
vol . 1 9 2 , no . 1 the amer ican natural i st july 20 1 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)
E-Article

Branch Thinning and the Large-Scale,

Self-Similar Structure of Trees
Lars Hellström,1,2 Linus Carlsson,1,2 Daniel S. Falster,3,4 Mark Westoby,4 and Åke Brännström1,5,*

1. Department of Mathematics and Mathematical Statistics, Umeå University, SE-90187 Umeå, Sweden; 2. School of Education,
Culture and Communication, Mälardalen University, SE-721 23 Västerås, Sweden; 3. Evolution and Ecology Research Centre, and
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia;
4. Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; 5. Evolution and Ecology Program,
International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

Submitted November 7, 2016; Accepted November 21, 2017; Electronically published April 10, 2018

Online enhancements: appendix.
abstract: Branch formation in trees has an inherent tendency toward
exponential growth, but exponential growth in the number of branches
cannot continue indefinitely. It has been suggested that trees balance
this tendency toward expansion by also losing branches grown in pre-
vious growth cycles. Here, we present a model for branch formation
and branch loss during ontogeny that builds on the phenomenological
assumption of a branch carrying capacity. Themodel allows us to derive
approximate analytical expressions for the number of tips on a branch,
the distribution of growth modules within a branch, and the rate and
size distribution of tree wood litter produced. Although limited avail-
ability of data makes empirical corroboration challenging, we show that
our model can fit field observations of red maple (Acer rubrum) and
note that the age distribution of discarded branches predicted by our
model is qualitatively similar to an empirically observed distribution
of dead and abscised branches of balsam poplar (Populus balsamifera).
By showing how a simple phenomenological assumption—that the
number of branches a tree can maintain is limited—leads directly to
predictions on branching structure and the rate and size distribution
of branch loss, these results potentially enable more explicit modeling
of woody tissues in ecosystems worldwide, with implications for the
buildup of flammable fuel, nutrient cycling, and understanding of plant
growth.

Keywords: branching structure, self-similarity, tree architecture,
wood litter.

Introduction

Many plant species exhibit self-similarity, in that they ap-
pear geometrically, topologically, or statistically similar when
viewed at different scales (Ferraro et al. 2005; Prusinkiewicz
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et al. 2007; Godin and Ferraro 2010). Such self-similarity
underlies the stunning computer-generated images of plants
on display in Prusinkiewicz and Lindenmayer’s (1990) influ-
ential book The Algorithmic Beauty of Plants, as well as the
metabolic theory of ecology (West et al. 1997; Enquist et al.
1999). Reflecting its importance, several different concepts
of self-similarity have been developed and used to model
and understand plant form (Prusinkiewicz 2004; Godin and
Ferraro 2010). For many tree species, however, it is not im-
mediately obvious how self-similarity is maintained during
botanical growth, because the trivial way of maintaining
self-similarity under growth—to uniformly scale everything
up—is inconsistent with the nature of woody plants. Heart-
wood is inert, so once it is formed the heartwood section of
a given growth module cannot increase in length, only in
girth, whereas branches grow in length by adding new growth
modules at the tips.
To understand how self-similarity is maintained as trees

grow, it may help to consider not only the growth of new
shoots but also how branches are discontinued and lost.
Death and self-pruning of branches is in fact common in
many species (Schaffner and Tyler 1901; Dewit and Reid
1992; Heräjärvi 2001; Mäkinen and Hein 2006); factors that
influence this process have been thoroughly studied, as high
density of branches is generally considered negative in sil-
viculture (Mäkinen 1999; Mäkinen and Colin 1999; Ford
2014). Branch thinning is a less obvious process in the trans-
formation of a tree than the growth of new shoots, in that
it may seem random and any single event could easily be
attributed to damage by external forces, but by considering
changes over a span of several growth cycles (fig. 1) it is pos-
sible to see that somemanner of branch thinningmust be part
of the normal development of many tree species. Figure 2
shows specimens of Scots pine and Blue Mountains ash that
have lost branches during ontogeny.
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While branch thinning has been investigated both empir-
ically (Dewit and Reid 1992; Mäkinen 1999) and theoreti-
cally (Mäkelä 1997; Eschenbach 2005), no quantitative model
of branch thinning has as yet been developed and applied to
make predictions for both branching architecture at a point in
time and production over time of a size mixture of dead and
abscised branches. Functional-structural plant models such
as the GreenLab model (Cournède et al. 2008) should in
principle be capable of making such predictions, though ex-
cept for Eschenbach (2005) they have not to our knowledge
been applied for this purpose, and their predictions would
likely need to be derived numerically through computer
simulation. Here, we introduce and analyze an elementary
model of branch thinning that rests on the assumption that
the number of tips on a branch increases to, but does not ex-
ceed, a carrying capacity that depends on the branch age.We
show how this model allows both quantitative and qualitative
predictions of branching architecture at specific times and
production of a size mixture of dead and abscised branches
over time.
Methods

We consider amodel of tree growth in which a tree develops
over time by following two basic rules. First, in each growth
cycle a growth module is added at each tip, and at the distal
end of that growth module some average number (m ≥ 1) of
tips is formed. Second, if a branch that is n growth cycles old
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exceeds a carrying capacity of K(n) tips, it may discard one
or several subbranches in a process of branch thinning. We
quantify the resultant branching structure, as illustrated in
figure 3, by counting the number of growth modules g(ℓ, n)
at a distance ℓ growth cycles from the start of the branch un-
der consideration. Here, we use “distance” to mean that the
growth modules are formed ℓ growth cycles after the tree
started growing and they are thus n2 ℓ growth cycles old,
but by assuming that all growthmodules have roughly equal
length we can also consider this an actual distance. Table 1
gives an overview of the parameters and statistical quantities
that we use in our derivations.
To complete the model specification, we need to specify

the form of the branch carrying capacity, the details of how
a tip branches into an average m 1 1 more tips, and the de-
tails of how subbranches are discarded once a branch
exceeds its carrying capacity. We assume that the branch
carrying capacity is given by

K(n) p a(n1 1)d , ð1Þ

which is a simple, increasing function in n that for d p 3 is
compatible with the hypothesis of spatial constraints as the
main limiting factor.
As we show in Results, the assumptions above suffice for

deriving approximate analytical expressions for the large-
scale branching structure of trees, without specifying the
details of the branching process or how subbranches are
GC: Growth cycles

5 GC 8 GC 11 GC 14 GC 11 GC

with thinning without
thinning

Figure 1: Branch thinning is part of the normal development of many tree species. The four leftmost panels conceptually show the devel-
opment of a tree with branch thinning: many side branches are discontinued, and as a result the distance between adjacent branching points
increases. Branching points that remain in the next panel are marked with a dot. By contrast, the last panel shows the result of pure primary
growth without branch thinning: the exponential increase in the number of branches forces them to be so densely packed that they overlap
even when drawn with thin lines.
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discarded. To illustrate and corroborate our analytical con-
clusions, we use an individual-based simulation described
in appendix section Details of the Individual-Based Simula-
tion (the appendix is available online) and presented in fig-
ure 4; the main idea is to alternate between growth steps
(working as in an L-system; Lindenmayer 1968; Prusin-
kiewicz and Lindenmayer 1990) and thinning steps, where
subbranches are discarded from a branch with probability p
when the branch exceeds its carrying capacity. To test the
robustness of our conclusions, we also implement more re-
alistic assumptions and show in appendix section Robust-
ness of Results that these assumptions do not alter our
findings. Source code and data used in this article are avail-
able at Zenodo: https://zenodo.org/record/1160465 (Hell-
ström 2018).1
Results

Based on our model assumption of a branch carrying ca-
pacity, we derive approximate analytical predictions for
1. Code that appears in the American Naturalist is provided as a convenience
to the readers. It has not necessarily been tested as part of the peer review.
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the large-scale branching structure of our modeled trees.
These include the number of tips on a branch, the distri-
bution of growth modules within a branch, the rate of
wood litter production during ontogeny, and the size dis-
tribution of discarded branches. Finally, we fit our model
predictions to observations of red maple (Acer rubrum)
and qualitatively compare our calculated size distribution
of discarded branches to observations of balsam poplar
(Populus balsamifera).
The Number of Tips on a Branch

An immediate conclusion from combining the fixed branch-
ing ratio m with the branch carrying capacity K(n) is that the
expected number of tips b(n) on a branch of age-n growth
cycles must fulfill

b(n) ≤ minfmn,K(n)g, ð2Þ
since primary growth leads to an increase in the number of
tips by a factor m, whereas branch thinning reduces that
number when it exceeds the K(n) saturation bound. The
equilibrium between these two opposing processes is a
a b

Figure 2: Many tree species lose a significant number of branches through ontogeny. a, Scots pine, Pinus sylvestris, with stumps of dead
branches on the stem, indicating larger branches that have been lost. b, Blue Mountains ash, Eucalyptus oreades, without visible stumps
of dead branches but that must nonetheless have lost branches during ontogeny. In particular, when the now large and sturdy branches were
first formed they held smaller branches near to the main stem that were later lost.
.239.020.133 on June 13, 2018 03:38:22 AM
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branch whose number of tips is just below the carrying ca-
pacity. For small branches, however, the exponential growth
mn has not yet reached the branch carrying capacity, and for
these branches mn constitutes the practical upper bound.

If the branch-thinning process removes at most a fixed
proportion c of all tips of the tree, we would also have the
lower bound

b(n) ≥ minfmn, cK(n)g: ð3Þ
Hence, with exception of an early phase with exponential
growth, the expected number of tips on a branch will lie be-
tween ca(n1 1)d and a(n1 1)d, as K(n) p a(n1 1)d . In
deriving analytical results, we will assume that

b(n) p minfmn, b(n1 1)dg: ð4Þ
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This assumption (i.e., that b is a fixed value between ca and
a, which simplifies arguments and presentation of results) is
in good agreement with our individual-based simulations
and robust under an alternative process of branch thinning
(see appendix section Robustness of Results). Most of our
results can be derived without this assumption but then take
the form of an inequality in which the predicted quantity
is bounded from below and above using equations (2) and
(3), respectively. Note that equation (4) assumes immediate
branch thinning when a branch first exceeds its branch car-
rying capacity. To model gradual transitions, a smooth ap-
proximation of the minimum function can be used. We ex-
plore this possibility in Empirical Corroboration.
As a first result, it follows from equation (4) that the

distances between two consecutive branching points are
(on average) first constant near the tree periphery and then
increase geometrically as the tree is traversed from the distal
end to the proximal end. Because b(n) in the self-thinning
region follows a power law, its value will on average double
between two consecutive branching points when one tra-
verses a branch from the distal (tip) to the proximal end
(stem), since a branching point joins two subbranches that
on average have equal size. Hence, n will have to grow by a
factor roughly 21=d between branching points, depending on
the exponent d but not on the position n.
The Distribution of Growth Modules within a Branch

We quantify tree branching structure, as illustrated in fig-
ure 3, by counting the number of growth modules g(ℓ, n)
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Figure 3: We quantify branching patterns by counting the number of
growth modules at a given distance ℓ from the proximal end of a
branch or a tree, measured in growth cycles. The top image shows
the structure of a simulated branch, produced by alternating growth
and branch thinning for 40 growth cycles. The histogram shows the
number of growth modules at each distance. The curve in the graph
shows the theoretical expectation g (ℓ, n) of equation (7). Parameters:
m p 2,a p 3,d p 2,n p 40, andb p 1:5229 (chosen tomake g(n,n)
match the number of tips in the branch). See table 1 for variable and
parameter definitions.
Table 1: Parameters and central statistical quantities
Symbol
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Unit
a
 Proportionality constant in branch carrying
capacity
–

b
 Realized proportionality constant in statistical
quantities
–

d
 Exponent in the branch carrying capacity
 –

m
 Average number of tips formed at a growth

module

–

Mn
 Biomass of a growth module n growth cycles
old
kg
p
 Pruning probability in our individual-based
model
–

b(n)
 Average number of tips on a branch n growth
cycles old
–

g (ℓ, n)
 Average number of ℓth growth cycle descen-
dants of a growth module n growth cycles old
–

K(n)
 Maximum sustainable number of tips on a
branch n growth cycles old, also referred to
as the branch carrying capacity
–

Note: A dash symbol indicates that the value is dimensionless.
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at a distance ℓ growth cycles from the root of a tree of age-n
growth cycles. By definition, g(0, n) p 1 and g(n, n) p
b(n). Assuming that any two branches of the same age can
be considered to be independent and to have the same sta-
tistical properties, we show in appendix section Identities
for the Mean and Variance that g(ℓ, n) is uniquely deter-
mined by the function b and equal to

g(ℓ, n) p
b(n)

b(n2 ℓ)
: ð5Þ

The argument is that the full tree has b(n) tips, whereas if one
traverses ℓ growth cycles from the root toward a tip, then one
reaches a branch of age n2 ℓ growth cycles with on average
b(n2 ℓ) tips. The expected number of such branches is by
definition g(ℓ, n), so by bookkeeping b(n) p g(ℓ, n)b(n2 ℓ),
which leads to equation (5). Individual-based simulations
confirm that a process of alternating primary growth and
branch thinning does indeed give this branching structure,
as shown in figure 5.

A direct consequence of equation (5) is that the expected
number of branches produced by a growth module that is a
ℓth growth cycles descendant of a branch of age-n growth
cycles equals the quotient

number of (ℓ 1 1)th growth cycle growth modules
number of ℓth growth cycle growth modules

p
g(ℓ 1 1, n)
g(ℓ, n)

p
b(n)=b(n2 ℓ 2 1)
b(n)=b(n2 ℓ)

p
b(n2 ℓ)

b(n2 ℓ 2 1)
p g(1, n2 ℓ):

ð6Þð6Þ
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The right-hand side is the expected number of subbranches
of a tree of age n2 ℓ, thus implying uniformity in that a sub-
branch of a tree has the same average branching structure as
a tree that has existed for the same number of growth cycles.
From combining equations (4) and (5) and restricting

attention to the branch-thinning region, one arrives at
an equation for the number of growth modules:

g(ℓ, n) p
b(n)

b(n2 ℓ)
p

b(n1 1)d

b(n2 ℓ 1 1)d
p

�
12

ℓ

n1 1

�2d

,

ð7Þ
which is interesting in that the only parameter remaining is
the carrying-capacity exponent d. Equation (7) leads to two
salient predictions.
First, the branching structure is self-similar, in the sense

that on average a large branch looks like a scaled-up version
of a small branch when we compare the branch-thinning re-
gions. More precisely, for a constant ratio of ℓ to n1 1 one
gets the same expected value g(ℓ, n) of ℓth growth cycle
growth modules regardless of the overall branch age n.
Figure 6 illustrates this for two simulated individuals, by
counting growth modules at the proximal-distal midpoint
of two branches of different age: the number is the same
in both cases. Figure A2 (figs. A1–A5 are available online)
shows a plot of ℓ=(n1 1) against g(ℓ, n) for three different
values of n; the three curves diverge only when b(n2 ℓ)
switches over to mn2ℓ (the exponential-growth region). See
table 1 for variable and parameter definitions.
Second, after rescaling, the branching structure depends

chiefly on d; other parameters have little or no influence
grow thin grow thin

grow thin grow thin

grow thin grow

Figure 4: Illustration of the individual-based model. Each image represents one stage in a branch growth simulation, shown alternatingly
before growth and before branch thinning. Dots indicate branches that exceed their carrying capacity. Note that, due to the probabilistic
nature of our individual-based model, some branches may remain above their carrying capacity also after branch thinning. Parameters: a p 3,
d p 2, m p 2, and p p 10%. See table 1 for variable and parameter definitions.
.239.020.133 on June 13, 2018 03:38:22 AM
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on this. For d p 1, one expects g(ℓ, n) p 2 (first branching
has taken place) at ℓ=(n1 1) p 0:5, whereas for d p 2
one expects the first branching at ℓ=(n1 1) ≈ 0:29 and
expects g(ℓ, n) p 4 at ℓ=(n1 1) p 0:5.
This content downloaded from 130
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In appendix section Empirical Measurement of Model
Parameters, we discuss data requirements and statistical
procedures for empirically estimating the parameters of
equations (4) and (7).
Distance to root in growth cycles
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Figure 5: Individual-based simulations corroborate equation (5), the theoretical number of growth modules g(ℓ, n) depicted in figure 3. The
spread in simulated trees due to randomness in the process is several times larger than the difference between simulation average and theoretically
predicted average. Parameters are m p 2, a p 3, b p 0:5, d p 2, p p 10%, and n p 100. See table 1 for variable and parameter definitions.
g(11, 21) = 4

g(21, 41) = 4

Figure 6: Emergent branching structure is self-similar; two simulated individuals of different sizes still branch at roughly the same rate,
relative to the full size of the branch being considered. The gray lines mark the proximal-distal midpoint of the branches, and both intersect
the same number of growth modules (namely, four). Parameters are m p 2, a p 3, and d p 2.
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Wood Litter Production during Growth

The number of growth modules at a distance ℓ growth cycles
from the root of a tree n growth cycles old (eq. [5]) decreases
with n as these growthmodules gradually disappear because of
branch thinning, whereas new ones form only from tips. The
difference g(ℓ, n)2 g(ℓ, n1 1) is thus a measure of the
expected number of growth modules of age n2 ℓ that are
lost in a branch between growth cycles n and n1 1 of that
branch. Importantly, some of these growth modules are lost
because they are part of a larger branch that is discarded. To
determine the expected number of branches of a given age
that are lost in a growth cycle, we subtract the expected
number of growthmodules aged n2 ℓ that are part of larger
branches being lost. Using equation (5), this gives

(g(ℓ, n)2 g(ℓ, n1 1))2 g(1, n2 ℓ 1 1)(g(ℓ 2 1, n)

2 g(ℓ 2 1, n1 1))

p g(ℓ, n1 1)
b(n2 ℓ 1 1)2

b(n2 ℓ)b(n2 ℓ 1 2)
2 1

� �

ð8Þ
as the expected number of branches of age-n2 ℓ growth
cycles that are discarded due to branch thinning directly
at their supplying growth module. The corresponding age
distribution of discarded branches, shown in figure A3,
has a peak at the age at which branches hit their carrying ca-
pacity and an extended tail of older branches.
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In addition to describing the age and number of branches
that are on average lost during growth, we can determine the
wood litter production measured as the biomass lost. If a
growth module that is n growth cycles old has mass Mn, the
expected wood litter production from a tree of age n during
the following growth cycle becomes

Xn

ℓp0

(g(ℓ, n)2 g(ℓ, n1 1))Mn2ℓ: ð9Þ

We approximate Mn using allometric relationships. McMa-
hon and Kronauer (1976) conclude that the branch radius r
grows as branch length to the power 3/2; thus, n3=2 ∝ r and
Mn ∝ r2, which combine to Mn ∝ r2 ∝ n3. Hence, the ex-
pected wood litter of age-n2 ℓ growth modules from a
branch of age n over one growth cycle is

(g(ℓ, n)2 g(ℓ, n1 1))Mn2ℓ

∝
�

b(n)
b(n2 ℓ)

2
b(n1 1)

b(n1 12 ℓ)

�
(n2 ℓ)3:

ð10Þ

Figure 7 shows that, also by biomass, there is a peak in
wood litter of branches that have just reached their carry-
ing capacity, regardless of total tree age. In wood litter pro-
duced by older trees, there is also a significant fraction of
large-diameter growth modules. For the latter fraction, there
are two opposing trends in their contribution to the distri-
bution of wood litter biomass: on the one hand, a decrease
in thinning frequency, and on the other hand, an increase in
volume of individual growth modules.
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Figure 7: By volume, the distribution of wood litter has a peak around the transition from the exponential-growth region to the branch-
thinning region, but for older branches the fraction of large-diameter material increases. The normalization of wood volume is done in
two steps. First, the volume of one age-10 growth module is taken as the volume unit. Second, the numbers obtained are divided by the
expected number of age-10 growth modules to make the distributions for different age branches comparable. Parameters: b p 2, d p 2,
and m p 2. See table 1 for variable and parameter definitions.
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Empirical Corroboration

Wilson (1966, fig. 10) provides data for red maple (A.
rubrum) that correspond directly to our b(n) function:
how the number of “long shoots” in a tree varies on average
with the number of “groups.”A group here is the analog of a
whorl in pine trees, so the number of groups on the stem
corresponds to the age of the tree in growth cycles. We fit
equation (4) using nonlinear regression to the 29 groups.
Assuming an offset of four growth cycles, the best model
fit of b(n), equation (4), based on minimizing the sum of
squared errors with the data on a logarithmic scale, gives
parameters b p 6:69, d p 1:44, and m p 1:51, with a coef-
ficient of variation R2 p 0:9834 on the original linear scale,
thus explaining more than 98% of the variation in the data.
Figure 8 shows the estimated b(n) plotted against the data on
a semilogarithmic scale. Wilson (1966, 6) remarks that old
groups are being lost, so high group numbers are systemat-
ically underestimating the true age of the tree; a similar re-
gression using only the first 25 groups gives R2 p 0:9972
(fig. A4).

Wilson’s data are qualitatively similar to our expression
b(n), as shown in figure 8, with a near-linear section for low
group numbers (the exponential-growth region) and a sharp
This content downloaded from 130
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bend leading to much slower growth at high group numbers
(the branch-thinning region). The transition seems to happen
at around n p 15, which is notably higher than we see in
our individual-based simulations, but the branch structure
of red maple—with the two separate classes of short- and
long-shoot branches, where the former carry leaves but no
smaller branches—makes it likely that the b parameter
could be fairly high, and this in turn should lead to a large
exponential-growth region.
Our predictions concerning wood litter production can

also be compared with empirical data. Dewit and Reid (1992,
fig. 3), reproduced here in figure 9a, record the age distribu-
tion of branches shed from a balsam poplar (P. balsamifera)
during one autumn. Their recorded age distribution has the
same general shape as ourmodel-generated age distributions
shown in figure A3, apart from the low number of abscised
10-year-old branches, which Dewit and Reid speculate was
caused by a transplantation of the tree with a large mechan-
ical tree spade that took place in 1977, 10 years prior to their
measurements. In particular, there is a minimum age below
which very few branches are shed, a peak at a fairly low
age, and an extended tail toward older branches.
While the distributions share the same qualitative

features, our model-generated distributions in figure A3
have thinner tails and sharper concentration of discarded
branches at the age at which branches first exceed their
branch-carrying capacity. To see whether the thicker tails
can be explained by a gradual transition to branch thinning,
rather than the abrupt onset we have assumed thus far, we
replace the minimum function assumed in equation (4)
with a smooth approximation and find, as we show in fig-
ure 9b, that the thicker tail can also be captured within
our modeling framework.
Discussion

As trees grow in height, they lose branches to extrinsic
factors such as wind breakage, but many tree species also
cease to support branches that eventually die or actively ab-
scise branches (Schaffner and Tyler 1901; Mäkinen 1999;
Mäkinen and Colin 1999; Heräjärvi 2001; Mäkinen and
Hein 2006). The wood litter produced can be substantial;
the pine tree in figure 2a must have lost every branch that
once existed at heights below its first branch, and the euca-
lyptus tree in figure 2bmust have lost a comparable number
of branches. Wood litter is important in the carbon cycle
and as a factor influencing both the growth and branching
architecture of trees. We have introduced and explored a
simple model of tree growth in which branches are thinned
whenever they exceed a branch carrying capacity. By as-
suming a branch carrying capacity, we were able to derive
approximate analytical predictions for tree architecture at
any point in time and for tree wood litter production over
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Figure 8: Our prediction for the number of tips compares favorably
with empirical measurements. The function b(n) defined by equa-
tion (4) is fitted to empirical data from Wilson (1966) by minimizing
the sum of square errors with the data on a logarithmic scale. The
estimated parameters are b p 6:69, d p 1:44, and m p 1:42, with
R2 p 0:9834 on the original linear scale. See table 1 for variable
and parameter definitions.
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time, both expressed as the total biomass lost and as a size
mixture of dead and abscised branches.

With our model being a simplified representation of
tree growth, to what extent do our predictions apply more
generally? Using individual-based simulations we found
that our results remain robust under stochastic branching
patterns and branch thinning that, when the branch carry-
ing capacity has been exceeded, discards subbranches closer
to their carrying capacity with higher probability. Most tree
species, however, avoid the untamed exponential branching
pattern assumed here by differentiating rules for separate
classes of branches, often denoted apparent branching order
(figure A5; see also Hallé et al. 1978; de Reffye et al. 1988;
Barthélémy and Caraglio 2007). The phenomenological car-
rying capacity assumed here is also in reality realized through
other factors, such as light or nutrient limitation. Existing
functional-structural plant models (see, e.g., Cournède et al.
2008; Vos et al. 2010) that model detailed aspects of tree
growth could potentially be used to study how more realistic
assumptions on tree growth influence the predicted wood lit-
ter production (see Eschenbach 2005 for a step in this direc-
tion).

The ideal test of our predictions is to confront them with
empirical data. We have taken a first step in this direction by
comparing our predictions for the number of tips on a
branch over time with Wilson’s (1966) observations of red
maple and the age distribution of wood litter produced with
Dewit and Reid’s (1992) observations of balsam poplar. In
both cases, we found qualitative agreement that increases
the likelihood that our conclusions may extend beyond
the simplified growth model in which they were derived.
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In the appendix section Empirical Measurement of Model
Parameters, we discuss how the model parameters may be
inferred from field observations. If data on wood litter pro-
duction can also be obtained, the predicted wood litter pro-
duction from our model can be compared with the actual
values at both a quantitative and a qualitative level. It might
also be possible to compare directly to architectural data,
such as our prediction that the distances between consecu-
tive branching points as a branch is traversed from tip to
stem should (except in the tree periphery) on average in-
crease with a factor 21=d , in which d is one of the measured
model parameters. Advances in remote sensing may even
allow automated data collection (see Lindberg and Holm-
gren 2017 for a recent review). A follow-up study that con-
siders the consequences of more detailed representations of
plant growth or that interfaces with empirical data, for ex-
ample as outlined above, would be valuable; such an effort
would be likely to yield important insights independent of
whether it supports the predictions and conceptual ideas
presented here.
Our model builds on the idea that trees produce more

branches than they can support and that some of these
branches must therefore be lost. A related idea is at the
heart of a strand of computer algorithms for generating
tree forms, in which branches compete to colonize different
areas of available space (Ulam 1962; Cohen 1967; Prusin-
kiewicz and de Reuille 2010). While these algorithms build
on the realization that physical space is limited, they are
in practice quite different from our modeling framework.
A more closely related body of work is the West-Brown-
Enquist theory for trees (West et al. 1999; see also Enquist
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Figure 9: Our prediction for the age distribution of discarded branches compares favorably with empirical measurements. a, Data from
Dewit and Reid (1992) on the age distribution of abscised branches between October and December 1987 in one specimen of balsam poplar
(Populus balsamifera). b, Model-generated age distribution of abscised branches during one growth cycle, assuming that all discarded
branches are abscised. The distribution is calculated from equation (8) using a smooth approximation of the minimum function to represent
a gradual onset of branch thinning. Specifically, we used ((xq 1 yq)=2)1=q with qp22 as a smooth approximation of min(x, y) in equation (4).
Parameters are b p 10, d p 3, m p 2:5, and n p 100. See table 1 for variable and parameter definitions.
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2002; Price et al. 2010; Savage et al. 2010; Smith et al. 2014),
which combines a structural-mechanical model of branches
and a hydraulic model of the vascular system. Branches are
assumed to be self-similar in the sense that subbranches
are architecturally scaled-down versions of the full branch,
with a cutoff at the scale of petioles. Starting with this static
view of plants, the theory predicts rates of fluid flow and bio-
mass production in relation to plant size. By contrast, we do
not primarily consider tree morphology at a point in time
but rather how it develops over time through the growth
and loss of branches. Another model capable of predicting
wood litter has been developed byMäkelä (1997). By assum-
ing that carbon is lost through death of the lowest branches
as the height over ground of the tree crown increases, the to-
tal rate of wood litter production is determined. Importantly,
however, this model does not consider branching structure
and therefore cannot be used to study the size distribution
of branches or the consequences of self-pruning for the emer-
gent branching architecture.

In this article, we have emphasized that the large-scale,
self-similar branching structure of trees emerges as a con-
sequence of branch-thinning during ontogeny. Using a
simplified model of tree growth, we have shown how to
derive approximate analytical predictions for tree architec-
ture at any point in time and for tree wood litter produc-
tion over time, both expressed as the total biomass lost
and as the size mixture of dead and abscised branches.
Such predictions have value that extends beyond increased
understanding of plant ecology; they can potentially be used
to improve models of the carbon cycle and also to improve
the dynamic global vegetation models that are used to study
climate change. Further work will tell how well our model
predictions match data and improve on the model given
here by allowing more realistic growth patterns.
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