

Instituto de Catálisis y Petroleoquímica

CSIC (Spanish National Council of Research)

ICP

Madrid, Spain

hydrogenase immobilized at an electrode/biomimetic

membrane interface

Energy generation in anaerobic bacteria by H₂ oxidation

R. Cammack. Hydrogen as a Fuel, Learning from Nature. Taylor & Francis, London 2001

Functional reconstitution of *E. coli* ATP-synthase on a modified gold electrode

QCM and AFM study of ATP-synthase reconstitution on a supported phospholipid bilayer

ATP hydrolysis activity of ATPase reconstituted on a gold electrode

Spectrophotometric detection of phosphate production with green malachite

Redox probe for measuring proton translocation across the supported bilayer

Differential pulse voltammetry measurements

Proton pumping by ATPase while hydrolyzing ATP

Co-immobilization of NiFeSe Hase and ATPase on a gold electrode with a supported phospholipid bilayer

Phospholipid bilayer formation on top of a hydrogenase monolayer covalently bound to 4-aminothiophenol-Au

AFM characterization

Gutiérrez-Sánchez et al. Langmuir 27 (2011) 6449-6457

Generation a proton gradient across the supported phospholipid bilayer

after electroenzymatic

0.7

0.6

H₂ oxidation

The electrocatalytic oxidation of H_2 by the immobilized hydrogenase induces a pH gradient across the biomimetic membrane

O. Gutiérrez-Sanz, C. Tapia, M. C. Marques, S. Zacarias, M. Vélez, I. A. C. Pereira, A. L. De Lacey. Angew. Chem. Int. Ed. 54 (2015) 2684-2687. Co-immobilization of NiFeSe Hase and ATPase on a gold electrode with a supported phospholipid bilayer

Au

Au-Hase

Au-Hase-PhBL-ATPase

ATP production coupled to electroenzymatic H₂ oxidation

O. Gutiérrez-Sanz, P. Natale, I. Márquez, M. C. Marques, S. Zacarias, M. Pita, I. A. C. Pereira, I. López-Montero, A. L. De Lacey, M. Vélez. Angew. Chem. Int. Ed. 55 (2016) 6216-6220.

Acknowledgements:

- Instituto de Catálisis (CSIC), Spain
 - · Oscar Gutiérrez-Sanz
 - \cdot Marcos Pita
 - · Cristina Gutiérrez-Sánchez
 - · Gabriel García-Molina
 - · Ileana Márquez
 - · Marisela Vélez
- ITQB (Universidade Nova de Lisboa), Portugal
 - \cdot Ines Pereira
 - · Marta Marques
 - \cdot Sonia Zacarias
- Universidad Complutense de Madrid, Spain
 - \cdot Paolo Natale
 - · Iván López-Montero

The membrane-bound Ni-Fe-Se hydrogenase from *Desulfovibrio vulgaris* Hildenborough

Valente et al. FEBS Lett. 581 (2007) 3341-3344; Marques et al. J. Mol. Biol. 396 (2010) 893-907.

Phospholipid bilayer formation on top of a hydrogenase monolayer covalently bound to 4-aminothiophenol-Au

Generation a proton gradient across the supported phospholipid bilayer

Future work

- Further caracterization and optimization of the ATP regeneration system.
- Improve the operational stability of the process
- Is it the hydrogenase, the ATPase, the Au-SAM or the PhBL integrity that limits the stability?
- To study oxygen sensitivity of the process.
- To couple a biochemical reaction to the ATP regeneration system.

QCM characterization of phospholipid bilayer formation on top of a hydrogenase monolayer

Hydrogenase immobilization: $\Delta(f_N/N)_7 = -42$ Hz, $\Delta Diss_7 (10^{-6}) = 4.4$, coverage= 8 pmol/cm²

Phospholipid bilayer formation: $\Delta (f_N/N)_7 = -21$ Hz, $\Delta Diss_7 (10^{-6}) = 2$