

Bioelectrochemical Oxidation of Water

<u>Marcos Pita^a</u>, Diana M. Mate^a, David Gonzalez-Perez^a, Sergey Shleev^b, Victor M. Fernandez^a, Miguel Alcalde^a, Antonio L. De Lacey^a
aInstituto de Catalisis y Petroleoquimica, CSIC C/ Marie Curie, 2, L10. 28049 Madrid, Spain. ^b Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 20560 Malmö, Sweden.
marcospita@icp.csic.es

The electrolysis of water provides a link between electrical energy and hydrogen, a high energy density fuel and a versatile energy carrier, but the process is very expensive¹. Indeed, the main challenge is to reduce energy consumption for large-scale applications using efficient renewable catalysts, which can be produced at low cost. Inspired by the water oxidation process catalyzed by inorganic Cu-complexes,² we present the multicopper oxidase laccase as the first ever enzyme reported able to catalyze electrooxidation of H₂O to molecular oxygen. Native and laboratory evolved³ laccases immobilized onto low-density graphite electrodes serve as bioelectrocatalytic systems with low overpotential and a high O₂ evolution ratio against H₂O₂ production during H₂O electrolysis. Our results open a new research ground on H₂O splitting as they allow overcoming serious practical limitations associated with artificial electrocatalysts used for O₂ evolution nowadays.

(1) Mallouk, T. E., Water electrolysis - Divide and conquer. Nat. Chem. 2013, 5 (5), 362-363.

(2) Chen, Z.; Meyer, T. J., Copper(II) catalysis of water oxidation. Angew. Chem. Int. Ed. **2013**, 52 (2), 700-703.

(3) Mate, D. M.; Gonzalez-Perez, D.; Falk, M.; Kittl, R.; Pita, M.; De Lacey, A. L.; Ludwig, R.; Shleev, S.; Alcalde, M., Blood tolerant laccase by directed evolution. Chem. Biol. 2013, 20 (2), 223-231.