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Abstract

This paper deals with the stability of linear semi-infinite programming (LSIP, for short)
problems. We characterize those LSIP problems from which we can obtain, under small
perturbations in the data, different types of problems, namely, inconsistent, consistent un-
solvable, and solvable problems. The problems of this class are highly unstable and, for this
reason, we say that they are totally ill-posed.

The characterization that we provide here is of geometrical nature, and it depends ex-
clusively on the original data (i.e., on the coefficients of the nominal LSIP problem). Our
results cover the case of linear programming problems, and they are mainly obtained via a
new formula for the subdifferential mapping of the support function.
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1 Introduction

Consider the linear optimization problem in the Euclidean space, R",

7w Inf (c,x) (1)
s.t. {ag,z) < by, t €T,

where ¢, x, a; € R™, by € R, and (., .) denotes the scalar product in R”. The non-empty indez set,
T, whose elements identify the inequalities of the constraint system, o = {{a,z) < by, t € T}, is
arbitrary (possibly infinite). The problem = is alternatively represented by the pair (¢, o). When
T is infinite the problem 7 = (¢, 0) is a linear semi-infinite programming problem (LSIP).

The parameter space of all the problems (1), with constraint systems having the same index
set, is denoted by II. By II. we represent the subset of all the consistent problems (i.e., those
problems 7 = (¢, o) whose feasible sets are non-empty), by II; := II\II,. the class of inconsistent
problems, and by II, the subset of the solvable problems (having at least an optimal solution).
Obviously, II; C II..

We introduce in II the extended distance § : I x I — [0, +00| given by

0 (my,m) = max{“cl — CH, d(crl,a)}7 (2)

1
a; _ Q¢
bl by
*Department of Statistics and Operations Research, University of Alicante, 03071 Alicante, Spain. E-mail:
hantoute@ua.es

fCorresponding author. Department of Statistics and Operations Research, University of Alicante, 03071
Alicante, Spain. E-mail: marco.antonio@ua.es

where

d(o1,0) :=sup
teT

)




and ||-|| represents the Euclidean norm in both R™ and R"*!. In this way II is endowed with the
topology of the uniform convergence of the coefficient vectors [11, Chapter 10]. Given 7 € II and
II C II, we write, as usual, §(r,II) := inf{§ (x,7), 7 € II}, but now §(r,II) can take the value
+00.

In (I1, §), and also in the Euclidean space, int X, cl X, ext X, and bd X represent the interior
set, the closure, the exterior (i.e., the complementary set of clX), and the boundary of X,
respectively. In the Euclidean space, rint X denotes the relative interior of X (i.e., the interior
of X in the topology relative to the affine manifold generated by X).

The stability of an optimization model is a key property, mainly when we deal with real-world
problems, and it became a paradigmatic property. Many times users prefer to emphasize stability,
instead of insisting in the optimal character of the chosen solution [20]. In [1] three notions of
stability in linear programming are studied, and in [6] their equivalence in the LSIP setting is
proven. A selection of different contibutions to the stability of the general LSIP problem, when
all the coefficients in the problem can be perturbed (in the line of [18]), are [2],[8],[9],[10],[12],[13],
[16], etc.

In [3] different notions of well-posedness in LSIP are proposed. Most of these concepts are
closely related to the condition m € intIl;. Generically, we say that a problem is ill-posed
with respect certain property when arbitrarily small perturbations of the coefficients may yield
problems for which this property is either kept or lost. In particular a problem is ill-posed
with respect to the consistency (solvability) if small perturbations can produce either consistent
or inconsistent problems (either solvable or unsolvable problems, respectively). Formally, these
ill-posed problems are those in bd II. (bd Iy, respectively).

In the line of [17], the distance to ill-posedness with respect to the consistency will be
d(m,bdIl.). It turns out to have a great influence on the numerical complexity of certain feasi-
bility algorithms. In our LSIP framework, 6(7,bdIl.) is measured in [4]. The set of ill-posed
problems with respect to the solvability, bd I1;, is characterized in [5], and the problem of mea-
suring the distance 0(m, bdIl,) is approached (either by means of an exact formula or through
some lower /upper bounds) in [6].

It makes sense to call totally ill-posed problems to those problems in (bd II.) N (bd II). These
problems are highly unstable since small perturbations may provide inconsistent, unsolvable
consistent, and solvable problems. In [5] a characterization of the set (bd II.)N(bd II;) is obtained,
but this characterization involves some parameter subset which is not identified by means of the
coefficients of w. Thus, the main objective of this paper is to characterize the set of totally
ill-posed problems, (bdIl.) N (bdIly), in terms exclusively of ¢, a¢, and by, t € T.

This is the summary of the paper. Section 2 is devoted to notation and preliminary results.
Proposition 4 in Section 3, together with Proposition 2, leads us to the Proposition 5 which
characterizes the set (bd II.) N (bd II,) in terms exclusively of the coefficients of 7. Finally in this
section, Corollary 3 particularizes Proposition 5 for the ordinary linear programming problem
(T finite). The last section, Section 4, includes some sufficient conditions for total ill-posedness,
which add geometrical insight and make easier the detection of this property. Our sufficient
conditions are related to the ones given in [7].

2 Preliminaries

Given a non-empty set X C R¥, by co X, X, cone X, and aff X we denote the convex hull, the
closed convex hull, the conical convex hull, and the affine hull, respectively, of X. We also use
the sets

X° = {yGRk | (y, ) §0f01rallac€X}7



and
Xt .= {yeRkHy,x}:OforallxeX};

i.e., the dual cone of X (or polar cone of cone X) and the orthogonal space of X, respectively.
If X is a closed convex set, X, represents its recession cone

Xoo::{yeRk|x+)\y€XforsomexeXandall)\zO},

whereas
linX := Xoo N (—X) oo

represents its lineality space.
If A C R is a non-empty set, we introduce the set

AX ={ z: A€ Aand z € X}.
For any given S C T, the set R(f) will denote the cone of the functions A : S — R, taking
positive values only at finitely many points of S. For A := {\;,t € S} € RS_S),
supp A :={t € S: )\ >0}

is the support of .

In any Euclidean space R* involved in our analysis, with |-|| representing the Euclidian norm,
B denotes the associated closed unit ball centered at the origin 0. For the sake of simplicity, we
write the vectors in R¥*1 in the form (x,z1); for instance (0x,1) and (ay, b;), for t € T.

The following sets, associated with 7 := (¢, o), are relevant in our analysis:

A = cofay, t € T}, M :=cone{a;, t e T} =R A,
C:=co{(as,b:), t €T}, N:=cone{(at,b:),t €T} =R.C,
H:=C+R;(0,,1), K :=N+Ry{(0,,1)},
Zt i=co{—a, t €T;c}, Z  :=co{—ay, t€T;—c},

where R, := [0, +o0].

Given a proper convex function h : R¥ — RU {+oco}, we denote by domh its effective
domain

domh := {z € R* : h(z) < +o0},
and by Oh(z), with & € dom h, the subdifferential set of h at x
Oh(x) := {u € R¥ : h(y) — h(x) > (u,y — z) for all y € R¥}.

If Oh(z) # 0, the point z is a global minimum of h if and only if 0 € dh(x).
Frequently we make use of the support function of c1C, f : R"*!1 — R U {+o0}, given by

fz, A) :=sup{{as,z) + tA : t € T}. (3)

f is a lower semicontinuous (Isc, for short) sublinear function, and its effective domain satisfies
[15, Proposition V.2.2.4]
cl(dom f) = [(c1 C) o] .



The subdifferential of f at (z,\) € dom f is ( [15, Example VI.3.1])

Of (2, A) = {(u, p) € 1 C: f(,A) = (u, x) + pA}.

In particular

Of(0pir) =clC.

Given " = (¢",0"), with o, := {{a],z) < b} : t € T} and f"(z, ) := sup{{a},z) +bj\: ¢t €
T}, forr =1,2,---, such that

d(r",m) < 400, r=1,2,- -,

one has

f@,A) =o(@", m)|(z, M) < (@, A) < f@,A) +6(x", m)|(z, V],
for every (z,)\) € R"*!. Thus, f* — f pointwisely and dom f” = dom f, for r = 1,2,---. This
yields

cl(dom f7) = cl(dom f) = [(cl C)o]®, 7 =1,2,- - .

When T is infinite, we can consider the following family of pathological problems
My :={mell: §(x,bdIl,) = +o0},
which is characterized in the following proposition:

Proposition 1 Given m = (¢,0) € 11, the following statements are equivalent:
(i) m € I,

(ii) sup{{as, ) —b; : t € T} = +o0, for all x € R™,

(iii) (0p, —1) € (1 C)oo-

Proof. The equivalence of (i) and (iii) is given in [4, Proposition 1]. To show the equivalence
of (ii) and (iii) we appeal to the function f defined in (3). Assume that (iii) holds, that is, for
every fixed (u,p) € clC, we have

(u’M) + 7<0n a_l) €clC = 6f(0n+1)>

for all v > 0. Thus, for each x € R",

f(x’ _1) > <(uuu) + V(OH 7_1)’ (‘T7 _1)> = <u,x> -+,

for all v >0, i.e. f(z,—1)=sup{{as,z) —b;:t €T} = +oo.
Conversely, assume that (ii) holds but (0, , —1) € (c1C) . By the separation theorem, there
will exist (v,) € R"™1\ {0,,4+1} and 3 € R such that

((v,@), (z,p)) < B < —av, for all (z,p) € (c1C)oo.

Since (clC)s is a closed cone, we conclude, from the previous inequalities, that @ < 0 and
(v,a) € [(c1C)s]® = cl(dom f). Consequently, applying Theorem 6.1 in [19] and taking into
account the homogeneity of f, there would exist « satisfying f(z, —1) < 400, and this contradicts
(ii). m

The following proposition gathers different results which are used throughout the paper.



Proposition 2 Given m = (¢,0) € 11, the following statements hold:

(i) [11, Theorem 4.4] = € . if and only if (0,,—1) ¢ cl N,

(ii) [12, Theorem 3.1] If w € I1.., then 7 € int I, if and only if 011 ¢ clC,

(iii) [5, Lemma 1(ii)] If = € II; N bd I, then 0, € bd A,

(iv) If m € II; N bdIl., then 0,41 € bd C if and only if 0,41 € clC,

(v) [4, Theorem 4, 5, and 6] If 7 € 1\, then 7 € ext I, w € int 1., or 7 € bd 11, if and only
if Opy1 €int H, 0,41 € ext H, or 0,41 € bd H, respectively,

(vi) [5, Theorem 2] If # € intIl., then m € extIl;, © € intl,, or 7 € bdIl, if and only if
Opt1 €ext Z7, 0pq1 €int Z7, or 0,41 € bd Z7, respectively,

(vii) [5, Theorem 3] If 7 € bdIl., then © € bdIly if and only if either 0,11 € bdZT or
7 € cl(IL. N bdIL,).

Proof. (iv) The direct statement is trivial. For the converse, we have, by (iii), 0,, € bd A, and
this precludes 0,41 € int C. So, 0,41 € clC implies 0,11 € bdC =

Remark It is obvious that (clC)s C cl N, and Proposition 1(iii) together with Proposition
2(i) entail ITo, C II;. Accordingly, a problem 7 € I, can be called totally inconsistent.

Finally in this section we include an alternative characterization of the subdifferential set of
the support function of an arbitrary set [14, Proposition 1].

Proposition 3 Consider a non-empty set A C RP and its associated support function h : RP —
R U {400}
h(z) :=sup{{a,2) : a € A}.

Then, for every z € dom h we have
Oh(z) = [ el ((co As) + (@A) N {2}*) (4)
>0
where
As:={a€ A:{a,z) > h(z) — 6},
for 6 > 0. If z € rint(dom h), then one has
Oh(z) = (] cl ((co As) + lin(c0A)),

6>0

whereas z € int(dom h) entails

Oh(z) = (] c0As.

6>0

3 Characterization of the total ill-posedness

The main objective of this section is to characterize the set cl (Il N bdIl.), and this is achieved
in Proposition 4 by means of conditions relying exclusively on the position of 0,41 with respect
to cl C. In this way, our Proposition 4, together with some results in [5] (gathered in Proposition
2), lead us to Proposition 5 in this section, which provides a characterization of the class of
totally ill-posed problems, (bd IL.) N (bd Ily), in terms exclusively of the coefficients of o and the
vector c.

Let us denote, for x € R™ and € > 0,

Te(z) :={t € T: [((at,be) , (x, —1))| < e |l(z, —1)|}. ()



Proposition 4 Let m € II;NbdIl.. Then w € cl(Il. NbdIl.) if and only if for every e > 0 there
exists x° € R™ such that the following statements hold:

(1) ((ag, by), (x°,—1)) < e||(z¢,-1)]|, for every t € T,

(i) Opy1 € co{(as, by) 1t € Te(2®)} + (1 C)oo N { (25, —1)} + eB.

Proof. Assume that 7 € cl (II, NbdIl.) and fix ¢ > 0. Let 7 := (¢f,0°) € II. N bdIl., with
of = {{af,x) < b3, t € T}, be such that 6(m,n¢) < e/2.

If f¢ is the support function of C¢ := co{(a$,b3) : t € T'}, and z° is feasible for 7¢, we have
fe(zf,—1) < 0. Moreover, Proposition 2(ii) provides 0,41 € clC® = 9f¢(0,,11), entailing that
On+1 is a global minimum of f¢, as well as (z¢,—1). Hence f¢(z¢,—1) = f(0,4+1) = 0, and
Proposition 3 yields

05%(a*,-1) = (el (cof(af, b)) - ((aF, 1), (2%, —1)) = ~0} + (A C)oe N {(a%, ~1}) . (6)

>0

We proceed by showing that z° satisfies (i). Certainly, for every t € T, ((a5, b5), (x%,—1)) <0,
so that .
{(at,be), (2%, =1)) < ((af, b5), (2%, =1)) + 5 (=%, =D < ei(=%, =D

Now we prove that z¢ also satisfies (ii). From (6), with § = /2, and the fact that (2, —1) is
a global minimum of f¢, we get
Os1 € OFF (2, 1)
C el (co{(af, ) : {(af, ), (%, —1)) > —¢/2} + (A CF)oo N {(a%, ~1)})

C co {(af,b5) : (a5, 05), (2%, —1)) > —¢/2} + (1 C%) oo N {(25, - 1)} + %B

C cof(arby) : {(a.57), (%, ~1)) = —&/2} + (1 O)oe N {(2°, 1)}~ + &B, (7)
the last inclusion being a consequence of sup,cr ||(af, b)) — (as, by)|| < 6(m,7%) < e/2, (c1C%) oo =
(c1C)w, and the Cauchy-Swartz inequality.

Taking into account that ||(z€,—1)|| > 1, that é(m, 7€) < /2, and applying again the Cauchy-
Swartz inequality, we write
{teT: ((af,b7), (2%, —1)) = —¢/2}
c{teT:((a;,b7), (=%, -1)) = —¢/2||(=%, = 1)I}

frer o (£ Y > o)

c {t €T:c/2> <(at,bt),m> > —5} C T.(2%),

This inclusion, together with (7), give rise to
Opy1 € co{(ag,by) it € Te(x%)} 4 (c1C)oo N {(z5, —1)}* + £B;

i.e. z¢ also satisfies (ii).
Now we prove the converse. Fix ¢ > 0 and let 2° be the associated vector verifying (i) and

(ii). Because of (ii), there will exist A € RSFT), with supp A C To(2°) and ), A = 1, (v, ) €
(c10) oo N { (2, —1)}+, and (w,7) € B such that

Opt1 = Z At (ag, by) + (v, @) + e(w, ). (8)
teT. (z¢)



Set 0° := {(a$,x) < b5 :t € T}, where (a5, b5) is defined as follows

_ {apbi)+e(wy), (2%,=1) (e _ : e
(a5, b5) = { (at, be) +¢€ (w,7) M@= —1))2 (z%,-1), ift e T.(z), (9)

(ag, be) , otherwise.

We shall show that ¢ := (c,0°) satisfies d(m,7%) < 3¢ and 7° € II, N bdIl.. To this aim we
proceed as follows:
First, for all ¢t € T..(z¢), we have

1(a5.57) — (e o) < =, ) + 022 ﬁ(i(ewv_’;)),n(xa, —1))|

|<(atvbt)7(xsv_1)>| ‘<€(w77)7(x87_1)>|

<e+ + < 3¢,
[[(z=, =1 [ (z=, =1)]
so that
§(n,m) =d(o,0) =sup (a5, b;) — (ar,be)| = sup |[(af, ;) — (ar, b)| < 3e.
teT teT: (z¢)

Second, we check that xz. is feasible for 7¢.
According to (9) we have ((a§,b5), (z°,—1)) = 0 for all t € T.(2°), whereas condition (i) gives us

<(a§7 b?) ’ (xsv _1)> = <(at7 bt) ’ (xsv _1)> <€ ||(x67 _1)” < 07

for all t € T'\ T.(z°). In this way the feasibility of x. for ¢ follows; i.e. ©° € II..
The last point to be checked is that 7€ € bd Il.. To this aim, and because 7¢ € Il., it suffices to
establish that 0,41 € c1C® :=co{(a$, ) : t € T}, according to Proposition 2(ii).

Reasoning by contradiction, suppose that 0,41 ¢ clC¢. Then, by the separation theorem,
there would exist (u, 1) € R"1\{0,,41} and B < 0 such that

<(a§7 bi) s (u, M)> <5,

for all t € T. This inequality entails (u, u) € dom f¢, domain of the support function f¢ of C*.
In particular, for ¢ € T.(z°),

<(CLt, bt) + E(UJ,’)/), (:L'Sa 71)>
(2=, =)

<(at7bt) +€(w77) - (Igv *1)? (U7M)> < ﬁ (10)

Multiplying both sides of the inequality (10) above by A, for ¢ € T.(z¢), and summing up over
T.(z°), we obtain

(Z x€ Af(atvbf)+ (w7 ))(I5771)>
<Zt€T5(IE) At (at’ bt) + E(’LU,’Y) - Letele) ”(ws,_l)iZ 4 (338, _1)7 (U,[J,)> < /87

so that, making use of (8) and the condition (v, ) € {(2%, —1)}+,

—(v, o wms—l U ={—(v,a), (u < B.
< (v,a) + TSR (2%, )7(,u)> (=(v,a), (u,p)) < B

In this way one gets ((v, @), (u, pt)) > —8 > 0, which constitutes a contradiction because (v, o) €
(clC) oo and
(u, 1) € dom € C [(cl C%)oo]® = [(c1 C) o ]®.



(The last equality [(c] C%)o0]® = [(c] C)o]® holds because 6(7%, ) is finite.)
Summarizing, we have proven that for every € > 0 there exists n¢ € II. N bdIl. such that
d(m¢,7) < 3e, thus we conclude that 7 € cl(II, N bdIl.). m

The following corollary is used in the sequel.

Corollary 1 Let w € II;. If m € cl (I, N bd1l.), then we have:

(1) 0p41 € bd C.
(ii) Condition (ii) in Proposition 4 can be expressed in the alternative form

Ops1 € bd (ﬂ (co{(arbe) i t € Te(z%)} + (1 C)oo N {(25, — 1)} + aIB%)) .

e>0

Proof. (i) is already known [5, Theorem 4], and here we provide a straightforward alternative
proof.
Statement (ii) in Proposition 4 implies

Ont1 €clC+ (clC)oo +eB =clC + B, for all € > 0.

Hence 0,41 € clC, or equivalently 0,41 € bd C, according to Proposition 2(iv).
(ii) Otherwise, we will have

Op41 € int (ﬂ (clC+ (clC)eo + 53)) =int C,

e>0

a contradiction with (i). m

We proceed by analyzing systems whose coefficients {(a;,b;) : ¢ € T} are bounded. The
following corollary is the counterpart of Proposition 4 under this boundedness assumption and,
S0, it applies to the case of ordinary linear programming.

Corollary 2 Let m € II;Nbd I, and assume that sup,cr ||(at,be)|| < M, for some M > 0. Then,
the following statements are equivalent:

(i) m € el (TII. N bd I1,.),
(ii) Opy1 € ﬂ o {(as, by) : {ar,x) > —¢c}, for every xz € A°\ {0,}.
e>0

Proof. [(i) = (i7)] From Corollary 1(i), 0,41 € bd C C clC = 9f(0,,41), so that 0,11 is a global
minimum of f.

Since II; N bd I, Proposition 2(iii) provides 0,, € bd A. By the separation theorem, there
must exist © € R™ \ {0,,} such that (a;,x) <0, for all t € T; i.e. x € A°\ {0,}.
Moreover, since 0,11 is a global minimum of f, one has f(x,\) > 0 for every (z,\) € R"*1. In
particular, f(z,0) =0 for all z € A° ={z € R" : {at,z) <0, forall t € T'}.
Thus, taking into account that the support function f of the bounded set C is finite everywhere,
Proposition 3 yields

Op+1 € Of(z,0) = ﬂ co{(at,b) : (a,z) > —¢},

e>0

for every © € A°\ {0, }; that is, (ii) holds.



[(i1) = (i)] Since m € bd II.. there exists a sequence of consistent problems 7" := (¢", 0"), with
o" = {{a},z) <b] :t €T}, r=1,2,---, converging to 7. Letting =" be a feasible point of 7",
forr=1,2,---, we assume, without loss of generality, that the sequence ”E 1%“’ =1,2,---,

converges to some (z,0) € R"*1\{0,,11}. Otherwise the sequence would converge to (2, a), with
a < 0, and then 2/ |a| would be a feasible point of 7 (contradicting its inconsistency). Moreover,
the sequence ||z"|,r = 1,2,---, must converge to 400, because otherwise there will exist a
subsequence of ("), converging to a feasible point of 7, and this constitutes a contradiction,

again with the inconsistency of .
Fixed t € T, we have (a},z") < b}, r = 1,2,..., which yields z € A°\ {0,} due to the

boundedness of {b;, t € T} and lim,_, ||2"|| = +00. By the current assumption
Ons1 € () el (cof(ar, be) : {ar, z) > —6}),
6>0

and for a fixed € > 0 one has

Opt1 € cl (co{(at,bt) Hag, z) > —%}) . (11)

Assume that r. is big enough to guarantee that

ame, —1)

(Z,O)H < — and §(n",7) <e.
== 4

—2M
Then, ((as,bt),(2,0)) > —5 implies

-1

e -, —1)

) 3
<= be) St =e
>~ + ||(at7 t H H || .’L‘TE _ )H (Z O)H 2 + 2 €

(ot E ) < b 00+

[\)

Now, (11) allows us to write
Ont1 € cl(co{(ar, by) = [{(ar,br), (27, =1))| < e[ (=", =1)[|})
C co{(ar, be) : [{(ar,be) , (27, —1))| < e |[(z", =1)[|} + B
C co{(ag, b))t € To(z™)} + (1 C)oo N{(z", —1)}* + eB;
that is, condition (ii) in Proposition 4 holds taking x° := a"<. Moreover, one has for all t € T,
<(at7bt)v(xrgv_ )> <(atvbt) ( Eabrs) ( )>
|

|(ar,br) = (a E,b“)ll H( = =Dl
o(m"e, m) [[(e"e, =D < e |z, =D,

INIA A

so that condition (i) in Proposition 4 also holds taking z¢ := x"<. Applying Proposition 4, we
conclude 7 € cl (II, N bdIl.) and, so, [(it) = (i)]. m

In the following example we give an application of Proposition 4.

Example 1 Let us consider, in R?, the system of inequalities o, given by

((=1,9),(z,y)) <0, s>0,
((0,0), (,9)) < —
(¢, 1), (2,9)) <0, >0,



and the LSIP problem 7 := (c, o), with ¢ € R%. In order to apply Proposition 4 we shall verify
first the following points:

1) m € II; : This follows from the inequatlity ((0,0), (z,y)) < —1.

2) m € bdlIl, : It is not difficult to graphically check that 03 € bd H and (0,0,—1) ¢ (cl1C)_.
Hence 7 ¢ Il and Proposition 2(v) leads us to m € bd II,.

3) m satisfies both conditions (i) and (ii) in Proposition 4. In order to verify this statement, let
e >0 and set z° := (0,—1/¢). We have, for all s,t > 0,

<(_17 570)7 (05 _1/57 _1)> = _5/E <e H(O’ _1/57 _I)H )
<(O70, 71)3 (0’ 71/53 71)> =1<e ||(Oa 71/57 71)” )
<(t7 170)a (07 _1/57 _1)> = _1/E <e ”(07 _1/Ea _1)” )

thus condition (i) in Proposition 4 follows.
In order to check condition (ii), we observe first that (1,0,0) € (c1C)_ N {(z%, —1)}*+. Next, for
s €]0,¢] fixed, we have

|<(717570)7 (O? 71/57 71)>| - 5/5 <l<e ”(07 71/53 71)” )

thus s € T.(x¢), and

03 (-1,s,0)+ (1,0,0) — (0, s,0)
{(-1,5,0)} + (c1C)  N{ (27, D}t + B

co{(as, by) :t € To(2z%)} + (c1C) N {(, —1)}J‘ + B,

m m

that is, condition (ii) in Proposition 4 also holds, and so, 7 € cl(II, N bd I1..).

The following proposition gives rise to a characterization of the class of totally ill-posed
problems in II.

Proposition 5 In relation to a problem m € IIN\Ily, let us consider the following conditions:

(8) O j1 € bd H,

(b> 0n+1 €cl C,

(c) 0, €bd ZT,

(d) for every € > 0 there exists x° such that (i) and (ii) in Proposition 4 are satisfied.

Then 7 is totally ill-posed, i.e. m € (bdIl.) N (bd1l), if and only if at least one of these pairs of

conditions holds:
{(a), ()}, {(a), ()}, or {(a),(d)}

Proof. This characterization result is a straightforward consequence of some statements in
Proposition 2 and Proposition 4. More precisely, if 7 € (bdIl.) N (bdIl) the discussion is:

1) If # € I, N bd I, then conditions (a) and (b) hold, according to Proposition 2(ii) and (v). In
this case, trivially, 7 € cl(II. N bd II.) and Proposition 2(vii) applies.

2) If € TI; Ncl(II.Nbd II.) then (a) and (d) hold according to Proposition 2(v) and Proposition
4. Now Proposition 2(vii) applies again.

3) Finally, (a) and (¢) also yield = € (bdIl.) N (bdIl;) as a consequence of Proposition 2(v) and
(vii).

(It is evident that 1), 2) and 3) cover all the possibilities for the total ill-posedness of 7, according
to Proposition 2(v) and (vii).) m

The following corollary is the counterpart of Proposition 5 in the context of ordinary linear
programming (7" finite).
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Corollary 3 Assuming T finite, we consider the following conditions:
(a) Ony1 € bd H,
(b> 0n+1 € Ca
(c) 0, €bd ZT,
(d) Op41 € ﬂ co{(as,by) : {ag,x) > —e}, for every x € A°\ {0,}.
e>0
Then 7 is totally ill-posed, i.e. m € (bdIl.) N (bd1l), if and only if at least one of these pairs of

conditions holds:
{(a), ()}, {(a),(0)}, or{(a),(d)}.

Remark 1 For = € II; N bdII., conditions (b) and (d) in Corollary 3 are equivalent, according
to Corollary 2. In fact the implication (d)=-(b) is obvious, and (b)=-(d) follows from the proof
of (i)=(ii) in Corollary 2.

4 Sufficient conditions for the total ill-posedness
In this section we establish some conditions guarantying that = € ¢l (IT. N bd II.) , which provide

sufficient conditions for the total ill-posedness according to Proposition 2(vii). We shall need a
pair of technical lemmas, where the following notation is used:

To(z) = {t € T: [{ar, )| < ellz]}, (12)
with x € R™ and € > 0.
Lemma 1 Let us assume that, for some ()\k)zozl C RS_T) with Y e )\f =1, k=1,2,---, we

have

— 1 k
0n+1 = kli)lglo Z >\t ((lt, bt)
teT

Then, for every x such that sup{{as,z) : t € T} =0 and all € > 0, there exists a subsequence of
(AF)22 |, that we denote in the same way, such that:
(1) Timp— o0 D e (o) A (@0, @) = g oo 35, e 71 () A (01, 2) = 0,
(1) Timp— o0 D peq i (o) M = 0 and 50, limg oo 35,0 ) AF = 1.
Proof. Take fixed x such that sup{{a;,z):t € T} =0 and € > 0.
(i) As —¢|z| < Ztei(x) M(ay,z) <0 for k=1,2,---, we assume w.l.o.g. that

limy 0o Zteﬁ(x) AF(ay, z) exists. Since (ay,z) <0, for all t € T, (i) follows from the equalities
0= lim > Alar,x) = Jim > Mla,x) + Jim > Mas, ).
teT teT. (z) teT\T- ()

(ii) As 0 < ZteT\ﬁ(m) )\f <1, for k = 1,2,---, we assume without loss of generality that

WMy o0 e\ 7o (o) AF exists. Then (ii) is a consequence of condition (i) and

0= kILrI;O Z Aag, x) < —¢ |z klirgo Z AP <0.

teT\T. () teT\T- ()

11



Lemma 2 Given x such that sup{{as,z) : t € T} = 0, M > 0, and € > 0, the following
statements are equivalent:

(i) Opsi1 € @{(at,bt) te 'T;(x)} :
(ii) Opss € @{(at,bt) teTu(x) or |[(an b)) < M} .
Proof. Let us prove the nontrivial implication. Assume that (ii) holds, and let (u*)%2, C Rf)

be such that B
supp p¥ C T (x)U{t €T : ||(as,b)] < M},

Siermf =1,fork=1,2,---, and

Ont1 = kh—{go Z :Uf (at,by) .
teT

By Lemma 1(ii), we have limy_, ZteT\i(x) uf =0, so that

lim Z ‘LL? (a't7 bt) = 07L+17 (13)

k—oo —
teT\T: (x)

because, for t € T\ T.(x), one has u¥ = 0 or ||(as, b;)|| < M.
Since limg o0 ) 2,7 @) uf = 1, according to Lemma 1(ii), we can suppose w.l.o.g. that

Ztei(z) pk >0, for k=1,2,---. Let us define the sequence (\*)3° | C REFT) as follows

s€Te(z) Hs
0, otherwise.

uf . o
)\f — { ﬁ, if ¢ S TE(I),

Then, Zteﬁ(r) )\f =1, for k=1,2,---, and thanks to (13) we obtain
1 k .
Opt1 = lim Z Af (e, be) s
teT.(z)
that is, condition (i) holds. m

Proposition 6 Let 7 € II; N bdIl. and z € R™\ {0,} such that sup{{a;,z) : t € T} = 0.
Assume, for every € > 0, the existence of M. > 0 such that

Opyr € @{(at,bt) teTu(z) or ||(as,by)| < ME} . (14)

Then, 7 € cl (I, N bdTl.).
Remark (before the proof). The existence of such a point = € R™\{0,,} for which sup{{a;, z) :
t € T} =0 is a consequence of the fact 0,, € bd A (Proposition 2(iii)).
Proof. Fix ¢ > 0. Thanks to Lemma 2, for /4 (14) is equivalent to
Ony1 € @{(at,bt) te T5/4(m)} :
Let (A\)52, € R be such that supp \¥ € T /a(2), Yyep AF = 1, for k =1,2,---, and

Opy1 = i y
nt1 = lim DA (ar,br)
teT

12



and take k. big enough in order to guarantee that
(Ue, 1) = Z)\fﬁ (ar,b) € (e/4)B.
teT

Since 7 is not totally inconsistent, we apply Proposition 1 to conclude the existence of w € R"
and p > 0 such that
<a’t7 w> + bt 2 — P, (15)

for all ¢ € T. Choose v > 0 small enough to guarantee that

x ellx
HTH < (@ = ~w, =y)|| and yp < % (16)
and )
max{|<(at’ W, (rw = 2,7))] :t€supp/\k5} < € (17)
[(yw — 2,7l 2
Such v exists because lim., ¢ ||(yw — z,7)|| = ||=|| and, for all ¢ € supp A™,

. ellx
i {(ar. b, () € 0. 71
v—0 4
We proceed by proving that z° := (z — yw)/~, where v satisfies (16) and (17), verifies (i) and
(ii) in Proposition 4. First observe that, by taking into account that sup{{a;,z) : t € T} = 0,
(15), and (16), we have, for all ¢ € T,
by, (z — yw, —)) < b). (—vaw. ) < ~vp < SN < — v, —
((as,b), (z = yw, =7)) < ((as,be), (—yw, =) <0 < —5—= < ell(@ —qw, =)
so that
((ar,br), (2%, —1)) < e/ (z%, =1)]| (18)

and hence, condition (i) in Proposition 4 holds.
In order to prove condition (ii) in Proposition 4, we define, for ¢ € supp AFe

<(at7 bt) - (usnu’s)’ (VUQ) B $,’Y)> (’Yw _ 3377)
[(yw =z, 7)

(aiabi) = (at’bt) - (UJE?U’E) -

Let us show first that supp \*s C T.(z°). Given t € supp A*ewe have, from the definition of
(ag, b7),

[((as, be), yw —z, M) _ e €
ae’bs - a/ab Sz Ue, e + §27+*:€7
I05.50) = (ar )| < 2 o) + ST T < 9% 2

so that, because ((as, b;), (z¢, —1)) = 0, we can write

[{(as, b1), (2%, =1))| = [{(as, br) — (af, b;), (2%, = 1))
< [l(ag, b7) — (ar, bo)| [I(=%, = 1)
<ellz%, -1,

thus supp A\*s € T.(z°).
Now, observing that

0n+1 = Z )‘fg(a;?bi)a

tEsupp \re
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we deduce
Opnt1 € cO {(at,bt) : t € supp )\ks} +eB Ccof(as,by) : t € T.(2%)} + B,

that is, condition (ii) in Proposition 4 also holds, and so, 7 € ¢l (II. N bd IL.). m

As a direct consequence of Proposition 6 we obtain (see, also [7, Theorem 2]):
Corollary 4 Let m € II; N bd Il.. Suppose that there exists M > 0 such that

On+1 €T {(at,be) : t € T such that ||(a:,b)| < M}.

Then, € cl (II, N bd 1l.).
Proof. It is enough to apply Proposition 6 with M, = M, for every ¢ > 0. m

The following proposition slightly relaxes the assumptions in [7, Theorem 3|

Proposition 7 Let w € II; NbdIl., z € A°\{0,}, and assume the existence of M > 0 such that
the following statements hold:

(i) (at,z) = by < M, forallt €T,
(11) 0n+1 € @{(at,bt) 1 by < M}

Then, m € cl (II, N bd Il.).
Proof. Fix € > 0 and let v > 1 big enough to guarantee that
2M < e[ (ya, =1)|. (19)

This ~y exists since lim,_. 4 ||(yz, —1)|| = +00. We are going to prove that the vector z° := vz
verifies both conditions (i) and (ii) in Proposition 4.
Since x € A°, and using (19) and the current assumption (i), we can write

<(at7 bt)a ('rev *1)> = <(at7 bt)a (7x7 71)> < <(at7 bt)a (xa 71)> < M <e ”(xsa 71)” ) (20)

for all ¢ € T, and condition (i) in Proposition 4 follows.
In order to verify that ¢ also satisfies (ii) in Proposition 4 we proceed as follows. Set

Ty ={teT by <M}, Cur:=cof(as,b):t €T},

and denote by fas the support function of Cyy, so that fas(x,0) < 0. Then our current assumption
(ii) entails 05,41 € c1Cpr = Ofar(0p41). In this way, (z,0) is a global minimum of fys, fas(z,0) =
0, and 0,41 € Ofp(z,0). Appealing to Proposition 3, we obtain

Ons1 € () cl(co{(ar,by) : t € Tar st (ar,z) > —6} + (clChr)os N{(z,00}).  (21)
>0

Next we shall show that
(1 Crr)oo N {(2, 00} = {(v,0) € (1 Crs)os : (v,2) = 0}. (22)

In fact, our current assumption (i) entails (z,—1) € dom fa; C [(c1Car)ao]” - So, for every
(v,a) € (c1Cas)oe N {(x,0)} ", one has

—a={v,z)—a={va),(z,-1)) <0,
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and this implies (c1 Car)oo N{(2,0)} C R™ x R, On the other hand, the condition SUpser,, bt <
M yields (clCpr)oo C R™ x (—R4), and consequently,

(1 Chr)oo N {(@,0)} C R™ x {0},
which leads us to (22).

Now we are going to establish the inclusion

{teTM g, z) > J\j} C To(2°). (23)

Let t € {t € Ty : {ag,x) > —%} We have, by the current assumptions (i) and (ii) and the
condition z € A°\ {0,},
M Z <(a/ta bt) ) ('7:7 _1)> Z <(a/ta bt) ) (7337 _1)> Z _M - bt Z _2M7

thus
|<(at7 bt) ) (7I7 71)>| S 2M7

and hence, taking into account (19),

{t € o : lan o) > Af} C{teT: [{(anb), (o, ~1))| < 2M}
C{teT: {(anb), (o, ~1)] < < | (v, ~ DI}
=T.(yz) = Tc(x°).

Consequently, using (22) and (23), (21) for 6 = % yields

Opt1 € cl (co{(at,bt) it €Ty st {ag,x) > —%} +{(v,0) € (cl1Cp)o : (v, ) = O})
Ccl(co{(as,by):t €T (%)} +{(v,0) € (cl Cpr) oo : {v,z) =0})
= cl(co{(as,be) - t € T (%)} + {(v,0) € (1 Cpr)oo : ((v,0), (yz, —1)) = 0})

Ccl (co{(at,bt) cte To(z%)} + () N { (2%, _1)]%)
C co{(as,by) i t € To(2°)} + (1 C)oo N {(25, —1)}" +£B.
In this way we have established that condition (ii) in Proposition 4 also holds (with ¢ := ~x).

]
The conditions used in Propositions 6 and 7 are not necessary in general as show the following
examples.

Example 2 Let us consider the system o, in R?,

<(7178)7 (xay» S 07 5> 07

<(070)7 (x,y)> < _17
<(t7 1)7 (m,y)> <0, t >0,

and set 7 := (c,0), with ¢ € R%. We have 7 € II; N cl(Il. N bd I1,.), according to Example 1, and
we check that A° = {0} x (=Ry). Setting z := (0, —y) € A° with y > 0, it can be seen that

03 cho{(l,s,O), s < ;;(0,0,1)} :@{(at,bt) te f%(z)}.

According to Lemma 2, (14) in Proposition 6 does not hold with ¢ = %, for any M. > 0.
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Example 3 Let o be the system, in R, given by

@ |

(s,z) <1 s>0,
(0, ) 1,

IA I
I

and set 7 := (¢, o), with ¢ € R. It can be seen that (0,—1) € c1C C cI N and 03 € bd H, so that
m € II; NbdIl.. Given z € A°\ {0} = (—Ry4) \ {0} we have, for every € > 0,

(1 /1 k-1 _
0 = Jim [k <k’“) * k“’"”] coo{(anb) it To(a) .
k>=2

e

thus 7 € cl (II, N bdIl.), according to Proposition 6. On the other hand, because sz — % <0,
for every s > 0, condition (i) in Proposition 7 is satisfied for any M > 1, whereas

0 ¢co{(o,—1), (s, i) : % < M} =0 {(ag,by) : by < M},

for every M > 1. Hence condition (ii) in Proposition 7 never holds.
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