamma A (Bombar et al., 2017), and thus our study provides valuable 
insight on the relative contribution of heterotrophic diazotrophs across the global 
ocean. Moreover, all these studies are based on the use of primers, which may result 
in a biased view when applied in qPCR for estimating the abundance of diazotrophs 
(Gaby and Buckley, 2017), and based on our results, it may be also disregarding 
numerically important heterotrophic diazotrophs. We argue that our metagenomic 
approach is useful to improve the primers and probes used in PCR-based approaches. 
However, we acknowledge that the sequencing depth may limit the diversity that we 
cover given that we did not detect abundances higher than 0.6% of diazotrophs in 
the bacterial community. This means that our target microorganisms belong to the 
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so-called ‘rare biosphere’ (Pedrós-Alió, 2012) and, consequently, a deep sequencing 
depth is mandatory to detect them in metagenomic studies. In any case, we were 
able to detect new nifH genetic variants in our dataset, mostly non-cyanobacterial 
ones, reflecting the potential importance of heterotrophic diazotrophs in the marine 
nitrogen cycle. Finally, we managed to link some of the nifH genetic variants to 16S 
rRNA phylotypes, which represents a step further in the taxonomic identification of 
these diazotrophs and, although we cannot guarantee an organismal link between 
both markers, this opens the door to techniques such as CARD-FISH for a visual 
exploration of the ecology of certain uncultivated diazotrophs. Finally, we argue 
that a deeper analysis of the available metagenomes through new bioinformatic 
approaches will allow the reconstruction of new diazotrophic microorganisms, 
which certainly will expand our comprehension of the marine nitrogen-fixing 
microorganisms diversity and ecology. 
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Abstract

The unicellular cyanobacterium UCYN-A, one of the major contributors 
to nitrogen fixation in the open ocean, lives in symbiosis with single-celled 
phytoplankton. UCYN-A includes several closely-related lineages whose partner 
fidelity, genome-wide expression and time of evolutionary divergence remain to 
be resolved. Here we detect and distinguish UCYN-A1 and UCYN-A2 lineages in 
symbiosis with two distinct prymnesiophyte partners in the South Atlantic Ocean. 
Both symbiotic systems are lineage specific and differ in the number of UCYN-A 
cells involved. Our analyses infer a streamlined genome expression towards nitrogen 
fixation in both UCYN-A lineages. Comparative genomics reveal a strong purifying 
selection in UCYN-A1 and UCYN-A2 with a diversification process about 91 
Mya, in the late Cretaceous, after the low nutrient regime period occurred during 
the Jurassic. These findings suggest that UCYN-A diversified in a co-evolutionary 
process wherein their prymnesiophyte partners acted as a barrier driving an allopatric 
speciation of extant UCYN-A lineages.
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Introduction

Symbiotic relationships involving diazotrophic microorganisms, i.e. those 
capable of converting dissolved dinitrogen gas into ammonia, are of relevant interest 
in marine biogeochemistry because they represent major sources of fixed nitrogen, a 
limiting nutrient for primary production in the world’s oceans (Karl et al., 2002). As 
such, identifying these interactions is essential for understanding the role of symbiosis 
in biogeochemical cycles. Fortunately, the application of novel approaches such as 
high-throughput sequencing and single-cell genomics has greatly accelerated the 
pace of microbial symbiosis research (McFall-Ngai, 2008; Martinez-Garcia et al., 
2012). This is notable in the case of Candidatus Atelocyanobacterium thalassa 
(UCYN-A), a unicellular diazotrophic cyanobacterium, and its partner, a single-
celled eukaryotic alga of the Class Prymnesiophyceae (Thompson et al., 2012). 
Prymnesiophytes as well as UCYN-A are abundant and widely distributed members 
of the marine plankton and represent ecologically relevant players in carbon and 
nitrogen cycles (Montoya et al., 2004; Jardillier et al., 2010; Goebel et al., 2010; 
Zehr and Kudela, 2011; Cabello et al., 2015). The streamlined genome of UCYN-A 
and the striking lack of genes encoding the Photosystem II complex, the Calvin/
Benson/Bassham cycle for carbon fixation, as well as other essential pathways such 
as the TCA cycle, hinted at a symbiotic lifestyle (Zehr et al., 2008; Tripp et al., 2010; 
Bombar et al., 2014). UCYN-A is now known to establish a mutualistic relationship 
based on the exchange of fixed carbon and nitrogen with two different cell-sized 
prymnesiophyte partners, the unicellular alga Braarudosphaera bigelowii (7-10 
mm) (Hagino et al., 2013; Thompson et al., 2014) and an uncultured closely-related 
prymnesiophyte (1-3 mm) (Thompson et al., 2012; Krupke et al., 2013).

Phylogenomic analyses have demonstrated the monophyly of UCYN-A 
within  the marine cyanobacteria clade that includes Crocosphaera sp. and 
Cyanothece sp. clades (Bombar et al., 2014). Phylogenetic analysis of the UCYN-A 
nitrogenase gene (nifH) sequences, a common marker used to address the diversity 
of N2-fixing microorganisms, distinguished at least three distinct UCYN-A clades: 
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UCYN-A1, UCYN-A2 and UCYN-A3 (Thompson et al., 2014). Comparative 
genomics revealed that UCYN-A1 and UCYN-A2 lineages share largely syntenic 
genomic structures suggesting that both lineages diverged after genome reduction 
from a common ancestor (Bombar et al., 2014). Yet, their time of evolutionary 
divergence and evolutionary pressures remain unknown. It has been suggested 
that these two variants could be adapted to different niches, i.e. coastal waters (B. 
bigelowii) and open ocean (its closely-related prymnesiophyte) (Thompson et al., 
2014), but this ecological differentiation was recently ruled out (Cabello et al., 
2015). Although the two prymnesiophyte partners could follow different ecological 
strategies (Cabello et al., 2015), the partner fidelity has never been tested in this 
symbiotic system and therefore, we cannot assume a similar ecological niche for 
their symbionts.  Comparative gene expression studies could help to disentangle 
the ecological distinction of these two UCYN-A lineages but they are scarce and 
solely focused on the nifH gene expression without showing a clear differentiation 
in lineage-specific patterns (Thompson et al., 2014).

By designing and applying new probes in double CAtalyzed Reporter 
Deposition Fluorescence In Situ Hybridization (CARD-FISH), we identified the 
specific symbiotic associations at the UCYN-A lineage level in samples from South 
Atlantic waters from Tara Oceans expedition, where we had previously verified 
significant abundances of the prymnesiophyte partners. The new probes allowed us to 
differentiate both symbiotic systems which resulted to vary in the number of UCYN-A 
cells involved. The coupled analyses of metagenomes and metatranscriptomes from 
surface and DCM depths that encompassed four different plankton size fractions 
distinguish different prymnesiophyte partners based on difference in cell sizes 
captured in different size fractions, complementing and extending the results obtained 
by CARD-FISH. Gene expression was explored in the two UCYN-A lineages in order 
to decipher whether distinct lineages, in association with distinct partners, exhibit 
different expression patterns. Finally, we investigated the evolutionary pressures 
acting on UCYN-A1 and UCYN-A2 lineages by comparative genomic analyses 
and performed phylogenomic analyses to estimate the age divergence of the two 
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symbiotic lineages. Our findings support a symbiont-host co-evolutionary scenario 
in the marine environment originated from a single ancestral symbiotic event in the 
late Cretaceous from which, at least, two different UCYN-A lineages diversified to 
become lineage-specific nitrogen fixation factories in their prymnesiophyte partners. 
Together, these investigations improve our understanding of the relevance of co-
evolutionary processes in marine ecosystems and the ecological significance of N2-
fixing symbiosis in the marine biogeochemical cycles.

Material and methods

Sample choice

From a total of 243 metagenomes from 68 globally distributed stations from 
Tara Oceans expedition (Karsenti et al., 2011), the abundance of UCYN-A based on 
16S miTAGs (Sunagawa et al., 2015; Logares et al., 2013) and their corresponding 
prymnesiophyte partners evaluated by V9 18S iTAGS (Cabello et al., 2015; de Vargas 
et al., 2015), pointed out to a couple of stations, i.e. TARA_078 (30º 8’ 12.12” S 
43º 17’ 23.64” W) and TARA_076 (20º 56’ 7.44” S 35º 10’ 49.08” W) in the South 
Atlantic Ocean in which this symbiotic system were significantly abundant (Cabello 
et al., 2015) and, therefore these two stations were chosen to further explore the 
UCYN-A symbiotic system.

Sample collection

For the whole-cell CARD-FISH, 10 mL of surface seawater (pre-filtered with 
20-mm pore-size mesh) was fixed with paraformaldehyde (1.5% final concentration) 
at 4ºC overnight and gently filtered through 0.2 mm pore-size polycarbonate filters 
(Millipore, GTTP, 25 mm diameter). For nucleic acid extractions and sequencing, 
surface seawater was collected and subsequently separated into four size fractions 
(0.2-3, 0.8-5, 5-20 and >0.8 mm pore-size filters) (Pesant et al., 2015). After filtration, 
filters were kept for approximately 4 weeks at -20°C on the schooner and then at 
-80°C in the laboratory until processed for hybridization or sequencing.
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Design of CARD-FISH probes

For the design of specific oligonucleotide probes targeting B. bigelowii and the 
closely-related prymnesiophyte partner, a total of 580 sequences, 18S rRNA gene 
sequences, belonging to the class Prymnesiophyceae were retrieved from the PR2 
database (Guillou et al., 2013), aligned using MAFFT (Katoh et al., 2002) and the 
alignment was verified manually to remove chimeras and sequences with ambiguities 
(466 sequences were kept). A maximum likelihood phylogenetic tree was built 
using RAxML (Stamatakis, 2006) with 100 trees for both topology and bootstrap 
analyses and visualized with iTol (Letunic and Bork, 2007, 2011) (Supplementary 
Fig. 1). The newly designed probe UBRADO69 targeted B. bigelowii, while probe 
UPRYM69 targeted the closely-related prymnesiophyte partner (Supplementary 
Table 1). UBRADO69 and UPRYM69 probes differed in only one position, and 
required a competitor in order to avoid unspecific hybridizations. Therefore, the 
labeled probe UBRADO69 was used in combination with the unlabeled UPRYM69 
oligonucleotide for the detection of B. bigelowii, and vice versa for the detection 
of the closely-related prymnesiophyte partner (Supplementary Table 1). Two 
helpers, Helper-A PRYM and Helper-B PRYM, were designed to improve the 
hybridization process for both probes (Supplementary Table 1). The UCYN-A732 
probe designed against UCYN-A by targeting the 16S rRNA (Krupke et al., 2013) 
has only one mismatch with the UCYN-A2 sequence and a competitor was designed 
to distinguish specifically UCYN-A1 and UCYN-A2 clades with high specificity 
(Supplementary Table 1). The specificity of the new probes was checked with the 
online tool ProbeCheck (http://www.cme.msu.edu/RDP/) and by searching in the 
GenBank database (http://www.ncbi.nlm.nih.gov/index.html) to detect potential 
matching sequences in non-target groups.

CARD-FISH assay and epifluorescence microscopy

A preliminary double hybridization assay using the universal haptophyte 
PRYM02 probe (Simon et al., 2000) and UCYN-A732 was first applied to check 
whether the partner of UCYN-A in our sample belong to Class Prymnesiophyceae. In 
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order to specifically target the different UCYN-A lineages and their prymnesiophyte 
hosts, a double CARD-FISH assay was performed for each partnership (according 
to the Multi-color CARD-FISH protocol (Pernthaler et al., 2004). For the first 
hybridization step, the specific probe for one of the prymnesiophyte partners 
(UBRADO69 or UPRYM69) was used and, for the second step, the UCYN-A732 
probe was used. To check the specificity of symbiont pairs, an additional double 
CARD-FISH was done with the UBRADO69 probe and the UCYN-A732 as 
described before with the addition of the UCYN-A732 competitor to the hybridization 
buffer (probe, helpers and competitor at [0.16 ng ml–1]). Filters were embedded in 
low-gelling-point agarose 0.1% (w/v) to minimize cell loss, and cell walls were 
permeabilized with lysozyme (37ºC, 1 h) and acromopeptidase solutions (37ºC, 0.5 
h). For the first CARD-FISH step (described in more detail in Cabello et al., 2015) 
filters were hybridized overnight at 46ºC in 40% formamide (FA) hybridization 
buffer containing a mixture of the HRP (Horseradish peroxidase)-labeled probe, 
helpers and competitor oligonucleotides. Filters were then rinsed in washing buffer 
at 48°C and tyramide signal amplification (TSA) was performed for 40 min at RT 
in the dark in a buffer containing 4 mg ml-1 Alexa 488-labelled tyramide. Before 
the second hybridization, the HRP from the first probe was inactivated with 0.01M 
HCl for 10 minutes at RT in the dark (Pernthaler et al., 2004). The second CARD-
FISH used the probe UCYN-A732 and its corresponding helpers and was applied 
according to Krupke et al., 2013. UCYN-A cells were hybridized for 3 h at 35°C in 
50% FA hybridization buffer, rinsed in washing buffer for 15 min at 37°C and TSA 
was done as before but using 1 mg ml-1 Alexa 594 -labeled tyramide. Preparations 
were counterstained with 4’, 6- diamidino-2-phenylindole (DAPI) at 5 mg ml-1, 
mounted in antifading reagent (77% glycerol, 15% VECTASHIELD, and 8% 20x 
PBS) and kept frozen until microscopic analysis. A no-probe control showed there 
was not signal coming from endogenous peroxidases. Filters were observed by 
epifluorescence microscopy (Olympus BX61) at 1000x under UV (DAPI signal of 
the nucleous), blue light (green labeled host cells with Alexa 488) or green light (red 
labeled symbionts with Alexa 594) excitations. Micrographs were taken with an 
Olympus DP72 camera (Olympus America Inc.) attached to the microscope.
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Hybridization conditions for the UPRYM69 and UBRADO69 probes were 
optimized testing different FA concentrations in the hybridization buffer and varying 
the hybridization temperature. The UPRYM69 probe (together with the competitor 
oligonucleotide) was tested in NE Atlantic surface samples, where UCYN-A1 host 
cells were ~86% of prymnesiophytes (~550 cells ml-1). Initially we tried 20-30-40-
50% FA in the buffer and the temperature of 35ºC for hybridization. At 20% FA host 
cells carrying UCYN-A (n=89) displayed a faint fluorescent signal (90%) or were 
not labeled (10%), whereas above 40% FA no hybridized cells were detected. Signal 
was improved by using helper oligonucleotides and host cells displayed a bright 
homogeneous signal at all FA concentrations, but we observed cross-hybridization 
(observed as fluorescent dots all over the cells) in larger prymnesiophyte-like cells 
not associated to UCYN-A even at 50% FA. Thus, we tested 40 and 50% FA in a 
hybridization temperature of 46ºC. The 40% FA showed optimal signal intensity, 
labeling small prymnesiophytes cells (about 2.5 mm) always carrying UCYN-A and 
no cross-hybridization was observed. We applied these conditions to hybridize the 
surface sample TARA_078. In this sample, in addition to the labeled small host 
cells observed in the NE Atlantic, we observed larger host cells not labeled by the 
UPRYM69 probe. To verify that these cells were the UCYN-A2 host we applied 
the UBRADO69 probe with the same conditions (as both probes differ in only 1 
position) and we found the complementary result: the larger host was labeled but 
not the smaller one. With the optimized conditions (40% FA, 46ºC) the probes were 
labeling specifically the target host without cross-hybridization.

Nucleic acid extractions and sequencing

Surface and DCM seawater samples collected by Tara Oceans’ station 76 
and 78 in the South Atlantic Ocean (TARA_076, TARA_078) for metagenomic 
sequencing were size-fractionated. For surface samples, metagenomes from two 
and four fractions were analyzed in TARA_076 (0.2-3 mm and >0.8 mm) and 
TARA_078 (0.2-3 mm, 0.8-5 mm, 5-20 mm and >0.8 mm) respectively. For DCM 
samples, metagenomes from one fraction were analyzed in TARA_076 (>0.8 mm) 
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and TARA_078 (>0.8 mm). Seawater samples for metatranscriptomic sequencing 
used also several size fractions. For surface samples, metatranscriptomes from 
two and three fractions were analyzed in TARA_076 (0.2-3 mm and >0.8 mm) and 
TARA_078 (0.2-3 mm, 5-20 mm and >0.8 mm) respectively. For DCM samples, 
metatranscriptomes from one fraction were analyzed in TARA_076 (>0.8 mm) and 
TARA_078 (>0.8 mm). DNA and RNA extraction protocols for the different size 
fractions and metagenome sequencing were already described in previous studies 
(Sunagawa et al., 2015; Logares et al., 2013; de Vargas et al., 2015).

cDNA synthesis and sequencing

For 0.2-3 mm and >0.8 mm filters, bacterial rRNA depletion was carried out 
on 240-500 ng total RNA using Ribo-Zero Magnetic Kit for Bacteria (Epicentre, 
Madison, WI). The Ribo-Zero depletion protocol was modified to be adapted 
to low RNA input amounts (Alberti et al., 2014). Depleted RNA was used to 
synthetize cDNA with SMARTer Stranded RNA-Seq Kit (Clontech, Mountain 
View, CA) (Alberti et al., 2014). For 5-20 mm filter from TARA_078, cDNA was 
synthetized starting from 50 ng total RNA using SMARTer Ultra Low RNA Kit 
(Clontech) by oligodT priming following the manufacturer protocol. Full length 
double stranded cDNA was fragmented to a 150-600-bp size range using the E210 
Covaris instrument (Covaris Inc., USA). Then, fragments were end-repaired and 
3’-adenylated, and ligated to Illumina adapters by using NEBNext Sample Reagent 
Set (New England Biolabs, Ipswich, MA). Fragments were PCR-amplified using 
Illumina adapter specific primers and purified. All metatranscriptomic libraries 
were quantified by qPCR using the KAPA Library Quantification Kit for Illumina 
Libraries (KapaBiosystems, Wilmington, MA) and library profiles were assessed 
using the DNA High Sensitivity LabChip kit on an Agilent Bioanalyzer (Agilent 
Technologies, Santa Clara, CA). Libraries were sequenced on Illumina HiSeq2000 
instrument (Illumina, San Diego,CA) using 100 base-length read chemistry in a 
paired-end mode. Sequencing depth for each sample is detailed in Table 1.
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Nucleotide data deposition

Nucleotides data used in this study have been deposited in the European 
Nucleotide Archive (ENA) (www.ebi.ac.uk/ena) under the following accession 
numbers: ERR1001626-27, ERR1007415-18, ERR1013384-85, ERR599006, 
ERR599010, ERR599022, ERR599126, ERR599237, ERR599240, ERR599250, 
ERR599253, ERR599275 and ERR599311.

Fragment recruitment analysis from -omics datasets

BLAST+ v2.2.25 was used to recruit metagenomic and metatranscriptomic 
reads similar to the two UCYN-A genomes sequenced up to date (Tripp et al., 2010; 
Bombar et al., 2014) using default parameter values, except for the following: -perc_
identity 50, -evalue 0.0001. Metagenomic/metatranscriptomic reads belonging to 
23S, 16S and 5S rRNA genes or ITS regions as well as those aligned along less than 
90% of its length were excluded (Table 1). The genome recovery was calculated as 
the percentage of nucleotide positions within the reference genomes aligned with 
metagenomic or metatranscriptomics reads higher than 95% identity, threshold used 
for representing members of the same population as the reference genome (Caro-
quintero and Konstantinidis, 2011) (Table 1). To assess the gene expression at the 
genome level, we first used the gene positions to count the number of metatranscripts 
covering each gene. Then, we normalized these counts using two approaches (i) by 
using UCYN-A single copy house-keeping genes (recA and gyrB metatranscript 
counts), and (ii) by metagenomic read counts for each UCYN-A gene (in this case 
we also normalized by sequencing depth) (Supplementary Data 1 and 2).

Phylogenomic and relaxed molecular clock analyses

Sequence data for 57 cyanobacterial genomes were used to estimate the 
phylogenetic relationships of UCYN-A1 and UCYN-A2. We analyzed 135 protein 
sequences that have shown to be highly conserved, to have undergone a minimum 
number of gene duplications and also to represent a wide diversity of cellular 
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functions (Blank and Sánchez-Baracaldo, 2010). Maximum likelihood analyses and 
bootstrap values were performed using RAxML 7.4.2 (Stamatakis, 2006). Bayesian 
relaxed molecular clock analyses as implemented in MCMCtree (Yang, 2007) and 
PhyloBayes 3.3b (Lartillot et al., 2009) were performed to estimate divergence times 
of UCYN-A1 and UCYN-A2 (Supplementary Table 2). We applied the Uncorrelated 
Gamma Multipliers (UGM) model (Drummond et al., 2006) as this model seems 
to fit better cyanobacteria nucleotide data sets based on Bayes Factors (Sánchez-
Baracaldo et al., 2014). Age divergences for UCYN-A1 and UCYN-A2 were 
estimated based on three genes: LSU (3002 characters), SSU (1546 characters) and 
rpoC1 (1887 characters). In PhyloBayes (Lartillot et al., 2009), we implemented the 
CAT-GT replacement model of nucleotide evolution. For all non-calibrated nodes, 
we used a birth-death prior (Lepage et al., 2007) on divergence times. A permissive 
gamma distributed root prior of 2,500 million years ago (Mya) was also implemented 
(SD  = 200 Mya, which allowed the 95% credibility interval of the root node to 
range between 2,300 and 2,700 Mya). We treated all calibrations as soft allowing for 
2.5 % on each side for an upper and lower bound. In MCMCTree, LSU, SSU and 
rpoC1 were treated as separate loci and branch lengths were estimated in BASEML 

(Yang, 2007). We used the HKY85 (Hasegawa et al., 1985) model of nucleotide 
evolution based on Bayes factor analyses (Sánchez-Baracaldo et al., 2014). We used 
1 billion years per unit time for all analyses. The gamma prior G (a and b) used 
to describe how variable rates are across branches was specified as follows G (1, 
7). The mean and standard deviation was specified as m =a/b. The gamma priors 
for the substitution model parameters κ (transition/transversion rate ratio) and α 
(gamma shape parameter for variable rates among sites) were all specified by gamma 
distributions. Respective means and standard deviations were (6, 2) for κ and (1, 1) 
for α.  For all analyses, we used fixed values for the birth-death process l = m = 1 and 
r = 0.  Analyses were performed at least twice to ensure convergence of the MCMC, 
although only one analysis is reported.  For all age calibrations, both minimum 
and maximum bounds were soft and specified by uniform distributions between the 
maximum/minimum time constraints with 2.5% tail probabilities above/below these 
limits allowing for molecular data to correct for conflicting fossil information (Yang 
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and Rannala, 2006). To check whether analyses had converged we used Tracer v1.5.0 
(http://beast.bio.ed.ac.uk/Tracer). For the cyanobacterial root, 2,700 Mya (Brocks et 
al., 2003) and 2,320 Mya (Bekker et al., 2004) (the rise in atmospheric oxygen) 
were set as the maximum and minimum age respectively. Other fossils exhibiting 
unique morphological features were assigned to well-supported groups such as 
the Nostocales (Tomitani et al., 2006) and the clade containing two Pleurocapsa 
genomes (PCC 7319 and PCC 7327) in the Pleurocapsales (Zhang, Y. and Golubic, 
1987).

On-line supplementary information

	 Supplementary Data 1, Supplementary Data 2 and Supplementary Data 3 
can be downloaded from the following web site: https://www.nature.com/articles/
ncomms11071#supplementary-information

Results and discussion

Partner fidelity of two UCYN-A lineages

Microscopic in situ identification of different UCYN-A lineages as well 
as their prymnesiophyte partners by specific CARD-FISH staining is crucial to 
determine the specificity of their relationships. The CARD-FISH method has 
been successfully applied to identify unicellular diazotrophic cyanobacteria (Le 
Moal et al., 2011) as well as specifically targeting the UCYN-A clade (Krupke et 
al., 2013, 2014). However, to our knowledge there was not any reported probe to 
distinguished UCYN-A at the lineage level. We designed a competitor probe to be 
used with the UCYN-A732 probe (Krupke et al., 2013) to distinguished UCYN-A1 
and UCYN-A2 lineages (Fig. 1a-c, Supplementary Table 1). Similarly, we 
designed two probes to distinguish the two prymnesiophyte partners, B. bigelowii 
(UBRADO69 probe) and the closely-related prymnesiophyte (UPRYM69 probe) 
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(Fig. 1a-c, Supplementary Table 1). The UCYN-A732 probe, in the absence of its 
competitor, labeled UCYN-A cells inside either B. bigelowii or the closely-related 
prymnesiophyte partner (Fig. 1a,c). However, when the UBRADO69 probe was 
applied with the UCYN-A732 probe together with its competitor, UCYN-A cells 
were unlabeled or labeled when accompanying B. bigelowii or the closely-related 
prymnesiophyte partner respectively (Fig. 1b). It has been proposed that smaller 
UCYN-A cells are associated with smaller prymnesiophyte cells and vice versa, 
indicating different growth stages (Krupke et al., 2014). However, those findings 
were interpreted from microscopic observations of the UCYN-A symbiosis detected 
with the general prymnesiophyte PRYM02 and UCYN-A732 (without its competitor) 
probes, i.e. without the ability to distinguish UCYN-A1 and UCYN-A2 cells. The 
results presented here show that both prymnesiophyte partners are phylogenetically 
closely-related but distinct species, and therefore, we suggest that the observed 
differences in cell sizes of prymnesiophyte partners reflect distinct species rather 
than different growth stages of the same species. These results demonstrate that 
UCYN-A lineages display partner fidelity with their prymnesiophyte partners, being 
B. bigelowii and the closely-related prymnesiophyte in specific association with 
UCYN-A2 and UCYN-A1 lineages respectively.

Figure 1. Partner specificity and variation of UCYN-A lineages with plankton size fraction. (a-c) Epifluorescence 
microscopy images with the double CARD-FISH assay showing the specificity of symbiont-host pairs and (d-f) 
fragment recruitment of UCYN-A lineages in size fractionated metagenomes from surface waters collected in station 
TARA_078. (a-c) Left panels correspond to the DAPI signal (blue-labeled DNA); right panels correspond to the 
combined signal of the prymnesiophyte specific probes (green-labeled host under blue light excitation) and the 
UCYN-A probe (red-labeled symbiont under green-light excitation). (a) UCYN-A1 with its prymnesiophyte partner; 
(b) the two UCYN-A symbiotic pairs, indicating the specific labeling of UCYN-A1 (upper) and B. bigelowii (lower) 
with their specific partners, the small prymnesiophyte closely-related to B. bigelowii and UCYN-A2 respectively; 
(c) B. bigelowii with UCYN-A2. The inset panel in (c) shows the detail of non-associated UCYN-A2 cells within a 
common symbiotic structure. Prymnesiophyte partners are indicated by arrow heads. Scale bar in (a) represents 5 mm 
and this scale is shared in (a-c) except in the inset of panel (c) where it indicates 2 mm. (d-f) On the left side, recruitment 
of metagenomic reads using UCYN-A1 and UCYN-A2 genomes as reference. Reads are plotted as red (UCYN-A1) 
or blue (UCYN-A2) dots depending on the closest hit genome, representing the covered genome positions (x axis) 
and the % of identity with the closest reference (y axis). A horizontal gray line set at 95% indicates the threshold for 
reads representing members of the same population as the reference genome. On the right side, histograms represent 
the number of recruited reads, in logarithmic scale, by UCYN-A1 (red) or UCYN-A2 (blue) genomes in intervals of 
1% identity, from 100% to 70% identity.
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The number of UCYN-A cells per partner is lineage-specific

Previous studies have shown that the prymnesiophyte partners can harbor one 
or two UCYN-A cells (Thompson et al., 2012; Cabello et al., 2015; Hagino et al., 
2013; Krupke et al., 2013), pointing to a coupling between the prymnesiophyte cell 
division and the number of symbiotic cells, at least for UCYN-A1 (Cabello et al., 
2015). In our samples, only one UCYN-A1 cell per prymnesiophyte cell was detected 
(Fig. 1a,b). By contrast, B. bigelowii carried a symbiosome-like compartment with 
a variable but higher number of UCYN-A2 cells (~3-10 cells) (Fig. 1b,c). This 
structure was observed both attached to the host and in a free state, as an entity 
composed by several UCYN-A2 cells enclosed by a common envelope (Fig. 1c). 
In a previous study, the UCYN-A2 cells found in B. bigelowii were separated from 
the B. bigelowii cytoplasm by a single membrane, likely a perisymbiont membrane, 
and the envelope of the UCYN-A2 itself consisted of three layers, possibly an outer 
membrane, a peptidoglycan wall and a plasma membrane (Hagino et al., 2013). 
Although UCYN-A1 and UCYN-A2 are very similar in terms of gene content, the 
genes involved in cell wall biogenesis and cell shape determination appear to be 
only present in UCYN-A2 suggesting clear structural differences associated with its 
host (Bombar et al., 2014). Therefore, our observations hint at different symbiotic 
organizations: while the UCYN-A1 lineage has one or two separated cells per host, 
the UCYN-A2 lineage may harbour up to 10 cells per prymnesiophyte partner cell 
within a common symbiotic structure.
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UCYN-A lineages vary in different plankton size fractions

A total of eight marine metagenomes from stations TARA_078 and TARA_076 
were analyzed to assess the distribution of UCYN-A lineages in several plankton 
size fractions (0.2-3, 0.8-5, 5-20 and >0.8 mm) of the microbial assemblages in 
surface and Deep Chlorophyll Maximum (DCM) waters (Table 1). We used the 
two UCYN-A genomes sequenced to-date as reference genomes (Tripp et al., 2010; 
Bombar et al., 2014) in fragment recruitment of these metagenomic samples (Table 
1). Because of the UCYN-A partner fidelity displayed by double CARD-FISH  (see 
above), metagenomic sequence reads from UCYN-A lineages should vary with size 
fraction as predicted by the different cell-sizes of the prymnesiophyte partners. The 
sequence reads from the UCYN-A1 lineage were primarily present in surface waters 
within the size-fraction range of the small prymnesiophyte partner (0.2-3, 0.8-5 
and >0.8 mm) (Table 1). Almost 100% of the UCYN-A1 genome was recovered in 
each of the metagenomes from surface of these size fractions in the two stations. 
Likewise, UCYN-A1 sequence reads were poorly represented in the 5 to 20 mm 
size fraction (~10% of genome recovery) (Fig. 1d-f, Table 1). On the other hand, 
in TARA_078, the UCYN-A2 sequence read distribution in surface waters was 
consistent with the B. bigelowii cell size, i.e. UCYN-A2 reads were nearly absent 
in the 0.2 to 3 mm size fraction metagenomes but were more abundant in the 0.8-
5, 5-20 and >0.8 mm fractions. In all these larger fractions, the UCYN-A2 reached 
high genome recovery values (90%, 76% and 99%, respectively) except for the 
>0.8 mm fraction in TARA_076 where UCYN-A2 was virtually absent (Fig. 1d-f, 
Table 1). In the >0.8 mm size fraction, UCYN-A1 was approximately 9 times more 
abundant than UCYN-A2 in TARA_078 (Table 1). Likewise, in same station the 
small prymnesiophyte partner was more abundant than B. bigelowii based on V9 
18S rRNA tags (Cabello et al., 2015). In the DCM samples, both UCYN-A lineages 
were poorly represented in the metagenome sequences, accounting for less than 14% 
and 1% of genome recovery for UCYN-A1 and UCYN-A2, respectively (Table 1). 
The same vertical distribution has been observed for their prymnesiophyte partners 
that were found preferentially in surface layers while the rest of the prymnesiophyte 
assemblage peaked at the DCM (Cabello et al., 2015). Therefore, although the 
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UCYN-A1 lineage was in general more abundant than UCYN-A2, a transition 
from the UCYN-A1 to UCYN-A2 lineage was observed from smaller to larger size 
fractions, likely explained by the partner fidelity and the difference in cell size of 
their prymnesiophyte partners.

Another interesting finding was that most of the metagenomic (and 
metatranscriptomic) reads mapping to the UCYN-A1 or UCYN-A2 genomes 
had very high sequence identities (greater than 99% to their respective reference 
genome) (Fig. 1d-f), which suggests an extremely low microdiversity within 
populations that were sampled from geographically distant regions in the Pacific 
(ALOHA and SIO) and South Atlantic Oceans (this study). The size-fractionated 
sampling strategy combined with the metagenomic analyses reported in this study 
will be also important to uncover the genomic pool of new UCYN-A lineages, such 
us UCYN-A3, to identify the lineage-specific distribution of UCYN-A populations 
and to set the cell size range of their partners, a first step for their identification.

UCYN-A expression is streamlined to fuel nitrogen fixation

The analyses of seven size-fractionated metatranscriptomes from two stations 
(TARA_078 and TARA_076) and depths (surface and DCM) allowed for the first 
time a whole-genome transcription profiling of these widely distributed diazotrophic 
cyanobacteria (Table 1). In surface waters, UCYN-A1 transcripts were in general 
more abundant than those from UCYN-A2, except in the 5-20 mm size fraction 
(TARA_078) in which the latter were dominant (Table 1). The gene expression of 
1131 and 1179 protein-coding genes in UCYN-A1 (Supplementary Data 1) and 
UCYN-A2 (Supplementary Data 2), respectively, were examined. In both lineages, 
the nitrogen fixation operon, including the nifH gene, was the most highly expressed 
gene-cluster accounting for a quarter of the total transcripts (Fig. 2a,b). In the 
>0.8 mm size fraction (TARA_078), despite UCYN-A1 being more abundant than 
UCYN-A2, the expressed nifH transcripts per cell were almost 2 times higher for 
UCYN-A2 (648.33) than for UCYN-A1 (396.60) (Supplementary Data 1 and 2).
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Figure 2. Genome expression in UCYN-A1 and UCYN-A2 lineages. (a) Metatranscriptome recruitment at the 
surface of the TARA_078 station of UCYN-A1 (0.2-3 mm) and UCYN-A2 (5-20 mm) transcripts. Transcripts are 
plotted as black dots representing the covered genome positions and the % of identity with the closest reference. 
A horizontal gray line set at 95% identity shows the threshold used to count the number of times, or coverage, 
that a gene was expressed. The most expressed genes in both lineages are highlighted. (b) Relative contribution of 
nitrogen fixation operon, FOF1-ATP synthase operon, cytochrome b6f and PSI genes to the total UCYN-A transcripts 
contribution in surface samples; percentages are indicated. (c) Transcript counts of nitrogen fixation operon versus 
those of ATP synthase (triangle), cytochrome b6f (square) and PSI (open circle) transcripts. All of these transcripts 
were significantly correlated (P<10-5) and regression lines, regression equations and R2 values are indicated in the 
figure.
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 It is well known that biological nitrogen fixation has a high energetic cost (16 
moles of ATP to generate 2 moles of ammonia). Notably, the F0F1-ATP synthase 
operon and genes encoding for the cytochrome b6f complex and Photosystem I 
complex (PSI) were highly transcribed and positively correlated (P<10-5, N = 6, 
linear regression analysis) with the nitrogen fixation operon transcript abundances 
(Fig. 2c). These findings suggest that the generation of reducing power and the ATP 
synthesis could be coupled to fuel the nitrogen fixation process in UCYN-A. Likewise, 
UCYN-A2 might have higher nitrogen fixation rates per cell than UCYN-A1 based 
on the higher number of nifH transcripts per cell. It is reasonable to assume that the 
differences in nifH gene expression between UCYN-A lineages could simply reflect 
the differences in the cell size of their partners with differential nutrient requirements 
for growth. In addition, it has been indirectly demonstrated that the nitrogen fixation 
of UCYN-A supports the CO2 fixation of its prymnesiophyte partner (Krupke et al., 
2015). Therefore, we hypothesize that the larger B. bigelowii host cell would meet 
its larger N nutrient requirements by partnering with a larger number of UCYN-A2 
symbiotic cells.

Nitrogen-fixing microorganisms, and particularly cyanobacteria, should 
protect their nitrogenase from inactivation by oxygen. The absence of the ability to 
use photosystem II which evolves O2 explains why UCYN- A appears to fix N2 and 
express the nitrogenase genes during the day (Zehr, 2011). However, its association 
with an oxygen-evolving partner could make the nitrogenase enzyme in UCYN-A 
not completely safe from oxygen. We observed that the sufB gene (cysteine 
desulferase), involved in the assembly or repair of oxygen-labile iron-sulfur clusters 
under oxidative stress, was highly transcribed (Supplementary Data 1 and 2). It 
may be that UCYN-A requires high expression level of sufB genes to repair the 
nitrogenase enzyme from oxygenic inactivation, suggesting then a similar role than 
for the peroxidase genes found in their genomes (Tripp et al., 2010; Bombar et al., 
2014). Our findings reveal that UCYN-A lineages dedicate a large transcriptional 
investment to fix nitrogen representing the first whole-genome expression profiling 
in environmental UCYN-A populations. 
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UCYN-A diverged during the late Cretaceous

Our findings on partner fidelity in UCYN-A point to the hypothesis of symbiont-
host co-evolution (Thompson et al., 2014). In order to analyze the selection pressure 
and evolution of the protein-coding genes, we calculated the number of synonymous 
or silent (Ks) and non-synonymous (Ka, inducing amino acid change) nucleotide 
substitutions (Li, 1993; Hurst, 2002) for 887 protein-coding genes shared by the 
UCYN-A1 and UCYN-A2 genomes (Supplementary Data 3). The Ka/Ks ratio may 
offer important clues about the selection pressure where ratios <1 indicate purifying 
selection and ratios >1 point to positive selection (McDonald and Kreitman, 1991). 
We found that 873 out of the 887 protein-coding genes were under purifying 
selection (P<0.05, Codon Based Z-test) (Supplementary Data 3). The 14 remaining 
genes also presented Ka/Ks < 1 but were not statistically well-supported (P>0.05). 
Purifying selection means that synonymous mutations are maintained, while non-
synonymous mutations are continuously removed from the population. We did not 
detect signs of large-scale positive selection, i.e. no apparent strong adaptation to 
novel niches in UCYN-A lineages, suggesting that the evolutionary forces for niche 
adaptation would act on the prymnesiophyte partners rather than on UCYN-A. Our 
results are consistent with the fact that UCYN-A2 lacks the same major pathways 
and proteins that are absent in UCYN-A1 (Bombar et al., 2014), indicating then that 
the symbionts were genetically adapted to their hosts before they were separated by 
speciation.

The age of divergence for UCYN-A1 and UCYN-A2 lineages was 
calculated by phylogenomic and Bayesian relaxed molecular clock analyses (Fig. 
3, Supplementary Table 2). Our results indicate that UCYN-A1 and UCYN-A2 
lineages diverged around 91 million years ago (Mya), i.e. during the late Cretaceous. 
In agreement, B. bigelowii has a fossil record extending back to the late Cretaceous 
(ca. 100 Mya) (Bown et al., 2004), reported from neritic and pelagic sediments, e.g., 
in lower Paleogene sediments immediately above the K/Pg mass extinction level as 
well as in the Oligocene Diversity Minimum (Peleo-Alampay et al., 1999; Bown 
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et al., 2004). In the Jurassic, between 190 and 100 Mya, nutrient availability in the 
ocean was lower than at any point during the last 550 Mya (Cárdenas and Harries, 
2010). It is therefore likely that the symbiotic relationship between the common 
ancestor of UCYN-A1 and UCYN-A2 and a Braarudosphaera-related species was 
established by the late Cretaceous to cope with extremely low nutrient conditions 
and a generalized oligotrophy in marine surface waters, as it has been recognized 
for other symbiotic system such as the Acantharia–Phaeocystis symbiosis (Decelle 
et al., 2012). UCYN-A then underwent purifying selection, progressively reducing 
its genome to the point that it became an obligate symbiont. An analogous discovery 
was the case of the two Rhopalodiaceae freshwater diatom species, Rhopalodia 
gibba and Epithemia turgida having acquired N2-fixing endosymbionts (Kneip et al., 
2007; Nakayama et al., 2011). Similar to the two UCYN-A partnerships described 
here, phylogenies of these two diatoms species and their intracellular symbionts 
were found to be congruent and, concordantly, a single symbiotic event has been 
proposed (Nakayama et al., 2011). Probably, a similar scenario can be envisioned 
here for the two UCYN-A partnerships.

	Taking into account that the number of symbiotic cells harbored by distinct 
prymnesiophyte partners is different and phylogenetically-dependent, i.e. the larger 
B. bigelowii can harbor a variable number (up to 10) of UCYN-A2 cells whilst 
the small prymnesiophyte partner harbored only one or two UCYN-A1 cells, it 
is reasonable to think that a larger nutrient acquisition could be linked to a larger 
number of symbionts. Indeed the whole genome expression patterns suggested 
a metabolic investment in UCYN-A1 and UCYN-A2 is mainly focused on the 
nitrogen fixation machinery. Our evolutionary analysis revealed that UCYN-A1 
and UCYN-A2 were genetically adapted to their prymnesiophyte partners before 
UCYN-A speciation (purifying selection) but, on the contrary, the prymnesiophyte 
partners seem to follow different ecological strategies (Cabello et al., 2015), 
suggesting a speciation process under positive selection. Our results suggest that 
the partner fidelity shown by UCYN-A lineages together with the speciation in the 
common ancestor of B. bigelowii and its closely-related prymnesiophyte may have 
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Figure 3. Time calibrated cyanobacteria tree. The phylogeny shown was estimated based on 135 proteins from 
57 taxa.  Three calibration points (black circles) were used for the tree presented and were treated as soft bounds. 
The root of the tree was set with a maximum age of 2,700 Mya and a minimum age of 2,320 Mya. Divergence time 
for the ancestor of cyanobacteria UCYN-A1 and UCYN-A2 (highlighted with a grey box) are given in with the 
corresponding values for the posterior 95% confidence intervals.

forced an allopatric speciation of UCYN-A1 and UCYN-A2 populations in the 
late Cretaceous. Comparative genome analysis of the two prymnesiophyte partners 
would clarify whether these two algal species underwent positive selection through 
evolution by adaptation to novel niches. As revealed by nifH phylogenetic analysis 
it seems that novel UCYN-A lineages, such us UCYN-A3, and prymnesiophyte (or 
not prymnesiophyte) partners, will help to understand the evolutionary relationships 
of N2-fixing cyanobacterial symbionts and the extent of their ecological relevance 
on marine biogeochemical cycles. 
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The present study offers new insights into the marine nitrogen-fixing UCYN-A 
symbiosis by disentangling the partner fidelity, host-symbiont organization and size 
distribution, gene expression and evolution of UCYN-A1 and UCYN-A2 lineages. 
These results demonstrate that specific UCYN-A symbiotic pairs co-exist without 
cross-symbiotic partnerships. The fact that its distribution occupies new plankton 
size fractions accordantly to the host size should be considered in global nitrogen 
fixation models. The number of UCYN-A1 and UCYN-A2 cells involved in this 
symbiosis differs and appears to be a conserved phylogenetic-trait. Remarkably, 
about a quarter of the UCYN-A transcripts were from nitrogen fixation genes, 
highlighting the importance of nitrogen fixation in this symbiosis. Our results 
present further evidences of a host and symbiont co-evolution scenario in the marine 
environment, probably derived from a single ancestral symbiotic event wherein 
at least two different lineages diversified in the late Cretaceous. Investigation of 
N2-fixing cyanobacterial symbionts and their partners should provide clues for 
discovering new ecological compartments for nitrogen fixation that would increase 
our understanding of the nitrogen cycle in the ocean.
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Supplementary Figure 1. Phylogenetic reconstruction of Class Prymnesiophyceae. Maximum likelihood phylo-
genetic tree of the Class Prymnesiophyceae based on the 18S rRNA gene. The tree includes 466 sequences (shown 
by their NCBI accession numbers) retrieved from the Protist Ribosomal Reference database (PR2). Bootstrap values 
above 50% are indicated. The UCYN-A1 host phylogroup targeted by probe UPRYM69 probe is highlighted in green 
while the UCYN-A2 host phylogroup targeted by probe UBRADO69 is highlighted in blue.
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Abstract

The symbiotic unicellular cyanobacterium Candidatus Atelocyanobacterium 
thalassa (UCYN-A) is one of the most abundant and widespread nitrogen (N2)-fixing 
cyanobacteria in the ocean. Although it remains uncultivated, multiple sublineages 
have been detected based on partial nitrogenase (nifH) gene sequences, including the 
four most commonly detected sublineages UCYN-A1, UCYN-A2, UCYN-A3 and 
UCYN-A4. Recently, advances in single cell visualization techniques using specific 
probes that target UCYN-A1 and UCYN-A2 and their respective hosts provided new 
insight into the morphology of these symbioses. Moreover, it has been suggested 
that UCYN-A2 is widely distributed throughout the oligotrophic oceans in addition 
to coastal waters. Very little is known about UCYN-A3 and the other sublineages 
beyond the nifH sequences from nifH gene diversity surveys. In this study, several 
different assays and methods were used that revealed discrepancies in identification 
of sublineages and led to new information on the diversity of the UCYN-A symbiosis. 
We report here that the UCYN-A association originally assumed to be UCYN-A2 
at two open ocean sites is actually UCYN-A3. Our studies show that the size of the 
UCYN-A3 cells (both the cyanobacteria and host) and the number of cyanobacterial 
cells per host differs from that in the better characterized sublineages (UCYN-A1 
and UCYN-A2). Moreover, the present study expands the known extent of UCYN-A 
genetic diversity by the reconstruction of about 13% of the UCYN-A3 genome 
from metagenomic data. Finally, our results unveil that the UCYN-A lineages are 
distributed along different size fractions of the plankton defined by the cell-size 
range of their prymnesiophyte hosts, uncovering new nitrogen fixation planktonic 
compartments.
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Introduction

Biological nitrogen (N2) fixation is a fundamental biogeochemical process 
in the ocean, whereby N2 gas is reduced to ammonia, which supports primary 
production (Sohm et al., 2011; Karl et al., 2002). It has been long thought that the 
most important N2-fixing microorganism (“diazotroph”) in the open ocean was the 
free-living cyanobacterium Trichodesmium (Luo et al., 2012). However, it is now 
clear that marine N2-fixing cyanobacteria are more diverse and include a wide range 
of lifestyles, including symbionts such as the unicellular cyanobacterium Candidatus 
Atelocyanobacterium thalassa, commonly known as UCYN-A (Thompson and Zehr, 
2013). UCYN-A lives in a mutualistic partnership with an uncultivated unicellular 
alga, a prymnesiophyte, closely related to Braarudosphaera bigelowii (Thompson 
et al., 2012; Hagino et al., 2013). This symbiosis is based on the exchange of carbon 
and nitrogen between partners (Thompson et al., 2012; Krupke et al., 2013), which 
explains how UCYN-A can thrive in oligotrophic environments despite lacking 
important biosynthetic pathways (Tripp et al., 2010).

	 The nitrogenase (nifH) and 16S rRNA gene sequences of UCYN-A have been 
reported in a wide variety of oceanic environments which has suggested it has a 
major role in global N2 fixation (Moisander et al., 2010; Martínez-Pérez et al., 2016; 
Farnelid et al., 2016; Turk-Kubo et al., 2017). Recent phylogenetic analyses based on 
partial UCYN-A nifH gene sequences have shown that there are at least four distinct 
sublineages, UCYN-A1, UCYN-A2, UCYN-A3 and UCYN-A4 (Thompson et al., 
2014; Farnelid et al., 2016; Turk-Kubo et al., 2017). However, only the UCYN-A1 
and UCYN-A2 genomes have been sequenced (Tripp et al., 2010; Bombar et al., 
2014). The UCYN-A2 sublineage is found specifically associated with B. bigelowii 
while UCYN-A1 is associated with a smaller, but closely-related prymnesiophyte 
(1-3 mm) (Thompson et al., 2012, 2014; Cornejo-Castillo et al., 2016). The hosts 
of the other UCYN-A sublineages are not yet known. Curiously, the UCYN-A2 
symbiosis observed by Cabello et al. (2015) was only half the diameter of the originally 
described UCYN-A2 symbiosis (Thompson et al., 2014), suggesting that UCYN-A2 
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in the open ocean was smaller than in coastal sites (4-5 µm compared to 7-10 µm). 
However, the FISH probe used at that time targeted all UCYN-A clades (Krupke 
et al., 2013) making it impossible to distinguish between UCYN-A sublineages. 
Eventually, 16S rRNA gene sequences of UCYN-A1 and UCYN-A2 and 18S rRNA 
gene sequences of their respective hosts made it possible to design CARD-FISH 
probes that differentiated UCYN-A1 and UCYN-A2 sublineages (Cornejo-Castillo 
et al., 2016). These were used to show that the UCYN-A2 symbiosis was actually 
composed of several (3-10) UCYN-A2 cells per host cell, in contrast to UCYN-A1, 
which had only one cell per host (Krupke et al., 2013; Cabello et al., 2015; Cornejo-
Castillo et al., 2016; Martínez-Pérez et al., 2016). Metagenomic analysis of size-
fractionated samples from the Tara Oceans expedition showed that the UCYN-A1 
genome was recovered in the small size-fraction (0.2-3 µm), whereas the UCYN-A2 
genome was found in the 0.8-5 and 5-20 µm size-fraction, in agreement with all 
previous observations of size of the symbiosis by CARD-FISH and qPCR of flow 
cytometry sorted cells (Thompson et al., 2014; Cabello et al., 2015; Cornejo-Castillo 
et al., 2016).

Recent studies have shown that UCYN-A1 and UCYN-A2 symbiosis both 
have wide global distributions and that they often coexist in space and time (Cabello 
et al., 2015; Cornejo-Castillo et al., 2016). A third phylogenetically distinct group, 
UCYN-A3, appears also to have a global distribution, and is commonly detected in 
oligotrophic waters, including at Station ALOHA in the North Pacific Subtropical 
Gyre (NPSG), and co-occurs with UCYN-A1 (Turk-Kubo et al., 2017). Likewise, 
the UCYN-A4 sublineage has been observed to co-occur with UCYN-A2 in coastal 
waters (Turk-Kubo et al., 2017).

In this work, we studied UCYN-A populations in two different oceanic 
regimes:  Station ALOHA in the NPSG and Southern California Coastal Current 
waters near the Scripps Institution of Oceanography (SIO) Pier in La Jolla, CA, USA. 
We identified the UCYN-A sublineages that were present in these samples using 
a PCR assay that specifically targets the nifH gene from UCYN-A and quantified 
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UCYN-A cell abundances using quantitative PCR assays for each previously 
described cyanobacteria/prymnesiophyte pair. Cell size ranges and morphological 
features of UCYN-A sublineages were determined using double CARD-FISH. We 
also analyzed size-fractionated metagenome sequence libraries collected during the 
Tara Oceans expedition in the South Atlantic to detect and reconstruct the genome(s) 
of divergent UCYN-A populations other than those of UCYN-A1 and UCYN-A2, 
and to determine the evolutionary relationships of the UCYN-A sublineages to other 
unicellular N2-fixing cyanobacteria.

Materials and Methods

Sampling procedures

Samples were collected from the Scripps Institution of Oceanography (SIO) 
Ellen Browning Scripps Memorial Pier (32º 52’ 1.7’’ N 117º 15’ 27.3’’ W) in La 
Jolla, CA between 28th July and 1st August 2014 and on the 14th July 2015. Surface 
samples (0 m) were obtained using a bucket at the end of the Pier. Samples were 
also collected from CTD casts at Station ALOHA (22º 45’ N 158º W, at 45 meters 
depth) during the C-MORE Cruise C-20 (http://hahana.soest.hawaii.edu/hot/cruises.
html) between 6-10th April, 2015. At each sampling site, water was collected in 2 L 
polypropylene bottles for CARD-FISH and 10 L polypropylene bottles for DNA, 
and were covered with black plastic until fixed or filtered.

For the CARD-FISH assay, 190 mL of seawater was fixed in the dark for 1 
hour at 4ºC with 10 mL 37% formaldehyde (1.87% v/v final concentration) for two 
replicates. For each sample, 100 mL was filtered at a maximum vacuum pressure of 
100 mm Hg onto 0.6 µm pore-size polycarbonate membrane filter, 25 mm diameter 
(EMD Millipore) with a support filter of 0.8 µm pore-size, 25 mm polycarbonate 
cellulose acetate membrane filter (Sterlitech Corporation) and kept frozen -80º C 
until processed.
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Duplicates of DNA samples from SIO were collected by filtering 500 mL of 
seawater through 47 mm, 0.22 µm pore-size, Supor filters (Pall Corporation) using 
a peristaltic pump. At Station ALOHA, 4 L samples were filtered onto 0.22 µm 
pore-size Sterivex cartridges (Millipore) using low pressure with a peristaltic pump. 
Filters were placed in sterile 2 ml bead-beating tubes with sterile glass beads and 
stored at -80 ºC until extraction.

DNA extraction

DNA extractions were carried out with a modification of the Qiagen DNeasy 
Plant Kit (Moisander et al., 2008). Briefly, 400 µL AP1 buffer was added to the bead-
beating tubes, followed by three sequential freeze-thaw cycles using liquid nitrogen 
and a 65ºC water bath. The tubes were agitated for 2 min with a FastPrep-24 bead 
beater (MP Biomedicals), and incubated for 1h at 55ºC with 20 mg ml-1 proteinase K 
(Qiagen). Samples were treated for 10 min at 65ºC with 4 µL RNase A (100 mg/mL) 
and then the filters were removed using sterile needles. The tubes were centrifuged 
for 5 min at 14,000 rpm at 4ºC, and the supernatant was further purified using the 
QIAcube automated extraction platform according to the manufacturer’s protocol 
(Qiagen). Samples were eluted using 100 µL AE buffer and stored at 20ºC.

 Quantitative PCR (qPCR) assay

Taqman® qPCR assays were used to measure the abundances of UCYN-A1 
and UCYN-A2 and their respective hosts (Church et al., 2005; Thompson et al., 
2014) (Supplementary Table 1). Each assay used TaqMan® Gene Expression 
MasterMix (Invitrogen) at 1X concentration, 0.4 μM forward and reverse primers, 
0.2 μM Taqman® probe and 2 µL of the DNA extract, for a final volume of 25 µL.

The four assays were initially incubated for 10 min at 95°C to relax target 
DNA, and data was collected at the end of each of 45 cycles of 15 s at 95°C and 
60 s at 60°C for all assays except for the UCYN-A2 nifH gene assay that used an 
annealing temperature of 64°C. 
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For each assay standards were included as positive controls and used to quantify 
the gene copy numbers. Standards were generated using linear plasmids containing 
cloned inserts of PCR amplified genes from environmental samples containing either 
the UCYN-A1 or the UCYN-A2 nifH gene or the respective prymnesiophyte 18S 
rRNA genes (Host-A1/Host-A2) (Thompson et al., 2014). Standards were added 
to the environmental DNA samples to test for PCR inhibition. To investigate the 
relation between the cyanobacteria and host abundances, the ratio of UCYN-A per 
host was calculated assuming one copy of nifH in the UCYN-A genome and one 
copy of the 18S rRNA gene in the B. bigelowii genome. However, it must be noted 
that qPCR is not reliable for absolute quantification of single gene copies and that 
the cell-to-cell ratio estimates need to be interpreted with caution since we do not 
know the number of copies of the 18S rRNA gene in the host genome.

Double CARD-FISH assay

The double CARD-FISH assay was carried out following the protocol designed 
by Cabello et al. (2015) and Cornejo-Castillo et al. (2016). The sequences of the 
probes used are compiled in Supplementary Table 2. Following hybridization, the 
filters were rinsed in a washing buffer (9 mM NaCl, 5 mM EDTA, 0.01% SDS, 20 
mM Tris-HCl pH 8) at 37°C, and the TSA reaction performed using the TSAä Plus 
Cyanine 3 System (Perkin Elmer, Inc) for 10 min at room temperature in the dark 
following the manufacturer’s instructions. Filters were stained with 5 μg ml–1 DAPI 
(4′, 6- diamidino-2-phenylindole), mounted in antifading reagent (77% glycerol, 
15% VECTASHIELD and 8% 20 Å~ PBS) and the micrographs were obtained 
using Leica SP5 Confocal Microscope at the University of California, Santa Cruz 
Life Sciences Microscopy Center. Filters were observed under ultraviolet (DAPI), 
blue (host stained with Alexa 488 in green) and green (UCYN-A stained with Cy3 
in red) excitation wavelengths.

Microscopic observations and cell counting (100 associations per sample) 
were performed with a Carl Zeiss Axioplan-2 Imaging Fluorescent Microscope 
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(Zeiss). Cell dimensions were estimated using AxioVision 4.8.1 and Image J software 
(Schindelin et al., 2012).

Sequence processing 

	 UCYN-A nifH gene fragments were amplified using a nested PCR assay 
designed to amplify known UCYN-A diversity. The first round of amplification 
was carried out using a widely used universal nifH primer set, nifH3/nifH4 (Zani 
et al., 2000) and the second round of amplification used newly developed universal 
UCYN-A nifH primers described in Turk-Kubo et al. (2017). The UCYN-A specific 
primers were both modified with 5’ common sequence linkers, to facilitate library 
preparation using a dual PCR strategy (Green et al., 2015). UCYN-A nifH PCR 
amplicons were multiplexed with other samples for a targeted depth of coverage of 
ca. 40,000 sequences, and sequenced using the Illumina MiSeq platform (2 x 250 bp 
paired ends).  

	 Raw reads were merged and quality-filtered (phred score of 20) using the 
PEAR aligner (Zhang et al., 2014), chimeras were removed using UCHIME (Edgar 
et al., 2011), and sequences were clustered at 99% sequence similarity using 
USEARCH v6.1 (Edgar, 2010) through QIIME (Caporaso et al., 2010) . Cluster 
representatives with greater than 500 sequences (which accounted for 92% of all 
recovered sequences) were imported into ARB (Ludwig et al., 2004), where they 
were translated into amino acids and sequences with stop codons were removed. 
Representative sequences that passed all quality filter steps were aligned to existing 
UCYN-A alignments in a curated nifH database (Heller et al., 2014), and exported, 
along with representative sequences from each sublineage, for tree construction in 
MEGA6 (Tamura et al., 2013). Maximum likelihood trees were calculated using the 
Tamura-Nei branch length correction and node support was determined with 1000 
bootstrap replicates. Distribution data for the representative sequences was simplified 
from USEARCH v6.1 output files using a custom python script, and visualized using 
the interactive tree of life (iTOL) web tool (Letunic and Bork, 2007).
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Fragment recruitment and UCYN-A3 genome reconstruction

The analysis of the abundance of UCYN-A based on 16S miTAGs along 243 
metagenomes from 68 globally distributed stations from Tara Oceans expedition 
revealed only two stations, TARA_078 (30º 8’ 12.12” S 43º 17’ 23.64” W) and 
TARA_076 (20º 56’ 7.44” S 35º 10’ 49.08” W) in the South Atlantic Ocean, where 
UCYN-A was significantly abundant (Cornejo-Castillo et al., 2016). Therefore, a 
total of 8 metagenomes spanning four size-fractions (0.2–3, 0.8–5, 5–20 and >0.8 
μm) from these two sampling stations, TARA_078 and TARA_076) were analyzed 
for UCYN-A gene fragments. Both seawater collection and DNA extraction 
protocols for the different size-fractions and metagenome sequencing are described 
in Cornejo-Castillo et al. (2016).

BLAST+ v2.2.25 was used to recruit metagenomic reads closely related 
to UCYN-A1 and UCYN-A2 genomes using default parameters with some 
modifications: -perc_identity 70, -evalue 0.00001. A reference database was 
constructed that contained the two UCYN-A genomes sequenced to date, UCYN-A1 
and UCYN-A2. Metagenomic reads aligned to the ribosomal operon were excluded 
from the analysis. Likewise, reads aligned over less than 90% of its length were 
excluded to avoid random alignments.

	 A de novo metagenome co-assembly process based on fragment recruitment 
results was carried out to reconstruct a fraction of the UCYN-A3 genome 
(Supplementary Figure 1). Instead of using contigs from individual metagenomes, 
we used all reads closely related to UCYN-A1 and UCYN-A2 extracted from all 8 
metagenomes to build the UCYN-A3 contigs. The criteria to select this subset of 
metagenomic reads was based on the identity shared between metagenomic reads and 
the reference genomes to define genomic species (Caro-quintero and Konstantinidis, 
2011). Thus, reads with an identity between 80-95% to the reference genomes were 
assumed to belong to a divergent UCYN-A sublineage. Subsequently, these selected 
reads were assembled to build contigs using MEGAHIT v1.0.4-beta (Li et al., 



Chapter 3

103

2015) with the following parameters: --presets meta-sensitive -m 0.97 -t 24. The 
metagenomic samples used for the novel genome reconstruction correspond to the 
0.8-5 and >0.8 μm size-fractions. No reads were found in the other size fractions. 
Every single reconstructed gene was compared to GenBank using BLASTN against 
the nt database to verify its taxonomic assignment to the UCYN-A clade. High-
Performance computing analyses were run at the Marine Bioinformatics Service 
(MARBITS) of the Institut de Ciències del Mar (ICM-CSIC) in Barcelona (Spain).

 Phylogenomic analysis of UCYN-A sublineages

Sequence data for 165 protein-coding genes were used to estimate the 
evolutionary relationships of the new UCYN-A sublineage. These genes were 
extracted from the following cyanobacterial genome sequences: Cyanothece sp. 
PCC 7822 (NC_014501.1), Cyanothece sp. PCC 7424 (NC_011729.1), Cyanothece 
sp. PCC 8801 (NC_011726.1), Cyanothece sp. PCC 8802 (NC_013161.1), 
endosymbiont of Epithemia turgida EtSB (NZ_AP012549.1), Cyanothece sp. ATCC 
51142 (NC_010546.1), Pleurocapsa sp. PCC 7327 (NC_019689.1), Candidatus 
Atelocyanobacterium thalassa SIO64986 (UCYN-A2; JPSP00000000.1) and 
Candidatus Atelocyanobacterium thalassa ALOHA (UCYN-A1; NC_013771.1). 
For the new UCYN-A sublineage, these 165 protein-coding genes were extracted 
from the newly assembled contigs. All genes were independently aligned using 
the translation align MUSCLE algorithm implemented in the Geneious software 
(Geneious Pro 4.8.5). Once aligned, the 165 genes were concatenated and, as result, 
the combined sequence length was 88,107 bp. Finally, a maximum likelihood 
phylogenetic tree was built using RAxML (Stamatakis, 2006) with 100 trees for 
both topology and bootstrap analyses.

On-line supplementary information

	 Supplementary Table 4 and Supplementary Table 5 can be downloaded 
from the following link: https://www.dropbox.com/sh/6b401yn1nhaom2i/
AACaXmeY1nJlXSCyR-FBD3HYa?dl=0
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Results 

1.	 Diversity of UCYN-A 

1.1. nifH gene sequences 

	 UCYN-A diversity was assessed by amplifying nifH gene sequences from SIO 
Pier and Station ALOHA (Figure 1A). In samples taken in two consecutive summers 
at the SIO Pier, the UCYN-A community was defined primarily by three different 
nifH phylotypes: OTU00, OTU01, and OTU03 (Figure 1B). OTU00 clusters within 
the UCYN-A1 sublineage, with relative abundances ranging between 28.8-51.3%. 
UCYN-A2 sequences were also recovered and the sequence type with the highest 
relative abundances was OTU01 (ranging between 43.7-66.1%), which is 100% 
identical to the UCYN-A2 nifH sequence reported by Thompson et al. (2014). A 
third sequence type was recovered, OTU03, which clusters with UCYN-A4, a new 
sublineage described by Farnelid et al. (2016). The UCYN-A4 sequence was present 
during both years, but relative abundances in 2014 (0.5%) were lower than in 2015 
(2.9-6.1%). 

	 At Station ALOHA, the UCYN-A community was comprised primarily of 
UCYN-A1 (OTU00) and UCYN-A3 (OTU02) (Figure 1B). UCYN-A1 was the 
dominant phylotype, and accounted for 87% of the UCYN-A sequences recovered 
(Figure 1B). Additionally, the UCYN-A3 sublineage was also recovered at lower 
relative abundances and accounted for 9.4% of the nifH sequences. UCYN-A2 
sequences were also recovered but at much lower relative abundances (ca. 0.7%).

1.2 Visualization of UCYN-A associations

	 To visualize cells of the different UCYN-A sublineages, and to better define 
the size ranges of each of the sublineages in coastal and open-ocean environments, 
we applied a double CARD-FISH assay to samples collected at the SIO Pier and at 
Station ALOHA. 
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Figure 1. Diversity and relative abundances of UCYN-A sublineages at the SIO Pier and Station ALOHA. A) 
Maximum likelihood phylogenetic tree constructed using partial nifH genes from the 12 UCYN-A OTUs with the 
highest relative abundances across the dataset and closely related UCYN-A and unicellular cyanobacterial sequences 
as reference sequences. UCYN-A OTUs recovered in this study are in bold, and were defined by clustering at 99% 
nucleotide identity. Nodes with bootstrap support greater than 50 and based on 1000 replicate trees are identified 
with a black circle; the size of the circle correlates to the bootstrap value, with larger circles on nodes with stronger 
bootstrap support. Sublineages are labeled to the right of the tree based on Thompson et al., (2014) and Farnelid et 
al. (2016). B) Relative abundances of these 12 UCYN-A OTU in each sample. SIO – Scripps Pier; ALOHA – Station 
ALOHA.
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At SIO Pier, the UCYN-A1 host averaged 2.3 ± 0.3 µm (n=100 cells) (Supplementary 
Figure 2), and consistently associated with a single UCYN-A1 cell that ranged 
between 1.0 ± 0.2 µm in diameter (n=100 cells) (Figure 2A, B). With an average cell 
diameter of 7.3 ± 1.0 µm (n=100 cells), the UCYN-A2 host at SIO had between 5-10 
UCYN-A2 cells per host, with an average size of 3.3 ± 0.5 µm in diameter (n=100 
cells) (Figure 2C, D) (Supplementary Figure 1). 

	 The sizes of UCYN-A1 and its prymnesiophyte host did not differ significantly 
(p value > 0.05) between the two sampling locations (SIO Pier and Station ALOHA) 
(Figure 2A, 3A and Supplementary Figure 2). However, at Station ALOHA, using 
the UCYN-A2 and Host-A2 probes, the targeted association appeared to be much 
smaller, that is 3.6 µm ± 0.7 µm (n=100 cells) in diameter compared to 7.3 µm at 
SIO (p value < 0.05) (Figure 2C and 3C). 

Figure 2. Micrographs of UCYN-A associations at SIO Pier. Epifluorescence microscopy images using the 
double-CARD-FISH assay showing the specificity of symbiont–host pairs (A,C): On top (A,B), UCYN-A1 with its 
prymnesiophyte partner labeled with the UCYN-A1-732 and UPRYM69 probes with competitors. On the bottom 
(C,D), UCYN-A2 association labeled with the UCYN-A2-732 and UBRADO69 probes with competitors. Right 
panels (B,D), correspond to the 4´-6-diamidino-2-phenylindole signal (DAPI; blue).
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Figure 3. Micrographs of UCYN-A associations at Station ALOHA. Epifluorescence microscopy images with the 
double-CARD-FISH assay showing the specificity of symbiont–host pairs (A,C): On top (A,B), UCYN-A1 with its 
prymnesiophyte host labeled with the UCYN-A1-732 and UPRYM69 probes with competitors. On the bottom (C,D), 
new UCYN-A association labeled with the UCYN-A2-732 and UBRADO69 probes with competitors. Right panels 
(B-D), correspond to the 4´-6-diamidino-2-phenylindole signal (DAPI; blue).

Based on the sequencing results described above from the corresponding DNA 
samples, where UCYN-A2 was virtually absent, but UCYN-A3 was the second 
most abundant UCYN-A sublineage, we assume the association that hybridized to 
the UCYN-A2 and Host-A2 probes, was UCYN-A3, not UCYN-A2.

	 To further target and characterize new UCYN-A associations (other than 
UCYN-A1 and UCYN-A2), we nonspecifically targeted all UCYN-A cells with 
the probe UCYN-A1 732 without competitors (universal UCYN-A probe) at both 
stations (Figure 4). The dual labeling with the UPRYM69 probe and competitor 
allowed us to distinguish the UCYN-A1 host from other prymnesiophyte-like cells 
that were associated with UCYN-A. At Station ALOHA, we did not detect new 
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UCYN-A associations, but at SIO Pier another UCYN-A association was observed 
(Figure 4). The size of this UCYN-A cell was similar to the size of UCYN-A1, 
0.9 ± 0.2 µm (n=5) and was not significantly different in diameter (p value > 0.05) 
(Supplementary Figure 2). However, the host cell of this UCYN-A type was not 
detected with either the UCYN-A1 or UCYN-A2 host probes. The abundance of this 
new UCYN-A association was estimated to be approximately 210 cells L-1, based on 
CARD-FISH epifluorescence cell counts.

1.3 UCYN-A and host gene copy ratios

We quantified the gene copy ratios of UCYN-A and hosts in coastal (SIO Pier) 
and open ocean (Station ALOHA) regions using previously established qPCR assays 
(Church et al., 2005; Thompson et al., 2014) targeting the nifH gene of UCYN-A and 
the 18S rRNA gene of the two known hosts (Figure 5). We will refer to the UCYN-A2 
qPCR assay designed by Thompson et al. (2014) as UCYN-A2/UCYN-A3, since the 
UCYN-A2 qPCR primers and probe do not contain sufficient mismatches with the 
UCYN-A3 sublineage to prevent cross-hybridization and amplification (Farnelid et 
al., 2016).

In samples from the SIO Pier, the UCYN-A2/UCYN-A3 and the UCYN-A2 host 
(B. bigelowii) gene copy ratios averaged 1.2*105 ± 8*103 nifH copies L−1 and 4.7*105 

± 3.7*104 18S rRNA gene copies L−1, respectively, with the host gene copy ratios 
four times greater than the symbiont (Figure 5). UCYN-A1 averaged 1.9*105 ± 1.6 
*104 nifH copies L−1, but the prymnesiophyte host originally described by Thompson 
et al. (2012) was not detected using the UCYN-A1 host assay (Supplementary Table 
1). Based on the UCYN-A nifH libraries described above, the UCYN-A2/A3 qPCR 
assay was quantifying UCYN-A2 in the SIO samples.

In contrast, at Station ALOHA, both UCYN-A1 and UCYN-A1 hosts were 
detected at gene copy ratios averaging 3 *105 ± 2.5*104 nifH copies L−1 and 3.3*105 

± 1.4*104 18S rRNA gene copies L−1, respectively (Figure 5). Likewise, the gene 
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Figure 4. New UCYN-A association from the SIO Pier. Epifluorescence microscopy images with the double-
CARD-FISH assay showing Host-A1 labeled with UPRYM69 probe with the competitor and all UCYN-A with 
the UCYN-A1-732 without competitor. White box shows an inset image of the new UCYN-A association found in 
the same slide with the same CARD-FISH probes. Similar new association was found using Host-A2 labeled with 
UBRADO69 probe with the competitor and all UCYN-A with the UCYN-A1-732 without competitor (non shown).

copies of UCYN-A2/UCYN-A3 nifH gene were on average 6*104 ± 4.6*103 nifH 
copies L−1 and the 18S rRNA gene of the UCYN-A2 host averaged 2*104 ± 3.1*103 

rRNA gene copies L−1. These numbers suggest a ratio of about 3 UCYN-A cells per 
host (Figure 5), although the 18S rRNA gene copy number for the host is not known. 
Based on the sequencing results described above, the UCYN-A2/A3 qPCR assay 
was quantifying UCYN-A3 in the Station ALOHA samples.
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Figure 5. Gene copy averages of UCYN-A1 and UCYN-A2/A3 nifH and Prymnesiophyte (UCYN-A1 host) and B. 
bigelowii (UCYN-A2 host) 18S rRNA genes determined by qPCR at SIO Pier and Station ALOHA over three days.

2. UCYN-A3 characterization from metagenomes

2.1 Metagenomic detection of a new UCYN-A population.

During the Tara Oceans expedition, the distribution of the UCYN-A1 and 
UCYN-A2 sublineages was analyzed by metagenome fragment recruitment at 
stations TARA_078 and TARA_076 in the South Atlantic Ocean in several plankton 
size-fractions (0.2-3, 0.8-5, 5-20 and >0.8 μm) (Cornejo-Castillo et al., 2016). In 
order to detect new divergent UCYN-A populations, these metagenomes were re-
analyzed in this study. Metagenomic reads belonging to UCYN-A1, UCYN-A2 
as well as closely related sequences (see Material and Methods) were explored by 
fragment recruitment (Supplementary Table 3).
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Reads assigned to the UCYN-A1 sublineage (>95% identity with UCYN-A1 
genome) were primarily present in the 0.2-3, 0.8-5 and >0.8 mm size fractions at 
stations TARA_078 and TARA_076 (Supplementary Table 3), encompassing the 
cell size ranges of the small prymnesiophyte partner (<3 mm) obtained in all previous 
studies (Thompson et al., 2012, 2014; Cornejo-Castillo et al., 2016; Martínez-Pérez 
et al., 2016). Likewise, reads assigned to the UCYN-A2 sublineage (>95% identity 
with UCYN-A2 genome) were in the size-fraction range of B. bigelowii at station 
TARA_078  (0.8-5, 5-20 and >0.8 mm) in agreement with previous studies (Thompson 
et al., 2014; Cabello et al., 2015; Cornejo-Castillo et al., 2016). Interestingly, at 
station TARA_076, UCYN-A2 was absent but recruitment of reads with sequence 
identities less than 95% to the UCYN-A2 genome appeared in metagenomes from 
both the 0.8-5 and >0.8 mm size-fractions (Figure 6, Supplementary Table 3). The 
recruitment pattern appeared within the size-fraction corresponding with the cell 
size-range of the UCYN-A3 host (3.6 µm ± 0.7 µm; n=100 cells) detected at Station 
ALOHA in this study (Supplementary Figure 2). These findings suggest that this 
new divergent UCYN-A genome sequence population is UCYN-A3.

2.2 Metagenomic reconstruction of an environmental UCYN-A3 genome

To gain insight into the gene content of the new divergent UCYN-A3 
population detected in fragment recruitment, metagenomic reads recruited from the 
0.8-5 and >0.8 μm size fractions of the two surface TARA samples (TARA_076 and 
TARA_078) were co-assembled (Supplementary Figure 1). A total of 180,557 bp of 
the UCYN-A3 genome, summarized in 247 contigs containing 293 genes (including 
the nifH gene), were assembled (Supplementary Table 4). Considering that the 
genome sizes of the two UCYN-A genomes sequenced to-date is approximately 
1.4 Mb, it can be assumed that approximately 13% of the UCYN-A3 genome was 
assembled. In order to verify that these genes belonged to the UCYN-A clade, every 
single gene was compared to GenBank using BLASTN against the nt database. 
The best hit for almost all of the reconstructed genes was UCYN-A2. A few genes 
were closer to UCYN-A1, however, since the UCYN-A2 genome is not completely 
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closed, these genes could be closer to the homologous genes missing in UCYN-A2. 
When compared with the UCYN-A2 genome, some of the genes that were missing 
in the UCYN-A1 genome were present in the UCYN-A3 genome. Additionally, in 
terms of gene synteny, all contigs containing more than one gene had the same gene 
ordination as in the UCYN-A2 genome (Supplementary Table 4).

2.3 Phylogenomic analysis and evolution of the UCYN-A3 sublineage

A phylogenetic tree was constructed to place the new UCYN-A3 sublineage 
in its evolutionary context. Maximum likelihood analysis of a total of 165 protein-
coding genes (Supplementary Table 4; genes marked with asterisk) shared by 
closely-related N2-fixing cyanobacteria confirmed that UCYN-A3, together with 
UCYN-A1 and UCYN-A2, form a well-supported monophyletic group (Figure 7). 
Interestingly, UCYN-A3 formed a sub-group with UCYN-A2 (Figure 7).

	 We explored the possible causes of the evolutionary diversification of 
UCYN-A3 by studying the selection pressure acting on the protein-coding genes 
shared by both UCYN-A2 and UCYN-A3 sublineages. We calculated the number of 
synonymous or silent (Ks) and non-synonymous (Ka, inducing amino acid change) 
nucleotide substitutions in these genes. The Ka/Ks ratio indicates whether purifying 
(<1) or positive (>1) selection has happened between phylogenetically closely-
related organisms (McDonald and Kreitman, 1991). We assessed the Ka/Ks ratio 
for 291 protein-coding genes shared by the UCYN-A2 and UCYN-A3 sublineage 
(Supplementary Table 5). We found that only 1 out of 291 genes was under positive 
selection, in particular, a gene coding for the subunit I of the cytochrome C oxidase. 
The vast majority of the genes, 261 out of 291, were subjected to purifying selection; 
and the rest of the analyzed genes did not show significant results (P>0.05, Codon 
Based Z-test) (Supplementary Table 5). 
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Figure 6: Metagenome fragment recruitment of UCYN-A lineages in size-fractionated metagenomes from 
surface waters collected at station TARA_076. Recruitment plot of metagenomic reads more similar to UCYN-A2 
genome sequences, using UCYN-A1 and UCYN-A2 genomes as reference genomes. Reads are plotted as colored 
dots, representing the covered genome positions (x axis) and the % of identity with the UCYN-A2 reference genome 
(y axis). Reads with identity higher or lower to 95% are considered to represent UCYN-A2 (blue dots) or UCYN-A3 
(green dots) populations respectively. On the right side, histograms represent the number of recruited reads in intervals 
of 1% identity, from 100 to 70% identity.



New diversity of the UCYN-A clade

114

Discussion

UCYN-A3, a new UCYN-A clade

To characterize the UCYN-A population structure in two different marine 
environments we used a combination of established methods including qPCR assays 
targeting the nifH genes of UCYN-A1 and UCYN-A2/UCYNA3 sublineages and the 
18S rRNA gene of the UCYN-A1 and UCYN-A2 hosts, visualization using double 
CARD-FISH, as well as Illumina sequencing of UCYN-A nifH gene fragments. 
The presence or absence of each symbiont and its partner at both stations based on 
the utilization of the different techniques is summarized in Supplementary Table 6. 
The multi-approach strategy revealed some discrepancies between techniques in the 
identification of each sublineage that led us to new insights into the diversity of the 
UCYN-A symbiosis. 

UCYN-A1 nifH gene sequences were detected at both stations at relatively high 
abundances, and CARD-FISH analysis indicated consistent morphology in both 
environments. We measured a ratio of nifH:18S rRNA genes close to 1:1 (~0.9) at 
Station ALOHA, which is consistent with the 1:1 symbiont-host cell ratio observed  
previously (Thompson et al., 2014).

Based on qPCR and CARD-FISH assays, it originally appeared that UCYN-A2 
was present at both stations. However, we have several lines of evidence supporting 
that the association detected at Station ALOHA was in fact UCYN-A3. First, 
UCYN-A3 nifH amplicon sequences were present at relative abundances ~ 10% 
at Station ALOHA, while UCYN-A2 sequences were virtually absent, which is 
consistent with a recent report of UCYN-A3 in the NPSG (including Station ALOHA) 
by Turk-Kubo et al., (2017). Second, the UCYN-A2 qPCR assay cannot be used to 
distinguish between UCYN-A2 and UCYN-A3, as it does not contain sufficient 
mismatches to prevent cross-hybridization with UCYN-A3 (and UCYN-A4) 
sublineages (Farnelid et al., 2016). Finally, the discrepancy in cell sizes between 
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the two associations observed at the SIO Pier and at Station ALOHA targeted with 
CARD-FISH probes originally assumed to be specific for UCYN-A2/B. bigelowii, 
indicates that the UCYN-A association originally assumed to be UCYN-A2 at 
Station ALOHA is actually UCYN-A3. Thus it appears that the CARD-FISH probes 
designed to target UCYN-A2/B. bigelowii also target UCYN-A3 and its unknown 
host. 

Figure 7: Maximum likelihood tree from analysis of a total of 165 protein-coding genes shared by UCYN-A 
sublineages and nine closely related cyanobacteria. Pleurocapsa sp. PCC 7326 was used as outgroup. The data set 
was bootstrapped 100 times, and bootstrap values are shown. 

Previous studies have also reported a smaller UCYN-A2 host (Cabello et al., 
2015; Martínez-Pérez et al., 2016) suggesting that in the open ocean the UCYN-A2 
host might be smaller (4-5 µm) than at coastal sites (7-10 µm). These studies, 
where the UCYN-A2 host was smaller than reported at SIO Pier, were most likely 
detecting the UCYN-A3 host instead. In order to determine this possibility, we 
recruited metagenomes from the TARA_076 station of the Tara Oceans expedition 
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where UCYN-A2 was not detected. Instead of the UCYN-A2 genome, a divergent 
UCYN-A genome, UCYN-A3, was detected in the size-fractions consistent with the 
size range observed for the UCYN-A3 association described above. 

	 Prior to this study, UCYN-A3 had been defined as a sublineage based solely 
on the phylogeny of UCYN-A nifH sequences. One of the reconstructed genes 
in TARA_076 was the nifH gene, which was key to identify this new divergent 
population as UCYN-A3. The present study goes further by defining UCYN-A3 
not only as a nifH sequence variant but also as a new UCYN-A genomic species, 
since the partial reconstruction of its genome revealed a new UCYN-A divergent 
genome. The phylogenetic relationships among UCYN-A sublineages showed that 
UCYN-A3 is closer to UCYN-A2 than to UCYN-A1 and that UCYN-A3 share a more 
recent common ancestor with UCYN-A2 than the ancestor shared with UCYN-A1. 
Therefore, since the divergence of the UCYN-A1 and UCYN-A2 sublineages was 
estimated to occur approximately 91 Myr ago (Cornejo-Castillo et al., 2016), the 
UCYN-A2 and UCYN-A3 sublineages would have diverged more recently (Figure 
7). The selection pressure showed a large-scale purifying or stabilizing pressure 
acting on the UCYN-A2 and UCYN-A3 sublineages. In fact, this may suggest that 
the last common ancestor of UCYN-A2 and UCYN-A3 sublineages were adapted to 
the same habitat (or to the same host) before they diverged into different sublineages. 
A possible scenario would be that the last common ancestor of UCYN-A2 and 
UCYN-A3 lived in symbiosis with a common prymnesiophyte host that diversified 
into different species and, as a consequence, the host speciation caused the isolation 
of the UCYN-A population that was the origin the UCYN-A2 and UCYN-A3 
sublineages. 

Partner fidelity

The diversity of the UCYN-A nifH gene reported here is similar to other studies, 
with the sublineages UCYN-A1 and UCYN-A3 co-occurring in the open ocean and 
the sublineage UCYN-A2 co-occurring with UCYN-A4 in coastal waters (Farnelid 
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et al., 2016; Turk-Kubo et al., 2017) (Figure 1).  The co-occurrence of UCYN-A 
sublineages suggests that distinct ecotypes have overlapping niches. However, in this 
study UCYN-A1 was also found at the SIO Pier in two different years, where it had 
not been observed previously (Thompson et al., 2014). The different distributions of 
UCYN-A diversity in this coastal water might be explained by seasonal dynamics. 
In fact, there is evidence of temporal shifts of Synechococcus clades at the SIO Pier 
(Tai and Palenik, 2009) and the same potential environmental factors that result 
in shifts of Synechococcus clades could also similarly affect the distribution of 
UCYN-A sublineages. 

UCYN-A strains could potentially vary in their associations with different hosts. 
It is currently known that UCYN-A1 and UCYN-A2 sublineages are specifically 
associated with distinct hosts (Cornejo-Castillo et al., 2016). However, with the 
increasing number of UCYN-A sublineages it is unknown whether new relationships 
involving new hosts and/or more ‘promiscuous’ UCYN-A strains may exist (Figure 
8). Despite being able to visualize the host-A1 (prymnesiophyte) using the same 
CARD-FISH probe at both stations, we could not identify the 18S rRNA gene of 
the BIOSOPE T60.34 sequence (GenBank accession no. FJ537341) at the SIO Pier 
using qPCR. This suggests that although the prymnesiophyte host cells from both 
stations look morphologically similar, they do not have identical 18S rRNA gene 
sequences. However, we assume that the UCYN-A1 host detected at the SIO Pier is 
closely related to the originally detected UCYN-A1 prymnesiophyte host since the 
Host-A1 probe for CARD-FISH hybridized with the host (Figure 2A, 2B). 

In contrast to the UCYN-A2/B. bigelowii ratio of about 3 reported by 
Thompson et al., (2014), in our samples, we observed the opposite pattern, that is, 
the host-A2 (B. bigelowii) was almost 4 times more ratio than the cyanobacterium 
UCYN-A2. A recent publication suggested a possible correlation between rDNA 
copy number and organism size (de Vargas et al., 2015). Based on this correlation, 
B. bigelowii, with a size between 7-10 µm, could have approximately 3 copies rRNA 
genes for cell, which could explain our qPCR ratios. In contrast, the ratio reported 
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by Thompson et al., (2014) cannot be explained if the host has 3 copies per cell (de 
Vargas et al., 2015).

Figure 8. Synthesis of diversity, morphological features and host specificity for the known UCYN-A sublineages. 
A) Maximum likelihood nucleotide tree based on partial nifH genes from representative sequences from each 
UCYN-A sublineage. B) Maximum likelihood tree based on 18S rRNA gene fragments from sequences closely 
related to UCYN-A1 (gb|FJ537341.1) and UCYN-A2 (gb|KF771252.1) hosts in the Genbank nr database aligned 
using Silva. The tree was constructed in MEGA. Epifluorescence microscopy images of UCYN-A1 (C), UCYN-A2 
(D), UCYN-A3 (E) and an unknown UCYN-A sublineage (F), described in detail in Fig. 2, 3 and 4. Solid arrows 
indicate known links between sublineages and morphologies and host associations; dotted arrows indicate that the 
links between sublineages and morphologies and/or host associations are not known.

To investigate this discrepancy, we evaluated the specificity and cross-
hybridization of the UCYN-A2 host qPCR assay using all sequences available in 
Genbank. Using primers (forward and reverse) and the hybridization probe (internal 
oligo), the 18S rRNA genes from a variety of different sequences were amplified 
in silico. The sequences, which had 100% nucleotide identity with B. bigelowii 
across the primer probe sites, included sequences from other haptophytes such as 
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Haptolina brevifilum (AM490995.2), Chrysochromulina parkeae (AM490994.1), 
Chrysochromulina brevifilum MBIC10518 (AB058358.1) and one unidentified 
haptophyte clone OTU5 (KF878252.1). These results showed that the primers used 
in this work for the UCYN-A2 host and previously by Thompson et al. (2014) were 
not specific for B. bigelowii, and that these primers could have amplified different 
eukaryotes that were not UCYN-A hosts. 

The non-specificity of the UCYN-A2 host qPCR assay explains the detection 
of the “UCYN-A2 host” at Station ALOHA (2.6*104 rRNA gene copies L−1), despite 
the very low relative ratio of UCYN-A2 sequences based on nifH sequencing 
(Figure 1). However, these results along with the CARD-FISH analyses do suggest 
that UCYN-A3 could be associated with a host genetically similar to the host of 
UCYN-A2, with a cell size intermediate between the sizes of the UCYN-A1 and 
UCYN-A2 hosts (3.61 ± 0.67 µm (Figure 3C, 3D)).

Conclusions and future directions

	 Our results obtained based on CARD-FISH counts, together with the UCYN-A 
nifH gene sequences and qPCR ratios provide new insights into the global distribution 
of UCYN-A sublineages. The wide occurrence of multiple UCYN-A sublineages 
and prymensiophyte hosts that vary in size has implications for N2 fixation rates as 
they could have been hidden in higher compartments and, consequently, UCYN-A 
may contribute to N2 fixation in a much larger oceanic area than previously thought.

Moreover, this is the first study reporting microscopic images of the 
UCYN-A3 sublineage, and a partial genome using a novel approach combining 
fragment recruitment and genome assembly techniques. With the availability 
of these UCYNA-3 gene sequences, the recruitment of the whole genome and 
metatranscriptomic should be possible in the near future. Thus the discovery and 
characterization of new UCYN-A sublineages and their hosts will help to determine 
the significance of these biogeochemically relevant microorganisms. 
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Finally, as we learn more about the diversity of UCYN-A, it is clear that we 
must compare and validate different assays and methods. Furthermore, there is a 
great need for the development of molecular probes/primers that can specifically 
target distinct UCYN-A sublineages which is critical for elucidating the ecology and 
the evolution of the UCYN-A symbiosis.
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Supplementary Figure 1. Overview of the strategy followed to reconstruct the UCYN-A3 genome.

Supplementary Figure 2. Size of the UCYN-A lineage at the SIO Pier and Station ALOHA Abbreviation: n, total 
number of cells observed using an Imaging Fluorescent Microscope (Zeiss, Berlin, Germany). 

SUPPLEMENTARY MATERIAL
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Supplementary Table 1: List of primers and probes utilized in quantification of gene 

abundance by quantitative PCR. 

Gene Primer Sequence (5’ to 3’) Reference 

nifH UCYN-A1 Forward AGCTATAACAACGTTTTATGCGTTGA Church et al. (2005) 

 

Reverse ACCACGACCAGCACATCCA Church et al. (2005) 

 

Probe TCTGGTGGTCCTGAGCCTGGA Church et al. (2005) 

18S rRNA Host-A1 Forward AGGTTTGCCGGTCTGCCGAT Designed by Thompson (not published) 

 

Reverse ATCCGTCTCCGACACCCGCTC Designed by Thompson (not published) 

 

Probe CTGGTAGAACTGTCCTTCC Designed by Thompson (not published) 

nifH UCYN-A2 Forward GGTTACAACAACGTTTTATGTGTTGA Thompson et al. (2014) 

 

Reverse ACCACGACCAGCACATCCA Church et al. (2005) 

 

Probe TCTGGTGGTCCTGAGCCCGGA Thompson et al. (2014) 

18S rRNA Host-A2 Forward GGTTTTGCCGGTCTGCCGTT Thompson et al. (2014) 

 

Reverse ATCCGTCTCCGACACCCACTC Thompson et al. (2014) 

 

Probe CTGGTGCGAGCGTCCTTCCT Thompson et al. (2014) 
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Supplementary Table 2: List of probes utilized in the visualization of UCYN-A associations 

by double CARD-FISH. 

 

Probe Name  Target Sequence (5’ to 3’) Reference 

UPRYM69 Host-A1 CACATAGGAACATCCTCC Cornejo-Castillo et al.. (2016) 

UPRYM69 competitor Host-A2 used as Host-A1 competitor CACATTGGAACATCCTCC Cornejo-Castillo et al.. (2016) 

UBRADO69 Host-A2 CACATTGGAACATCCTCC Cornejo-Castillo et al.. (2016) 

UBRADO69 competitor Host_A1 used as Host-A2 competitor CACATAGGAACATCCTCC Cornejo-Castillo et al.. (2016) 

Helper A-PRYM Haptophyta GAAAGGTGCTGAAGGAGT Cornejo-Castillo et al.. (2016) 

Helper B-PRYM Haptophyta AATCCCTAGTCGGCATGG Cornejo-Castillo et al.. (2016) 

UCYN–A1 732 UCYN-A1 GTTACGGTCCAGTAGCAC Krupke et al.. (2013) 

UCYN-A1 competitor UCYN-A2 used as A1 competitor GTTGCGGTCCAGTAGCAC Cornejo-Castillo et al.. (2016) 

UCYN–A2 732 UCYN-A2 GTTGCGGTCCAGTAGCAC Cornejo-Castillo et al.. (2016) 

UCYN-A2 competitor UCYN-A1 used as A2 competitor GTTACGGTCCAGTAGCAC Krupke et al.. (2013) 

Helper A–732 UCYN-A GCCTTCGCCACCGATGTTCTT Krupke et al.. (2013) 

Helper B–732 UCYN-A AGCTTTCGTCCCTGAGTGTCA Krupke et al.. (2013) 
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Supplementary Table 6. Presence or absence of each symbiont and its partner at SIO Pier 

and Station ALOHA based on the utilization of the different techniques. Gray boxes show the 

interpretation of the different results. 

ASSAYS SIO Pier Station ALOHA 

UCYN-A nifH gene 
sequencing(1) 

UCYN-A1, UCYN-A2, UCYN-A4 UCYNA1, UCYN-3 

UCYN-A1 (qPCR)(2) + + 

Host-A1 (qPCR)(3) - + 

UCYN-A1 (CARD-FISH)(4) + + 

Host-A1 (CARD-FISH)(4) + + 

 
 
INTERPRETATION 

UCYN-A1 present at SIO is not associated 
with an identical host to that identified by 

Thompson et al.., (2012). However, the 
Host-A1 at SIO is closely related to the 

original Host-A1 since it hybridizes with 
the Host-A1 CARD-FISH probe. 

 
UCYN-A1 is associated with the host identified 

previously by Thompson et al.., (2012). 

UCYN-A2/A3 (qPCR)(2) + + 

Host-A2 (qPCR)(3)  + + 

UCYN-A2 (CARD-FISH)(4) + + 

Host-A2 (CARD-FISH)(4) + + 

 
 
INTERPRETATION 

UCYN-A2 is associated with the host 
identified previously by Thompson et al.., 
(2014). But the Host-A2 qPCR assay was 

not specific for  
B. bigelowii since it detected 4 times more 

Host-A2 gene copies (18S rRNA) compared 
to UCYN-A2 gene copies (nifH). 

The sequencing and the discrepancy in sizes 
revealed that what was thought to be UCYN-A2 

in Station ALOHA is most likely UCYN-A3. Also, 
UCYN-A3 could be in association with the Host-
A2 or a closely related host since it hybridized 

with the Host-A2 CARD-FISH probe and it 
amplified in the Host-A2 qPCR assay. 

UCYN-A (universal) 
(CARD-FISH)(5) 

+ + 

(1) UCYN-A specific nifH gene amplification and sequencing using Illumina MiSeq Turk-Kubo et al.. (2017). (2) nifH gene qPCR 
assays designed for UCYN-A1 and UCYN-A2 sublineages by Thompson et al.. (2014) and Church et al.. (2005). (3) 18S rRNA 
gene qPCR assay targeting the identified hosts Host-A1 and Host-A2 designed by Thompson et al.. (2014). (4) CARD-FISH probes 
specific for known UCYN-A sublineages and hosts using the competitors designed by Cornejo-Castillo et al.. (2016). (5) UCYN-
A1-735 probe without competitor probe. For more information see Materials and Methods. 
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GENERAL DISCUSSION

Overview of the thesis and main scientific contributions 

The general aim of this thesis was to gain insight into the diversity, ecology 
and evolution of the marine nitrogen-fixing microorganisms in the open ocean. The 
circumnavigation expedition Tara Oceans allowed us to address this goal through 
the unprecedented amount of genomic and biologic data generated at the global 
scale, which are already available in public repositories. In Chapter 1 we conducted 
a global exploration of the nifH gene extracted from metagenomic data derived from 
68 globally distributed stations. This approach is different from most surveys of 
nifH diversity conducted so far because it overcomes the biases caused by the use of 
primers in PCR or qPCR approaches (i.e., loss of diversity and biased quantification 
of the relative abundances of different diazotrophs). This study thus provides 
the first ‘primer-free’ global map of the distribution of open ocean diazotrophic 
communities across ocean basins and throughout the water column, from surface 
to mesopelagic waters. The metagenomic approach used allowed to estimate the 
contribution of these diazotrophic microorganisms within prokaryotic communities, 
something that has never been done before at this global scale, unveiling that they 
often occur at very low abundances, and suggesting that they belong to the so-called 
rare biosphere. Interestingly we found that in general, the abundance of diazotrophs 
was significantly higher in the mesopelagic than in photic surface or DCM waters, 
and that some of the detected diazotrophic groups showed contrasting habitat 
preferences. More importantly, we uncovered novel diversity that had remained 
unnoticed in all previous primer-based studies, since we demonstrate that more than 
half of the detected nifH variants showed mismatches in the primer-binding site 
with the primers used, specially with non-cyanobacterial diazotrophs. Therefore, 
our findings suggest that most diazotroph diversity studies may be disregarding an 
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important fraction of the heterotrophic nitrogen-fixing community members, and 
may be one of the reasons explaining why studies rarely find a link between the 
taxonomic composition of these diazotrophs and nitrogen fixation rates. In addition, 
it implies that marine heterotrophic diazotrophic prokaryotes may be much more 
important than previously thought.

Among the diazotrophs detected in Chapter 1, the most abundant was the 
unicellular symbiotic cyanobacterium C. Atelocyanobacterium thalassa (UCYN-A), 
a key player in the marine nitrogen cycle. However, the metagenomic approach 
used here did not allow to differentiate between UCYN-A sublineages because 
they have small nucleotide divergences than can be hidden behind the 95% identity 
clustering threshold applied for the construction of the OM-RGC. Thus, in Chapter 
2 and Chapter 3, we explored in detail aspects related to the ecology, diversity and 
evolution of this remarkable microorganism.

 Luckily, UCYN-A can be detected with the commonly used primer-based 
approaches, so its distribution has been widely studied. However, UCYN-A 
has circumvented all the attempts to keep and maintain it in culture to date and 
therefore, all current knowledge on UCYN-A biology has been conditioned to the 
fortune of detecting it in environmental samples. In this sense, we were lucky to 
find this cyanobacterium in high enough abundances in a couple of stations located 
in the South Atlantic Ocean, so the next two chapters focused on the exploration 
of UCYN-A at these two stations. In Chapter 2, we could detect this organism 
using not only metagenomic approaches but also visualization techniques like the 
CARD-FISH assay. This allowed us to unveil for the first time that UCYN-A1 and 
UCYN-A2 lineages live in symbiosis with two distinct prymnesiophyte partners 
with different cell size and that both symbiotic systems were lineage specific. Our 
analyses inferred a streamlined genome expression towards nitrogen fixation in 
both UCYN-A lineages and revealed a strong purifying selection in UCYN-A1 
and UCYN-A2 with a diversification process about 91 Mya, in the late Cretaceous. 
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Finally, in Chapter 3 we focused on the study UCYN-A3, another sublineage of 
which very little was known besides the existence of its nifH sequences. Using 
several methods (PCR, qPCR, CARD-FISH and metagenomes) to gain insight into 
the ecology of the different UCYN-A sublineages led to different interpretations 
of its ecology, revealing thus new information on the diversity of the UCYN-A 
symbiosis: for example, we could visually identify for the first time UCYN-A3 and 
its association with an alga of different size. Moreover we reconstructed a significant 
fraction of the UCYN-A3 genome establishing that this sublineage constitutes a new 
UCYN-A genomic species. Overall, Chapters 2 and 3 have largely expanded our 
knowledge of the ecology and evolution of UCYN-A lineages: We demonstrated 
that different UCYN-A lineages invested their genetic machinery to fix nitrogen for 
their respective hosts, whom they displayed partner fidelity, revealed new UCYN-A 
genomic species and placed the nitrogen fixation in novel planktonic compartments 
distributed along different size fractions of the plankton in accordance with the cell-
size range of the lineage-specific UCYN-A hosts.

 Overall, therefore, this thesis has significantly contributed to expand the 
knowledge on the marine nitrogen fixation unveiling new diazotrophic diversity and 
new planktonic compartments that can potentially contribute to a better understanding 
of the marine nitrogen cycle.

Methodological contributions of this thesis

	 Although numerous PCR primers have been designed to amplify nifH (Gaby 
and Buckley, 2012), the diversity of diazotrophs is still poorly described and many 
organisms remain to be discovered. Metagenomic analyses are PCR-independent and, 
therefore, not biased by primers designed on the basis of expectations of sequence 
conservation providing, thus, a potential source of new diazotrophic diversity. Our 
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metagenomic analysis in Chapter 1 has helped to increase the repertoire of nifH 
genes allowing, moreover, the evaluation in silico of the nifH primers. Primer 
binding analysis showed that primers extensively used in marine diazotrophic 
diversity surveys (nifH1-nifH4) (Zehr et al., 1998; Zani et al., 2000) do probably 
not recover any of the nifH gene sequences of Cluster I (Gammaproteobacteria) and 
Cluster III (Deltaproteobacteria and Firmicutes) diazotrophs recruited in our study. 
In order to verify this affirmation, we searched the closest nifH gene sequences 
in NCBI generated via primer-based surveys (Table 1). Our results indicated that 
these primers would probably miss 100% of Cluster III diazotrophs detected in our 
study. Our contribution in this sense has been to modify the nifH4 primer in order to 
capture all that newly detected nifH diversity. This improvement of the nifH4 primer 
will hopefully help to have a more realistic view of the marine diazotrophic diversity 
in future PCR-based studies.

	 In Chapter 2 we designed new CARD-FISH probes to distinguish for the first 
time close but different lineages of the UCYN-A clade. The previous CARD-FISH 
probes did not allowed to distinguish them at such specific level and, consequently, 
had led to erroneous interpretations of the ecology of UCYN-A, like for instance to 
associate different UCYN-A lineages to different growth states (Krupke et al., 2014) 
or to hypothesize a non-symbiotic particle-attached state of UCYN-A (Benavides 
et al., 2013). In fact, our CARD-FISH probes have been successfully used in other 
studies that have contributed significantly to our current knowledge of the ecology 
of UCYN-A (Cabello et al., 2015; Martínez-Pérez et al., 2016).



General Discussion

135

Cluster	
  I	
  -­‐	
  Gammaproteobacteria %	
  identity	
   [ACCN] %	
  identity [ACCN]

OM-­‐RGC.v1.007436991 97% [GU192754.1] 97% [KF800062.1]
OM-­‐RGC.v1.007483613 99% [KX502144.1] 99% [CP002622.1]
OM-­‐RGC.v1.007595848 99% [HM801587.1] 88% [KJ021873.1]
OM-­‐RGC.v1.007601814 98% [HQ586568.1] 89% [KJ021873.1]
OM-­‐RGC.v1.007647800 99% [KF151548.1] 89% [KJ021873.1]
OM-­‐RGC.v1.007667460 94% [KF151548.1] 91% [KJ021873.1]
OM-­‐RGC.v1.011403932 99% [KP260438.1] 91% [CP001614.2]
OM-­‐RGC.v1.026833116 100% [HQ455956.1] -­‐ -­‐
OM-­‐RGC.v1.028674582 97% [KF151548.1] 88% [AF216883.1]
OM-­‐RGC.v1.037241215 79% [HQ224035.1] 83% [CP002436.1]

OM-­‐RGC.v1.007482987 89% [JN601414.1] 100% [LT907975.1]
OM-­‐RGC.v1.008529501 87% [HM750631.1] 78% [CP000096.1]
OM-­‐RGC.v1.008691244 88% [HQ190142.1] 100% [CP002364.1]
OM-­‐RGC.v1.008734443 87% [AY040518.1] 81% [CP017237.1]
OM-­‐RGC.v1.008759637 95% [LC063964.1] 94% [AP010904.1]
OM-­‐RGC.v1.031135473 -­‐ -­‐ 77% [CP000096.1]
OM-­‐RGC.v1.032496133 80% [KX867946.1] 86% [CP003220.1]

OM-­‐RGC.v1.010396209 77% [KF847385.1] -­‐ -­‐
OM-­‐RGC.v1.013419284 81% [HQ224439.1] 80% [CP003167.1]
OM-­‐RGC.v1.031513582 76% [HQ223500.1] 73% [CP000254.1]

Cluster	
  III	
  -­‐	
  Firmicutes

Cluster	
  III	
  -­‐	
  Deltaproteobacteria

primer-­‐based	
  surveys non	
  primer-­‐based	
  surveys
OM-­‐RGC	
  gene	
  ID Closest	
  nifH	
  gene	
  sequence	
  in	
  NCBI	
  (nr/nt)	
  from

Table 1. Comparison of nifH gene sequences recruited from OM-RGC and NCBI. For each nifH gene sequence 
recruited from the OM-RGC, the identity (at the nucleotide level) with the closest nifH gene sequence found in NCBI 
(nr/nt database) is shown.

	 In Chapter 3, we designed a new strategy for genome reconstruction that 
could be applied in any kind of metagenomic studies. In our attempt to reconstruct 
the genome of close related UCYN-A lineages, we found that the current assembly 
methodology was not able to generate genomic contigs of the less abundant genomic 
species (in this case the less abundant was UCYN-A3 against UCYN-A1). We do 
not know what the reason behind this limitation is, but we guess that metagenomic 
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reads belonging to both lineages did not show enough sequence divergence among 
lineages and, consequently, the assembly algorithm could not resolve the UCYN-A 
lineages as separate entities. Therefore, we decided to isolate the metagenomic read 
population belonging to each different lineage before performing the assembly 
process via fragment recruitment analysis (Suppl. Fig. 1 in Chapter 3). By these 
means, it is possible to explore not only whether a divergent genomic species is 
present in a particular sample (via metagenomic fragment recruitment) but also, 
whether the divergent species is active or not (via metatranscriptomic fragment 
recruitment, see example in Fig. 1). 

Figure 1. Genome expression in UCYN-A lineages. Metatranscriptome recruitment at the surface of the TARA_076 
station of UCYN-A1 and UCYN-A3 transcripts in the >0.8 mm size fraction. We considered as UCYN-A3 those 
transcripts that showed less than 95% identity with the UCYN-A2 genome (this criteria is explained in Chapter 
3). Transcripts are plotted as black dots representing the covered genome positions and the % of identity with the 
closest reference. A horizontal gray line set at 95% identity shows the threshold used to count the number of times, or 
coverage, that a gene was expressed.



General Discussion

137

The diazotrophic (rare) biosphere

Rare microorganisms may contribute significantly to oceanic geochemical 
processes (Giovannoni and Stingl, 2005; Campbell et al., 2011). Our analysis from 
Chapter 1 provided a ‘snapshot’ of the abundance and diversity of diazotrophs in the 
global ocean. This ‘snapshot’ revealed that diazotrophs are often found in the rare 
biosphere, which is commonly assumed to be below the 0.1% relative abundance 
cut-off (Pedrós-Alió, 2012) with some punctual exceptions. It has been previously 
shown that both biotic and abiotic factors influence the abundance dynamics of 
rare microorganisms over time, which likewise abundant species, can also display 
different temporal dynamics presumably representing different life strategies (Lynch 
and Neufeld, 2015) (Fig. 2). Indeed, some of the diazotrophs detected here could be 
fitted in some of the categories depicted in Fig. 2. For example, UCYN-A, based on 
the 16S rRNA gene marker, was placed in the fourth position of the rank-abundance 
curve of the South Atlantic station TARA_078 (surface), with 1.28% of reads, whilst 
it was absent in most other stations (data extracted from Sunagawa et al., 2015). 
This TARA_078 station had the peculiarity of being located within a 3-year-old 
Agulhas ring, an anti-cyclonic eddy characterized by a warm salty core and a 100 
meters deeper pycnocline than surrounding waters (Villar et al., 2015). It has been 
suggested that nitrogen fixation is enhanced inside anti-cyclonic eddies (Fong et 
al., 2008; Church et al., 2009) and it could be the cause behind the high abundance 
of UCYN-A in this station. Another example of a rare taxon becoming abundant 
was found in one of the Cluster I gammaproteobacterial diazotroph (OM-RGC.
v1.007667460). This nifH variant maintained its relative abundance below 0.1% 
across all samples with two exceptions, in mesopelagic TARA_102 and surface 
TARA_110. These samples were likely influenced by the oxygen minimum zone 
(OMZ) off Peru, where nitrogen fixation has been demonstrated to occur, suggesting 
a close spatial coupling of N-input and N-loss processes (Loescher et al., 2014). The 
third nifH variant that was above the 0.1% relative abundance cut-off was another 
Cluster I gammaproteobacteria (OM-RGC.v1.007601814) that, in only one sample 
(TARA_132 mesopelagic), reached a relative abundance of 0.37%. We do not know 
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Figure 2. Hypothetical temporal abundance profiles for rare biosphere microorganisms. The scheme shows 
examples of different hypothetical temporal abundance dynamics of members within the rare biosphere, some of 
which may represent the behaviour of the different diazotrophic phylotypes described in Chapter 1. The grey shading 
represents seasonal variations (From Lynch and Neufeld, 2015).

whether the diazotrophs mentioned above are periodically or occasionally recruited 
from the rare biosphere but, in any case, it has been demonstrated that, at least 
in the case of UCYN-A (Zehr et al., 2016; Martínez-Pérez et al., 2016), they are 
important nitrogen-fixing players. The rest of diazotrophs always showed relative 
abundances below 0.1%, so they might represent permanently rare, or transiently 
rare species that bloom under particular situations that we did not capture with our 
sampling strategy (Fig. 2). We did not find any biotic or abiotic factor explaining the 
abundance patterns of the detected diazotrophs, even though previous studies have 
shown that factors such as temperature, iron, or phosphorous can affect the presence 
and/or abundance of diazotrophs at the large spatial scale (Stal, 2009; Sohm et al., 
2011). Certainly, studies addressing the temporal variability of members within 
diazotrophic communities are needed in order to achieve a better understanding of 
the abundance and activity dynamics of nitrogen-fixing microorganisms.
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Nitrogen fixation in different planktonic compartments

	 Nitrogen fixation has traditionally been placed in large planktonic size fractions, 
mainly occupied by Trichodesmium and the heterocystous endosymbiont Richelia. 
However, the discovery of marine unicellular cyanobacterial diazotrophs was crucial 
to redraw the size class where nitrogen fixation takes place in oligotrophic waters 
(Thompson and Zehr, 2013). The size class where nitrogen fixation occurs is important 
because it determines for example the efficiency of sinking and sequestration of the 
fixed nitrogen, and amount of fixed carbon in the case of photosynthetic diazotrophs 
or diazotrophs associated with photosynthetic hosts in deep waters (Karl et al., 
2012). In chapter 1 we targeted only the smallest planktonic fraction (0.2-3 mm), 
unveiling new diazotrophs never observed before and suggesting that this size 
fraction of the plankton may also contain potential new nitrogen-fixers. It is unlikely 
that they live in a permanent free-living state since nitrogen fixation requires the 
absence of oxygen. In this sense, the agglomerates of live and/or dead particulate 
organic material are potential nitrogen-fixation compartments and indeed, the 
colonization of a particle can be made from a previous free-living state. Thus, the 
diazotrophs detected in Chapter 1 might be potential particle colonizers.  These 
particles range in size from less than one micrometre to several centimetres, serving 
as vehicles for nitrogen and carbon exportation from the sunlit upper waters to the 
sea floor (Alldredge et al., 1986). Moreover, particles are nutrient-rich environments 
(compared with their surrounding waters) and, consequently, bacteria frequently 
colonize them, generating ‘hot spots’ for microbial activity (Simon et al., 2002). 
Indeed, the high microbial respiration can lead to low oxygen concentrations or even 
ephemeral anaerobic conditions in the interior of larger particles (Ploug et al., 1997), 
a suitable environment for nitrogen fixation. It has been suggested that the presence 
of cluster III nifH genes (associated with anaerobic diazotrophs)(Zehr et al., 2003) 
in the oxygenated water column could be explained by the presence of anaerobic 
microsites, within particles for example, where nitrogen fixation could be performed 
(Farnelid et al., 2011; Benavides et al., 2015). With the aim of demonstrating that 
the diazotrophs detected in the free-living fraction could transitively be associated or 
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attached to particles, we analysed the genome content of a large nifH-gene containing 
contig, specifically it was a 156 Kb contig containing the OM-RGC.v1.007667460 
nifH gene assigned to gammaproteobateria (Cluster I) (data not shown). Among the 
148 predicted genes, we found, for example, all the genes needed to form the Type 
IV pilus system involved in the attachment to host cells or surfaces (Craig et al., 
2004). Interestingly, we also found genes involved in chemotaxis nearby flagellar 
protein-coding genes, suggesting that this diazotroph can actively ‘swim’ toward a 
particle or toward another organism and establish a physical linkage in its surface 
via the Type IV pilus system. Cyanobacterial diazotrophs have also been visualized 
on large particles (Bonnet et al., 2009) and, even a particle-attached lifestyle has 
been suggested for UCYN-A (Le Moal and Biegala, 2009; Benavides et al., 2011). 
However, this particle-attached state of UCYN-A was observed using a CARD-
FISH probes that hybridize also with other unicellular diazotrophs (Nitro821 probe) 
(Le Moal and Biegala, 2009) and, it is likely that they were observing Crocosphaera 
attached to particles instead of UCYN-A. 

In Chapters 2 and 3 we did observe that different UCYN-A clades occupy 
overlapping but different size fractions, in accordance to the cell size range of their 
specific hosts. Thus, our results unveil new UCYN-A lineage-specific nitrogen 
fixation compartments. Furthermore, we demonstrated that these lineages were 
active, as shown in Chapter 2 for UCYN-A1 and UCYN-A2 lineages (Cornejo-
Castillo et al., 2016) and here (in Fig. 1) for UCYN-A3 lineage. The increasing 
number of UCYN-A lineages being found, together with their partner fidelity, suggests 
that we may be soon discovering new lineages occupying new compartments. For 
example, active UCYN-A nifH gene transcripts have been also observed in the gut of 
copepods, suggesting that new nitrogen can be directly transferred to higher trophic 
levels (Scavotto et al., 2015). We performed a search in NCBI (nr/nt database) to 
explore whether 16S rRNA gene of UCYN-A had been found in previous studies 
associated with other organisms. Surprisingly, UCYN-A 16S rRNA gene sequences, 
specifically UCYN-A2 sequences, had been amplified from dinoflagellates 
(Histioneis spp.) isolated from the Pacific Ocean (Foster et al., 2006). However, 
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this finding was unnoticed because the 16S rRNA gene sequence of UCYN-A was 
known just a few years ago (Zehr et al., 2008) and the authors assumed that the 16S 
rRNA gene sequence belong to Cyanothece spp. (Foster et al., 2006). These findings 
suggest that UCYN-A can occupy a variety of planktonic compartments where 
nitrogen fixation has not been considered. A deeper analysis of the genome content 
of these diazotrophs together with the application of visualization tools would help 
to uncover new nitrogen fixation compartments and to understand the lifestyle of 
marine diazotrophs.

The curious case of UCYN-A: towards a ‘nitrogen-fixing’ organelle?

How single cells work together is one of the key questions in evolutionary 
biology (Zehr, 2015), yet the difficulty to detect single-celled symbioses in nature 
makes the advance in this field extremely challenging. Symbiotic interactions are key 
drivers of ecological diversification and evolutionary innovation on Earth (Margulis 
and Fester, 1991; Moran, 2007; Guerrero et al., 2013; López-García et al., 2017). 
For example, one of the major innovations in nature was postulated in the Theory 
of Endosymbiosis by Linn Margulis, which posits that plastids and mitochondria in 
eukaryotes originated from bacterial endosymbionts giving rise to the eukaryotic 
photoautotrophic lineages (Margulis, 1971a, 1971b). Primary cyanobacterial-like 
plastids have experienced modifications in their genomes during the evolution 
towards a plastid lifestyle, but the underlying processes remain difficult to address 
because they occur over geological time scales. Thus, the study of present-day 
symbiotic associations between unicellular eukaryotes and prokaryotes might be an 
alternative way to understand how symbioses are established.

Of the few currently known single-celled associations, those involving 
diazotrophic microorganisms are essential in marine biogeochemical cycles. Given 
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that the nitrogen fixation is performed exclusively by prokaryotes together with 
the importance of nitrogen as a limiting nutrient in the world’s oceans productivity 
(Karl et al., 2002), eukaryotes harbouring nitrogen-fixing symbionts might succeed 
in nitrogen-depleted environments such as the photic ocean. Nevertheless our 
knowledge of the distribution of such symbiotic relationships across the global 
ocean is very limited, and thus we do not know which processes or circumstances 
promote these types of relationships.

As in primary cyanobacterial-like plastids, the UCYN-A genome underwent 
a strong genome reduction and, additionally, lacks metabolic pathways typical for 
cyanobacteria, including the tricarboxylic acid cycle or the oxygenic photosystem II 
(Zehr et al., 2008; Tripp et al., 2010). Interestingly, the UCYN-A symbiosis can be 
traced back to the late Cretaceous (91 Mya) (Cornejo-Castillo et al., 2016), which is 
significantly more recent than the origin of mitochondria or plastids. The presence 
of a double membrane together with the migration of genes from the endosymbiont 
genome to the host genome has been used as defining features to distinguish 
between true plastids and endosymbionts (Theissen and Martin, 2006; Nakayama 
and Archibald, 2012). Therefore, it will be important to sequence the genome of 
the UCYNA- host and to determine whether UCYN-A is surrounded by the host 
membrane (and thus a true endosymbiont) or is attached to the external surface 
(Zehr et al., 2016) (Fig. 3). In conclusion, the parallelism between the endosymbiosis 
that originated the plastids and the UCYN-A symbiosis makes this system a unique 
model to gain insight into the evolution of plastids, and further poses the question 
of whether we are currently witnessing an evolutionary process that will eventually 
lead to the establishment of a nitrogen-fixing organelle.
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Figure 3. Possible models of symbiotic interactions between UCYN-A and its haptophyte host. N, host nucleus; 
PL, plastids; M, mitochondrion; OM, outer membrane; IM, inner membrane. (From Zehr et al., 2016).

Future directions for the study of the UCYN-A symbiosis

The application of novel molecular approaches has accelerated the advent of 
microbial symbiosis research (McFall-Ngai, 2008). This is the case of the UCYN-A 
symbiosis, discovered through culture-independent methods. The combination of 
flow cytometric–sorting and high-throughput sequencing unveiled an streamlined 
genome of UCYN-A, suggesting a symbiotic lifestyle due to the lack of biosynthetic 
pathways for essential nutrients such as fixed carbon or essential amino acids (Tripp 
et al., 2010). Similarly, nano-scale secondary ion mass spectrometry (nanoSIMS) 
was key to elucidate the basis of the symbiosis in terms of metabolic exchange. 
This revealed that in the UCYN-A1 and UCYN-A2 symbiosis the cyanobacteria 
offers fixed nitrogen to its host and, in return, receives fixed carbon from the alga 
(Thompson et al., 2012; Martínez-Pérez et al., 2016). However, of the four different 
lineages of UCYN-A (Thompson et al., 2014; Farnelid et al., 2016) identified 
based on nitrogenase gene (nifH) phylogenetic trees, at least two differ in the 
number of cells per algal host and in the host cell size, suggesting that nutrient 
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requirements and exchange patterns may differ between lineages, yet this is still 
unknown. Investigating the nutrient exchange of new UCYN-A symbioses is thus 
key to understand the interplay between both host-symbiont and symbiont-symbiont 
in those cases with a cell ratio different than 1:1. Moreover, since the algal host 
and UCYN-A are photosynthetic and photoheterotrophic organisms, respectively, 
these exchanges will likely vary over the diel cycle. In particular, nitrogen fixation 
needs an oxygen-isolated environment to happen because the main enzyme of 
this process, the nitrogenase, is inactivated by oxygen, which may explain why 
UCYN-A expresses the nitrogenase genes during the day (given that it does not 
evolve O2) (Zehr, 2011). However, the association with an oxygen-evolving partner 
could make the nitrogenase enzyme in UCYN-A not completely safe from oxygen, 
opening new unknowns on the nitrogen fixation process. Both carbon and nitrogen 
fixation processes should be highly synchronized since the transfer of carbon from 
the alga to UCYN-A requires the previous transfer of nitrogen from UCYN-A 
(Krupke et al., 2015), but so far no study has explored the diel variations in the 
different processes resulting from these symbiotic interactions. In addition, although 
this is an obligate symbiosis (Cabello et al., 2015), the mechanisms driving the 
host-symbiont cell division, particularly in those cases with a host-symbiont cell 
ratio different than 1:1, are yet to be resolved. All this suggests a very tight and 
strongly regulated coupling between partners to succeed as a symbiotic entity, but 
the processes behind are still poorly understood. The future research on UCYN-A 
should go towards gaining knowledge of the ecology and the evolution of the 
UCYN-A nitrogen-fixing symbiosis to, eventually, get a better understanding of the 
mechanisms conducting to the plastid formation. Single-cell sorting, quantitative 
isotopic techniques, epifluorescence microscopy and high throughput sequencing of 
DNA and RNA performed on natural and experimentally-derived samples will be 
crucial to investigate how UCYN-A interacts with its hosting-cell at the genetic and 
biochemical level, and to understand the mechanisms and the environmental drivers 
that promote these types of symbiotic interactions in nature.
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Conclusions 
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CONCLUSIONS

1.	 Our metagenomic-based approach of the Tara Oceans dataset has increased the 
current repertoire of known nifH gene sequences unveiling that the nifH prim-
ers used in most diversity studies of marine diazotrophic diversity have led to 
an inaccurate view of their diversity and abundance patterns. This biased view 
is especially noticeable in heterotrophic diazotrophs, particularly in gamma-
proteobacterial (Cluster I) and deltaproteobacterial (Cluster III) diazotrophs, 
and less important in cyanobacterial diazotrophs.

2.	 Diazotrophs were widely distributed in the global ocean, but were commonly 
found within the rare biosphere community (<0.1% relative abundance) with 
some punctual exceptions, showing significant higher relative abundances in 
mesopelagic (0.07% of the prokaryotic community) than in surface (0.04%) or 
DCM waters (0.02%). Moreover, some diazotrophic clusters showed contrast-
ing habitat preferences, i.e., photic waters for cyanobacterial diazotrophs and 
mesopelagic waters for gamma- and alphaproteobacterial diazotrophs. 

3.	 The nifH gene sequences were mainly associated with gammaproteobacteri-
al (63% of nifH sequences), cyanobacterial (16%) and delta-proteobacterial 
(12%) diazotrophs. The most abundant individual diazotroph detected in the 
dataset was the unicellular symbiotic cyanobacterium C. Atelocyanobacterium 
thalassa (UCYN-A), which accounted for up to 0.6 % of the prokaryotic com-
munity in surface waters of the South Atlantic Ocean.



Concluding remarks

150

4.	 The combined analysis of co-occurring UCYN-A lineages in the South Atlantic 
Ocean demonstrated that UCYN-A display partner fidelity with their prymne-
siophyte hosts, i.e., B. bigelowii in the case of UCYN-A2 and a closely-related 
prymnesiophyte in the case of UCYN-A1. We showed that the two UCYN-A 
lineages displayed different symbiotic organizations: whereas the UCYN-A1 
lineage has one or two separate cells per host, the UCYN-A2 lineage may har-
bor up to 10 cells per host within a common symbiotic structure. 

5.	 Although the UCYN-A1 lineage was in general more abundant than UCYN-
A2, an increase in abundance of the UCYN-A2 lineage was observed from 
smaller (0.2-3 mm) to larger (5-20 mm) size fractions, likely explained by the 
difference in cell size of their prymnesiophyte partners.

6.	 UCYN-A lineages dedicate a large transcriptional investment to fix nitrogen 
coupled to the generation of reducing power and the ATP synthesis. In both 
UCYN-A1 and UCYN-A2 lineages, the nitrogen fixation operon, including 
the nifH gene, was the most highly expressed gene-cluster accounting for a 
quarter of the total transcripts. Despite UCYN-A1 being more abundant than 
UCYN-A2, the expressed nifH transcripts per cell were almost 2 times higher 
for UCYN-A2 (648.33) than for UCYN-A1 (396.60), which may reflect dif-
ferential nutrient requirements for growth of their specific partners. 

7.	 We did not detect signs of large-scale positive selection, i.e. no apparent strong 
adaptation to novel niches in UCYN-A lineages, suggesting that the evolu-
tionary forces for niche adaptation would act on the prymnesiophyte partners 
rather than on UCYN-A, and that the symbionts were genetically adapted to 
their hosts before they were separated by speciation. Our results indicate that 
UCYN-A1 and UCYN-A2 lineages diverged around 91 million years ago 
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(Mya), i.e. during the late Cretaceous, after the low nutrient regime period oc-
curred during the Jurassic.

8.	 Different methods (CARD-FISH counts, together with the UCYN-A nifH gene 
sequences and qPCR ratios) showed some discrepancies in the identification 
of each UCYN-A lineage and led us to conclude that the UCYN-A association 
originally assumed to be UCYN-A2 at Station ALOHA is actually UCYN-A3.

9.	 The partial reconstruction of the genome of UCYN-A3 revealed this lineage as 
a new UCYN-A genomic species. Microscopic visualization showed that the 
size of UCYN-A3 cells and of their host, as well as the number of cyanobac-
terial cells per host are different from that of the better characterized lineages 
(UCYN-A1 and UCYN-A2), thus occupying a new planktonic compartment.

10.	The existence of multiple UCYN-A sublineages and prymensiophyte hosts that 
vary in size has implications for N2 fixation rates, since they could occupy size-
fractions that are not considered in diazotroph diversity studies, consequently, 
UCYN-A may play a larger role in N2 fixation than previously thought.
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