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there was an inverse association between SSL and osteo-
protegerin in RA women (r = − 0.260; p = 0.022). Serum 
β-CTX and dickkopf-1 were strongly associated with SSL 
in RA men not treated with bisphosphonates (r = 0.590; 
p < 0.001/r = 0.387; p = 0.031, respectively). There was 
also an inverse association between SSL and sclerostin in 
RA men (r = − 0.374; p < 0.05), stronger among biologic 
naïve or bisphosphonates-unexposed RA men. In crude 
models, SSL presented as a significant negative predictor 
of total proximal femur BMD in RA women as well as in 
postmenopausal RA women. After adjustment for BMI, 
disease duration, and years of menopause, SSL remained a 
significant negative predictor of total proximal femur BMD 
only in postmenopausal RA women. Our data reinforce a 
role, despite weak, for circulating serotonin in regulating 
bone mass in RA patients, with some differences in terms 
of gender and anatomical sites.

Abstract  In rheumatoid arthritis (RA), a disease char-
acterized by bone loss, increased levels of serotonin have 
been reported. Recent studies have demonstrated a role 
for circulating serotonin as a regulator of osteoblastogen-
esis, inhibiting bone formation. Thus, we measured serum 
serotonin levels (SSL) in a Portuguese sample of 205 RA 
patients and related these to anthropometric variables, dis-
ease parameters, serum bone biomarkers, and bone mineral 
density (BMD) assessed by dual-energy X-ray absorptiom-
etry at several sites (total proximal femur, lumbar spine, 
left hand, and left second proximal phalange). SSL were 
inversely associated with body mass index (BMI) in RA 
women (r = − 0.218; p = 0.005), independent of exposure to 
biologics and/or bisphosphonates. Among biologic naïves, 
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Introduction

Low‐density lipoprotein receptor‐related protein 5 (LRP5), 
a co‐receptor for Wnt proteins, is known to have an impor-
tant role in skeletal metabolism. Osteoporosis pseudoglioma 
(OPPG) syndrome [1, 2] and inherited high bone mass 
(HBM) phenotypes are caused by LRP5 mutations [1, 3–6].

On the other hand, it was suggested that LRP5 regulates 
bone mass in part by modulating circulating levels of sero-
tonin [1, 6–8]. OPPG patients present with several degrees 
of increase in circulating serotonin levels [7, 9–11] and Dan-
ish families with different HBM‐causing LRP5 mutations 
exhibit significantly lower levels of platelet poor plasma 
(PPP) serotonin than controls [1, 12, 13]. Further clinical 
evidence was provided by a cross‐sectional study in women 
from a population-based sample in whom serum serotonin 
levels are inversely correlated with bone mass [1, 14]. Phe-
nylketonuria, a disease in which an increase in circulating 
serotonin levels occurs, is also associated with low bone 
mass [9, 15, 16].

In animal models, serotonin was shown to directly sup-
press osteoblast function [7, 17, 18] as well as to lead to 
cyclin genes repression [7, 19–21]. Serotonin can be reduced 
by inhibiting tryptophan hydroxylase 1 (Tph1) expression, 
the rate‐limiting enzyme in serotonin synthesis [1, 7, 22].

Serotonin was also shown to be involved in the control of 
the anabolic response of appendicular skeleton to physical 
activity [23]. In the condition of reduced physical activity, 
tryptophan-free diet-treated rats exhibit a significant reduc-
tion of bone formation and dietary tryptophan supplementa-
tion improves bone mass by increasing osteoblast activity 
[23].

In contrast to the data summarized above, Cui and col-
leagues provided evidence that serotonin does not inter-
fere with the LRP5 effects on bone, but instead, LRP5 acts 
locally in the skeleton: (a) activation of a knock‐in mutant 
LRP5 allele in the appendicular skeleton increases bone 
mass only in the limbs but not in the spine; (b) intestine‐
specific activation of HBM‐causing LRP5 mutations has no 
effect on bone mass and measured serum serotonin levels 
are similar among HBM LRP5 knock‐in, knock-out, or wild‐
type mice [1, 24]. Chang and colleagues also found similar 
serum serotonin levels in LRP5− /−  mice and controls [1, 8].

In individuals from 2 kindreds with HBM-causing 
LRP5 mutations (G171V [13], N198S [2]) and using two 
different methodologies (ELISA and HPLC), no differ-
ences occur in serotonin levels in the PPP, serum, and 
platelet pellet (PP) between affected individuals and 

controls [1]. In carcinoid syndrome, a disease in which an 
increase in circulating serotonin levels is observed, there 
is neither association with lower bone density, poorer bone 
structure, nor lower bone formation markers [25].

In patients treated with selective serotonin reuptake 
inhibitors (SSRIs) [26–29], the previous studies show 
increased hip and wrist fractures [26, 27, 30, 31] and 
decreased bone mineral density (BMD) in femoral neck 
and total hip. In SSRI users, the association of compro-
mised bone with low serum serotonin levels [26, 32–34] 
apparently contradicts the hypothesis of an inhibitory 
effect of circulating serotonin on bone formation as previ-
ously exposed [7, 26, 35]. One possible explanation is that 
SSRIs inhibit directly the serotonin transporter located on 
bone cell membranes, increasing local serotonin levels 
by reducing its removal from the bone cell microenviron-
ment, despite the decrease in the circulating serotonin 
levels [19].

In rheumatoid arthritis (RA) patients, increased levels 
of serotonin versus healthy subjects have been reported, 
which may contribute to some extent to the excessive bone 
loss in this disease [36]. Recently, Klavdianou and col-
leagues confirmed these findings and showed that Anky-
losing Spondylitis (AS) patients have lower serotonin 
levels than RA patients and healthy controls and that AS 
patients under anti-tumor necrosis factor alpha (TNFα) 
treatment exhibit even lower serotonin levels [37].

In view of these conflicting data, we revisited the rela-
tionship between bone mass and serum serotonin levels 
among a Portuguese cohort of RA patients to provide fur-
ther evidence.

Patients and methods

Rheumatoid arthritis patients

During a 6-month period, RA patients, classified accord-
ing to the American College of Rheumatology 1987 cri-
teria, were consecutively included in the study protocol. 
Informed consent was obtained from each patient. The 
study protocol was approved by the local Ethical Com-
mittee in accordance with the principles of the 1964 Dec-
laration of Helsinki [38].

Through a Rheumatology appointment, all subjects 
underwent clinical assessment using the Portuguese version 
of the Stanford Health Assessment Questionnaire (HAQ) 
and the disease activity score (DAS28) four variables (4v), 
to determine the RA disease state [39]. All past medication 
since admission to the outpatient clinic and ongoing medica-
tion were recorded. The smoking status (past and current) 
was registered and the body mass index (BMI) calculated.
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Laboratory measurements

Between 08:00 and 10:00 h in the morning, a fasting blood 
sample was collected to evaluate C-reactive protein (CRP), 
erythrocyte sedimentation rate (ESR), rheumatoid factor 
(RF) and anti-cyclic citrullinated peptide (anti-CCP) anti-
bodies, creatinine, calcium, phosphorus, alkaline phos-
phatase, 25(OH) vitamin D3, intact parathormone (PTH), 
osteocalcin, β-isomerised carboxy-terminal cross-linking 
telopeptide of type I collagen (β-CTX), osteoprotegerin 
(OPG), receptor activator of nuclear factor–kappa B ligand 
(RANKL), dickkopf-1 (DKK-1), sclerostin, and serotonin 
levels. RA patients followed dietary restriction [of the fol-
lowing foods and drinks: tea, coffee, chocolate, avocados, 
bananas, tomatoes, plums, walnuts, eggplants, pineapples, 
citrus, and food with vanilla (namely candy from pastry 
shops)] and were asked not to take paracetamol or cough 
medicines for 48 h before and on the day of the blood 
sampling. Serum samples were stored at –70 °C for OPG, 
RANKL, DKK-1, sclerostin, and serotonin measurements 
by ELISA. All the specimens were measured in duplicate, 
according to the manufacturer’s instructions and then aver-
aged. OPG, DKK-1, RANKL, and sclerostin were deter-
mined as previously described [40]. Serotonin was measured 
using a kit from Labor Diagnostika Nord GmbH & Co, KG 
(Nordhorn, Germany); the intra- and inter-assay coefficients 
of variation were 3.9–5.4 and 6.0%, respectively.

Bone mineral density measurement

Dual-energy X-ray absorptiometry (DXA) (LUNAR Expert 
XL) was used to measure BMD at total left proximal femur, 
lumbar spine (L1–L4), left hand, and left second proximal 
phalange, according to a standardised procedure for each 
site. L1–L4 postero-anterior view was the spine region of 
interest for BMD measurements; all evaluable vertebrae 
were used and only were excluded those vertebrae affected 
by local structural change or artifact until a maximum of 
two. The entire hand (including the wrist bones but exclud-
ing the ends of the radius and ulna) was included in the 
analysis and all measurements were made using the “Hand” 
software package on GE Lunar scanners. One technician 
performed all DXA scans and the coefficients of variation 
of repeated measurements ranged from 0.9 to 1.5% for BMD 
at the different anatomical locations.

Statistical analyses

Qualitative data are described as absolute counts and propor-
tions and quantitative data as mean and standard deviation. 
Pearson correlation coefficients were estimated to assess 
pairwise correlations between serum serotonin levels and the 
anthropometric, disease, laboratory, and DXA parameters 

evaluated here. The magnitude of associations between 
serum serotonin levels and the distinct BMD outputs were 
estimated from linear regression coefficients and respective 
95% confidence intervals. Associations are presented as 
crude measures and adjusted to BMI, disease duration, years 
since menopause and serotonin levels to reduce confounding 
by those. All analyses were two-sided and p values < 0.05 
were considered statistically significant. Statistical analyses 
were performed using the STATA® software (V.11, Stata-
corp, College Station, Texas, USA).

Results

Patient’s characteristics

Two hundred and five patients with RA were included 
[women represented 80.5% (n = 165) of the entire sample], 
with a mean (SD) age and BMI of 54 [11] years and 27.1 
(4.8) kg/m2, respectively. The duration of the disease, meas-
ured from the date of diagnosis, was 14 [10] years. In terms 
of medications that potentially could affect the circulating 
levels of serotonin, we can refer the use of beta-blockers in 
18 (9%) patients and specific serotonin reuptake inhibitors 
in 13 (6%).

The majority of the patients were seropositive for RF 
(n = 119, 58%) and anti-CCP (n = 163, 80%) antibodies.

The mean (SD) DAS28 (4v) and HAQ were 4.282 (1.360) 
and 1.250 (0.710), respectively. DAS28 remission criteria 
were present in 19 (9%) patients.

One hundred and three patients (50%) were under biologi-
cal therapy, mainly TNF-α blockers (41%), and 171 (83%) 
under non-biological disease-modifying antirheumatic drugs 
(DMARDs). Daily prednisone dosage was 5.126 (3.900) mg, 
with the mean duration of the corticotherapy being 11 [9] 
years. Twenty-eight (14%) patients were ever-smokers.

One hundred patients (49%) were osteopenic or osteo-
porotic, 68 (33%) under bisphosphonates and 43 (21%) 
under vitamin D supplements. None of the 98 postmeno-
pausal women (59%, among female patients) were under 
selective estrogen receptor modulators or taking hormone 
therapy (oral or transdermal estrogen preparations with or 
without a progestin). We defined menopause as the absence 
of menses for greater than 1 year.

Distributions of clinical and laboratory variables are 
shown in Supplemental Table 1.

Relation of circulating serotonin with anthropometric, 
DXA, clinical, and laboratory parameters

Serum serotonin levels were inversely associated with BMI 
values in the whole sample (r = − 0.220; p = 0.002) and 
in RA women (r = − 0.218; p = 0.005) (Supplemental 
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Table 2). The same association was found in RA patients 
and RA women neither treated with biologics (r = − 0.278; 
p = 0.005/r = − 0.278; p = 0.014, respectively) nor with 
bisphosphonates (r = − 0.226; p = 0.008/r = − 0.221; 
p  =  0.023, respectively), nor with both (r  =  −  0.332; 
p = 0.009/r = − 0.335; p = 0.025, respectively) (data not 
shown). In addition, serum serotonin levels were not associ-
ated with current age.

In the whole sample, no associations were found between 
the serum levels of bone metabolism biomarkers and ser-
otonin, with the exception, although weak, of intact PTH 
(Supplemental Table 2). The levels of the bone resorption 
marker β-CTX were positively associated with serum sero-
tonin levels in RA men (r = 0.334; p = 0.035) (Supplemen-
tal Table 2) and RA men not treated with bisphosphonates 
(r = 0.590; p < 0.001) (data not shown). Serum levels of 
DKK-1 and serotonin were also positively associated in RA 
men not treated with bisphosphonates (r = 0.387; p = 0.031) 
(data not shown). Among biologic naïves, there was also an 
inverse but weak association between serum levels of sero-
tonin and OPG in RA patients and RA women (r = − 0.224; 
p = 0.024/r = − 0.260; p = 0.022, respectively) (data not 
shown). Serum levels of serotonin and sclerostin were nega-
tively associated in RA men (r = − 0.374; p = 0.021) (Sup-
plemental Table 2) and, particularly, in RA men neither 
treated with biologics (r = − 0.457; p = 0.028) nor with 
bisphosphonates (r = − 0.393; p = 0.035) (data not shown).

In the whole sample, no associations were found between 
serotonin levels and disease-related parameters (RA disease 
duration, years under corticosteroids, prednisolone daily 
dose, months under biologicals, months under DMARDs, 
ESR, CRP, DAS28(4v), swollen joint count, tender joint 
count, global health, and HAQ) (Supplemental Table 2). 
Years of RA disease duration and years under corticoster-
oids were inversely associated with serum serotonin levels 
in RA men (r = − 0.340; p = 0.032/r = − 0.326; p = 0.004, 
respectively) (Supplemental Table 2). A negative association 
between years of RA disease duration and serum serotonin 
levels was also demonstrated for RA men not treated with 
bisphosphonates (r = − 0.432; p = 0.015) (data not shown).

Inverse correlations were also found between serum 
serotonin levels and total proximal femur BMD values 
in the whole sample and in RA patients not treated with 
bisphosphonates [r = − 0.195; p = 0.010 (Supplemental 
Table 2)/r = − 0.231; p = 0.013 (data not shown), respec-
tively], and similarly in RA women and RA women not 
treated with bisphosphonates [r  =  −  0.226; p  =  0.008 
(Supplemental Table 2]/r = − 0.240; p = 0.023 (data not 
shown), respectively]. No associations were found between 
lumbar spine (L1–L4), left hand, and left second proximal 
phalange BMD values and serum serotonin levels in any 
of the groups (Supplemental Table 2). Nevertheless, when 
we restricted the analysis to biologic-naïve RA patients not 
treated with bisphosphonates, there was an inverse and weak 

Table 1   Linear regression coefficients for the crude and adjusted associations between serum serotonin level and bone mineral density out-
comes in rheumatoid arthritis patients in different skeletal regions

a Adjusted for BMI, disease duration, serum serotonin levels, and years of menopause (the later only for the postmenopausal women subgroup) in 
a multivariable model. β and 95% CI for β are ×1000

Outcome Group Predictors β
βa

p value 95% CI for β

Lower Upper

Proximal femur bmd (g/cm2) Women Serotonin −  0.308 0.008 −  0.5332 −  0.082
Pre menopausal women Serotonin −  0.340 0.091 −  0.736 0.056
Post menopausal women Serotonin −  0.396

−  0.303a
0.003
0.005a

−  0.649
−  0.514a

− 0.143
− 0.092a

Men Serotonin − 0.104
− 0.213a

0.642
0.390a

− 0.554
− 0.713a

0.347
0.286a

Lumbar spine bmd (g/cm2) Women Serotonin − 0.144 0.305 − 0.419 0.132
Post menopausal women Serotonin − 0.220a 0.080a − 0.446a 0.027a

Men Serotonin − 0.177
− 0.246a

0.436
0.341a

− 0.633
− 0.765a

0.279
0.273a

Left hand bmd (g/cm2) Women Serotonin − 0.075 0.212 − 0.184 0.027
Post menopausal women Serotonin − 0.079a 0.143a − 0.184a 0.027a

Men Serotonin − 0.067
− 0.119a

0.528
0.320a

− 0.280
− 0.360a

0.146
0.122a

Second left proximal phalange 
bmd (g/cm2)

Women Serotonin − 0.038 0.450 − 0.138 0.062
Post menopausal women Serotonin − 0.052a 0.277a − 0.147a 0.042a

Men Serotonin 0.022
− 0.022a

0.814
0.832a

− 0.167
− 0.233a

0.210
0.189a
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association between serum serotonin levels and lumbar spine 
BMD (r = − 0.277; p = 0.046) at the threshold of statistical 
significance (data not shown).

In crude analysis, serum serotonin levels presented as a 
significant negative predictor of total proximal femur BMD 
values in female RA patients as well as in postmenopausal 
RA women (Table 1 and Fig. 1). Serum serotonin level was 
not a significant predictor of lumbar spine, left hand, and 
left second proximal phalange BMD values in RA patients 
(Table 1).

Since BMI, disease duration, and menopause could rep-
resent additional confounders, we computed adjusted mod-
els with DXA parameters as the dependent variables and 
BMI, years of disease duration, years since menopause and 
serum serotonin levels as covariates. Thus, for total proximal 
femur BMD in postmenopausal RA women, serum serotonin 
level remained a significant negative predictor even after 
BMI, disease duration, and years since menopause had been 
accounted for (Table 1). Furthermore, when we also added 
steroid, vitamin D, and bisphosphonates usage to the model, 
serum serotonin level remained negatively associated with 
total proximal femur BMD in postmenopausal RA women 
(data not shown), although we must be cautious and ques-
tion the validity of this last model with the inclusion of so 
many covariates.

In the whole sample, no significant associations were 
found between the serum bone biomarkers levels and BMD 
values, with the exceptions, although weak, of alkaline phos-
phatase and left hand BMD (r = − 0.196; p = 0.012), Dkk-1 
and lumbar spine BMD (r = − 0.140; p = 0.050), OPG 
and total proximal femur BMD (r = − 0.155; p = 0.037), 
OPG and left hand BMD (r = − 0.171; p = 0.030) (data 
not shown).

Discussion

In our study, we demonstrate an inverse, despite weak, asso-
ciation between serum serotonin levels and total proximal 
femur BMD in postmenopausal RA women. This associa-
tion was independent of BMI, disease duration, and years 
of menopause. Serum serotonin levels were also negatively 
correlated with proximal femur BMD in the subgroup of RA 
women not treated with bisphosphonates. This relation was 
not verified for premenopausal women or men, and serum 
serotonin level was not a significant predictor of lumbar 
spine, left hand, and left second proximal phalange BMD in 
RA patients. However, among biologic-naïve RA patients 
not treated with bisphosphonates, serum serotonin levels 
were also negatively correlated with lumbar spine BMD. 
Although anti-TNFα blockers may affect serotonin levels 
and BMD, simultaneously, and 40% of our RA patients were 
under these agents, serum serotonin levels did not correlate 
with the duration of biological treatment.

In our sample, serum serotonin levels (mean ± SD ng/
mL, 179.3 ± 108.5) were similar compared with healthy 
subjects (mean ± SEM ng/mL, 177.4 ± 24.58) and lower 
compared with other RA patients (mean ± SEM ng/mL, 
244.8 ± 37.5) from the Klavdianou study [37]. However, in 
this last study, there was a lack of control for dietary intake 
of tryptophan as in ours, and for serotonin measurement, 
they used a radioimmunoassay, while we used ELISA. The 
ideal situation would have been the inclusion of a healthy 
control group to corroborate Klavdianou findings of higher 
serum serotonin levels in RA patients versus healthy sub-
jects, and this fact is a weakness of our study.

Our results are in accordance with those of Mödder 
and colleagues, who [14, 19] found negative associations 
between serum serotonin levels and femur neck total, tra-
becular volumetric BMD, and trabecular thickness in 275 
women. They also found an inverse association with femur 
neck trabecular volumetric BMD in the premenopausal sub-
group (n = 185) [14, 19]. Although these associations were 
statistically weaker than ours, unlike in our study, they did 
not control for dietary intake of tryptophan in the subjects 
submitted to serotonin measurements. Frost and colleagues 
have also reported an inverse association between serum 
serotonin and cortical thickness among 19 controls [13].

On the other hand, our study appears to contradict that 
of Wang and colleagues, who also investigated associa-
tions between serum serotonin and DXA and quantitative 
computed tomography bone traits in a Finnish sample (235 
young women, 121 premenopausal women, 124 postmen-
opausal women, and 168 men) [26]. In postmenopausal 
women, they observed that serotonin was positively corre-
lated with whole body and femur areal BMD, as well as with 
distal radius bone mineral content and volumetric BMD, and 
that these findings remained significant after adjustment for 

Fig. 1   Scatter plot and linear predictions of proximal femur bone 
mineral density according to serum serotonin levels in women and 
men with rheumatoid arthritis
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weight [26]. In another study, Kim and colleagues reported 
no significant association between serotonin and lumbar or 
femoral BMD in 80 postmenopausal women, not on hor-
mone therapy [41]. The discrepancy between the obtained 
results in the several population studies can be explained by 
differences in terms of sample size and dietary habits, asso-
ciated with lack of diet control prior to the blood draw. In 
fact, serum serotonin level is deeply affected by tryptophan 
intake [26, 41, 42].

In our study, serum serotonin levels were inversely associ-
ated with BMI among RA women, independent of the co-
treatment with bisphosphonates and/or biologics. However, 
this trend has already been described [14, 43–47]. Mödder 
and colleagues revealed that fat mass was the major driver 
of this association [14]. In addition, Wang and colleagues 
observed that serum serotonin was negatively correlated 
with weight, BMI, lean, and fat mass in women but posi-
tively with height and lean mass in men [26]. In line with 
this evidence, it has been suggested that serotonin plays 
an important role in the regulation of appetite, causing a 
reduction in the caloric intake. Fluoxetine, an SSRI, has 
been shown to result in significantly greater weight loss 
than placebo treatment [14, 48–51]. In counterpoint, block-
ing serotonin synthesis resulted not only in the prevention 
of serotonin-induced hypophagia, but also in an increased 
food intake [14, 52].

Regarding the proposed mechanisms of action of seroto-
nin at bone metabolism, Yadav and colleagues [7, 14] dem-
onstrated that gut-derived serotonin principally regulates 
bone formation in vivo and osteoblast proliferation in vitro, 
with no clear effect on bone resorption in vivo. However, 
these findings were in contrast with earlier studies, revealing 
that serotonin can enhance osteoclast differentiation in vitro 
[14, 53]. Positive associations between serum serotonin and 
aminoterminal propeptide of procollagen I (PINP) levels as 
well as between serum serotonin, CTX levels, and osteoc-
alcine have also been reported in different subgroups [13, 
14, 25, 26]. By contrast, Kim and colleagues observed that 
plasma serotonin level was correlated with serum total alka-
line phosphatase but not with serum osteocalcin or CTX 
levels [41].

Interestingly, in our study and in RA men, we found a 
positive association of serum serotonin levels with β-CTX 
and a negative one with sclerostin, independent of the co-
treatment with bisphosphonates and biologics/bisphospho-
nates, respectively. DKK-1 and serum serotonin levels were 
also positively associated in RA men not treated with bis-
phosphonates. Among biologic-naïves RA women, there was 
also an inverse association between serum serotonin levels 
and OPG. Our findings reflect a higher level of complexity 
in what concerns to serotonin effects on bone metabolism 
in humans, which seems to be not exclusively restricted to 
bone formation.

Although we know the importance of hormone replace-
ment therapy in bone, in our study, it was not possible to 
evaluate the impact of such therapy, because none of our 
postmenopausal RA women were under hormone therapy. 
Meanwhile, some studies tried to elucidate whether seroto-
nin may modulate the skeletal effects of estrogen on bone. 
Kim and colleagues revealed that the changes of circulating 
serotonin levels after 3 months of initiating hormone therapy 
did not associate with lumbar or femoral BMD variations 
determined after 1 year under hormone therapy, suggesting 
that the estrogen bone-preserving effect is independent of 
the peripheral serotonin actions [41]. In addition, the cross-
sectional study by Mödder and colleagues did not detect 
a significant difference in serum serotonin level among 
postmenopausal women treated or not treated with estrogen 
replacement therapy [14, 41]. In another report of the same 
group and after a 4-month period of study, plasma levels 
of serotonin did not differ between controls and women 
treated with transdermal estradiol, either in peripheral or 
bone-marrow (BM) plasma samples [41, 54]. Moreover, 
the plasma concentration of peripheral serotonin was sig-
nificantly higher than that of BM serotonin. We should note 
that serotonin concentrations may actually be very different, 
depending on the type of sample used, and this is, undoubt-
edly, an important issue to take into account when we com-
pare several population studies.

Circulating serotonin derived mainly from the gastroin-
testinal enterochromaffin cells is rapidly taken up by platelets 
[14, 27, 55]. During serum collection, the platelets-stored 
serotonin is released; consequently, serum serotonin levels 
are approximately 100-fold higher than in PPP [14, 27, 36]. 
Nowadays, it is still unclear which is the best ‘‘index’’ of gut 
serotonin production: serum or PPP serotonin levels. Thus, 
it is possible that the weak associations we noted may have 
been different if we had used PPP instead of serum for our 
measurements. In addition, serotonin may be released from 
platelets in blood samples when the concentration of antico-
agulant is inadequate [41, 56, 57]. In a previous small study, 
the recommended optimum concentration of EDTA2K was 
7.4–9.9 mmol/L [41, 56], but we did not evaluate the con-
centration of EDTA2K in our collection samples.

Conclusion

Our study does provide support for a possible, despite weak, 
physiologic role for circulating serotonin levels in regulat-
ing femoral bone mineral density in postmenopausal women 
with RA, but not in premenopausal women or men with RA. 
The fact that we demonstrated that circulating serotonin is 
an independent predictor of femoral BMD in a disease that, 
by itself or by its treatments, largely influences the bone 
mass, is of some importance. These findings also suggest 
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that gender and, eventually, hormone status in women may 
contribute to the mechanism behind this link. In our sample, 
there is also a weak connection between circulating seroto-
nin levels and bone metabolism markers. The clinical signifi-
cance of these weak associations remains unclear. However, 
these data reinforce recent findings indicating that increased 
serotonin signalling has negative effects on bone. Further 
studies in RA cohorts are needed to validate our findings, 
elucidating the potential role of serotonin in bone metabo-
lism regulation in humans.
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