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Abstract

This paper deals with the stability of linear semi-in�nite programming (LSIP, for short)
problems. We characterize those LSIP problems from which we can obtain, under small
perturbations in the data, di¤erent types of problems, namely, inconsistent, consistent un-
solvable, and solvable problems. The problems of this class are highly unstable and, for this
reason, we say that they are totally ill-posed.

The characterization that we provide here is of geometrical nature, and it depends ex-
clusively on the original data (i.e., on the coe¢ cients of the nominal LSIP problem). Our
results cover the case of linear programming problems, and they are mainly obtained via a
new formula for the subdi¤erential mapping of the support function.
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1 Introduction

Consider the linear optimization problem in the Euclidean space, Rn,

� : Inf hc; xi
s.t. hat; xi � bt ; t 2 T;

(1)

where c, x, at 2 Rn, bt 2 R, and h:; :i denotes the scalar product in Rn. The non-empty index set,
T , whose elements identify the inequalities of the constraint system, � = fhat; xi � bt ; t 2 Tg, is
arbitrary (possibly in�nite). The problem � is alternatively represented by the pair (c; �):When
T is in�nite the problem � = (c; �) is a linear semi-in�nite programming problem (LSIP).
The parameter space of all the problems (1), with constraint systems having the same index

set, is denoted by �. By �c we represent the subset of all the consistent problems (i.e., those
problems � = (c; �) whose feasible sets are non-empty), by �i := ���c the class of inconsistent
problems, and by �s the subset of the solvable problems (having at least an optimal solution).
Obviously, �s � �c.
We introduce in � the extended distance � : ���! [0;+1] given by

� (�1; �) := max
�c1 � c ; d (�1; �)	 ; (2)

where

d (�1; �) := sup
t2T

�a1tb1t
�
�
�
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and k�k represents the Euclidean norm in both Rn and Rn+1. In this way � is endowed with the
topology of the uniform convergence of the coe¢ cient vectors [11, Chapter 10]. Given � 2 � ande� � �, we write, as usual, �(�; e�) := inff� (�; e�) ; e� 2 e�g; but now �(�; e�) can take the value
+1:
In (�; �); and also in the Euclidean space, intX; clX; extX; and bdX represent the interior

set, the closure, the exterior (i.e., the complementary set of clX), and the boundary of X,
respectively. In the Euclidean space, rintX denotes the relative interior of X (i.e., the interior
of X in the topology relative to the a¢ ne manifold generated by X):
The stability of an optimization model is a key property, mainly when we deal with real-world

problems, and it became a paradigmatic property. Many times users prefer to emphasize stability,
instead of insisting in the optimal character of the chosen solution [20]. In [1] three notions of
stability in linear programming are studied, and in [6] their equivalence in the LSIP setting is
proven. A selection of di¤erent contibutions to the stability of the general LSIP problem, when
all the coe¢ cients in the problem can be perturbed (in the line of [18]), are [2],[8],[9],[10],[12],[13],
[16], etc.
In [3] di¤erent notions of well-posedness in LSIP are proposed. Most of these concepts are

closely related to the condition � 2 int�s. Generically, we say that a problem is ill-posed
with respect certain property when arbitrarily small perturbations of the coe¢ cients may yield
problems for which this property is either kept or lost. In particular a problem is ill-posed
with respect to the consistency (solvability) if small perturbations can produce either consistent
or inconsistent problems (either solvable or unsolvable problems, respectively). Formally, these
ill-posed problems are those in bd�c (bd�s, respectively).
In the line of [17], the distance to ill-posedness with respect to the consistency will be

�(�;bd�c): It turns out to have a great in�uence on the numerical complexity of certain feasi-
bility algorithms. In our LSIP framework, �(�;bd�c) is measured in [4]. The set of ill-posed
problems with respect to the solvability, bd�s; is characterized in [5], and the problem of mea-
suring the distance �(�;bd�s) is approached (either by means of an exact formula or through
some lower/upper bounds) in [6].
It makes sense to call totally ill-posed problems to those problems in (bd�c)\ (bd�s): These

problems are highly unstable since small perturbations may provide inconsistent, unsolvable
consistent, and solvable problems. In [5] a characterization of the set (bd�c)\(bd�s) is obtained,
but this characterization involves some parameter subset which is not identi�ed by means of the
coe¢ cients of �: Thus, the main objective of this paper is to characterize the set of totally
ill-posed problems, (bd�c) \ (bd�s); in terms exclusively of c; at; and bt; t 2 T .
This is the summary of the paper. Section 2 is devoted to notation and preliminary results.

Proposition 4 in Section 3, together with Proposition 2, leads us to the Proposition 5 which
characterizes the set (bd�c)\ (bd�s) in terms exclusively of the coe¢ cients of �. Finally in this
section, Corollary 3 particularizes Proposition 5 for the ordinary linear programming problem
(T �nite). The last section, Section 4, includes some su¢ cient conditions for total ill-posedness,
which add geometrical insight and make easier the detection of this property. Our su¢ cient
conditions are related to the ones given in [7].

2 Preliminaries

Given a non-empty set X � Rk, by coX; coX; coneX; and a�X we denote the convex hull ; the
closed convex hull, the conical convex hull ; and the a¢ ne hull ; respectively, of X. We also use
the sets

X� :=
�
y 2 Rk j hy; xi � 0 for all x 2 X

	
;
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and
X? :=

�
y 2 Rk j hy; xi = 0 for all x 2 X

	
;

i.e., the dual cone of X (or polar cone of coneX) and the orthogonal space of X, respectively.
If X is a closed convex set, X1 represents its recession cone

X1 :=
�
y 2 Rk j x+ �y 2 X for some x 2 X and all � � 0

	
;

whereas
linX := X1 \ (�X)1

represents its lineality space.
If � � R is a non-empty set, we introduce the set

�X := f�x : � 2 � and x 2 Xg:

For any given S � T; the set R(S)+ will denote the cone of the functions � : S ! R+ taking
positive values only at �nitely many points of S. For � := f�t; t 2 Sg 2 R(S)+ ,

supp� := ft 2 S : �t > 0g

is the support of �.
In any Euclidean space Rk involved in our analysis, with k�k representing the Euclidian norm;

B denotes the associated closed unit ball centered at the origin 0k. For the sake of simplicity, we
write the vectors in Rk+1 in the form (x; xk+1); for instance (0k; 1) and (at; bt); for t 2 T .
The following sets, associated with � := (c; �); are relevant in our analysis:

A := cofat; t 2 Tg; M := cone fat; t 2 Tg = R+A;

C := co f(at; bt); t 2 Tg ; N := cone f(at; bt); t 2 Tg = R+C;

H := C + R+(0n; 1); K := N + R+ f(0n; 1)g ;

Z+ := co f�at; t 2 T ; cg ; Z� := co f�at; t 2 T ;�cg ;

where R+ := [0;+1[ :
Given a proper convex function h : Rk �! R [ f+1g, we denote by domh its e¤ective

domain
domh := fx 2 Rk : h(x) < +1g;

and by @h(x); with x 2 domh, the subdi¤erential set of h at x

@h(x) := fu 2 Rk : h(y)� h(x) � hu; y � xi for all y 2 Rkg:

If @h(x) 6= ;; the point x is a global minimum of h if and only if 0k 2 @h(x).
Frequently we make use of the support function of clC; f : Rn+1 �! R [ f+1g, given by

f(x; �) := supfhat; xi+ bt� : t 2 Tg: (3)

f is a lower semicontinuous (lsc, for short) sublinear function, and its e¤ective domain satis�es
[15, Proposition V.2.2.4]

cl(dom f) = [(clC)1]
�
:
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The subdi¤erential of f at (x; �) 2 dom f is ( [15, Example VI.3.1])

@f(x; �) = f(u; �) 2 clC : f(x; �) = hu; xi+ ��g:

In particular
@f(0n+1) = clC:

Given �r = (cr; �r), with �r := fhart ; xi � brt : t 2 Tg and fr(x; �) := supfhart ; xi+ brt� : t 2
Tg; for r = 1; 2; � � � , such that

d(�r; �) < +1; r = 1; 2; � � � ;

one has
f(x; �)� �(�r; �)k(x; �)k � fr(x; �) � f(x; �) + �(�r; �)k(x; �)k,

for every (x; �) 2 Rn+1: Thus, fr ! f pointwisely and dom fr = dom f; for r = 1; 2; � � � . This
yields

cl(dom fr) = cl(dom f) = [(clC)1]
�
; r = 1; 2; � � � :

When T is in�nite, we can consider the following family of pathological problems

�1 := f� 2 � : �(�;bd�c) = +1g ;

which is characterized in the following proposition:

Proposition 1 Given � = (c; �) 2 �; the following statements are equivalent :
(i) � 2 �1;
(ii) supfhat; xi � bt : t 2 Tg = +1; for all x 2 Rn;
(iii) (0n;�1) 2 (clC)1:

Proof. The equivalence of (i) and (iii) is given in [4, Proposition 1]. To show the equivalence
of (ii) and (iii) we appeal to the function f de�ned in (3). Assume that (iii) holds, that is, for
every �xed (u; �) 2 clC; we have

(u; �) + (0n ;�1) 2 clC = @f(0n+1);

for all  � 0: Thus, for each x 2 Rn;

f(x;�1) � h(u; �) + (0n ;�1); (x;�1)i = hu; xi � �+ ;

for all  � 0, i.e. f(x;�1) = supfhat; xi � bt : t 2 Tg = +1:
Conversely, assume that (ii) holds but (0n ;�1) 62 (clC)1: By the separation theorem, there

will exist (v; �) 2 Rn+1 n f0n+1g and � 2 R such that

h(v; �); (z; �)i � � < ��; for all (z; �) 2 (clC)1:

Since (clC)1 is a closed cone, we conclude, from the previous inequalities, that � < 0 and
(v; �) 2 [(clC)1]� = cl(dom f). Consequently, applying Theorem 6.1 in [19] and taking into
account the homogeneity of f; there would exist x satisfying f(x;�1) < +1, and this contradicts
(ii).

The following proposition gathers di¤erent results which are used throughout the paper.
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Proposition 2 Given � = (c; �) 2 �; the following statements hold :
(i) [11, Theorem 4.4] � 2 �c if and only if (0n;�1) =2 clN;
(ii) [12, Theorem 3.1] If � 2 �c; then � 2 int�c if and only if 0n+1 =2 clC;
(iii) [5, Lemma 1(ii)] If � 2 �i \ bd�c, then 0n 2 bdA;
(iv) If � 2 �i \ bd�c, then 0n+1 2 bdC if and only if 0n+1 2 clC;
(v) [4, Theorem 4, 5, and 6] If � 2 � n�1; then � 2 ext�c; � 2 int�c; or � 2 bd�c if and only
if 0n+1 2 intH, 0n+1 2 extH; or 0n+1 2 bdH; respectively;
(vi) [5, Theorem 2] If � 2 int�c; then � 2 ext�s; � 2 int�s; or � 2 bd�s if and only if
0n+1 2 extZ�, 0n+1 2 intZ�; or 0n+1 2 bdZ�; respectively,
(vii) [5, Theorem 3] If � 2 bd�c; then � 2 bd�s if and only if either 0n+1 2 bdZ+ or
� 2 cl(�c \ bd�c):

Proof. (iv) The direct statement is trivial. For the converse, we have, by (iii), 0n 2 bdA; and
this precludes 0n+1 2 intC: So, 0n+1 2 clC implies 0n+1 2 bdC
Remark It is obvious that (clC)1 � clN; and Proposition 1(iii) together with Proposition

2(i) entail �1 � �i. Accordingly, a problem � 2 �1 can be called totally inconsistent.
Finally in this section we include an alternative characterization of the subdi¤erential set of

the support function of an arbitrary set [14, Proposition 1].

Proposition 3 Consider a non-empty set A � Rp and its associated support function h : Rp !
R [ f+1g

h(z) := supfha; zi : a 2 Ag:
Then, for every z 2 domh we have

@h(z) =
\
�>0

cl
�
(coA�) + (coA)1 \ fzg?

�
; (4)

where
A� := fa 2 A : ha; zi � h(z)� �g;

for � > 0. If z 2 rint(domh); then one has

@h(z) =
\
�>0

cl ((coA�) + lin(coA)) ;

whereas z 2 int(domh) entails
@h(z) =

\
�>0

coA�:

3 Characterization of the total ill-posedness

The main objective of this section is to characterize the set cl (�c \ bd�c) ; and this is achieved
in Proposition 4 by means of conditions relying exclusively on the position of 0n+1 with respect
to clC: In this way, our Proposition 4, together with some results in [5] (gathered in Proposition
2), lead us to Proposition 5 in this section, which provides a characterization of the class of
totally ill-posed problems, (bd�c)\ (bd�s); in terms exclusively of the coe¢ cients of � and the
vector c.
Let us denote, for x 2 Rn and " > 0,

T"(x) := ft 2 T : jh(at; bt) ; (x;�1)ij � " k(x;�1)kg: (5)

5



Proposition 4 Let � 2 �i\bd�c. Then � 2 cl (�c \ bd�c) if and only if for every " > 0 there
exists x" 2 Rn such that the following statements hold :
(i) h(at; bt); (x";�1)i � " k(x";�1)k, for every t 2 T ,
(ii) 0n+1 2 co f(at; bt) : t 2 T"(x")g+ (clC)1 \ f(x";�1)g? + "B.

Proof. Assume that � 2 cl (�c \ bd�c) and �x " > 0. Let �" := (c"; �") 2 �c \ bd�c; with
�" := fha"t ; xi � b"t ; t 2 Tg; be such that �(�; �") � "=2:
If f" is the support function of C" := co f(a"t ; b"t ) : t 2 Tg, and x" is feasible for �"; we have

f"(x";�1) � 0: Moreover, Proposition 2(ii) provides 0n+1 2 clC" = @f"(0n+1), entailing that
0n+1 is a global minimum of f"; as well as (x";�1): Hence f"(x";�1) = f"(0n+1) = 0; and
Proposition 3 yields

@f"(x";�1) =
\
�>0

cl
�
co f(a"t ; b"t ) : h(a"t ; b"t ); (x";�1)i � ��g+ (clC")1 \ f(x";�1)g?

�
: (6)

We proceed by showing that x" satis�es (i). Certainly, for every t 2 T; h(a"t ; b"t ); (x";�1)i � 0;
so that

h(at; bt); (x";�1)i � h(a"t ; b"t ); (x";�1)i+
"

2
k(x";�1)k � " k(x";�1)k :

Now we prove that x" also satis�es (ii). From (6), with � = "=2; and the fact that (x";�1) is
a global minimum of f"; we get

0n+1 2 @f"(x";�1)

� cl
�
co f(a"t ; b"t ) : h(a"t ; b"t ); (x";�1)i � �"=2g+ (clC")1 \ f(x";�1)g?

�
� co f(a"t ; b"t ) : h(a"t ; b"t ); (x";�1)i � �"=2g+ (clC")1 \ f(x";�1)g? + "

2
B

� co f(at; bt) : h(a"t ; b"t ); (x";�1)i � �"=2g+ (clC)1 \ f(x";�1)g? + "B; (7)

the last inclusion being a consequence of supt2T k(a"t ; b"t )� (at; bt)k � �(�; �") � "=2; (clC")1 =
(clC)1; and the Cauchy-Swartz inequality.
Taking into account that k(x";�1)k � 1; that �(�; �") � "=2; and applying again the Cauchy-

Swartz inequality, we write

ft 2 T : h(a"t ; b"t ); (x";�1)i � �"=2g
� ft 2 T : h(a"t ; b"t ); (x";�1)i � �"=2 k(x";�1)kg

=

�
t 2 T : 0 �

�
(a"t ; b

"
t );

(x";�1)
k(x";�1)k

�
� �"=2

�
�
�
t 2 T : "=2 �

�
(at; bt);

(x";�1)
k(x";�1)k

�
� �"

�
� T"(x"):

This inclusion, together with (7), give rise to

0n+1 2 co f(at; bt) : t 2 T"(x")g+ (clC)1 \ f(x";�1)g? + "B;

i.e. x" also satis�es (ii).
Now we prove the converse. Fix " > 0 and let x" be the associated vector verifying (i) and

(ii). Because of (ii), there will exist � 2 R(T )+ ; with supp� � T"(x") and
P

t2T �t = 1, (v; �) 2
(clC)1 \ f(x";�1)g?; and (w; ) 2 B such that

0n+1 =
X

t2T"(x")

�t (at; bt) + (v; �) + "(w; ): (8)
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Set �" := fha"t ; xi � b"t : t 2 Tg, where (a"t ; b"t ) is de�ned as follows

(a"t ; b
"
t ) :=

(
(at; bt) + " (w; )� h(at;bt)+"(w;);(x";�1)i

k(x";�1)k2 (x";�1); if t 2 T"(x");
(at; bt) ; otherwise.

(9)

We shall show that �" := (c; �") satis�es �(�; �") � 3" and �" 2 �c \ bd�c: To this aim we
proceed as follows:
First, for all t 2 T"(x"), we have

k(a"t ; b"t )� (at; bt)k � " k(w; )k+
jh(at; bt) + "(w; ); (x";�1)ij

k(x";�1)k

� "+ jh(at; bt) ; (x
";�1)ij

k(x";�1)k +
jh"(w; ); (x";�1)ij

k(x";�1)k � 3";

so that

�(�"; �) = d(�"; �) = sup
t2T

k(a"t ; b"t )� (at; bt)k � sup
t2T"(x")

k(a"t ; b"t )� (at; bt)k � 3":

Second, we check that x" is feasible for �".
According to (9) we have h(a"t ; b"t ) ; (x";�1)i = 0 for all t 2 T"(x"); whereas condition (i) gives us

h(a"t ; b"t ) ; (x";�1)i � h(at; bt) ; (x";�1)i < �" k(x";�1)k � 0;

for all t 2 T n T"(x"): In this way the feasibility of x" for �" follows; i.e. �" 2 �c.
The last point to be checked is that �" 2 bd�c. To this aim, and because �" 2 �c, it su¢ ces to
establish that 0n+1 2 clC" := co f(a"t ; b"t ) : t 2 Tg ; according to Proposition 2(ii).
Reasoning by contradiction, suppose that 0n+1 62 clC". Then, by the separation theorem,

there would exist (u; �) 2 Rn+1nf0n+1g and � < 0 such that

h(a"t ; b"t ) ; (u; �)i � �;

for all t 2 T: This inequality entails (u; �) 2 dom f"; domain of the support function f" of C".
In particular, for t 2 T"(x"),*

(at; bt) + "(w; )�
h(at; bt) + "(w; ); (x";�1)i

k(x";�1)k2
(x";�1); (u; �)

+
� �: (10)

Multiplying both sides of the inequality (10) above by �t; for t 2 T"(x"); and summing up over
T"(x

"), we obtainDP
t2T"(x") �t (at; bt) + "(w; )�

h
P

t2T"(x") �t(at;bt)+"(w;);(x
";�1)i

k(x";�1)k2 (x";�1); (u; �)
E
� �;

so that, making use of (8) and the condition (v; �) 2 f(x";�1)g?,*
�(v; �) + h(v; �); (x

";�1)i
k(x";�1)k2

(x";�1); (u; �)
+
= h�(v; �); (u; �)i � �:

In this way one gets h(v; �); (u; �)i � �� > 0, which constitutes a contradiction because (v; �) 2
(clC)1 and

(u; �) 2 dom f" � [(clC")1]� = [(clC)1]�:
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(The last equality [(clC")1]� = [(clC)1]� holds because �(�"; �) is �nite.)
Summarizing, we have proven that for every " > 0 there exists �" 2 �c \ bd�c such that
�(�"; �) � 3"; thus we conclude that � 2 cl(�c \ bd�c):
The following corollary is used in the sequel.

Corollary 1 Let � 2 �i. If � 2 cl (�c \ bd�c), then we have:
(i) 0n+1 2 bdC:
(ii) Condition (ii) in Proposition 4 can be expressed in the alternative form

0n+1 2 bd
 \
">0

�
co f(at; bt) : t 2 T"(x")g+ (clC)1 \ f(x";�1)g? + "B

�!
:

Proof. (i) is already known [5, Theorem 4], and here we provide a straightforward alternative
proof.
Statement (ii) in Proposition 4 implies

0n+1 2 clC + (clC)1 + "B = clC + "B; for all " > 0:

Hence 0n+1 2 clC, or equivalently 0n+1 2 bdC; according to Proposition 2(iv).
(ii) Otherwise, we will have

0n+1 2 int
 \
">0

(clC + (clC)1 + "B)

!
= intC;

a contradiction with (i).

We proceed by analyzing systems whose coe¢ cients f(at; bt) : t 2 Tg are bounded. The
following corollary is the counterpart of Proposition 4 under this boundedness assumption and,
so, it applies to the case of ordinary linear programming.

Corollary 2 Let � 2 �i\bd�c and assume that supt2T k(at; bt)k �M; for some M > 0. Then,
the following statements are equivalent:

(i) � 2 cl (�c \ bd�c) ;
(ii) 0n+1 2

\
">0

co f(at; bt) : hat; xi � �"g ; for every x 2 A� n f0ng:

Proof. [(i)) (ii)] From Corollary 1(i), 0n+1 2 bdC � clC = @f(0n+1), so that 0n+1 is a global
minimum of f .
Since �i \ bd�c; Proposition 2(iii) provides 0n 2 bdA. By the separation theorem, there

must exist x 2 Rn n f0ng such that hat; xi � 0, for all t 2 T ; i.e. x 2 A� n f0ng:
Moreover, since 0n+1 is a global minimum of f; one has f(x; �) � 0 for every (x; �) 2 Rn+1. In
particular, f(x; 0) = 0 for all x 2 A� = fx 2 Rn : hat; xi � 0; for all t 2 Tg.
Thus, taking into account that the support function f of the bounded set C is �nite everywhere,
Proposition 3 yields

0n+1 2 @f(x; 0) =
\
">0

co f(at; bt) : hat; xi � �"g ;

for every x 2 A� n f0ng; that is, (ii) holds.
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[(ii)) (i)] Since � 2 bd�c there exists a sequence of consistent problems �r := (cr; �r); with
�r := fhart ; xi � brt : t 2 Tg, r = 1; 2; � � � ; converging to �. Letting xr be a feasible point of �r,
for r = 1; 2; � � � ; we assume, without loss of generality, that the sequence (xr;�1)

k(xr;�1)k ; r = 1; 2; � � � ;
converges to some (z; 0) 2 Rn+1�f0n+1g. Otherwise the sequence would converge to (z; �); with
� < 0; and then z= j�j would be a feasible point of � (contradicting its inconsistency). Moreover,
the sequence kxrk ; r = 1; 2; � � � ; must converge to +1, because otherwise there will exist a
subsequence of (xr)1r=1 converging to a feasible point of �, and this constitutes a contradiction,
again with the inconsistency of �:
Fixed t 2 T; we have hart ; xri � brt ; r = 1; 2; :::; which yields z 2 A� n f0ng due to the

boundedness of fbt; t 2 Tg and limr!+1 kxrk = +1. By the current assumption

0n+1 2
\
�>0

cl (co f(at; bt) : hat; zi � ��g) ;

and for a �xed " > 0 one has

0n+1 2 cl
�
co
n
(at; bt) : hat; zi � �

"

2

o�
: (11)

Assume that r" is big enough to guarantee that (xr" ;�1)
k(xr" ;�1)k � (z; 0)

 � "

2M
and �(�r" ; �) � ":

Then, h(at; bt) ; (z; 0)i � � "
2 implies�����(at; bt) ; (xr" ;�1)k(xr" ;�1)k

����� � jh(at; bt) ; (z; 0)ij+ �����(at; bt) ; (xr" ;�1)k(xr" ;�1)k � (z; 0)
�����

� "

2
+ k(at; bt)k

 (xr" ;�1)
k(xr" ;�1)k � (z; 0)

 � "

2
+
"

2
= ":

Now, (11) allows us to write

0n+1 2 cl (co f(at; bt) : jh(at; bt) ; (xr" ;�1)ij � " k(xr" ;�1)kg)
� co f(at; bt) : jh(at; bt) ; (xr" ;�1)ij � " k(xr" ;�1)kg+ "B
� co f(at; bt) : t 2 T"(xr")g+ (clC)1 \ f(xr" ;�1)g? + "B;

that is, condition (ii) in Proposition 4 holds taking x" := xr" : Moreover, one has for all t 2 T;

h(at; bt) ; (xr" ;�1)i � h(at; bt)� (ar"t ; br"t ) ; (xr" ;�1)i
� k(at; bt)� (ar"t ; br"t )k k(xr" ;�1)k
� �(�r" ; �) k(xr" ;�1)k � " k(xr" ;�1)k ;

so that condition (i) in Proposition 4 also holds taking x" := xr" : Applying Proposition 4, we
conclude � 2 cl (�c \ bd�c) and, so, [(ii)) (i)].

In the following example we give an application of Proposition 4.

Example 1 Let us consider, in R2; the system of inequalities �; given by8<: h(�1; s); (x; y)i � 0; s > 0;
h(0; 0); (x; y)i � �1;
h(t; 1); (x; y)i � 0; t > 0;

9



and the LSIP problem � := (c; �); with c 2 R2: In order to apply Proposition 4 we shall verify
�rst the following points:
1) � 2 �i : This follows from the inequatlity h(0; 0); (x; y)i � �1:
2) � 2 bd�c : It is not di¢ cult to graphically check that 03 2 bdH and (0; 0;�1) =2 (clC)1.
Hence � =2 �1 and Proposition 2(v) leads us to � 2 bd�c.
3) � satis�es both conditions (i) and (ii) in Proposition 4. In order to verify this statement, let
" > 0 and set x" := (0;�1=") : We have, for all s; t > 0,

h(�1; s; 0); (0;�1=";�1)i = �s=" � " k(0;�1=";�1)k ;
h(0; 0;�1); (0;�1=";�1)i = 1 � " k(0;�1=";�1)k ;
h(t; 1; 0); (0;�1=";�1)i = �1=" � " k(0;�1=";�1)k ;

thus condition (i) in Proposition 4 follows.
In order to check condition (ii), we observe �rst that (1; 0; 0) 2 (clC)1 \ f(x";�1)g?: Next, for
s 2]0; "] �xed, we have

jh(�1; s; 0); (0;�1=";�1)ij = s=" � 1 < " k(0;�1=";�1)k ;

thus s 2 T"(x"); and

03 = (�1; s; 0) + (1; 0; 0)� (0; s; 0)
2 f(�1; s; 0)g+ (clC)1 \ f(x";�1)g? + "B
2 co f(at; bt) : t 2 T"(x")g+ (clC)1 \ f(x";�1)g? + "B,

that is, condition (ii) in Proposition 4 also holds, and so, � 2 cl(�c \ bd�c).

The following proposition gives rise to a characterization of the class of totally ill-posed
problems in �:

Proposition 5 In relation to a problem � 2 ���1; let us consider the following conditions:
(a) 0n+1 2 bdH;
(b) 0n+1 2 clC;
(c) 0n 2 bdZ+;
(d) for every " > 0 there exists x" such that (i) and (ii) in Proposition 4 are satis�ed.
Then � is totally ill-posed, i.e. � 2 (bd�c)\ (bd�s); if and only if at least one of these pairs of
conditions holds:

f(a); (b)g; f(a); (c)g; or f(a); (d)g:

Proof. This characterization result is a straightforward consequence of some statements in
Proposition 2 and Proposition 4. More precisely, if � 2 (bd�c) \ (bd�s) the discussion is:
1) If � 2 �c \ bd�c then conditions (a) and (b) hold, according to Proposition 2(ii) and (v). In
this case, trivially, � 2 cl(�c \ bd�c) and Proposition 2(vii) applies.
2) If � 2 �i\cl(�c\bd�c) then (a) and (d) hold according to Proposition 2(v) and Proposition
4. Now Proposition 2(vii) applies again.
3) Finally, (a) and (c) also yield � 2 (bd�c)\ (bd�s) as a consequence of Proposition 2(v) and
(vii).
(It is evident that 1), 2) and 3) cover all the possibilities for the total ill-posedness of �, according
to Proposition 2(v) and (vii).)

The following corollary is the counterpart of Proposition 5 in the context of ordinary linear
programming (T �nite).

10



Corollary 3 Assuming T �nite, we consider the following conditions:

(a) 0n+1 2 bdH;
(b) 0n+1 2 C;
(c) 0n 2 bdZ+;
(d) 0n+1 2

\
">0

co f(at; bt) : hat; xi � �"g ; for every x 2 A� n f0ng.

Then � is totally ill-posed, i.e. � 2 (bd�c)\ (bd�s); if and only if at least one of these pairs of
conditions holds:

f(a); (b)g; f(a); (c)g; or f(a); (d)g:

Remark 1 For � 2 �i \ bd�c; conditions (b) and (d) in Corollary 3 are equivalent, according
to Corollary 2. In fact the implication (d))(b) is obvious, and (b))(d) follows from the proof
of (i))(ii) in Corollary 2.

4 Su¢ cient conditions for the total ill-posedness

In this section we establish some conditions guarantying that � 2 cl (�c \ bd�c) ; which provide
su¢ cient conditions for the total ill-posedness according to Proposition 2(vii). We shall need a
pair of technical lemmas, where the following notation is used:eT"(x) := ft 2 T : jhat; xij � " kxkg; (12)

with x 2 Rn and " > 0:

Lemma 1 Let us assume that, for some (�k)1k=1 � R(T )+ with
P

t2T �
k
t = 1, k = 1; 2; � � � ; we

have
0n+1 = lim

k!1

X
t2T

�kt (at; bt):

Then, for every x such that supfhat; xi : t 2 Tg = 0 and all " > 0, there exists a subsequence of
(�k)1k=1, that we denote in the same way, such that:

(i) limk!1
P

t2eT"(x) �kt hat; xi = limk!1
P

t2TneT"(x) �kt hat; xi = 0;
(ii) limk!1

P
t2TneT"(x) �kt = 0 and so, limk!1

P
t2eT"(x) �kt = 1:

Proof. Take �xed x such that supfhat; xi : t 2 Tg = 0 and " > 0:
(i) As �" kxk �

P
t2eT"(x) �kt hat; xi � 0 for k = 1; 2; � � � ; we assume w.l.o.g. that

limk!1
P

t2eT"(x) �kt hat; xi exists. Since hat; xi � 0; for all t 2 T , (i) follows from the equalities

0 = lim
k!1

X
t2T

�kt hat; xi = lim
k!1

X
t2eT"(x)

�kt hat; xi+ lim
k!1

X
t2TneT"(x)

�kt hat; xi:

(ii) As 0 �
P

t2TneT"(x) �kt � 1; for k = 1; 2; � � � ; we assume without loss of generality that
limk!1

P
t2TneT"(x) �kt exists. Then (ii) is a consequence of condition (i) and

0 = lim
k!1

X
t2TneT"(x)

�kt hat; xi � �" kxk lim
k!1

X
t2TneT"(x)

�kt � 0:

11



Lemma 2 Given x such that supfhat; xi : t 2 Tg = 0; M > 0; and " > 0; the following
statements are equivalent :

(i) 0n+1 2 co
n
(at; bt) : t 2 eT"(x)o ;

(ii) 0n+1 2 co
n
(at; bt) : t 2 eT"(x) or k(at; bt)k �Mo :

Proof. Let us prove the nontrivial implication. Assume that (ii) holds, and let (�k)1k=1 � R
(T )
+

be such that
supp�k � eT"(x) [ ft 2 T : k(at; bt)k �Mg;P

t2T �
k
t = 1; for k = 1; 2; � � � ; and

0n+1 = lim
k!1

X
t2T

�kt (at; bt) :

By Lemma 1(ii), we have limk!1
P

t2TneT"(x) �kt = 0, so that
lim
k!1

X
t2TneT"(x)

�kt (at; bt) = 0n+1; (13)

because, for t 2 T n eT"(x), one has �kt = 0 or k(at; bt)k �M .
Since limk!1

P
t2eT"(x) �kt = 1; according to Lemma 1(ii), we can suppose w.l.o.g. thatP

t2eT"(x) �kt > 0; for k = 1; 2; � � � . Let us de�ne the sequence (�k)1k=1 � R(T )+ as follows

�kt :=

(
�ktP

s2 eT"(x) �ks ; if t 2 eT"(x);
0; otherwise.

Then,
P

t2eT"(x) �kt = 1; for k = 1; 2,� � � ; and thanks to (13) we obtain
0n+1 = lim

k!1

X
t2eT"(x)

�kt (at; bt) ;

that is, condition (i) holds.

Proposition 6 Let � 2 �i \ bd�c and x 2 Rn n f0ng such that supfhat; xi : t 2 Tg = 0:
Assume, for every " > 0; the existence of M" > 0 such that

0n+1 2 co
n
(at; bt) : t 2 eT"(x) or k(at; bt)k �M"

o
: (14)

Then, � 2 cl (�c \ bd�c) :

Remark (before the proof). The existence of such a point x 2 Rnnf0ng for which supfhat; xi :
t 2 Tg = 0 is a consequence of the fact 0n 2 bdA (Proposition 2(iii)).
Proof. Fix " > 0: Thanks to Lemma 2, for "=4 (14) is equivalent to

0n+1 2 co
n
(at; bt) : t 2 eT"=4(x)o :

Let (�k)1k=1 � R
(T )
+ be such that supp�k � eT"=4(x); Pt2T �

k
t = 1, for k = 1; 2; � � � , and

0n+1 = lim
k!1

X
t2T

�kt (at; bt) ;
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and take k" big enough in order to guarantee that

(u"; �") :=
X
t2T

�k"t (at; bt) 2 ("=4)B:

Since � is not totally inconsistent, we apply Proposition 1 to conclude the existence of w 2 Rn
and � > 0 such that

hat; wi+ bt � ��; (15)

for all t 2 T: Choose  > 0 small enough to guarantee that

kxk
2
� k(x� w;�)k and � � " kxk

2
; (16)

and

max

�
jh(at; bt); (w � x; )ij

k(w � x; )k : t 2 supp�k"
�
� "

2
: (17)

Such  exists because lim!0 k(w � x; )k = kxk and, for all t 2 supp�k" ;

lim
!0

jh(at; bt); (w � x; )ij 2
�
0;
" kxk
4

�
:

We proceed by proving that x" := (x � w)=; where  satis�es (16) and (17), veri�es (i) and
(ii) in Proposition 4. First observe that, by taking into account that supfhat; xi : t 2 Tg = 0;
(15), and (16), we have, for all t 2 T;

h(at; bt); (x� w;�)i � h(at; bt); (�w;�)i � � �
" kxk
2

� " k(x� w;�)k ;

so that
h(at; bt); (x";�1)i � " k(x";�1)k (18)

and hence, condition (i) in Proposition 4 holds.
In order to prove condition (ii) in Proposition 4, we de�ne, for t 2 supp�k" ,

(a"t ; b
"
t ) := (at; bt)� (u"; �")�

h(at; bt)� (u"; �"); (w � x; )i
k(w � x; )k2

(w � x; ):

Let us show �rst that supp�k" � T"(x
"): Given t 2 supp�k" ; we have, from the de�nition of

(a"t ; b
"
t ),

k(a"t ; b"t )� (at; bt)k � 2 k(u"; �")k+
jh(at; bt); (w � x; )ij

k(w � x; )k � 2"
4
+
"

2
= ";

so that, because h(a"t ; b"t ); (x";�1)i = 0; we can write

jh(at; bt); (x";�1)ij = jh(at; bt)� (a"t ; b"t ); (x";�1)ij
� k(a"t ; b"t )� (at; bt)k k(x";�1)k
� " k(x";�1)k ;

thus supp�k" � T"(x"):
Now, observing that

0n+1 =
X

t2supp�k"
�k"t (a

"
t ; b

"
t );

13



we deduce

0n+1 2 co
n
(at; bt) : t 2 supp�k"

o
+ "B � co f(at; bt) : t 2 T"(x")g+ "B;

that is, condition (ii) in Proposition 4 also holds, and so, � 2 cl (�c \ bd�c).

As a direct consequence of Proposition 6 we obtain (see, also [7, Theorem 2]):

Corollary 4 Let � 2 �i \ bd�c: Suppose that there exists M > 0 such that

0n+1 2 co f(at; bt) : t 2 T such that k(at; bt)k �Mg :

Then, � 2 cl (�c \ bd�c) :

Proof. It is enough to apply Proposition 6 with M" =M; for every " > 0:

The following proposition slightly relaxes the assumptions in [7, Theorem 3]:

Proposition 7 Let � 2 �i\bd�c; x 2 A� nf0ng, and assume the existence of M > 0 such that
the following statements hold :

(i) hat; xi � bt �M , for all t 2 T ,
(ii) 0n+1 2 co f(at; bt) : bt �Mg :
Then, � 2 cl (�c \ bd�c) :

Proof. Fix " > 0 and let  � 1 big enough to guarantee that

2M � "k(x;�1)k: (19)

This  exists since lim!+1 k(x;�1)k = +1: We are going to prove that the vector x" := x
veri�es both conditions (i) and (ii) in Proposition 4.
Since x 2 A�; and using (19) and the current assumption (i), we can write

h(at; bt); (x";�1)i � h(at; bt); (x;�1)i � h(at; bt); (x;�1)i �M � " k(x";�1)k ; (20)

for all t 2 T , and condition (i) in Proposition 4 follows.
In order to verify that x" also satis�es (ii) in Proposition 4 we proceed as follows. Set

TM := ft 2 T : bt �Mg; CM := co f(at; bt) : t 2 TMg ;

and denote by fM the support function of CM ; so that fM (x; 0) � 0. Then our current assumption
(ii) entails 0n+1 2 clCM = @fM (0n+1). In this way, (x; 0) is a global minimum of fM ; fM (x; 0) =
0; and 0n+1 2 @fM (x; 0): Appealing to Proposition 3, we obtain

0n+1 2
\
�>0

cl(co f(at; bt) : t 2 TM s.t. hat; xi � ��g+ (clCM )1 \ f(x; 0)g?): (21)

Next we shall show that

(clCM )1 \ f(x; 0)g? = f(v; 0) 2 (clCM )1 : hv; xi = 0g: (22)

In fact, our current assumption (i) entails (x;�1) 2 dom fM � [(clCM )1]
�
: So, for every

(v; �) 2 (clCM )1 \ f(x; 0)g? ; one has

�� = hv; xi � � = h(v; �); (x;�1)i � 0;
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and this implies (clCM )1\f(x; 0)g? � Rn�R+: On the other hand, the condition supt2TM bt �
M yields (clCM )1 � Rn � (�R+); and consequently,

(clCM )1 \ f(x; 0)g? � Rn � f0g;

which leads us to (22).
Now we are going to establish the inclusion�

t 2 TM : hat; xi � �
M



�
� T"(x"): (23)

Let t 2
n
t 2 TM : hat; xi � �M



o
: We have, by the current assumptions (i) and (ii) and the

condition x 2 A� n f0ng,

M � h(at; bt) ; (x;�1)i � h(at; bt) ; (x;�1)i � �M � bt � �2M;

thus
jh(at; bt) ; (x;�1)ij � 2M;

and hence, taking into account (19),�
t 2 TM : hat; xi � �

M



�
� ft 2 T : jh(at; bt) ; (x;�1)ij � 2Mg

� ft 2 T : jh(at; bt) ; (x;�1)ij � " k(x;�1)kg
= T"(x) � T"(x"):

Consequently, using (22) and (23), (21) for � = M
 yields

0n+1 2 cl
�
co
n
(at; bt) : t 2 TM s.t. hat; xi � �M



o
+ f(v; 0) 2 (clCM )1 : hv; xi = 0g

�
� cl (co f(at; bt) : t 2 T"(x")g+ f(v; 0) 2 (clCM )1 : hv; xi = 0g)
= cl (co f(at; bt) : t 2 T"(x")g+ f(v; 0) 2 (clCM )1 : h(v; 0); (x;�1)i = 0g)

� cl
�
co f(at; bt) : t 2 T"(x")g+ (clC)1 \ f(x";�1)g?

�
� co f(at; bt) : t 2 T"(x")g+ (clC)1 \ f(x";�1)g? + "B.

In this way we have established that condition (ii) in Proposition 4 also holds (with x" := x).

The conditions used in Propositions 6 and 7 are not necessary in general as show the following
examples.

Example 2 Let us consider the system �; in R2;8<: h(�1; s); (x; y)i � 0; s > 0;
h(0; 0); (x; y)i � �1;
h(t; 1); (x; y)i � 0; t > 0;

and set � := (c; �); with c 2 R2: We have � 2 �i \ cl(�c \ bd�c); according to Example 1, and
we check that A� = f0g � (�R+): Setting z := (0;�y) 2 A� with y > 0; it can be seen that

03 62 co
�
(�1; s; 0); s � 1

2
; (0; 0;�1)

�
= co

n
(at; bt) : t 2 eT 1

2
(z)
o
:

According to Lemma 2, (14) in Proposition 6 does not hold with " = 1
2 ; for any M" > 0:

15



Example 3 Let � be the system, in R; given by�
hs; xi � 1

s ; s > 0;
h0; xi � �1;

and set � := (c; �); with c 2 R: It can be seen that (0;�1) 2 clC � clN and 03 2 bdH; so that
� 2 �i \ bd�c: Given z 2 A� n f0g = (�R+) n f0g we have, for every " > 0;

02 = lim
k!+1
k� 1

"

�
1

k

�
1

k
; k

�
+
k � 1
k

(0;�1)
�
2 co

n
(at; bt) : t 2 eT"(z)o ;

thus � 2 cl (�c \ bd�c) ; according to Proposition 6. On the other hand, because sz � 1
s � 0;

for every s > 0; condition (i) in Proposition 7 is satis�ed for any M � 1; whereas

02 62 co
�
(0;�1);

�
s;
1

s

�
:
1

s
�M

�
= co f(at; bt) : bt �Mg ;

for every M � 1: Hence condition (ii) in Proposition 7 never holds.
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