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a b s t r a c t

At high pressure electric discharges typically grow as thin, elongated filaments. In a numerical simulation
this large aspect ratio should ideally translate into a narrow, cylindrical computational domain that
envelops the discharge as closely as possible. However, the development of the discharge is driven by
electrostatic interactions and, if the computational domain is not wide enough, the boundary conditions
imposed to the electrostatic potential on the external boundary have a strong effect on the discharge.Most
numerical codes circumvent this problem by either using a wide computational domain or by calculating
the boundary conditions by integrating the Green’s function of an infinite domain. Here we describe an
accurate and efficient method to impose free boundary conditions in the radial direction for an elongated
electric discharge. To facilitate the use of our method we provide a sample implementation. Finally, we
apply the method to solve Poisson’s equation in cylindrical coordinates with free boundary conditions in
both radial and longitudinal directions. This case is of particular interest for the initial stages of discharges
in long gaps or natural discharges in the atmosphere, where it is not practical to extend the simulation
volume to be bounded by two electrodes.
Program summary
Program Title: poisson_sparse_fft.py
Program Files doi: http://dx.doi.org/10.17632/x7f6czrnsh.1
Licensing provisions: CC By 4.0
Programming language: Python
Nature of problem: Electric discharges are typically elongated and their optimal computational domain has
a large aspect ratio. However, the electrostatic interactions within the discharge volume may be affected
by the boundary conditions imposed to the Poisson equation. Computing these boundary conditions using
a direct integration of Green’s function involves either heavy computations or a loss of accuracy.
Solution method:We use a Domain DecompositionMethod to efficiently impose free boundary conditions
to the Poisson equation. This code provides a stand-alone example implementation.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Despite their prevalence in industry and in nature, electric
discharges still hold many unknowns. For example, we do not
yet understand precisely how a lightning channel starts, how it
advances in its way to the ground or how exactly are bursts of
X-rays produced as it progresses [1]. This is partly due to the short
time and length scales involved in such processeswhich, combined
with their jittery behavior, prevents the use of many diagnostic
techniques. Due to these limitations, much of what we know about

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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electric discharges comes from computer models which, at least
within a simulation, are predictable and reveal arbitrarily small
scales.

Consider streamer simulations. Streamers are thin filaments of
ionized air that precedemost electric discharges in long gaps at at-
mospheric pressure. The main challenge for simulating streamers
is the wide separation between length scales: whereas the total
length of the streamer channel at atmospheric pressure ranges
from about one to some tens of centimeters, the ionization of
air molecules is mostly confined to a layer thinner than one mil-
limeter. Despite this difficulty, there are many numerical codes
that explain most of the observed properties of streamers [2–7].
In the past decades these models have gradually improved and
successfully overcome many of the challenges posed by streamer
physics. However, they are still computationally intensive and
often require days of runtime to produce meaningful simulations.

https://doi.org/10.1016/j.cpc.2018.01.003
0010-4655/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
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In this work we look at one of the problems behind these
long running times: the large aspect ratio of a single-channel dis-
charge. Whereas the width of an atmospheric-pressure streamer
is at most about one centimeter, its length spans many times
this extension. In order to minimize the amount of work per-
formed in a simulation, one strives to adapt the computational
domain to the dimensions of the streamer, which means using
a narrow cylindrical domain with a diameter only slightly larger
than the streamer width. However, in such a narrow domain the
electrostatic interaction between separate points in the channel
is strongly affected by the boundary conditions imposed on the
electric potential at the outer boundaries.

One approach to avoid this artifact while keeping a narrow
domain around the streamer is to calculate the boundary values
of the potential by direct integration of the electrostatic Green’s
function in free space [3,8–11]. These values are then imposed
as inhomogeneous Dirichlet boundary conditions in the solution
of the Poisson equation. In a cartesian grid with M cells in the
radial direction and N cells in the axial direction the direct in-
tegration of the Green’s function at each of the N nodes in the
external boundary requires aboutMN2 operations. Since the work
employed by fast Poisson solvers scales as MN log(MN) (MN for
multigrid solvers), the computation of boundary values by direct
integration may easily dominate the work employed in the elec-
trostatic calculations. This is mitigated in part by using a coarse-
grained charge distribution in the integration. However, in that
case there is a tradeoff between the degree of coarsening and the
minimal radial extension of the domain required for a tolerable
error.

Beyond this common approach used to solve Poisson’s equation
in electric discharges, some other methods have been developed.
A family of these methods has been built upon the idea of the
decoupling of local and far-field effects [12] and the computation
of the boundary potential by means of a potential generated by a
set of screening charges located in the outer surface of the com-
putational domain [13]. Based on these two methods mentioned
above, reference [14] uses a domain decomposition approach to
exploit parallel computing capabilities; first, Poisson’s equation
subject to unbounded boundary conditions is solved in a set of
disjoint patches. As a second step a coarse-grid representation of
the space charge is obtained and Poisson’s equation is again solved
in a global coarse-grid whose solution is used to communicate far-
field effects to local patches. Finally, Poisson’s equation is solved in
a fine grid using boundary conditions computed from the coarse-
grid solution corrected with local field information.

A different family ofmethods uses the convolutionwith Green’s
function subject to free boundary conditions. They manage the
singular behavior of Green’s function by either regularizing it [15],
or by replacing the singular component to the integrand of the
convolution by an analytical contribution [16]. These methods
have achieved an order of convergence greater than two.

Herewe adapt to the cylindrical geometry of electric discharges
the domain-decomposition method described by Anderson [17]
(see also [18] for a review of similar techniques). As we discuss
below, this method requires two calls to the Poisson solver but
otherwise the leading term in its algorithmic complexity follows
the scaling of the Poisson solver itself. Therefore for large grid
sizes our approach is more efficient than the direct integration
method. Furthermore, as we do not reduce the resolution, we do
not introduce any numerical error in addition to the discretization
error of the Poisson equation. We believe that the method we
present is simple enough that it can be easily implemented on top
of any existing streamer simulation code. To aid in this task we
provide a standalone example in Python.

Some applications may also require free boundary conditions
for the z-direction: for example, when the discharge develops

Fig. 1. Geometry of the discharge considered in this work. An elongated channel
propagates between two conducting electrodes. The space between these elec-
trodes, Ω is divided into two domains: the inner domain Ω1 is our computational
domain and contains all the space charge. The outer domainΩ2 extends indefinitely
outwards from the external boundary ofΩ1 and does not contain any space charge.
The cylindrical surface Γ is the common boundary between Ω1 and Ω2 .

far from the electrodes. In those cases one may also reduce the
computational domain in the longitudinal direction while the core
of the simulation remains inside the computational domain. We
have considered this topic of interest in Appendix Awherewe have
applied the domain decomposition method to obtain free bound-
ary conditions also in the longitudinal direction. This extension
requires an extra solution of Poisson’s equation.

Note that streamers are not the only type of discharge that
typically exhibits a large aspect ratio and that therefore our scheme
is also applicable to other processes such as leaders and arcs.

2. Description of the method

2.1. Domain decomposition

The most convenient decomposition of the domain strongly
depends on the problem at hand. The decomposition we present
here is suitable for elongated discharges and probably some other
applications but the procedure and the highlighted ideas are not
restricted to this particular scheme.

We consider the geometry sketched in Fig. 1, where an elon-
gated, cylindrically symmetrical streamer propagates between
two planar electrodes. With minimal changes, our scheme can
be extended to more complex geometries commonly employed
in streamer simulations, such as protrusion–plane, protrusion–
protrusion and sphere–plane. The electrostatic potentialφ satisfies
the Poisson equation with appropriate boundary conditions:

∆φ = f in Ω,

φ = g on ∂Ω,
(1)

where f = −q/ϵ0, with q being the charge density and ϵ0 the
vacuum permittivity. In principle an arbitrary boundary condition,
here denoted by g , can be applied to the upper and lower elec-
trodes. However, to simplify our discussion we limit ourselves to
the most common case where g = 0, meaning φ = 0 at z = 0
and z = L (to impose a potential difference V between the two
electrodes we simply add φinhom = zV/L to the solution of the
homogeneous problem). The domain Ω is the space between the
two electrodes, formally defined as

Ω =
{
x ≡ (ρ, θ, z) ∈ R3/0 ≤ ρ, 0 ≤ θ < 2π, 0 ≤ z ≤ L

}
. (2)
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Since our geometry is cylindrically symmetrical, we will hence-
forth omit the variable θ and consider the two-dimensional do-
main spanned by the variables (ρ, z).

Our purpose is to decompose the physical domain Ω into two,
which we name Ω1 and Ω2, such that Ω = Ω1 ∪ Ω2 (Ω i is the
closure of the set Ωi), Ω1 ∩ Ω2 = ∅ and supp(f ) ⊂ Ω1, i.e. all the
space charge is contained in Ω1. The inner domain Ω1, extending
up to a given radius R, is our computational domain and therefore
must be selected to be as narrow as possible.

Under this domain decomposition the problem (1) turns into
two coupled problems:

∆φi = f in Ωi,

φi = 0 on ∂Ωi \ Γ ,

φi = φΓ on ∂Γ ,

(3)

where i = 1, 2 and Γ = ∂Ω1 ∩ ∂Ω2 is the cylindrical surface at
ρ = R that separates the two domains.

Since at the interface Γ both, φ1 and φ2, are equal to the
boundary value φΓ , they fulfill φ1 = φ2. But besides this condition,
in order for φ1 and φ2 to be consistent with the solution φ of the
original problem (1), they must also satisfy

∂φ1

∂ρ
=

∂φ2

∂ρ
on Γ . (4)

2.2. Linearity

The linearity of the Poisson problems (3) with respect to their
sources f allows us to decompose the potentials as

φi = φ̄i[φΓ ] + φ̃i[fi], (5)

where φ̄i[φΓ ] results from the boundary values φΓ at the interface
Γ and φ̃i[fi] results from the original sources f restricted to Ωi (we
use [·] to denote a functional dependence). The precise definitions
read

∆φ̄i = 0 in Ωi,

φ̄i = 0 on ∂Ωi \ Γ ,

φ̄i = φΓ on ∂Γ ,

(6)

and

∆φ̃i = f in Ωi,

φ̃i = 0 on ∂Ωi \ Γ ,

φ̃i = 0 on ∂Γ .

(7)

In terms of these components the flux equation (4) can be
expressed as

∂φ̄1

∂ρ
[φΓ ] −

∂φ̄2

∂ρ
[φΓ ] = −

∂φ̃1

∂ρ
[f ] on Γ , (8)

where on the right hand side we have made use of φ̃2 = 0, since
f = 0 in Ω2.

2.3. Expansion in orthonormal solutions of the Laplace equation

The potentials φ̄i in (6) are solutions of the Laplace equation in
cylindrical geometry and they can be expanded using an orthogo-
nal basis of solutions (see e.g. [19]):

φ̄1 =

∞∑
m=1

αmI0 (kmρ) sin (kmz) , (9a)

φ̄2 =

∞∑
m=1

βmK0 (kmρ) sin (kmz) , (9b)

where αm and βm are expansion coefficients, km = mπ/L and In (x)
and Kn (x) are themodified n-order Bessel functions of the first and
second kind respectively. Note that the set S = {sin (kmz)}∞m=0 is an
orthogonal basis of

L2 ([0, L]) =

{
f : [0, L] ↦→ R :

∫
|f (z)| 2dz < ∞

}
, (10)

therefore, φΓ can be expanded as:

φΓ (z) =

∞∑
m=1

am sin (kmz) . (11)

If φΓ is continuous and piecewise differentiable on [0, L], φ′

Γ ∈

L2 ([0, L]) and φΓ satisfies homogeneous Dirichlet boundary con-
ditions, then the sine series converges to φΓ uniformly on [0, L].
Note that the term with m = 0 vanishes due to the homogeneous
boundary conditions at z = 0 and z = L.

The boundary conditions at z = 0 and z = L restrict the
basis of solutions. Homogeneous Dirichlet boundary conditions are
simpler because there is only need for sine functions. However,
if we had some other boundary conditions such as homogeneous
Neumann, the convenient basis should also include cosine func-
tions to allow for non-zero values of the potential at z = 0 and
z = L. Nevertheless, this basis is not orthogonal and this would
make things slightly more complicated.

2.4. Continuity of the normal derivative

Imposing that φ̄1 = φ̄2 = φΓ at ρ = R we solve for αm and βm
and write (9) as

φ̄1 =

∞∑
m=1

am
I0 (kmρ)

I0 (kmR)
sin (kmz) , (12a)

φ̄2 =

∞∑
m=1

am
K0 (kmρ)

K0 (kmR)
sin (kmz) . (12b)

Using these expressions into the equation for the normal deriva-
tives (8) we obtain

∞∑
m=1

amkm

[
I1 (kmR)
I0 (kmR)

+
K1 (kmR)
K0 (kmR)

]
sin(kmz) = −

∂φ̃1

∂ρ

⏐⏐⏐⏐⏐
ρ=R

, (13)

where we have made use of the identities I ′0(x) = I1(x), K ′

0(x) =

−K1(x). Using now the orthogonality of the basis S we obtain
equations for the coefficients am:

L
2
kmam

[
I1 (kmR)
I0 (kmR)

+
K1 (kmR)
K0 (kmR)

]
= −

∫ L

0
dz sin (kmz)

∂φ̃1

∂ρ

⏐⏐⏐⏐⏐
ρ=R

.

(14)

In a space discretization based on a cartesian grid the integral
in the latest expression is approximated by a finite sum with the
form of a Discrete Sine Transform (DST). This leads to this final
expression for the coefficients am

am = −
2

mπ

[
I1 (kmR)
I0 (kmR)

+
K1 (kmR)
K0 (kmR)

]−1

×

N∑
i=1

h sin (kmzi)
∂φ̃1

∂ρ

⏐⏐⏐⏐⏐
ρ=R,z=zi

+ O(h2), (15)

where h is the grid size and {zi}Ni=1 are the solution nodes in the z-
direction. In a discrete problem the series in (11) is also truncated
above m = N .
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2.5. Algorithm

We are now ready to detail the domain-decomposition algo-
rithm that allows us to solve the Poisson equation in the reduced
computational domain Ω1 with free boundary conditions:

1. Solve the Poisson equation in Ω1 with the source term
f and homogeneous Dirichlet boundary conditions at the
boundary Γ . Call the result φ̃1.

2. Calculate the normal derivative of φ̃1 at Γ . Apply a DST and
use expression (15) to obtain the coefficients am.

3. Use these coefficients to obtain the boundary values φΓ by
means of a second DST and expression (11).

4. Solve again the Poisson equation in Ω1 but now use φΓ

as inhomogeneous Dirichlet boundary condition at Γ . The
result, φ1 is the solution of the Poisson equation with free
boundary conditions.

To this algorithm we add the following remarks:

1. After obtaining the coefficients am one is tempted to use
(12a) together with φ1 = φ̄1 + φ̃1 to avoid solving the
Poisson equation a second time. However, in a grid ofM×N
cells this procedure takes about MN2 operations whereas
solving the Poisson equation requires only MN log(MN) or
MN operations.

2. The computational domain Ω1 has to be as narrow as pos-
sible in order to reduce the computational cost of the simu-
lation. Of course this narrowing is limited by the constraint
that Ω1 contains the support of the space charge density.
In an electrostatic discharge the charge density typically
decays smoothly away from the channel so in some cases
one has to decide at which level it is safe to truncate the
charge densitywith an acceptable error. Nevertheless, given
the fast decay of the charge away from the channel, this is
probably not a serious concern in most cases.

3. Tests and sample implementation

3.1. Tests

In order to test our scheme we consider now a simple setup
where the Poisson equation has a closed-form solution. An exam-
ple of such a configuration is a uniformly charged sphere located
between twogrounded, infinite planar electrodes. The electrostatic
potential in this setup can be calculated by the method of images
(see e.g. [19]) and equals the potential created in free space by an
infinite series of spheres with alternating charges.

Suppose a sphere centered at (ρ, z) = (0, z0) with radius a <
min(z0, L − z0) and total charge Q . At a point with cylindrical
coordinates (ρ, z) the potential reads

φ(ρ, z) = φ0(ρ, z)

+
Q

4πϵ0

∞∑
k=−∞

k̸=0

(−1)k[
ρ2 + (z − z0 − 2k(L − z0))2

]1/2 , (16a)

with

φ0(ρ, z) =
Q

4πϵ0

×

⎧⎪⎪⎨⎪⎪⎩
1[

ρ2 + (z − z0)2
]1/2 if ρ2

+ (z − z0)2 > a2,

3a2 − ρ2
− (z − z0)2

2a3
if ρ2

+ (z − z0)2 ≤ a2.

(16b)

Fig. 2 shows a comparison between the electric fields computed
using expression (16b) and using the approach described in sec-
tion 2. Here we took a = 3mm, L = 10mm, Q = 1013 e (e is the

elementary charge), z0 = L/2. For the discretized solution we used
∆r = ∆z = 10−2 mm and a radial extension of the computational
domain R = 5mm. We also include the electrostatic potential cal-
culated by imposing homogeneous Neumann boundary conditions
at the external boundary.

We see that the field calculated with the approach presented
here is indistinguishable from the field from the method of im-
ages. The homogeneous Neumann conditions, on the other hand,
produce an electric field that at the surface of the sphere deviates
by about 15% from the other two in the worst case, i.e. with
R = 5mm. To investigate the convergence of the homogeneous
Neumann solution we extended the computational domain by
computing the field also for R = 10mm and R = 20mm. As
wemove the external boundary away, the solution with Neumann
conditions approaches our reference solution (Method of Images).
Essentially, bringing the external boundary closer to the charged
sphere shields the electric field before so theNeumann condition is
fulfilled. As we will see, applied to streamer simulations, this leads
to slightly lower values of the electric field in the streamer head
and therefore less ionization.

3.2. Order of accuracy

We have checked that the method described above does not
change the order of accuracy of the discretization of the Poisson
equation by constructing a closed-form solution of the Poisson
equation that satisfies homogeneous Dirichlet boundary condi-
tions in the upper and lower electrodes.Wehave used the potential

φ = sin
(
π
z
L

)
e−

r2

σ2 −
(z−z0)

2

σ2 , (17)

whose Laplacian has the form

∆φ =
1

L2σ 4

{
4Lπσ 2 (z − z0) cos

(
π
z
L

)
+

[
π2σ 4

+ L2
(
−4r2 + 6σ 2

− 4(z − z0)2
)] }

× sin
(
π
z
L

)
e−

r2

σ2 −
(z−z0)

2

σ2 .

(18)

Although this charge density is not strictly bounded, the con-
tribution of charges excluded from the domain decays super-
exponentially as the domain becomes wider and can thus be ne-
glected as long as the external radius of the computational domain
is significantly longer than σ .

We have solved the Poisson equation corresponding to the
Laplacian (18) with L = 1m, σ = 0.1m and z0 = 0.5m within
a cylindrical domain with a radius R = 0.5m, where we imposed
free boundary conditions with themethod described above. In this
manner we checked that the convergence in the ℓ2-norm is of
second order, the same as that of the finite difference scheme. This
is as expected because φ̃1, its derivative in the radial direction and
the Fourier coefficients (15) retain convergence of order O

(
h2

)
.

We are also interested in the convergence aswemove the outer
boundary. Following the example of the previous section, this time
we change the radius of the sphere to 0.1mmand themesh spacing
to 1µm. Errors are presented in Table 1, and the convergence is as
expected of second order. Therefore, the decomposition method
does not cause errors of order less than two.

3.3. Sample implementation

A computer code that produces a figure similar to Fig. 2 is
includedwith this work. The code is implemented in Python and to
be executed it requires only thewidely available scientific libraries
NumPy and SciPy. To solve the discrete Poisson equation the code
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Fig. 2. Comparison between electric fields created by a uniformly charged sphere between two planar infinite electrodes calculated by the approach presented in this work,
by the method of images and by imposing homogeneous Neumann boundary conditions at the external boundary of the computational domain. Note the overlap between
the lines corresponding to free boundary conditions and to the method of images.

Table 1
Error obtained with change in outer radius.

Outer radius (mm) ∥ϵ∥2
∥ϵ∥2

∥φexact ∥2

0.2 5.919 × 10−7 5.037 × 10−6

0.5 4.735 × 10−8 3.812 × 10−7

1 1.227 × 10−8 9.838 × 10−8

constructs a sparse matrix for the discrete Laplacian operator and
invokes UMFPACK [20] (via SciPy) to solve the resulting linear
system.

The code consists of a single file Poisson_sparse_fft.py
and contains the following methods:

compute_matrix: Calculates the sparse matrix for the discrete
Laplacian operator in a given cartesian grid and boundary con-
ditions.

apply_inhom_bc: Modifies the right-hand-side of the linear
system in order to apply inhomogeneous Dirichlet boundary
conditions.

DDM: Applies the domain decomposition method described in
Section 2 to solve the Poisson equation with free boundary
conditions.

MOI: Calculates the electrostatic potential by means of the
method of images, using (16).

main: This is the entry-point of the code: it uses the above meth-
ods to produce the output figure.

4. Streamer simulations

In elongated electric discharges, Neumann boundary conditions
are often consideredmore appropriate than Dirichlet to be applied
at rmax because there is not a physical electrode in the radial direc-
tion, and therefore there is no reason to keep constant the potential
there. The development of electric discharges is driven by long
range interactions and therefore boundary conditions certainly
affect the solution inside the computational domain. These effects
can be reduced by enlarging the domain in the radial direction in
exchange of a higher computational cost. The procedure we have
described allows us to keep the boundary rmax close to the core of
the simulationwithout noticeable numerical effects on the electric
discharge. The following simulations clearly illustrate the features
mentioned.

We simulated the propagation of streamer discharges between
two planar electrodes with a model that includes electron drift,

impact ionization and dissociative attachment and is implemented
using the CLAWPACK/PetClaw library [21,22]. The Poisson equa-
tion is solved using the Improved Stabilized version of BiConjugate
Gradient solver from the PETSc numerical library [23,24]. For more
details about the physical model see e.g. Refs. [4,25,26].

We selected an inter-electrode gap of L = 2 cm and a back-
ground electric field of 27 kV/cm. The streamer is initiated by a
neutral ionization seed attached to the electrode on the central axis
and centered at z = L. The peak electron density in this seed is
1014 cm−3 and the e-folding length is 0.7mm.

As we are interested in the effect of the external boundary
conditions, we run simulations both with free boundary condi-
tions, implemented as described above, and with homogeneous
Neumann conditions for the electrostatic potential (as mentioned
above, it is generally assumed that Neumann boundary conditions
introduce slightly smaller artifacts). We also use different radii of
the computational domain, R = 0.5 cm, R = 1 cm and R = 2 cm.
In Fig. 3 we show snapshots of the electric field resulting from
these simulations at time t = 30 ns, shortly after the streamer
branches in the simulations with free boundary conditions. Note
however that the cylindrical symmetry of the simulations prevents
proper branching. MovieS1 (available online) shows the complete
evolution of the streamers.

In the plots we see that the simulations with free boundary
conditions are essentially identical regardless of the lateral exten-
sion of the computational domain. The simulations with homoge-
neous Neumann conditions on the other hand depend artificially
on the radius of the computational domain. The streamer barely
develops with R = 0.5 cm and only the simulation with R =

2 cm reproduces accurately the branching time of the simulations
with free boundary conditions. We conclude that, even in this case
where the aspect ratio of the discharge is not extremely high,
the computational gain from reducing the domain size (roughly a
factor 4) more than compensates for the cost of solving twice the
Poisson equation, resulting in an overall improvement of about a
factor 2.

5. Discussion and conclusions

When they are not laterally constrained, most electrical dis-
charges develop as elongated channels. Despite different physical
conditions and ionization mechanisms this feature is common to
streamers, leaders and arcs. The underlying reason for this shared
property is that all these processes are affected by a Laplacian insta-
bility [27,28], whereby small bumps in a discharge front enhance
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Fig. 3. Streamer simulations using free boundary conditions (left column) and homogeneous Neumann boundary conditions (right column) in the external boundary of the
computational domain. For each selection of the boundary conditions we show three simulations where the computational domain extends to a radius R = 0.5 cm (top),
R = 1 cm (middle) and R = 2 cm (bottom).

the electric field ahead and thus grow faster than the surrounding
regions. This prevents the formation of wide, smooth discharges
and creates branched discharge trees of many filaments [29].

Since this is the preferred shape of a discharge, it is reasonable
to optimize our numericalmodels for elongated channels, selecting
high-aspect-ratio computational domains. The method and the
code that we have presented here can be used to achieve this
efficiently and without losing accuracy.

We mention several possible extensions and refinements of
this method. The first one, which is described in the appendix,
consists in extending the free boundary conditions also to the
upper and lower simulation boundaries. This can be useful for the
investigation of discharges not attached to any electrode or, with
appropriate modifications, attached to a single electrode.

A second extension is to adapt the method to run in parallel
in several processors. If we parallelize the Poisson solver by ver-
tically decomposing the domain, the application of the method
described above requires collecting information about the initial
solution around the external boundary and then performing a
one-dimensional Fourier transform. The overhead of these steps is
small compared to the operations required for the solution of the
Poisson equation so the method can be efficiently parallelized.

Finally, one may ask about the suitability of this method for
non-uniform meshes and, in particular, for adaptively refined
meshes. Although the application of the method is in principle
straightforward, a careful analysis is required to understand the
error incurred due to a possibly coarser resolution around the
boundary than around a localized charge density. This analysis,
however, falls out of the scope of the present paper.

Note that although we have focused on the solution of the
Poisson equation, this method can be easily generalized to other
elliptic partial differential equations. Then, this can be applied
to other components of streamer simulation codes such as the
speeding-up of photoionization calculations by approximating the
interaction integral by combining solutions of a set of partial dif-
ferential equations, as proposed in Refs. [11,30,31].
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A. Full free boundary conditions

The focus in this paper is the implementation of free boundary
conditions in the outer boundary of a discharge confined between
two parallel plates but the method described above can also be
extended to implement free boundary conditions in all boundaries
of a simulation with cylindrical symmetry. In this appendix we
describe this extension.

A.1. Domain decomposition

The method described above allows us to solve the Poisson
equation in the space between two infinite, parallel planes. To build
upon this procedure we decompose now the full-space domain
Ω into three disjoint subdomains, which we name Ω0, Ω1 and
Ω2 (see Fig. A.4). We assume now that the support of the charge
distribution f is contained in Ω0 and thus arrive at the three
coupled problems

∆φ0 = f in Ω0,

φ0 = φΓ0i on ∂Γ0i, i = 1, 2,
(A.1a)

and

∆φi = f in Ωi,

φi = φΓ0i on ∂Γ0i,
(A.1b)

where i = 1, 2 and Γ0i = ∂Ω0 ∩ ∂Ωi are the surfaces z = 0 and
z = L respectively.

Since there are two interfaces, there are also two conditions for
the continuity of the normal derivative:
∂φ0

∂z
=

∂φi

∂z
on Γi, i = 1, 2. (A.2)
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Fig. A.4. Geometry of the problem.Ω is divided into three subdomains:Ω0 ,Ω1 and
Ω2 . The three extend indefinitely outwards and the latter two also downwards and
upwards respectively.

A.2. Linearity

Linearity allows us to split the problem into

∆φ̄0 = 0 in Ω0,

φ̄0 = φΓ0i on ∂Γ0i, i = 1, 2,
(A.3a)

∆φ̃0 = f in Ω0,

φ̃0 = 0 on ∂Γ0i, i = 1, 2
(A.3b)

and for i = 1, 2,

∆φ̄i = 0 in Ωi,

φ̄i = φΓ0i on ∂Γ0i,
(A.4a)

∆φ̃i = f in Ωi,

φ̃i = 0 on ∂Γ0i.
(A.4b)

Since there is no charge outside the computational domain,
φ̃i = 0 for i = 1, 2. These equations are naturally subject to the
condition that the potential vanishes at −z, z, ρ → ∞.

Note now that the problem (A.3b) can be solved by the pro-
cedure described in the main text, since φ̃0 is the union of the
solutions to the problems at (3).

In terms of these components, the flux equation (4) can be
expressed as

∂φ̄0

∂z

[
φΓ0i

]
−

∂φ̄i

∂z

[
φΓ0i

]
= −

∂φ̃0

∂z
[f ] on Γ , ∀i. (A.5)

A.3. Expansion in solutions of the Laplace equation

The potentials φ̄i in (A.4a) are solutions of the Laplace equation
in cylindrical coordinates and they can be expanded using a set
of solutions (see e.g. [19]). Since the domain is unbounded in the
radial direction, instead of a series expansionwe obtain an integral
transform, which we can write in terms of the zero-order Hankel
transform, which reads:

φ̄0 =

∫
∞

0
k dk

[
A (k) ekz + B (k) e−kz] J0 (kρ) , (A.6a)

φ̄1 =

∫
∞

0
k dk C (k) ekz J0 (kρ) , (A.6b)

φ̄2 =

∫
∞

0
k dk D (k) e−kz J0 (kρ) , (A.6c)

where J0 (x) is the zero-order Bessel function of the first kind and
the functions A, B, C,D weight the independent solutions to the

Laplace equation. Note that, although the factor k can be absorbed
into these functions, it appears explicitly in order to show the
Hankel transform structure.

The function φΓ0i can also be transformed as:

φΓ0i (ρ) =

∫
∞

0
k dkEi (k) J0 (kρ) . (A.7)

Casting these equations in the form of a Hankel transform is
important because as the Hankel transform can be inverted (it is its
own inverse) we can use the fact that, subject to some regularity
assumptions,∫

∞

0
k dk F (k) J0 (kρ) = 0 ⇐⇒ F (k) = 0. (A.8)

A.4. Continuity of the normal derivative

Imposing that φ̄0 = φ̄i = φΓ0i at z = 0 and L, we solve for
A, B, C,D using (A.8) and write (A.6) as

φ̄0 =

∫
∞

0

k dk
e2kL − 1

[(
E2ekL − E1

)
ekz

+
(
−E2 + E1ekL

)
e−k(z−L)] J0 (kρ) , (A.9a)

φ̄1 =

∫
∞

0
k dk E1ekz J0 (kρ) , (A.9b)

φ̄2 =

∫
∞

0
k dk E2e−k(z−L)J0 (kρ) . (A.9c)

Using these expressions into the equation for the normal
derivative (A.5) we obtain∫

∞

0

2ekLk2 dk
e2kL − 1

(
E2 − E1ekL

)
J0 (kρ) = −

∂φ̃0

∂z

⏐⏐⏐⏐⏐
z=0

, (A.10a)

∫
∞

0

ekLk2 dk
e2kL − 1

(
E2ekL − E1

)
J0 (kρ) = −

∂φ̃0

∂z

⏐⏐⏐⏐⏐
z=L

. (A.10b)

We can obtain the coefficients E1 and E2 going back to the k-
space by means of the Hankel transform:

E1 (k) =
1
2

(
e−kLIL − I0

)
, (A.11a)

E2 (k) =
1
2

(
IL − e−kLI0

)
, (A.11b)

where

I0,L (k) = −
1
k

∫
∞

0
ρ dρ

∂φ̃0

∂z

⏐⏐⏐⏐⏐
z=0,L

J0 (kρ) . (A.12)

In this expression φ̃0 and its normal derivative are known from
the algorithm described in 2.5. Therefore we can compute I0,L and,
using (A.11) E1,2. These functions in turn can be inserted in (A.7) to
yield the boundary condition to impose on Γ1,2.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2018.01.003.
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