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Abstract. This paper concerns applications of advanced techniques of variational analysis and
generalized differentiation to parametric problems of semi-infinite and infinite programming, where
decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is
primarily devoted to the study of robust Lipschitzian stability of feasible solutions maps for such
problems described by parameterized systems of infinitely many linear inequalities in Banach spaces
of decision variables indexed by an arbitrary set T . The parameter space of admissible perturbations
under consideration is formed by all bounded functions on T equipped with the standard supremum
norm. Unless the index set T is finite, this space is intrinsically infinite-dimensional (nonreflexive and
nonseparable) of the l∞ type. By using advanced tools of variational analysis and exploiting specific
features of linear infinite systems, we establish complete characterizations of robust Lipschitzian
stability entirely via their initial data with computing the exact bound of Lipschitzian moduli. A
crucial part of our analysis addresses the precise computation of the coderivative of the feasible set
mapping and its norm. The results obtained are new in both semi-infinite and infinite frameworks.
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1. Introduction. This paper mainly deals with parameterized infinite systems
of linear inequalities

(1.1) F(p) :=
{
x ∈ X

∣∣ 〈a∗t , x〉 ≤ bt + pt, t ∈ T
}
, p = (pt)t∈T ,

with an arbitrary index set T , where x ∈ X is a decision variable belonging to an arbi-
trary Banach space X (which may be finite-dimensional), and where p = (pt)t∈T ∈ P
is a functional parameter taking values in the prescribed Banach space P of perturba-
tions specified below. Infinite inequality systems of this type are important in various
areas of mathematics and applications, while our primary interest in them is driven by
applications to problems of semi-infinite and infinite programming corresponding to
finite-dimensional and infinite-dimensional decision spaces X , respectively; see, e.g.,
the books [1, 5, 19, 37] and the references therein. Some applications of the results
obtained in this paper to necessary optimality conditions for semi-infinite and infinite
programs can be found in [11].

The data of (1.1) are given as follows:
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LINEAR INEQUALITIES IN INFINITE PROGRAMMING 1505

• a∗t ∈ X∗ for all t ∈ T , where the space X∗ is topologically dual to X with the
canonical pairing 〈·, ·〉 between X and X∗. If no confusion arises, we use the same
notation ‖ ·‖ for the given norm in X and the corresponding dual norm in X∗ defined
by

‖x∗‖ := sup
{〈x∗, x〉 ∣∣ ‖x‖ ≤ 1

}
, x∗ ∈ X∗.

We always assume that a∗t are fixed and arbitrary in X∗ for all t ∈ T .
• bt ∈ R for all t ∈ T . We identify the collection {bt | t ∈ T } with the real-valued

function b : T → R and assume that it is fixed and arbitrary.
• pt = p(t) ∈ R for all t ∈ T . These functional parameters p : T → R are our

varying perturbations, which are taken from the Banach parameter space P := l∞(T )
of all bounded functions on T with the supremum norm

(1.2) ‖p‖∞ := sup
t∈T

|pt| = sup
{|p(t)| ∣∣ t ∈ T

}
(see, e.g., [17]), where the subscript “∞” is omitted if no confusion arises. When the
index set T is compact (which is not assumed in this paper) and the perturbations
p(·) are restricted to be continuous on T , the maximum is realized in (1.2), and thus
the parameter space l∞(T ) reduces to the classical space C(T ) of continuous functions
over a compact set.

The primary goal of this paper is to obtain comprehensive characterizations of
robust Lipschitzian stability of infinite inequality systems (1.1) expressed entirely in
terms of their initial data. By robust Lipschitzian stability we understand the fulfill-
ment of the so-called Lipschitz-like (known also as Aubin) property of the mapping
F(p) in (1.1) around the reference point. This property is stable with respect to
small perturbations of parameters and is crucial for both qualitative and quantita-
tive/numerical aspects of optimization theory and applications; see, e.g., [31, 32, 35]
and section 2 for more details and references.

To establish constructive characterizations of robust Lipschitzian stability in this
paper and to derive efficient optimality conditions for semi-infinite and infinite pro-
grams in [11], we develop an advanced approach of variational analysis based on
generalized differentiation. To the best of our knowledge, this approach is new in the
literature on semi-infinite and infinite programming despite many publications related
to various stability properties and applications of linear infinite inequality systems,
most of which concern the case of finite-dimensional spaces X of decision variables
(i.e., in the semi-infinite programming framework); see, e.g., [1, 19] for comprehensive
overviews on this field and also [5], which is confined to the parameter space of con-
tinuous perturbations P = C(T ) when the index set T is a compact Hausdorff space.
We refer the reader to [12] for the study of qualitative stability (formalized through
certain semicontinuity properties of feasible solution and optimal solution mappings)
in the framework of X = R

n, an arbitrary index set T , and arbitrary perturbations.
In the same semi-infinite context, for a quantitative perspective (through Lipschitzian
properties), the reader is directed to [7], and to [6] for the case of continuous pertur-
bations. Let us mention the recent paper [14] addressing the case of infinite linear
programming from the viewpoint of qualitative stability. We also refer the reader to,
e.g., [8, 9, 13, 15, 18, 24, 25] for the study of convex semi-infinite and infinite programs
and to [21, 22, 37] for their smooth nonlinear counterparts.

The approach of this paper is mainly based on coderivative analysis of the para-
metric linear infinite inequality systems F in (1.1), which eventually leads us to com-
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1506 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

plete characterizations of robust Lipschitzian stability for the parametric sets of feasi-
ble solutions in infinite/semi-infinite programming expressed entirely via their initial
data with precise computing the exact bound of Lipschitzian moduli.

Coderivatives of set-valued mappings introduced in [27] have been well recognized
as a powerful tool of variational analysis and its numerous applications, particularly
to problems of optimization and control; see, e.g., [3, 23, 30, 31, 32, 33, 35, 36]
and the references therein. However, we are not familiar with any implementation of
coderivatives in problems of infinite or semi-infinite programming as well as with their
application to analyzing stability of linear infinite inequality systems of type (1.1) in
finite or infinite dimensions.

The power of coderivatives in variational analysis and its applications comes, first,
from the possibility of obtaining in their terms verifiable pointwise characterizations
of robust Lipschitzian properties of set-valued mappings (as well as of the equivalent
properties of metric regularity and linear openness for the inverse mappings) and of
deriving necessary optimality conditions in rather general settings. These develop-
ments are strongly supported by comprehensive pointwise coderivative calculus based
on variational/extremal principles of advanced variational analysis; see [31, 32] and
the references therein. However, a number of results in this vein are limited in in-
finite dimensions. In particular, the available coderivative characterizations of the
Lipschitz-like property of closed-graph mappings F : Z ⇒ Y obtained in [31, Theo-
rem 4.10] require that both spaces Z and Y are Asplund (i.e., every separable subspace
of them has a separable dual) while the precise coderivative formula for computing
the exact Lipschitzian bound is established therein via the coderivative norm under
the finite-dimensionality assumption on Z. But this is never the case for our infinite
inequality system F : P ⇒ X from (1.1), where the parameter space (Z =) P = l∞(T )
is always infinite-dimensional and not Asplund unless the index set T is finite!

This paper contains new and fairly comprehensive results in the aforementioned
directions for the infinite/semi-infinite systems under consideration, which essentially
take into account underlying specific features of the infinite inequality constraints
(1.1) largely related to the possibility of employing an appropriate extended version
of the fundamental Farkas lemma for infinite systems of linear inequalities in general
Banach spaces.

The rest of paper is organized as follows. Section 2 presents some preliminary
material from convex and variational analysis widely used in formulations and proofs
of the subsequent main results. In section 3 we provide precise calculations of the
basic coderivative D∗F and its norm at the reference/nominal point for the feasible
solution map F : l∞(T ) ⇒ X in (1.1) via the initial data of F in the general case of
an arbitrary index set T and an arbitrary Banach space X of decision variables.

Section 4 is devoted to deriving coderivative characterizations of robust stability
for the feasible solution system (1.1) of infinite inequalities with an arbitrary index
set T , which are explicitly expressed in terms of the initial data {a∗t , bt, t ∈ T }. We
establish verifiable criteria (i.e., necessary and sufficient conditions) for the fulfill-
ment of the Lipschitz-like (and hence the classical local Lipschitzian) property of F
around the reference points and derive furthermore the precise formulas for comput-
ing the exact bounds of Lipschitzian moduli in the case of general Banach spaces X .
It is worth mentioning that the criteria and exact bound formulas obtained in this
section are represented in the conventional coderivative form of variational analysis
as in [31, Theorem 4.10] for the case of abstract set-valued mappings, but with no
Asplund space and finite-dimensionality requirements imposed therein. In fact, the
latter requirements are never satisfied for the infinite linear inequality systems (1.1)
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LINEAR INEQUALITIES IN INFINITE PROGRAMMING 1507

under consideration in either the infinite programming or semi-infinite programming
framework.

Our notation is basically standard and conventional in the areas of variational
analysis and infinite/semi-infinite programming; see, e.g., [19, 31, 35]. Unless other-
wise stated, all the spaces under consideration are Banach with the corresponding
norm ‖ · ‖. Recall that w∗ indicates the weak∗ topology of a dual space, and we use
the symbol w∗-lim for the weak∗ topological limit, which generally means the weak∗

convergence of nets denoted usually by {x∗
ν}ν∈N . In the case of sequences we use the

standard notation := {1, 2, . . .} for the collection of all natural numbers.

Given a subset Ω ⊂ Z of a Banach space, the symbols intΩ, cl Ω, coΩ, and coneΩ
stand, respectively, for the interior, closure, convex hull, and conic convex hull of Ω;
the notation cl ∗Θ signifies the weak∗ closure of a subset Θ ⊂ Z∗ in the dual space.
Given a set-valued mapping F : Z ⇒ Y , we denote its domain, graph, and inverse by,
respectively,

domF =
{
z ∈ Z

∣∣ F (z) 
= ∅}, gphF :=
{
(z, y) ∈ Z × Y

∣∣ y ∈ F (z)
}
,

and F−1(y) := {z ∈ Z | (z, y) ∈ gphF}. Considering finally an arbitrary index set T ,
let RT be the product space of λ = (λt | t ∈ T ) with λt ∈ R for all t ∈ T , let R(T ) be

the collection of λ ∈ R
T such that λt 
= 0 for finitely many t ∈ T , and let R

(T )
+ be the

positive cone in R
(T ) defined by

R
(T )
+ :=

{
λ ∈ R

(T )
∣∣ λt ≥ 0 for all t ∈ T

}
.

2. Basic definitions and preliminaries. In this section we discuss the basic
notions and tools needed for our subsequent analysis and results. As mentioned in
section 1, a major focus of this paper is robust Lipschitzian stability of the feasible
solution map given by (1.1). By such a robust stability we understand Lipschitzian
behavior around (i.e., in a neighborhood) of the reference point. The most natural
formalization of this behavior widely recognized in variational (as well as in general
nonlinear) analysis is known as the Lipschitz-like or Aubin property, which can be
viewed as a graphical localization (in the set-valued case) of the classical local Lip-
schitzian property of single-valued and set-valued mappings.

Given a set-valued mapping F : Z ⇒ Y between Banach spaces, we say that F is
Lipschitz-like around (z̄, ȳ) ∈ gphF with modulus � ≥ 0 if there are neighborhoods U
of z̄ and V of ȳ such that

(2.1) F (z) ∩ V ⊂ F (u) + �‖z − u‖B for any z, u ∈ U,

where B stands for the closed unit ball in the space in question. The infimum of
moduli {�} over all the combinations of {�, U, V } satisfying (2.1) is called the exact
Lipschitzian bound of F around (z̄, ȳ) and is labeled as lipF (z̄, ȳ). If V = Y in (2.1),
this relationship signifies the classical (Hausdorff) local Lipschitzian property of F
around z̄ with the exact Lipschitzian bound denoted by lipF (z̄) in this case.

It is worth mentioning that the Lipschitz-like property of an arbitrary mapping
F : Z ⇒ Y between Banach spaces is equivalent to two other fundamental properties
in nonlinear analysis but for the inverse mapping F−1 : Y ⇒ Z, namely, to the
metric regularity of F−1 and to the linear openness of F−1 around (ȳ, z̄), with the
corresponding relationships between their exact bounds (see, e.g., [20, 31, 35]).
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1508 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

It is well known that the exact Lipschitzian bound of F around (z̄, ȳ) admits the
following limiting representation via the distance function to a set:

(2.2) lipF (z̄, ȳ) = lim sup
(z,y)→(z̄,ȳ)

dist
(
y;F (z)

)
dist

(
z;F−1(y)

) ,
where inf ∅ = ∞ (and hence dist(x; ∅) = ∞) as usual and where 0/0 := 0. We have
accordingly that lipF (z̄, ȳ) = ∞ if F is not Lipschitz-like around (z̄, ȳ).

A remarkable fact consists of the possibility of characterizing pointwisely the
(derivative-free) Lipschitz-like property of F around (z̄, ȳ)—and hence its local Lip-
schitzian, metric regularity, and linear openness counterparts—in terms of a dual-space
construction of generalized differentiation called the coderivative of F at (z̄, ȳ) ∈
gphF . The latter is a positively homogeneous multifunction D∗F (z̄, ȳ) : Y ∗ ⇒ Z∗

defined by

(2.3) D∗F (z̄, ȳ)(y∗) :=
{
z∗ ∈ Z∗ ∣∣ (z∗,−y∗) ∈ N

(
(z̄, ȳ); gphF

)}
, y∗ ∈ Y ∗,

where N(·; Ω) stands for the collection of generalized normals to a set at a given point
known as the basic, or limiting, or Mordukhovich, normal cone; see, e.g., [26, 31, 35, 36]
and the references therein. When both Z and Y are finite-dimensional, it is proved in
[28] (cf. also [35, Theorem 9.40]) that a closed-graph mapping F : Z ⇒ Y is Lipschitz-
like around (z̄, ȳ) ∈ gphF if and only if

(2.4) D∗F (z̄, ȳ)(0) = {0},
and that the exact Lipschitzian bound of moduli {�} in (2.1) is computed by

(2.5) lipF (z̄, ȳ) = ‖D∗F (z̄, ȳ)‖ := sup
{‖z∗‖ ∣∣ z∗ ∈ D∗F (z̄, ȳ)(y∗), ‖y∗‖ ≤ 1

}
.

The situation is significantly more involved in infinite dimensions. It is proved in
[29] (see also [31, Theorem 4.10]) that a closed-graph mapping F : Z ⇒ Y is Lipschitz-
like around (z̄, ȳ) ∈ gphF if and only if the coderivative condition (2.4) holds in terms
of the so-called mixed coderivative (which reduces to (2.3) in finite dimensions and the
setting considered in this paper) together with a certain “partial sequential normal
compactness” condition (which automatically holds in finite dimensions and in the
setting of this paper) provided that both spaces Z and Y are Asplund. The latter
property is defined in section 1; we also refer the reader to [17, 31, 34] for more
details and various characterizations of this remarkable and well-investigated subclass
of Banach spaces that includes, in particular, all reflexive spaces, while it does not
include, e.g., the classical spaces C, l1, L1, l∞, and L∞.

The situation is even more complicated with infinite-dimensional extensions of
the exact bound formula in (2.5). The aforementioned results of [29, 31] give merely
upper and lower estimates for lipF (z̄, ȳ), which ensure the precise equality in (2.5) in
our setting here provided that Y is Asplund while Z is finite-dimensional.

The set-valued mapping F : Z ⇒ Y considered in this paper is F : l∞(T ) ⇒ X
defined by the infinite system of linear inequalities (1.1); in what follows we always
assume that the index set T is infinite, which is a characteristic feature of infinite and
semi-infinite programs. In this setting the domain/parameter space Z = l∞(T ) is an
infinite-dimensional Banach that is never Asplund. Also, we do not suppose in this
paper that our decision space X is anything but arbitrary Banach.

In this general setting for (1.1) we show that the coderivative condition (2.4) is
necessary and sufficient for the Lipschitz-like property of F = F around the reference/
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LINEAR INEQUALITIES IN INFINITE PROGRAMMING 1509

nominal solution (p̄, x̄) ∈ gphF and (2.5) is a precise formula for computing the exact
Lipschitzian bound lipF(p̄, x̄). This is exactly what we have in finite dimensions,
while it is far removed from being a part of the infinite-dimensional variational theory
in [31]. Moreover, we express the relationships in (2.4) and (2.5) explicitly in terms
of the initial data of (1.1).

To proceed further, observe that the graph

(2.6) gphF =
{
(p, x) ∈ l∞(T )×X

∣∣ 〈a∗t , x〉 ≤ bt + pt for all t ∈ T
}

of the mapping F : l∞(T ) ⇒ X in (1.1) is convex. Hence the basic normal cone to
gphF at (p̄, x̄) ∈ gphF reduces to

N
(
(p̄, x̄); gphF) = {(p∗, x∗) ∈ l∞(T )∗ ×X∗ ∣∣ 〈(p∗, x∗), (p, x) − (p̄, x̄)

〉
≤ 0 for (p, x) ∈ gphF}

and the coderivative (2.3) of F admits the representation
(2.7)
D∗F(p̄, x̄)(x∗) =

{
p∗ ∈ l∞(T )∗

∣∣ 〈p∗, p̄〉 − 〈x∗, x̄〉 = max
(p,x)∈gphF

[〈p∗, p〉 − 〈x∗, x〉]}.
Let us now present two preliminary results that play an important role in our

subsequent analysis. The first one is taken from [13, Lemma 2.4] and can be viewed
as an extended Farkas lemma for linear infinite inequality systems in Banach spaces.
An alternative proof can be derived from [38, Theorem 4].

Lemma 2.1 (extended Farkas lemma). Let p ∈ domF for the infinite system
(1.1) with a Banach decision space X, and let (x∗, α) ∈ X∗ × R. The following are
equivalent:

(i) We have 〈x∗, x〉 ≤ α whenever x ∈ F(p), i.e.,[〈a∗t , x〉 ≤ bt + pt for all t ∈ T
]
=⇒ [〈x∗, x〉 ≤ α

]
.

(ii) The pair (x∗, α) satisfies the inclusion

(x∗, α) ∈ cl∗cone
[{
(a∗t , bt + pt)

∣∣ t ∈ T
} ∪ {(0, 1)}] with 0 ∈ X∗.

Throughout the paper we largely use the parametric characteristic sets

(2.8) C(p) := co
{
(a∗t , bt + pt)

∣∣ t ∈ T
}
, p ∈ l∞(T ),

and suppose with no loss of generality that our nominal parameter is the zero function
p̄ = 0 in the parameter space l∞(T ).

Let us recall a well-recognized qualification condition for linear infinite inequali-
ties, which is often used in problems of semi-infinite and infinite programming.

Definition 2.2 (strong Slater condition). We say that the infinite system (1.1)
satisfies the strong Slater condition (SSC) at p = (pt)t∈T if there is x̂ ∈ X such that

(2.9) sup
t∈T

[〈a∗t , x̂〉 − bt − pt
]
< 0.

Furthermore, every point x̂ ∈ X satisfying condition (2.9) is a strong Slater point for
system (1.1) at p = (pt)t∈T .

The next result contains several equivalent descriptions and interpretations of the
strong Slater condition used in what follows; the most important is the equivalence
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1510 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

(i)⇐⇒(ii). Note that a similar equivalence can be found in [14] for more general convex
systems in locally convex spaces with different spaces of associated parameters. We
include here a simplified proof of this equivalence for the reader’s convenience.

Lemma 2.3 (equivalent descriptions of the strong Slater condition). Let X be a
Banach space, and let p ∈ domF for the linear infinite inequality system (1.1). Then
the following properties are equivalent:

(i) F satisfies the strong Slater condition at p.
(ii) (0, 0) /∈ cl∗C(p) via the characteristic set from (2.8).
(iii) p ∈ int(domF).
(iv) F is Lipschitz-like around (p, x) for all x ∈ F(p).

Moreover, if the set {a∗t | t ∈ T } is bounded in X∗, the conditions above are equivalent
to

(v) there exists x̂ ∈ X such that (p, x̂) ∈ int(gphF).
Proof. We begin with the proof of (i)=⇒(ii). Arguing by contradiction, assume

that (0, 0) ∈ cl∗C(p). Then there is a net {λν}ν∈N ∈ R
(T )
+ satisfying

∑
t∈T λtν = 1

for all ν ∈ N and the limiting condition

(2.10) (0, 0) = w∗-lim
ν

∑
t∈T

λtν

(
a∗t , bt + pt

)
.

If x̂ is a strong Slater point for system (1.1) at p, we find ϑ > 0 such that

〈a∗t , x̂〉 − bt − pt ≤ −ϑ for all t ∈ T.

Then (2.10) leads to the following contradiction:

0 = 〈0, x̂〉+ 0 · (−1) = lim
ν

∑
t∈T

λtν

(〈a∗t , x̂〉+ (bt + pt) · (−1)
) ≤ −ϑ.

Let us next justify the converse implication (ii)=⇒(i). By [13, Theorem 3.1] we
have

p ∈ domF ⇐⇒ (0,−1) /∈ cl∗cone
{
(a∗t , bt + pt)

∣∣ t ∈ T
}
.

Then the strong separation theorem ensures the existence of (0, 0) 
= (v, α) ∈ X × R

with

〈a∗t , v〉+ α(bt + pt) ≤ 0 for all t ∈ T,(2.11)

〈0, v〉+ (−1)α = −α > 0.

At the same time by (ii) we have (0, 0) 
= (z, β) ∈ X × R and γ ∈ R for which

(2.12) 〈a∗t , z〉+ β(bt + pt) ≤ γ < 0 whenever t ∈ T.

Consider further the combination

(u, η) := (z, β) + λ(v, α),

and select λ > 0 to be sufficiently large to ensure that η < 0. Defining now x̂ :=
−η−1u, we observe from (2.11) and (2.12) that

〈a∗t , x̂〉 − bt − pt = −η−1
(〈a∗t , u〉+ η(bt + pt)

) ≤ −η−1γ < 0.
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This allows us to conclude that x̂ is a strong Slater point for system (1.1) at p.
To prove implication (i)=⇒(iii), assume that x̂ is a strong Slater point for system

(1.1) at p, and find ϑ > 0 such that

〈a∗t , x̂〉 − bt − pt ≤ −ϑ for all t ∈ T.

Then it is obvious that for any q ∈ l∞(T ) with ‖q‖ < ϑ we have x̂ ∈ F(p + q).
Therefore, p+ q ∈ domF , and thus (iii) holds.

Let us further proceed with justifying implication (iii)=⇒(i). If p ∈ int(domF),
then p + q ∈ domF provided that qt = −ϑ as t ∈ T and that ϑ > 0 is sufficiently
small. Thus every x̂ ∈ F(p + q) is a strong Slater point for the infinite system (1.1)
at p.

The equivalence between (iii) and (iv) is a consequence of the classical Robinson–
Ursescu closed-graph/metric regularity theorem; see, e.g., [20] and [31, Chapter 4]
and references therein for more discussion.

It remains to consider condition (v). We can easily observe that (v) always
implies (iii) and hence the other conditions of the lemma. Suppose now that the
set {a∗t | t ∈ T } is bounded in X∗, and show that in this case (i) implies (v). Select
M ≥ 0 such that ‖a∗t ‖ ≤ M for every t ∈ T , and take x̂ ∈ X satisfying (2.9). Denote

γ := − sup
t∈T

[〈a∗t , x̂〉 − bt − pt] > 0,

and consider any pair (p′, u) ∈ l∞(T )×X satisfying the relationships

‖u‖ ≤ η := γ/ (M + 1) > 0 and ‖p′‖ ≤ η.

It is easy to see that for such (p′, u) and every t ∈ T we have

〈a∗t , x̂+ u〉 − bt − pt − p′t ≤ −γ +M ‖u‖+ ‖p′‖ ≤ η (M + 1)− γ = 0,

and so (p + p′, x̂ + u) ∈ gphF . Thus (p, x̂) ∈ int(gphF), which gives (i)=⇒(v) and
completes the proof of the lemma.

Remark 2.4 (relationships between interiority and boundedness conditions). Note
that we have the nonempty interiority condition int(gphF) 
= ∅ provided that the set
{a∗t | t ∈ T } is bounded in X∗ and that gphF 
= ∅. Also we have int(domF) 
= ∅ if
gphF 
= ∅ with no boundedness assumption.

To justify the first statement, take (p, x) ∈ gphF and ‖a∗t ‖ ≤ M < ∞ for every
t ∈ T , and define e ∈ l∞ (T ) by et := 1 for all t ∈ T . Then arguing similarly to
the proof of the last implication in Lemma 2.1, we get (p + e + p′, x + u) ∈ gphF
whenever ‖p′‖ ≤ η := 1/ (M + 1) and ‖u‖ ≤ η. This gives (p+ e, x) ∈ int(gphF). If,
furthermore, (p, x) ∈ gphF , we can easily check that x ∈ F (p+ e+ p′) provided that
‖p′‖ ≤ 1, and therefore p+ e ∈ int(domF).

The major space for our consideration in this paper is the parameter space l∞(T )
of bounded functions p : T → R on T with the supremum norm (1.2). It is obviously a
Banach space that is never finite-dimensional when the index set T is infinite, which
is our standing assumption. Let us show that it is never Asplund.

Proposition 2.5 (parameter space is never Asplund). The parameter space
l∞(T ) is Asplund if and only if the index set T is finite.

Proof. If T is countable (i.e., T = N and the parameter space is the classical space
of sequences l∞), the proof can be found in [34, Example 1.21]; in fact, this space is
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1512 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

not even weak Asplund. The same arguments can be adapted for any infinite index
set T .

Finally, in this section, we recall a convenient description of the topological dual
space l∞(T )∗ to the parameter space l∞(T ). According to [16], there is an isometric
isomorphism between l∞(T )∗ and the space of bounded and additive measures

ba(T ) =
{
μ : 2T → R

∣∣ μ is bounded and additive
}

satisfying the relationship

〈μ, p〉 =
∫
T

pt μ(dt) with p = (pt)t∈T .

The dual norm on ba(T ) corresponding to (1.2) is the total variation of μ ∈ ba(T ) on
the index set T defined by

‖μ‖ := sup
A⊂T

μ(A)− inf
B⊂T

μ(B).

In what follows we always identify the measure space ba(T ) with the dual parameter
space l∞(T )∗ and use, for the notational unification, p∗ ∈ l∞(T )∗ instead of μ ∈ ba(T ).

3. Computing coderivatives and coderivative norms for linear infinite
inequality systems. In this section we establish a constructive representation of
the coderivative D∗F(0, x̄) for the feasible solution map F at the nominal point (0, x̄)
and compute its norm ‖D∗F(0, x̄)‖ in terms of the initial data of the linear infinite
inequality system (1.1). Let us first describe the normal cone to the convex graph (2.6)
employing the extended Farkas lemma presented above. In what follows δt denotes
the classical Dirac measure at t ∈ T satisfying

〈δt, p〉 = pt as t ∈ T for p = (pt)t∈T ∈ l∞(T ).

Proposition 3.1 (computing normals to the graphical set of feasible solutions).
Let (p̄, x̄) ∈ gphF for the graphical set (2.6) with a Banach decision space X, and let
(p∗, x∗) ∈ l∞(T )∗ ×X∗. Then we have (p∗, x∗) ∈ N((p̄, x̄); gphF) if and only if

(3.1)
(
p∗, x∗, 〈p∗, p̄〉+ 〈x∗, x̄〉) ∈ cl∗cone

[{
(−δt, a

∗
t , bt)

∣∣ t ∈ T
} ∪ {(0, 0, 1)}],

where 0 ∈ l∞(T )∗ and 0 ∈ X∗ stand for the first and second entry of the last triple
in (3.1), respectively. Furthermore, the inclusion (p∗, x∗) ∈ N ((p̄, x̄) ; gphF) implies
that p∗ ≤ 0 in the space ba (T ), i.e., p∗ (A) ≤ 0 for all A ⊂ T .

Proof. Observe from (2.6) and from the definition of the Dirac measure that the
graph of F admits the representation

gphF =
{
(p, x) ∈ l∞(T )×X

∣∣ 〈a∗t , x〉 − 〈δt, p〉 ≤ bt for all t ∈ T
}
.

Therefore, we have (p∗, x∗) ∈ N((p̄, x̄); gphF) if and only if

(3.2) 〈p∗, p〉+ 〈x∗, x〉 ≤ 〈p∗, p̄〉+ 〈x∗, x̄〉

for every (p, x) ∈ gphF . Employing now the equivalence between (i) and (ii) in
Lemma 2.1, we conclude that (p∗, x∗) ∈ N((p̄, x̄); gphF) if and only if inclusion (3.1)
holds.
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To justify the last statement of the proposition, for every set A ⊂ T consider its
characteristic function χA : T → {0, 1} defined by

χA (t) :=

{
1 if t ∈ A,
0 if t /∈ A.

It is obvious that the inclusion (p, x) ∈ gphF implies that (p + λχA, x) ∈ gphF for
each λ > 0. Replacing now in (3.2) the pair (p, x) by (p + λχA, x), keeping p and x
fixed, dividing both sides of the inequality by λ, and letting λ → ∞, we get the
relationships

〈p∗, χA〉 =
∫
T

χA (t) p∗ (dt) = p∗ (A) ≤ 0,

which complete the proof of the proposition.
Based on the above proposition and the general coderivative definition, we now

obtain a constructive representation of the coderivative D∗F(0, x̄) in question.
Theorem 3.2 (coderivative of the feasible solution map). Let x̄ ∈ F(0) for the

feasible solution map F : l∞(T ) ⇒ X from (1.1) with a Banach decision space X.
Then p∗ ∈ D∗F(0, x̄)(x∗) if and only if

(3.3)
(
p∗,−x∗,−〈x∗, x̄〉) ∈ cl∗cone

{
(−δt, a

∗
t , bt)

∣∣ t ∈ T
}
.

Proof. By the coderivative construction (2.3) applied to F and by the normal
cone formula from Proposition 3.1 as p̄ = 0, we get that p∗ ∈ D∗F(0, x̄)(x∗) if and
only if

(3.4)
(
p∗,−x∗,−〈x∗, x̄〉) ∈ cl∗cone

[{
(−δt, a

∗
t , bt)

∣∣ t ∈ T
} ∪ {(0, 0, 1)}].

To justify the coderivative representation claimed in the theorem, we need to show
that inclusion (3.4) implies, in fact, the “smaller” one in (3.3). Assuming indeed
that (3.4) holds, we find by the structure of the right-hand side on (3.4) some nets

{λν}ν∈N ⊂ R
(T )
+ and {γν}ν∈N ⊂ R+ satisfying the limiting relationship

(3.5)
(
p∗,−x∗,−〈x∗, x̄〉) = w∗-lim

ν

(∑
t∈T

λtν(−δt, a
∗
t , bt) + γν(0, 0, 1)

)
,

where λtν stands for the t-entry of λν = (λtν)t∈T as ν ∈ N . It follows directly from
the component structure in (3.5) that

(3.6) 0 = 〈p∗, 0〉+ 〈−x∗, x̄〉+ (−〈x∗, x̄〉)(−1) = lim
ν

(∑
t∈T

λtν

(〈a∗t , x̄〉 − bt
)− γν

)
.

Finally, taking into account the definition of the positive cone R
(T )
+ and the fact

that the pair (0, x̄) satisfies the infinite inequality system in (1.1), we conclude from
(3.6) that limν γν = 0. This justifies (3.3) and thus completes the proof of the
theorem.

The next consequence of Theorem 3.2 is useful in what follows.
Corollary 3.3 (limiting descriptions of coderivatives). If p∗ ∈ D∗F(0, x̄)(x∗)

in the framework of Theorem 3.2, then there is a net {λν}ν∈N ⊂ R
(T )
+ such that∑

t∈T

λtν → ‖p∗‖ = −〈p∗, e〉 ,
∑
t∈T

λtνa
∗
t

w∗−→ −x∗, and
∑
t∈T

λtνbt → −〈x∗, x̄〉 .D
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1514 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

Proof. It follows from Theorem 3.2 that there is a net {λν}ν∈N ⊂ R
(T )
+ such that∑

t∈T

λtνδt
w∗−→ −p∗,

∑
t∈T

λtνa
∗
t

w∗−→ −x∗, and
∑
t∈T

λtνbt → −〈x∗, x̄〉 ,

which readily imply the relationships〈∑
t∈T

λtνδt, e

〉
=
∑
t∈T

λtν → 〈p∗,−e〉 =: λ ∈ [0,∞) .

Since the dual norm on X∗ is w∗-lower semicontinuous, we have

‖p∗‖ ≤ lim inf
ν∈N

∥∥∥∥∥∑
t∈T

λtνδt

∥∥∥∥∥ ≤ lim inf
ν∈N

∑
t∈T

λtν = λ.

It follows at the same time from the norm definition that

‖p∗‖ = sup
‖p‖≤1

〈p∗, p〉 ≥ 〈p∗,−e〉 = λ,

which finally yields ‖p∗‖ = −〈p∗, e〉 and completes the proof of the corollary.
Our further intention is to provide the exact calculation of the coderivative norm

(3.7) ‖D∗F(0, x̄)‖ := sup
{‖p∗‖ ∣∣ p∗ ∈ D∗F(0, x̄)(x∗), ‖x∗‖ ≤ 1

}
in terms of the initial data of the linear infinite inequality system (1.1). A part of our
analysis in this direction is the following lemma on properties of the characteristic
set (2.8) at p = 0, which is also used in section 4 to compute the exact Lipschitzian
bound lipF(0, x̄).

Lemma 3.4 (properties of the characteristic set). Let X be an arbitrary Banach
space. The following assertions hold:

(i) Assume that x̄ ∈ F(0) is not a strong Slater point for the infinite system (1.1)
at p = 0 and that the collection {a∗t | t ∈ T } is bounded in X∗. Then the set

(3.8) S :=
{
x∗ ∈ X∗ ∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)

}
built upon the characteristic set C(0) in (2.8) is nonempty and w∗-compact at X∗.

(ii) Assume that x̄ ∈ F(0) is a strong Slater point of (1.1) at p = 0. Then the
set S in (3.8) is empty.

Proof. To justify (i), let x̄ be not a strong Slater point for the infinite system (1.1)
at p = 0. Then there is a sequence {tk}k∈N ⊂ T such that limk(〈a∗tk , x̄〉 − btk) = 0.
The boundedness of {a∗t | t ∈ T } implies by the classical Alaoglu–Bourbaki theorem
that this set is relatively w∗-compact in X∗; i.e., there is a subnet {a∗tν}ν∈N of the
latter sequence that w∗-converges to some element u∗ ∈ cl∗{a∗t | t ∈ T }. This gives
limν btν = 〈u∗, x̄〉, and therefore(

u∗, 〈u∗, x̄〉) = w∗-lim
ν

(
a∗tν , btν

) ∈ cl∗C(0),

which justifies the nonemptiness of the set S in (3.8). Next we prove that S is w∗-
compact.

Indeed, by our assumption, the set A := {a∗t | t ∈ T } is bounded in X∗, and so is
cl∗coA; the latter is actually w∗-compact due to its automatic w∗-closedness. Observe
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further that the set S in (3.8) is a preimage of cl∗C(0) under the w∗-continuous
mapping x∗ �→ (x∗, 〈x∗, x̄〉), and thus it is w∗-closed in X∗. Since S is a subset of
cl∗coA, it is also bounded and hence w∗-compact in X∗. This completes the proof of
assertion (i).

To prove assertion (ii), let x̄ be a strong Slater point of system (1.1) at p = 0,
and let

γ := − sup
t∈T

{〈a∗t , x̄〉 − bt} .

Then we have the inequality

〈x∗, x̄〉 ≤ β − γ whenever (x∗, β) ∈ cl ∗C (0) ,

which justifies (ii) and thus completes the proof of the lemma.
Now we are ready to compute the coderivative norm ‖D∗F(0, x̄)‖ at the reference

point.
Theorem 3.5 (computing the coderivative norm). Let x̄ ∈ domF for the infinite

system (1.1) with an arbitrary Banach space X of decision variables. Assume that F
satisfies the strong Slater condition at p = 0 and that the coefficient set {a∗t | t ∈ T }
is bounded in X∗. The following assertions hold:

(i) If x̄ is a strong Slater point for F at p = 0, then ‖D∗F(0, x̄)‖ = 0.
(ii) If x̄ is not a strong Slater point for F at p = 0, then the coderivative norm

(3.7) is positive and is computed by

(3.9) ‖D∗F(0, x̄)‖ = max
{
‖x∗‖−1

∣∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)
}

via the w∗-closure of the characteristic set (2.8) at p = 0.
Proof. To justify assertion (i), assume that x̄ is a strong Slater point for the

system F at p = 0. It follows from the proof of implication (i)=⇒(v) in Lemma 2.3
that we have (0, x̄) ∈ int(gphF). It gives

N ((0, x̄) ; gphF) = {(0, 0)} ,
and the conclusion in (i) follows from (2.3) and (3.7).

To prove assertion (ii), take x∗ ∈ X∗ such that (x∗, 〈x∗, x̄〉) ∈ cl ∗C (0); the latter

set is nonempty according to Lemma 3.4. Then there exists a net {λν}ν∈N ⊂ R
(T )
+

with
∑

t∈T λtν = 1 for all ν ∈ N such that∑
t∈T

λtνa
∗
t

w∗−→ x∗ and
∑
t∈T

λtνbt → 〈x∗, x̄〉 .

Form further net elements p∗ν ∈ l∞(T )∗ by

p∗ν := −
∑
t∈T

λtνδt, ν ∈ N .

Since ‖p∗ν‖ = 〈p∗ν ,−e〉 = 1, the Alaoglu–Bourbaki theorem allows us to select a subnet

(without relabeling) such that p∗ν
w∗
−→ p∗ with ‖p∗‖ ≤ 1. Following the same reasoning

as in the proof of Corollary 3.3, we conclude that

(3.10) 1 = lim
ν∈N

∑
t∈T

λtν = ‖p∗‖ = 〈p∗,−e〉 .
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Moreover, we also obtain the inclusion

(p∗, x∗, 〈x∗, x̄〉) ∈ cl ∗co
{
(−δt, a

∗
t , bt)

∣∣ t ∈ T
}
,

which implies by Theorem 3.2 that

(3.11) p∗ ∈ D∗F(0, x̄)(−x∗).

Suppose now that x∗ = 0 in (3.11). Since p∗ 
= 0 by (3.10), we get from (3.11)
that

(3.12) D∗F(0, x̄)(0) 
= {0} ,
which yields by [31, Theorem 1.44] that F is not Lipschitz-like around (0, x̄), and
therefore it cannot satisfy the strong Slater condition by implication (i)=⇒(iv) in
Lemma 2.3. This contradicts the assumption of the theorem.

Thus x∗ 
= 0 in (3.11), and we derive from the latter relationship that

‖x∗‖−1
p∗ ∈ D∗F(0, x̄)

(
−‖x∗‖−1

x∗
)
,

which gives in turn that

‖D∗F(0, x̄)‖ ≥
∥∥∥‖x∗‖−1

p∗
∥∥∥ = ‖x∗‖−1

and hence justifies the inequality “≥” in (3.9).
It remains to prove the opposite inequality in (3.9). For the nonempty and w∗-

compact set S in (3.8) we have 0 /∈ S by Lemma 2.3, which ensures the w∗-upper
semicontinuity of the function x∗ �→ ‖x∗‖−1 on S. Thus the supremum in the right-
hand side of (3.9) is attained and belongs to (0,∞). Then condition (v) in Lemma 2.3
implies that (0, x̂) ∈ int(gphF) for some x̂ ∈ X , and so 0 ∈ int(domF). Moreover,
we have that p∗ ∈ D∗F(0, x̄) (−x∗) if and only if (p∗, x∗) ∈ N ((0, x̄) ; gphF), which
is equivalent to

(3.13) 〈p∗, p〉+ 〈x∗, x〉 ≤ 〈x∗, x̄〉 for all (p, x) ∈ gphF .

This allows us, by taking into account that 0 ∈ int(domF), to arrive at the equiva-
lences

(3.14) p∗ ∈ D∗F(0, x̄) (0) ⇐⇒ 〈p∗, p〉 ≤ 0 for all p ∈ domF ⇐⇒ p∗ = 0.

Observe, furthermore, that, since x̄ is not a strong Slater point for F at p = 0, we
have (0, x̄) /∈ int(gphF) and thus conclude by the classical separation theorem that
there is a pair (p∗, x∗) 
= (0, 0) for which relation (3.13) holds. Employing (3.14), we
have x∗ 
= 0 and p∗ ∈ D∗F(0, x̄) (−x∗).

Take now p∗ ∈ D∗F(0, x̄) (−x∗) with ‖x∗‖ ≤ 1 and suppose that x∗ 
= 0; the
arguments of the previous paragraph ensure the existence of such an element. By

Corollary 3.3 there is a net {λν}ν∈N ⊂ R
(T )
+ for which

γν : =
∑
t∈T

λtν → ‖p∗‖ = −〈p∗, e〉 ,

x∗
ν : =

∑
t∈T

λtνa
∗
t

w∗−→ x∗, and
∑
t∈T

λtνbt → 〈x∗, x̄〉 .D
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Taking M ≥ ‖a∗t ‖ for every t ∈ T , we get the estimate

‖x∗
ν‖ ≤ Mγν whenever ν ∈ N

and also the limiting relationships

0 < ‖x∗‖ ≤ lim inf
ν∈N

‖x∗
ν‖ ≤ M lim inf

ν∈N
γν = M ‖p∗‖ ,

which ensure that p∗ 
= 0. It follows, furthermore, that

‖p∗‖−1 (x∗, 〈x∗, x̄〉) ∈ cl∗C(0).

Remembering, finally, that 0 < ‖x∗‖ ≤ 1, we arrive at the estimates

‖p∗‖ ≤
∥∥∥‖p∗‖−1 x∗

∥∥∥−1

≤ max
{
‖u∗‖−1

∣∣∣ (u∗, 〈u∗, x̄〉) ∈ cl∗C(0)
}
,

which justify the inequality “≤” in (3.9) and complete the proof of the theorem.

4. Characterizations of robust Lipschitzian stability for feasible solu-
tion maps. In this section we employ the above coderivative analysis combined with
appropriate techniques developed in linear semi-infinite/infinite programming to es-
tablish a coderivative characterization of robust Lipschitzian stability, in the sense
discussed in section 2, for the infinite inequality system F in (1.1) at the reference
point (0, x̄) with computing the exact Lipschitzian bound lipF(0, x̄).

The first result of this section establishes the coderivative necessary and sufficient
condition in form (2.4) for the Lipschitz-like property of F around (0, x̄) ∈ gphF in
the general setting under consideration.

Theorem 4.1 (coderivative criterion for robust Lipschitzian stability of linear
infinite inequalities). Let x̄ ∈ F(0) for the infinite inequality system (1.1) with a
Banach space X of decision variables. Then F is Lipschitz-like around (0, x̄) if and
only if

(4.1) D∗F(0, x̄)(0) = {0}.
Proof. The “only if” part follows from [31, Theorem 1.44] specified for the map-

ping F : l∞(T ) ⇒ X under consideration. Let us now prove the “if” part of the
theorem.

Arguing by contradiction, suppose that D∗F(0, x̄)(0) = {0} while the mapping F
is not Lipschitz-like around (0, x̄). Then, by the equivalence between properties (ii)
and (iv) of Lemma 2.3, we get the inclusion

(0, 0) ∈ cl∗co
{
(a∗t , bt) ∈ X∗ × R

∣∣ t ∈ T
}
,

which means that there is a net {λν}ν∈N ∈ R
(T )
+ such that

∑
t∈T λtν = 1 for all ν ∈ N

and

(4.2) w∗-lim
ν

∑
t∈T

λtν(a
∗
t , bt) = (0, 0).

Since the net {∑t∈T λtν(−δt)}ν∈N is obviously bounded in l∞(T )∗, the Alaoglu–
Bourbaki theorem ensures the existence of its subnet (with no relabeling) that w∗-
converges to some element p∗ ∈ l∞(T )∗, i.e.,

(4.3) p∗ = w∗-lim
ν

∑
t∈T

λtν(−δt).
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1518 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

It follows from (4.3) by the Dirac function definition that

〈p∗,−e〉 = lim
ν∈N

∑
t∈T

λtν = 1, where e = (et)t∈T with et = 1 for all t ∈ T,

which implies that p∗ 
= 0. It follows from (4.2) and (4.3) that

(p∗, 0, 0) = w∗-lim
ν

∑
t∈T

λtν(−δt, a
∗
t , bt) with p∗ 
= 0,

and therefore, by the explicit coderivative description of Theorem 3.2, we get the
inclusion p∗ ∈ D∗F(0, x̄)(0) \ {0}, which contradicts the assumed condition (4.1).
This justifies the sufficiency of the coderivative condition (4.1) for the Lipschitz-like
property of F around (0, x̄) and thus completes the proof of the theorem.

Our further goal is to compute the exact Lipschitzian bound lipF(0, x̄) of F
around (0, x̄). We are going to do it according to the distance representation (2.2) for
the exact Lipschitzian bound. To proceed, denote

(4.4) H(x∗, α) :=
{
x ∈ X

∣∣ 〈x∗, x〉 ≤ α
}

for (x∗, α) ∈ X∗ × R,

and observe the following representation (known as the Ascoli formula; see, e.g., [2]):

(4.5) dist
(
x;H(x∗, α)

)
=

[〈x∗, x〉 − α
]
+

‖x∗‖ ,

where [γ]+ := max{γ, 0} for γ ∈ R. Recall that we are under the convention 0/0 := 0.
The next proposition and the subsequent lemma, which are certainly of their

own interest, provide a significant extension of the Ascoli formula (4.4) to the case
of infinite systems of linear inequalities instead of the single one as in (4.4). These
results are essentially employed in what follows for computing the exact Lipschitzian
bound lipF(0, x̄). We refer the reader to [6, Lemma 2.3] and [7, Lemma 1] for related
results in the framework of semi-infinite programming and observe that in infinite
dimensions we use the w∗-closure of the characteristic sets C(p) from (2.8); see also
Example 4.4 below for more discussion.

From now on, given an extended-real-valued function f : X → R := (−∞,∞]
assumed to be proper (i.e., not identically equal to ∞), consider its Fenchel conjugate
f∗ : X∗ → R defined by

f∗ (x∗) := sup
{〈x∗, x〉 − f (x)

∣∣ x ∈ X
}
= sup

{〈x∗, x〉 − f (x)
∣∣ x ∈ dom f

}
,

where dom f := {x ∈ X | f (x) < ∞} is the effective domain of f . In what follows we
also use the standard notation epi f for the epigraph of f given by

epi f :=
{
(x, γ) ∈ X × R

∣∣ x ∈ dom f, f (x) ≤ γ
}
.

The following result gives an exact formula for computing the distance to a set
defined by a convex inequality via the corresponding conjugate function.

Proposition 4.2 (distance function for solutions of convex inequalities in Banach
spaces). Let g : X → R be a proper convex function on a Banach space X, and let

(4.6) Q :=
{
y ∈ X

∣∣ g(y) ≤ 0
}
.
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Assume the fulfillment of the classical Slater condition: there is x̂ ∈ X such that
g(x̂) < 0. Then the distance function to the set Q in (4.6) is computed by

(4.7) dist(x;Q) = max
(x∗,α)∈epig∗

[〈x∗, x〉 − α
]
+

‖x∗‖ .

Proof. Observe that the nonemptiness of Q in (4.6) yields that α ≥ 0 whenever
(0, α) ∈ epi g∗ and that the possibility of x∗ = 0 is not an obstacle in (4.7) under our
convention 0/0 = 0. Obviously the distance function dist(x;Q) is nothing else but
the optimal value function in the parametric convex optimization problem

(4.8) minimize ‖y − x‖ subject to g(y) ≤ 0.

Since the classical Slater condition holds for problem (4.8) by our assumption, we
have the strong Lagrange duality in (4.8) by, e.g., [39, Theorem 2.9.3], which gives

dist(x;Q) = max
λ≥0

inf
y∈X

{‖y − x‖ + λg(y)
}

= max

{
max
λ>0

inf
y∈X

{‖y − x‖+ λg(y)
}
, inf
y∈X

‖y − x‖
}

= max

{
max
λ>0

inf
y∈X

{‖y − x‖+ λg(y)
}
, 0

}
.

Applying the classical Fenchel duality theorem to the inner infimum problem above
for a fixed λ > 0 (observing to this end that Rockafellar’s regularity condition needed
for Fenchel duality is satisfied for this problem due to the continuity of the norm
function), we get

(4.9) inf
y∈X

{‖y − x‖+ λg(y)
}
= max

y∗∈X∗

{−‖· − x‖∗(−y∗)− (λg)∗(y∗)
}
.

It is well known in convex analysis that

‖· − x‖∗ (−y∗) =
{ 〈−y∗, x〉 if ‖y∗‖ ≤ 1,

∞ otherwise.

Implementing this into formula (4.9) and employing elementary transformations, we
obtain

inf
y∈X

{‖y − x‖+ λg (y)
}
= max

‖y∗‖≤1

{〈y∗, x〉 − (λg)
∗
(y∗)

}
= max

‖y∗‖≤1, (λg)∗(y∗)≤η

{〈y∗, x〉 − η
}

= max
‖y∗‖≤1, λg∗(y∗/λ)≤η

{〈y∗, x〉 − η
}

= max
‖y∗‖≤1, (1/λ)(y∗,η)∈epi g∗

{〈y∗, x〉 − η
}
.

The latter representation yields, by denoting x∗ := (1/λ)y∗ and α := (1/λ)η, that

inf
y∈X

{‖y − x‖+ λg(y)
}
= max

(x∗,α)∈epi g∗, ‖x∗‖≤1/λ
λ
{〈x∗, x〉 − α

}
.

Combining this with the formulas above, we arrive at

dist(x;Q) = max
{

max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

λ
{〈x∗, x〉 − α

}
, 0
}

= max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

{
λ
[〈x∗, x〉 − α

]
+

}
.

(4.10)
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1520 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

It is easy to observe the following relationships held for any λ > 0:

max
(0,α)∈epi g∗

λ
{〈0, x〉 − α

}
= max

g∗(0)≤α
λ
(〈0, x〉 − α

)
= λ

(−g∗(0)
) ≤ λ inf

x∈X
g(x) ≤ λg(x̂) < 0.

Taking this into account, we have from (4.10) that

dist(x;Q) = max
(x∗,α)∈epig∗, ‖x∗‖≤1/λ

{
λ
[〈x∗, x〉 − α

]
+

}
= max

(x∗,α)∈epig∗
max

‖x∗‖≤1/λ

{
λ
[〈x∗, x〉 − α

]
+

}
= max

(x∗,α)∈epig∗

[〈x∗, x〉 − α
]
+

‖x∗‖ ,

which gives (4.7) and thus completes the proof of the proposition.
Now we are ready we establish the required extension of the Ascoli formula (4.5)

to the case of the infinite inequality systems under consideration.
Lemma 4.3 (distance to infinite linear inequalities in Banach spaces). Assume

that the infinite system F(p) in (1.1) satisfies the strong Slater condition at p =
(pt)t∈T . Then for any x ∈ X and any p ∈ l∞ (T ) we have the extended Ascoli
distance formula

(4.11) dist
(
x;F(p)

)
= max

(x∗,α)∈cl∗C(p)

[〈x∗, x〉 − α
]
+

‖x∗‖ .

If, furthermore, X is reflexive, then the distance formula (4.11) can be simplified as
follows:

(4.12) dist
(
x;F(p)

)
= sup

(x∗,α)∈C(p)

[〈x∗, x〉 − α
]
+

‖x∗‖ .

Proof. It is obvious to observe that the infinite system (1.1) is represented in

(4.13) F(p) =
{
x ∈ X

∣∣ g(x) ≤ 0
}
,

where the convex function g : X → R is given in the supremum form

(4.14) g(x) := sup
t∈T

(
ft(x)− pt

)
with ft(x) := 〈a∗t , x〉 − bt.

The assumed strong Slater condition for F(p) ensures the fulfillment of the classical
Slater condition for g imposed in Proposition 4.2. To imply this proposition in the
framework of (4.13), we need to compute the conjugate function to the supremum
function in (4.14). The recent results in this direction [4, 18] yield that

epi g∗ = epi
{
sup
t∈T

(ft − pt)
}∗

= cl∗co

(⋃
t∈T

epi
(
ft − pt

)∗)
= cl∗C(p) + R+(0, 1)

with 0 ∈ X∗, where the weak∗ closedness of the set cl∗C(p)+R+(0, 1) is a consequence
of the classical Dieudonné theorem; see, e.g., [39, Theorem 1.1.8]. Thus we get the
distance formula (4.11) from Proposition 4.2 in general Banach spaces.
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To prove the simplified distance formula (4.12) in the case of reflexive spaces,
suppose, on the contrary, that it does not hold. Then there is a scalar β ∈ R such
that

(4.15) max
(x∗,α)∈cl∗C(p)

[〈x∗, x〉 − α
]
+

‖x∗‖ > β > sup
(x∗,α)∈C(p)

[〈x∗, x〉 − α
]
+

‖x∗‖ .

This yields the existence of a pair (x∗, α) ∈ cl∗C(p) with x∗ ∈ X∗\{0} and α ∈ R

such that [〈x∗, x〉 − α
]
+

‖x∗‖ > β.

Taking into account that the space X is reflexive and that the set C(p) is convex
and employing the Mazur weak closure theorem, we can replace the weak∗ closure
of the C(p) above by its norm closure in X∗. This allows us to find a sequence
(x∗

k, αk) ∈ C(p), k ∈ N, converging in norm to (x∗, α) as k → ∞. Thus we get

lim
k→∞

[〈x∗
k, x〉 − αk

]
+

‖x∗
k‖

=

[〈x∗, x〉 − α
]
+

‖x∗‖ > β,

and therefore there is k0 ∈ N such that[〈
x∗
k0
, x
〉− αk0

]
+∥∥x∗

k0

∥∥ > β.

The latter surely contradicts (4.15), and this completes the proof of the lemma.

The following example shows that the reflexivity of the decision space X is an
essential requirement for the validity of the simplified distance formula (4.12), even
in the framework of (nonreflexive) Asplund spaces.

Example 4.4 (failure of simplified distance formula in nonreflexive Asplund spaces).
Consider the classical space c0 of sequences of real numbers converging to zero en-
dowed with the supremum norm. This space is well known to be Asplund while not
reflexive; see, e.g., [17]. Let us show that the simplified distance formula (4.12) fails
in X = c0 for a rather plain linear system of countable inequalities. Of course, we
need to demonstrate that the inequality “≤” is generally violated in (4.12), since the
opposite inequality holds in any Banach space. Form the infinite (countable) linear
inequality system

(4.16) F(0) :=
{
x ∈ c0

∣∣ 〈e∗1 + e∗t , x〉 ≤ −1, t ∈ N
}
,

where e∗t ∈ l1 has 1 as its tth component while all the remaining components are 0.
System (4.16) can be rewritten as

x ∈ F(0) ⇐⇒ x(1) + x(t) ≤ −1 for all t ∈ N.

Observe that for the origin z = 0 we have dist(0;F(0)) = 1, and the distance is
realized at, e.g., u = (−1, 0, 0, . . .). Indeed, passing to the limit in the inequality

x(1) + x(t) ≤ −1 as t → ∞
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and taking into account that x(t) → 0 as t → ∞, by the structure of the space of c0,
we get x(1) ≤ −1. Furthermore, it can be checked that

(e∗1,−1) ∈ cl∗C(0), 〈e∗1, x− u〉 ≤ 0 for all x ∈ F(0),

dist
(
z;F(0)

)
= ‖z − u‖ = 〈e∗1, z − u〉 = 〈e∗1, z〉 − (−1)

‖e∗1‖
.

On the other hand, for the pair (x∗, α) ∈ X∗ × R given by

(x∗, α) :=
(
e∗1 +

∑
t∈N

λte
∗
t ,−1

)
∈ C(0) with λ ∈ R

(N)
+ and

∑
t∈N

λt = 1,

we can directly check that ‖x∗‖ = 2 and hence[〈x∗, z〉 − α
]
+

‖x∗‖ =
1

2
,

which shows that the equality in (4.12) is violated for the countable system (4.16) in
the nonreflexive Asplund space X = c0 of decision variables.

Our next step is to derive a verifiable precise formula for computing the exact
Lipschitzian bound lipF(0, x̄) for the infinite system (1.1) in the general Banach space
X . As a preliminary result we need the following technical lemma.

Lemma 4.5 (closed-graph property of the characteristic set mapping). The set-
valued mapping l∞ (T ) � p �→ cl∗C(p) ⊂ X∗ × R is closed-graph in the norm×weak∗

topology of l∞(T )× (X∗ × R); i.e., for any nets

{pν}ν∈N ⊂ l∞ (T ) , {x∗
ν}ν∈N ⊂ X∗, {βν}ν∈N ⊂ R

satisfying pν → p, x∗
ν

w∗−→ x∗, βν → β, and (x∗
ν , βν) ∈ cl∗C (pν) for every ν ∈ N we

have the inclusion (x∗, β) ∈ cl∗C (p).
Proof. Arguing by contradiction, suppose that (x∗, β) /∈ cl∗C (p). Then the

classical strict separation theorem allows us to find a pair (x, α) ∈ X×R with (x, α) 
=
(0, 0) and real numbers γ and γ′ satisfying

〈x∗, x〉+ βα < γ′ < γ ≤ 〈a∗t , x〉+ (bt + pt)α for all t ∈ T.

Hence there exists a net index ν0 ∈ N such that

〈x∗
ν , x〉+ βνα < γ′ and ‖α (p− pν)‖ ≤ γ − γ′ whenever ν � ν0.

We have, therefore, that

〈a∗t , x〉+ α (bt + ptν) = 〈a∗t , x〉+ α (bt + pt) + α (ptν − pt)

≥ γ − ‖α (pν − p)‖ ≥ γ′ for all t ∈ T.

The latter implies that γ′ ≤ 〈z∗, x〉 + ηα for all (z∗, η) ∈ cl ∗C(pν) whenever ν � ν0.
Thus we arrive at the contradiction

〈x∗
ν , x〉 + βνα < γ′ ≤ 〈x∗

ν , x〉+ βνα, ν � ν0,

which completes the proof of the lemma.

D
ow

nl
oa

de
d 

04
/2

7/
18

 to
 1

93
.1

45
.2

30
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEAR INEQUALITIES IN INFINITE PROGRAMMING 1523

Now we are ready to establish the desired formula for computing the exact Lip-
schitzian bound of F around (0, x̄).

Theorem 4.6 (computing the exact Lipschitzian bound). Let x̄ ∈ F(0) for the
linear infinite inequality system (1.1) with a Banach decision space X. Assume that
F satisfies the strong Slater condition at p = 0 and that the coefficient set {a∗t | t ∈ T }
is bounded in X∗. The following assertions hold:

(i) If x̄ is a strong Slater point for F at p = 0, then lipF(0, x̄) = 0.
(ii) If x̄ is not a strong Slater point for F at p = 0, then the exact Lipschitzian

bound of F around (0, x̄) is computed by

(4.17) lipF(0, x̄) = max
{‖x∗‖−1

∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)
}
> 0

via the w∗-closure of the characteristic set (2.8) at p = 0.
Proof. Let us first justify (i). We have seen in the proof of Theorem 3.5(i) that

our current assumptions imply that (0, x̄) ∈ int(gphF), which in turn yields by the
definition of the exact Lipschitzian bound that lipF(0, x̄) = 0 in this case.

Next we prove the more difficult assertion (ii) of the theorem, assuming that x̄
is not a strong Slater point for F at p = 0. Observe that by Lemma 3.4 the set
(3.8) under the maximum operation on the right-hand side in (4.17) is nonempty and
w∗-compact in X∗ and the maximum over this set is realized and hence it is finite.
The inequality “≥” in (4.17) follows from the estimate

lipF(0, x̄) ≥ ‖D∗F(0, x̄)‖
established for general mappings between Banach spaces in [31, Theorem 1.44] and
from formula (3.9) for computing the coderivative norm of the inequality system F in
(1.1) derived above in Theorem 3.5. It remains to prove the opposite inequality “≤”
in (4.17).

To proceed, let M := supt∈T ‖a∗t ‖ < ∞, and observe that the inequality “≤”
in (4.17) is obvious when L := lipF (0, x̄) = 0. Suppose now that L > 0, and
consider any pair (p, x) sufficiently close to (0, x̄) in the limiting representation (2.2)
of the exact Lipschitzian bound lipF(0, x̄). We can confine ourselves to the case of
(p, x) /∈ gphF by L > 0. Furthermore, it follows from the structure of F in (1.1) that

(4.18) 0 < dist
(
p;F−1(x)

)
= sup

t∈T

[〈a∗t , x〉 − bt − pt
]
+
.

Moreover, we have the relationships

〈a∗t , x〉 − bt − pt = 〈a∗t , x− x̄〉+ 〈a∗t , x̄〉 − bt − pt

≤ M ‖x− x̄‖+ ‖p‖ for all t ∈ T,

which allow us to conclude that

0 < sup
(x∗,β)∈cl∗C(p)

[〈x∗, x〉 − β
]
+
= sup

(x∗,β)∈cl∗C(p)

{〈x∗, x〉 − β
}

≤ M ‖x− x̄‖+ ‖p‖ .
(4.19)

Consider further the set

C+ (p, x) :=
{
(x∗, β) ∈ cl∗C (p)

∣∣ 〈x∗, x〉 − β > 0
}
,

which is obviously nonempty, and denote

M(p,x) := sup
{‖x∗‖−1 ∣∣ (x∗, β) ∈ C+ (p, x)

}
.

D
ow

nl
oa

de
d 

04
/2

7/
18

 to
 1

93
.1

45
.2

30
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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In our setting we have 0 ∈ int(domF) (cf. Lemma 2.3 and Remark 2.4), and therefore
p ∈ domF for all p ∈ l∞(T ) sufficiently close to the origin. In this case the set
C+(p, x) cannot contain any element of the form (0, β), since the contrary would
yield by the definition of C+(p, x) that β < 0, while Lemma 2.1 gives β ≥ 0. Thus we
get 0 < ‖x∗‖ ≤ M whenever (x∗, β) ∈ C+ (p, x) and, in particular, M(p,x) ∈ (0,∞].
It follows, furthermore, that

sup(x∗,β)∈cl∗C(p)

[〈x∗, x〉 − β
]
+

‖x∗‖
sup(x∗,β)∈cl∗C(p)

[〈x∗, x〉 − β
]
+

=

sup(x∗,β)∈cl∗C(p)

〈x∗, x〉 − β

‖x∗‖
sup(x∗,β)∈cl∗C(p)

{〈x∗, x〉 − β
} ≤ M(p,x),

where the latter inequality implies the estimate

L ≤ lim sup
(p,x)→(0,x̄), x/∈F(p) �=∅

M(p,x) := K.

Considering next a sequence (pk, xk) → (0, x̄) with xk /∈ F(pk) 
= ∅ and

L ≤ lim
k→∞

M(pk,xk) = K,

we select a sequence {αk}∞k=1 ⊂ R such that

lim
k→∞

αk = K and 0 < αk < M(pk,xk) as k ∈ N.

Take now (x∗
k, βk) ∈ C+ (pk, xk) with αk < ‖x∗

k‖−1 for all k ∈ N. Since the sequence
{x∗

k}k∈N ⊂ X∗ is bounded, it contains a subnet {x∗
ν}ν∈N that w∗-converges to some

x∗ ∈ X∗. Denoting by {pν}, {xν}, {βν}, and {αν} the corresponding subnets of {pk},
{xk}, {βk}, and {αk}, we get from (4.19) that

0 < 〈x∗
ν , xν〉 − βν ≤ M ‖xν − x̄‖+ ‖pν‖ .

Thus 〈x∗
ν , xν〉 − βν → 0, which implies by the construction above that βν → 〈x∗, x̄〉.

By Lemma 4.5 we get that

(x∗, 〈x∗, x̄〉) ∈ cl∗C (0) ,

and then Lemma 2.3 ensures that x∗ 
= 0.
To conclude proving the inequality “≤” in (4.17), observe that

‖x∗‖ ≤ lim inf
ν∈N

‖x∗
ν‖ ≤ lim

ν

1

αν
=

1

K

due to ‖x∗
ν‖ ≤ α−1

ν and limν αν = K, which gives

L ≤ K ≤ 1

‖x∗‖ ≤ max
{‖z∗‖−1 ∣∣ (z∗, 〈z∗, x̄〉) ∈ cl∗C (0)

}
.

Remembering the notation above, we complete the proof of the theorem.
Comparing, finally, the results on computing the coderivative norm in Theo-

rem 3.5 and the exact Lipschitzian bound in Theorem 4.6 allows us to arrive at
the unconditional relationship between the coderivative norm and exact Lipschitzian
bound of the infinite inequality system F with arbitrary Banach decision spaces. This
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was known before only for set-valued mappings between finite-dimensional spaces;
cf. formula (2.5) and the corresponding discussions in section 2.

Corollary 4.7 (relationship between the exact Lipschitzian bound and coderiv-
ative norm). Let x̄ ∈ F(0) for the infinite system (1.1) satisfying the strong Slater
condition at p = 0. Assume that the decision space X is arbitrary Banach and that
the coefficient set {a∗t | t ∈ T } is bounded in X∗. Then

(4.20) lipF(0, x̄) = ‖D∗F(0, x̄)‖.
Proof. If x̄ is a strong Slater point for F at p = 0, then we get equality (4.20)

directly by comparing assertions (i) in Theorems 3.5 and 4.6 which ensure that

lipF(0, x̄) = ‖D∗F(0, x̄)‖ = 0.

On the other hand, if x̄ is not a strong Slater point for F at p = 0, then (4.20) follows
from comparing assertions (ii) in Theorems 3.5 and 4.6 which justify the same formula
for computing ‖D∗F(0, x̄)‖ and lipF(0, x̄) in (3.9) and (4.17), respectively.
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VARIATIONAL ANALYSIS IN SEMI-INFINITE AND INFINITE
PROGRAMMING, I: STABILITY OF LINEAR INEQUALITY

SYSTEMS OF FEASIBLE SOLUTIONS∗
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Abstract. This paper concerns applications of advanced techniques of variational analysis and
generalized differentiation to parametric problems of semi-infinite and infinite programming, where
decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is
primarily devoted to the study of robust Lipschitzian stability of feasible solutions maps for such
problems described by parameterized systems of infinitely many linear inequalities in Banach spaces
of decision variables indexed by an arbitrary set T . The parameter space of admissible perturbations
under consideration is formed by all bounded functions on T equipped with the standard supremum
norm. Unless the index set T is finite, this space is intrinsically infinite-dimensional (nonreflexive and
nonseparable) of the l∞ type. By using advanced tools of variational analysis and exploiting specific
features of linear infinite systems, we establish complete characterizations of robust Lipschitzian
stability entirely via their initial data with computing the exact bound of Lipschitzian moduli. A
crucial part of our analysis addresses the precise computation of the coderivative of the feasible set
mapping and its norm. The results obtained are new in both semi-infinite and infinite frameworks.

Key words. semi-infinite and infinite programming, variational analysis, linear infinite inequal-
ity systems, robust stability, generalized differentiation, coderivatives

AMS subject classifications. 90C34, 90C05, 49J52, 49J53, 65F22
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1. Introduction. This paper mainly deals with parameterized infinite systems
of linear inequalities

(1.1) F(p) :=
{
x ∈ X

∣∣ 〈a∗
t , x〉 ≤ bt + pt, t ∈ T

}
, p = (pt)t∈T ,

with an arbitrary index set T , where x ∈ X is a decision variable belonging to an arbi-
trary Banach space X (which may be finite-dimensional), and where p = (pt)t∈T ∈ P
is a functional parameter taking values in the prescribed Banach space P of perturba-
tions specified below. Infinite inequality systems of this type are important in various
areas of mathematics and applications, while our primary interest in them is driven by
applications to problems of semi-infinite and infinite programming corresponding to
finite-dimensional and infinite-dimensional decision spaces X , respectively; see, e.g.,
the books [1, 5, 19, 37] and the references therein. Some applications of the results
obtained in this paper to necessary optimality conditions for semi-infinite and infinite
programs can be found in [11].

The data of (1.1) are given as follows:
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• a∗
t ∈ X∗ for all t ∈ T , where the space X∗ is topologically dual to X with the

canonical pairing 〈·, ·〉 between X and X∗. If no confusion arises, we use the same
notation ‖ ·‖ for the given norm in X and the corresponding dual norm in X∗ defined
by

‖x∗‖ := sup
{〈x∗, x〉 ∣∣ ‖x‖ ≤ 1

}
, x∗ ∈ X∗.

We always assume that a∗
t are fixed and arbitrary in X∗ for all t ∈ T .

• bt ∈ R for all t ∈ T . We identify the collection {bt | t ∈ T } with the real-valued
function b : T → R and assume that it is fixed and arbitrary.

• pt = p(t) ∈ R for all t ∈ T . These functional parameters p : T → R are our
varying perturbations, which are taken from the Banach parameter space P := l∞(T )
of all bounded functions on T with the supremum norm

(1.2) ‖p‖∞ := sup
t∈T

|pt| = sup
{|p(t)| ∣∣ t ∈ T

}
(see, e.g., [17]), where the subscript “∞” is omitted if no confusion arises. When the
index set T is compact (which is not assumed in this paper) and the perturbations
p(·) are restricted to be continuous on T , the maximum is realized in (1.2), and thus
the parameter space l∞(T ) reduces to the classical space C(T ) of continuous functions
over a compact set.

The primary goal of this paper is to obtain comprehensive characterizations of
robust Lipschitzian stability of infinite inequality systems (1.1) expressed entirely in
terms of their initial data. By robust Lipschitzian stability we understand the fulfill-
ment of the so-called Lipschitz-like (known also as Aubin) property of the mapping
F(p) in (1.1) around the reference point. This property is stable with respect to
small perturbations of parameters and is crucial for both qualitative and quantita-
tive/numerical aspects of optimization theory and applications; see, e.g., [31, 32, 35]
and section 2 for more details and references.

To establish constructive characterizations of robust Lipschitzian stability in this
paper and to derive efficient optimality conditions for semi-infinite and infinite pro-
grams in [11], we develop an advanced approach of variational analysis based on
generalized differentiation. To the best of our knowledge, this approach is new in the
literature on semi-infinite and infinite programming despite many publications related
to various stability properties and applications of linear infinite inequality systems,
most of which concern the case of finite-dimensional spaces X of decision variables
(i.e., in the semi-infinite programming framework); see, e.g., [1, 19] for comprehensive
overviews on this field and also [5], which is confined to the parameter space of con-
tinuous perturbations P = C(T ) when the index set T is a compact Hausdorff space.
We refer the reader to [12] for the study of qualitative stability (formalized through
certain semicontinuity properties of feasible solution and optimal solution mappings)
in the framework of X = R

n, an arbitrary index set T , and arbitrary perturbations.
In the same semi-infinite context, for a quantitative perspective (through Lipschitzian
properties), the reader is directed to [7], and to [6] for the case of continuous pertur-
bations. Let us mention the recent paper [14] addressing the case of infinite linear
programming from the viewpoint of qualitative stability. We also refer the reader to,
e.g., [8, 9, 13, 15, 18, 24, 25] for the study of convex semi-infinite and infinite programs
and to [21, 22, 37] for their smooth nonlinear counterparts.

The approach of this paper is mainly based on coderivative analysis of the para-
metric linear infinite inequality systems F in (1.1), which eventually leads us to com-
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plete characterizations of robust Lipschitzian stability for the parametric sets of feasi-
ble solutions in infinite/semi-infinite programming expressed entirely via their initial
data with precise computing the exact bound of Lipschitzian moduli.

Coderivatives of set-valued mappings introduced in [27] have been well recognized
as a powerful tool of variational analysis and its numerous applications, particularly
to problems of optimization and control; see, e.g., [3, 23, 30, 31, 32, 33, 35, 36]
and the references therein. However, we are not familiar with any implementation of
coderivatives in problems of infinite or semi-infinite programming as well as with their
application to analyzing stability of linear infinite inequality systems of type (1.1) in
finite or infinite dimensions.

The power of coderivatives in variational analysis and its applications comes, first,
from the possibility of obtaining in their terms verifiable pointwise characterizations
of robust Lipschitzian properties of set-valued mappings (as well as of the equivalent
properties of metric regularity and linear openness for the inverse mappings) and of
deriving necessary optimality conditions in rather general settings. These develop-
ments are strongly supported by comprehensive pointwise coderivative calculus based
on variational/extremal principles of advanced variational analysis; see [31, 32] and
the references therein. However, a number of results in this vein are limited in in-
finite dimensions. In particular, the available coderivative characterizations of the
Lipschitz-like property of closed-graph mappings F : Z ⇒ Y obtained in [31, Theo-
rem 4.10] require that both spaces Z and Y are Asplund (i.e., every separable subspace
of them has a separable dual) while the precise coderivative formula for computing
the exact Lipschitzian bound is established therein via the coderivative norm under
the finite-dimensionality assumption on Z. But this is never the case for our infinite
inequality system F : P ⇒ X from (1.1), where the parameter space (Z =) P = l∞(T )
is always infinite-dimensional and not Asplund unless the index set T is finite!

This paper contains new and fairly comprehensive results in the aforementioned
directions for the infinite/semi-infinite systems under consideration, which essentially
take into account underlying specific features of the infinite inequality constraints
(1.1) largely related to the possibility of employing an appropriate extended version
of the fundamental Farkas lemma for infinite systems of linear inequalities in general
Banach spaces.

The rest of paper is organized as follows. Section 2 presents some preliminary
material from convex and variational analysis widely used in formulations and proofs
of the subsequent main results. In section 3 we provide precise calculations of the
basic coderivative D∗F and its norm at the reference/nominal point for the feasible
solution map F : l∞(T ) ⇒ X in (1.1) via the initial data of F in the general case of
an arbitrary index set T and an arbitrary Banach space X of decision variables.

Section 4 is devoted to deriving coderivative characterizations of robust stability
for the feasible solution system (1.1) of infinite inequalities with an arbitrary index
set T , which are explicitly expressed in terms of the initial data {a∗

t , bt, t ∈ T }. We
establish verifiable criteria (i.e., necessary and sufficient conditions) for the fulfill-
ment of the Lipschitz-like (and hence the classical local Lipschitzian) property of F
around the reference points and derive furthermore the precise formulas for comput-
ing the exact bounds of Lipschitzian moduli in the case of general Banach spaces X .
It is worth mentioning that the criteria and exact bound formulas obtained in this
section are represented in the conventional coderivative form of variational analysis
as in [31, Theorem 4.10] for the case of abstract set-valued mappings, but with no
Asplund space and finite-dimensionality requirements imposed therein. In fact, the
latter requirements are never satisfied for the infinite linear inequality systems (1.1)
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LINEAR INEQUALITIES IN INFINITE PROGRAMMING 1507

under consideration in either the infinite programming or semi-infinite programming
framework.

Our notation is basically standard and conventional in the areas of variational
analysis and infinite/semi-infinite programming; see, e.g., [19, 31, 35]. Unless other-
wise stated, all the spaces under consideration are Banach with the corresponding
norm ‖ · ‖. Recall that w∗ indicates the weak∗ topology of a dual space, and we use
the symbol w∗-lim for the weak∗ topological limit, which generally means the weak∗

convergence of nets denoted usually by {x∗
ν}ν∈N . In the case of sequences we use the

standard notation N := {1, 2, . . .} for the collection of all natural numbers.
Given a subset Ω ⊂ Z of a Banach space, the symbols intΩ, cl Ω, co Ω, and coneΩ

stand, respectively, for the interior, closure, convex hull, and conic convex hull of Ω;
the notation cl ∗Θ signifies the weak∗ closure of a subset Θ ⊂ Z∗ in the dual space.
Given a set-valued mapping F : Z ⇒ Y , we denote its domain, graph, and inverse by,
respectively,

dom F =
{
z ∈ Z

∣∣ F (z) 
= ∅}, gph F :=
{
(z, y) ∈ Z × Y

∣∣ y ∈ F (z)
}
,

and F−1(y) := {z ∈ Z | (z, y) ∈ gph F}. Considering finally an arbitrary index set T ,
let R

T be the product space of λ = (λt | t ∈ T ) with λt ∈ R for all t ∈ T , let R
(T ) be

the collection of λ ∈ R
T such that λt 
= 0 for finitely many t ∈ T , and let R

(T )
+ be the

positive cone in R
(T ) defined by

R
(T )
+ :=

{
λ ∈ R

(T )
∣∣ λt ≥ 0 for all t ∈ T

}
.

2. Basic definitions and preliminaries. In this section we discuss the basic
notions and tools needed for our subsequent analysis and results. As mentioned in
section 1, a major focus of this paper is robust Lipschitzian stability of the feasible
solution map given by (1.1). By such a robust stability we understand Lipschitzian
behavior around (i.e., in a neighborhood) of the reference point. The most natural
formalization of this behavior widely recognized in variational (as well as in general
nonlinear) analysis is known as the Lipschitz-like or Aubin property, which can be
viewed as a graphical localization (in the set-valued case) of the classical local Lip-
schitzian property of single-valued and set-valued mappings.

Given a set-valued mapping F : Z ⇒ Y between Banach spaces, we say that F is
Lipschitz-like around (z̄, ȳ) ∈ gphF with modulus � ≥ 0 if there are neighborhoods U
of z̄ and V of ȳ such that

(2.1) F (z) ∩ V ⊂ F (u) + �‖z − u‖B for any z, u ∈ U,

where B stands for the closed unit ball in the space in question. The infimum of
moduli {�} over all the combinations of {�, U, V } satisfying (2.1) is called the exact
Lipschitzian bound of F around (z̄, ȳ) and is labeled as lip F (z̄, ȳ). If V = Y in (2.1),
this relationship signifies the classical (Hausdorff) local Lipschitzian property of F
around z̄ with the exact Lipschitzian bound denoted by lipF (z̄) in this case.

It is worth mentioning that the Lipschitz-like property of an arbitrary mapping
F : Z ⇒ Y between Banach spaces is equivalent to two other fundamental properties
in nonlinear analysis but for the inverse mapping F−1 : Y ⇒ Z, namely, to the
metric regularity of F−1 and to the linear openness of F−1 around (ȳ, z̄), with the
corresponding relationships between their exact bounds (see, e.g., [20, 31, 35]).
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1508 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

It is well known that the exact Lipschitzian bound of F around (z̄, ȳ) admits the
following limiting representation via the distance function to a set:

(2.2) lip F (z̄, ȳ) = lim sup
(z,y)→(z̄,ȳ)

dist
(
y; F (z)

)
dist

(
z; F−1(y)

) ,
where inf ∅ = ∞ (and hence dist(x; ∅) = ∞) as usual and where 0/0 := 0. We have
accordingly that lipF (z̄, ȳ) = ∞ if F is not Lipschitz-like around (z̄, ȳ).

A remarkable fact consists of the possibility of characterizing pointwisely the
(derivative-free) Lipschitz-like property of F around (z̄, ȳ)—and hence its local Lip-
schitzian, metric regularity, and linear openness counterparts—in terms of a dual-space
construction of generalized differentiation called the coderivative of F at (z̄, ȳ) ∈
gph F . The latter is a positively homogeneous multifunction D∗F (z̄, ȳ) : Y ∗ ⇒ Z∗

defined by

(2.3) D∗F (z̄, ȳ)(y∗) :=
{
z∗ ∈ Z∗ ∣∣ (z∗,−y∗) ∈ N

(
(z̄, ȳ); gphF

)}
, y∗ ∈ Y ∗,

where N(·; Ω) stands for the collection of generalized normals to a set at a given point
known as the basic, or limiting, or Mordukhovich, normal cone; see, e.g., [26, 31, 35, 36]
and the references therein. When both Z and Y are finite-dimensional, it is proved in
[28] (cf. also [35, Theorem 9.40]) that a closed-graph mapping F : Z ⇒ Y is Lipschitz-
like around (z̄, ȳ) ∈ gphF if and only if

(2.4) D∗F (z̄, ȳ)(0) = {0},
and that the exact Lipschitzian bound of moduli {�} in (2.1) is computed by

(2.5) lip F (z̄, ȳ) = ‖D∗F (z̄, ȳ)‖ := sup
{‖z∗‖ ∣∣ z∗ ∈ D∗F (z̄, ȳ)(y∗), ‖y∗‖ ≤ 1

}
.

The situation is significantly more involved in infinite dimensions. It is proved in
[29] (see also [31, Theorem 4.10]) that a closed-graph mapping F : Z ⇒ Y is Lipschitz-
like around (z̄, ȳ) ∈ gph F if and only if the coderivative condition (2.4) holds in terms
of the so-called mixed coderivative (which reduces to (2.3) in finite dimensions and the
setting considered in this paper) together with a certain “partial sequential normal
compactness” condition (which automatically holds in finite dimensions and in the
setting of this paper) provided that both spaces Z and Y are Asplund. The latter
property is defined in section 1; we also refer the reader to [17, 31, 34] for more
details and various characterizations of this remarkable and well-investigated subclass
of Banach spaces that includes, in particular, all reflexive spaces, while it does not
include, e.g., the classical spaces C, l1, L1, l∞, and L∞.

The situation is even more complicated with infinite-dimensional extensions of
the exact bound formula in (2.5). The aforementioned results of [29, 31] give merely
upper and lower estimates for lipF (z̄, ȳ), which ensure the precise equality in (2.5) in
our setting here provided that Y is Asplund while Z is finite-dimensional.

The set-valued mapping F : Z ⇒ Y considered in this paper is F : l∞(T ) ⇒ X
defined by the infinite system of linear inequalities (1.1); in what follows we always
assume that the index set T is infinite, which is a characteristic feature of infinite and
semi-infinite programs. In this setting the domain/parameter space Z = l∞(T ) is an
infinite-dimensional Banach that is never Asplund. Also, we do not suppose in this
paper that our decision space X is anything but arbitrary Banach.

In this general setting for (1.1) we show that the coderivative condition (2.4) is
necessary and sufficient for the Lipschitz-like property of F = F around the reference/
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LINEAR INEQUALITIES IN INFINITE PROGRAMMING 1509

nominal solution (p̄, x̄) ∈ gphF and (2.5) is a precise formula for computing the exact
Lipschitzian bound lipF(p̄, x̄). This is exactly what we have in finite dimensions,
while it is far removed from being a part of the infinite-dimensional variational theory
in [31]. Moreover, we express the relationships in (2.4) and (2.5) explicitly in terms
of the initial data of (1.1).

To proceed further, observe that the graph

(2.6) gphF =
{
(p, x) ∈ l∞(T ) × X

∣∣ 〈a∗
t , x〉 ≤ bt + pt for all t ∈ T

}
of the mapping F : l∞(T ) ⇒ X in (1.1) is convex. Hence the basic normal cone to
gphF at (p̄, x̄) ∈ gphF reduces to

N
(
(p̄, x̄); gphF) =

{
(p∗, x∗) ∈ l∞(T )∗ × X∗ ∣∣ 〈(p∗, x∗), (p, x) − (p̄, x̄)

〉
≤ 0 for (p, x) ∈ gphF}

and the coderivative (2.3) of F admits the representation
(2.7)

D∗F(p̄, x̄)(x∗) =
{
p∗ ∈ l∞(T )∗

∣∣ 〈p∗, p̄〉 − 〈x∗, x̄〉 = max
(p,x)∈gphF

[〈p∗, p〉 − 〈x∗, x〉]}.
Let us now present two preliminary results that play an important role in our

subsequent analysis. The first one is taken from [13, Lemma 2.4] and can be viewed
as an extended Farkas lemma for linear infinite inequality systems in Banach spaces.
An alternative proof can be derived from [38, Theorem 4].

Lemma 2.1 (extended Farkas lemma). Let p ∈ domF for the infinite system
(1.1) with a Banach decision space X, and let (x∗, α) ∈ X∗ × R. The following are
equivalent:

(i) We have 〈x∗, x〉 ≤ α whenever x ∈ F(p), i.e.,[〈a∗
t , x〉 ≤ bt + pt for all t ∈ T

]
=⇒ [〈x∗, x〉 ≤ α

]
.

(ii) The pair (x∗, α) satisfies the inclusion

(x∗, α) ∈ cl∗cone
[{

(a∗
t , bt + pt)

∣∣ t ∈ T
} ∪ {(0, 1)}] with 0 ∈ X∗.

Throughout the paper we largely use the parametric characteristic sets

(2.8) C(p) := co
{
(a∗

t , bt + pt)
∣∣ t ∈ T

}
, p ∈ l∞(T ),

and suppose with no loss of generality that our nominal parameter is the zero function
p̄ = 0 in the parameter space l∞(T ).

Let us recall a well-recognized qualification condition for linear infinite inequali-
ties, which is often used in problems of semi-infinite and infinite programming.

Definition 2.2 (strong Slater condition). We say that the infinite system (1.1)
satisfies the strong Slater condition (SSC) at p = (pt)t∈T if there is x̂ ∈ X such that

(2.9) sup
t∈T

[〈a∗
t , x̂〉 − bt − pt

]
< 0.

Furthermore, every point x̂ ∈ X satisfying condition (2.9) is a strong Slater point for
system (1.1) at p = (pt)t∈T .

The next result contains several equivalent descriptions and interpretations of the
strong Slater condition used in what follows; the most important is the equivalence
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1510 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

(i)⇐⇒(ii). Note that a similar equivalence can be found in [14] for more general convex
systems in locally convex spaces with different spaces of associated parameters. We
include here a simplified proof of this equivalence for the reader’s convenience.

Lemma 2.3 (equivalent descriptions of the strong Slater condition). Let X be a
Banach space, and let p ∈ domF for the linear infinite inequality system (1.1). Then
the following properties are equivalent:

(i) F satisfies the strong Slater condition at p.
(ii) (0, 0) /∈ cl∗C(p) via the characteristic set from (2.8).
(iii) p ∈ int(domF).
(iv) F is Lipschitz-like around (p, x) for all x ∈ F(p).

Moreover, if the set {a∗
t | t ∈ T } is bounded in X∗, the conditions above are equivalent

to
(v) there exists x̂ ∈ X such that (p, x̂) ∈ int(gphF).
Proof. We begin with the proof of (i)=⇒(ii). Arguing by contradiction, assume

that (0, 0) ∈ cl∗C(p). Then there is a net {λν}ν∈N ∈ R
(T )
+ satisfying

∑
t∈T λtν = 1

for all ν ∈ N and the limiting condition

(2.10) (0, 0) = w∗-lim
ν

∑
t∈T

λtν

(
a∗

t , bt + pt

)
.

If x̂ is a strong Slater point for system (1.1) at p, we find ϑ > 0 such that

〈a∗
t , x̂〉 − bt − pt ≤ −ϑ for all t ∈ T.

Then (2.10) leads to the following contradiction:

0 = 〈0, x̂〉 + 0 · (−1) = lim
ν

∑
t∈T

λtν

(〈a∗
t , x̂〉 + (bt + pt) · (−1)

) ≤ −ϑ.

Let us next justify the converse implication (ii)=⇒(i). By [13, Theorem 3.1] we
have

p ∈ domF ⇐⇒ (0,−1) /∈ cl∗cone
{
(a∗

t , bt + pt)
∣∣ t ∈ T

}
.

Then the strong separation theorem ensures the existence of (0, 0) 
= (v, α) ∈ X × R

with

〈a∗
t , v〉 + α(bt + pt) ≤ 0 for all t ∈ T,(2.11)

〈0, v〉 + (−1)α = −α > 0.

At the same time by (ii) we have (0, 0) 
= (z, β) ∈ X × R and γ ∈ R for which

(2.12) 〈a∗
t , z〉+ β(bt + pt) ≤ γ < 0 whenever t ∈ T.

Consider further the combination

(u, η) := (z, β) + λ(v, α),

and select λ > 0 to be sufficiently large to ensure that η < 0. Defining now x̂ :=
−η−1u, we observe from (2.11) and (2.12) that

〈a∗
t , x̂〉 − bt − pt = −η−1

(〈a∗
t , u〉 + η(bt + pt)

) ≤ −η−1γ < 0.
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This allows us to conclude that x̂ is a strong Slater point for system (1.1) at p.
To prove implication (i)=⇒(iii), assume that x̂ is a strong Slater point for system

(1.1) at p, and find ϑ > 0 such that

〈a∗
t , x̂〉 − bt − pt ≤ −ϑ for all t ∈ T.

Then it is obvious that for any q ∈ l∞(T ) with ‖q‖ < ϑ we have x̂ ∈ F(p + q).
Therefore, p + q ∈ domF , and thus (iii) holds.

Let us further proceed with justifying implication (iii)=⇒(i). If p ∈ int(domF),
then p + q ∈ domF provided that qt = −ϑ as t ∈ T and that ϑ > 0 is sufficiently
small. Thus every x̂ ∈ F(p + q) is a strong Slater point for the infinite system (1.1)
at p.

The equivalence between (iii) and (iv) is a consequence of the classical Robinson–
Ursescu closed-graph/metric regularity theorem; see, e.g., [20] and [31, Chapter 4]
and references therein for more discussion.

It remains to consider condition (v). We can easily observe that (v) always
implies (iii) and hence the other conditions of the lemma. Suppose now that the
set {a∗

t | t ∈ T } is bounded in X∗, and show that in this case (i) implies (v). Select
M ≥ 0 such that ‖a∗

t ‖ ≤ M for every t ∈ T , and take x̂ ∈ X satisfying (2.9). Denote

γ := − sup
t∈T

[〈a∗
t , x̂〉 − bt − pt] > 0,

and consider any pair (p′, u) ∈ l∞(T ) × X satisfying the relationships

‖u‖ ≤ η := γ/ (M + 1) > 0 and ‖p′‖ ≤ η.

It is easy to see that for such (p′, u) and every t ∈ T we have

〈a∗
t , x̂ + u〉 − bt − pt − p′t ≤ −γ + M ‖u‖ + ‖p′‖ ≤ η (M + 1) − γ = 0,

and so (p + p′, x̂ + u) ∈ gphF . Thus (p, x̂) ∈ int(gphF), which gives (i)=⇒(v) and
completes the proof of the lemma.

Remark 2.4 (relationships between interiority and boundedness conditions). Note
that we have the nonempty interiority condition int(gphF) 
= ∅ provided that the set
{a∗

t | t ∈ T } is bounded in X∗ and that gphF 
= ∅. Also we have int(domF) 
= ∅ if
gphF 
= ∅ with no boundedness assumption.

To justify the first statement, take (p, x) ∈ gphF and ‖a∗
t ‖ ≤ M < ∞ for every

t ∈ T , and define e ∈ l∞ (T ) by et := 1 for all t ∈ T . Then arguing similarly to
the proof of the last implication in Lemma 2.1, we get (p + e + p′, x + u) ∈ gphF
whenever ‖p′‖ ≤ η := 1/ (M + 1) and ‖u‖ ≤ η. This gives (p + e, x) ∈ int(gphF). If,
furthermore, (p, x) ∈ gphF , we can easily check that x ∈ F (p + e+ p′) provided that
‖p′‖ ≤ 1, and therefore p + e ∈ int(domF).

The major space for our consideration in this paper is the parameter space l∞(T )
of bounded functions p : T → R on T with the supremum norm (1.2). It is obviously a
Banach space that is never finite-dimensional when the index set T is infinite, which
is our standing assumption. Let us show that it is never Asplund.

Proposition 2.5 (parameter space is never Asplund). The parameter space
l∞(T ) is Asplund if and only if the index set T is finite.

Proof. If T is countable (i.e., T = N and the parameter space is the classical space
of sequences l∞), the proof can be found in [34, Example 1.21]; in fact, this space is
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1512 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

not even weak Asplund. The same arguments can be adapted for any infinite index
set T .

Finally, in this section, we recall a convenient description of the topological dual
space l∞(T )∗ to the parameter space l∞(T ). According to [16], there is an isometric
isomorphism between l∞(T )∗ and the space of bounded and additive measures

ba(T ) =
{
μ : 2T → R

∣∣ μ is bounded and additive
}

satisfying the relationship

〈μ, p〉 =
∫

T

pt μ(dt) with p = (pt)t∈T .

The dual norm on ba(T ) corresponding to (1.2) is the total variation of μ ∈ ba(T ) on
the index set T defined by

‖μ‖ := sup
A⊂T

μ(A) − inf
B⊂T

μ(B).

In what follows we always identify the measure space ba(T ) with the dual parameter
space l∞(T )∗ and use, for the notational unification, p∗ ∈ l∞(T )∗ instead of μ ∈ ba(T ).

3. Computing coderivatives and coderivative norms for linear infinite
inequality systems. In this section we establish a constructive representation of
the coderivative D∗F(0, x̄) for the feasible solution map F at the nominal point (0, x̄)
and compute its norm ‖D∗F(0, x̄)‖ in terms of the initial data of the linear infinite
inequality system (1.1). Let us first describe the normal cone to the convex graph (2.6)
employing the extended Farkas lemma presented above. In what follows δt denotes
the classical Dirac measure at t ∈ T satisfying

〈δt, p〉 = pt as t ∈ T for p = (pt)t∈T ∈ l∞(T ).

Proposition 3.1 (computing normals to the graphical set of feasible solutions).
Let (p̄, x̄) ∈ gphF for the graphical set (2.6) with a Banach decision space X, and let
(p∗, x∗) ∈ l∞(T )∗ × X∗. Then we have (p∗, x∗) ∈ N((p̄, x̄); gphF) if and only if

(3.1)
(
p∗, x∗, 〈p∗, p̄〉 + 〈x∗, x̄〉) ∈ cl∗cone

[{
(−δt, a

∗
t , bt)

∣∣ t ∈ T
} ∪ {(0, 0, 1)}],

where 0 ∈ l∞(T )∗ and 0 ∈ X∗ stand for the first and second entry of the last triple
in (3.1), respectively. Furthermore, the inclusion (p∗, x∗) ∈ N ((p̄, x̄) ; gphF) implies
that p∗ ≤ 0 in the space ba (T ), i.e., p∗ (A) ≤ 0 for all A ⊂ T .

Proof. Observe from (2.6) and from the definition of the Dirac measure that the
graph of F admits the representation

gphF =
{
(p, x) ∈ l∞(T ) × X

∣∣ 〈a∗
t , x〉 − 〈δt, p〉 ≤ bt for all t ∈ T

}
.

Therefore, we have (p∗, x∗) ∈ N((p̄, x̄); gphF) if and only if

(3.2) 〈p∗, p〉 + 〈x∗, x〉 ≤ 〈p∗, p̄〉 + 〈x∗, x̄〉

for every (p, x) ∈ gphF . Employing now the equivalence between (i) and (ii) in
Lemma 2.1, we conclude that (p∗, x∗) ∈ N((p̄, x̄); gphF) if and only if inclusion (3.1)
holds.
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To justify the last statement of the proposition, for every set A ⊂ T consider its
characteristic function χA : T → {0, 1} defined by

χA (t) :=
{

1 if t ∈ A,
0 if t /∈ A.

It is obvious that the inclusion (p, x) ∈ gphF implies that (p + λχA, x) ∈ gphF for
each λ > 0. Replacing now in (3.2) the pair (p, x) by (p + λχA, x), keeping p and x
fixed, dividing both sides of the inequality by λ, and letting λ → ∞, we get the
relationships

〈p∗, χA〉 =
∫

T

χA (t) p∗ (dt) = p∗ (A) ≤ 0,

which complete the proof of the proposition.
Based on the above proposition and the general coderivative definition, we now

obtain a constructive representation of the coderivative D∗F(0, x̄) in question.
Theorem 3.2 (coderivative of the feasible solution map). Let x̄ ∈ F(0) for the

feasible solution map F : l∞(T ) ⇒ X from (1.1) with a Banach decision space X.
Then p∗ ∈ D∗F(0, x̄)(x∗) if and only if

(3.3)
(
p∗,−x∗,−〈x∗, x̄〉) ∈ cl∗cone

{
(−δt, a

∗
t , bt)

∣∣ t ∈ T
}
.

Proof. By the coderivative construction (2.3) applied to F and by the normal
cone formula from Proposition 3.1 as p̄ = 0, we get that p∗ ∈ D∗F(0, x̄)(x∗) if and
only if

(3.4)
(
p∗,−x∗,−〈x∗, x̄〉) ∈ cl∗cone

[{
(−δt, a

∗
t , bt)

∣∣ t ∈ T
}∪ {(0, 0, 1)}].

To justify the coderivative representation claimed in the theorem, we need to show
that inclusion (3.4) implies, in fact, the “smaller” one in (3.3). Assuming indeed
that (3.4) holds, we find by the structure of the right-hand side on (3.4) some nets
{λν}ν∈N ⊂ R

(T )
+ and {γν}ν∈N ⊂ R+ satisfying the limiting relationship

(3.5)
(
p∗,−x∗,−〈x∗, x̄〉) = w∗-lim

ν

(∑
t∈T

λtν(−δt, a
∗
t , bt) + γν(0, 0, 1)

)
,

where λtν stands for the t-entry of λν = (λtν)t∈T as ν ∈ N . It follows directly from
the component structure in (3.5) that

(3.6) 0 = 〈p∗, 0〉 + 〈−x∗, x̄〉 + (−〈x∗, x̄〉)(−1) = lim
ν

(∑
t∈T

λtν

(〈a∗
t , x̄〉 − bt

)− γν

)
.

Finally, taking into account the definition of the positive cone R
(T )
+ and the fact

that the pair (0, x̄) satisfies the infinite inequality system in (1.1), we conclude from
(3.6) that limν γν = 0. This justifies (3.3) and thus completes the proof of the
theorem.

The next consequence of Theorem 3.2 is useful in what follows.
Corollary 3.3 (limiting descriptions of coderivatives). If p∗ ∈ D∗F(0, x̄)(x∗)

in the framework of Theorem 3.2, then there is a net {λν}ν∈N ⊂ R
(T )
+ such that∑

t∈T

λtν → ‖p∗‖ = −〈p∗, e〉 ,

∑
t∈T

λtνa∗
t

w∗−→ −x∗, and
∑
t∈T

λtνbt → −〈x∗, x̄〉 .
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1514 CÁNOVAS, LÓPEZ, MORDUKHOVICH, AND PARRA

Proof. It follows from Theorem 3.2 that there is a net {λν}ν∈N ⊂ R
(T )
+ such that∑

t∈T

λtνδt
w∗−→ −p∗,

∑
t∈T

λtνa∗
t

w∗−→ −x∗, and
∑
t∈T

λtνbt → −〈x∗, x̄〉 ,

which readily imply the relationships〈∑
t∈T

λtνδt, e

〉
=
∑
t∈T

λtν → 〈p∗,−e〉 =: λ ∈ [0,∞) .

Since the dual norm on X∗ is w∗-lower semicontinuous, we have

‖p∗‖ ≤ lim inf
ν∈N

∥∥∥∥∥∑
t∈T

λtνδt

∥∥∥∥∥ ≤ lim inf
ν∈N

∑
t∈T

λtν = λ.

It follows at the same time from the norm definition that

‖p∗‖ = sup
‖p‖≤1

〈p∗, p〉 ≥ 〈p∗,−e〉 = λ,

which finally yields ‖p∗‖ = −〈p∗, e〉 and completes the proof of the corollary.
Our further intention is to provide the exact calculation of the coderivative norm

(3.7) ‖D∗F(0, x̄)‖ := sup
{‖p∗‖ ∣∣ p∗ ∈ D∗F(0, x̄)(x∗), ‖x∗‖ ≤ 1

}
in terms of the initial data of the linear infinite inequality system (1.1). A part of our
analysis in this direction is the following lemma on properties of the characteristic
set (2.8) at p = 0, which is also used in section 4 to compute the exact Lipschitzian
bound lipF(0, x̄).

Lemma 3.4 (properties of the characteristic set). Let X be an arbitrary Banach
space. The following assertions hold:

(i) Assume that x̄ ∈ F(0) is not a strong Slater point for the infinite system (1.1)
at p = 0 and that the collection {a∗

t | t ∈ T } is bounded in X∗. Then the set

(3.8) S :=
{
x∗ ∈ X∗ ∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)

}
built upon the characteristic set C(0) in (2.8) is nonempty and w∗-compact at X∗.

(ii) Assume that x̄ ∈ F(0) is a strong Slater point of (1.1) at p = 0. Then the
set S in (3.8) is empty.

Proof. To justify (i), let x̄ be not a strong Slater point for the infinite system (1.1)
at p = 0. Then there is a sequence {tk}k∈N ⊂ T such that limk(〈a∗

tk
, x̄〉 − btk

) = 0.
The boundedness of {a∗

t | t ∈ T } implies by the classical Alaoglu–Bourbaki theorem
that this set is relatively w∗-compact in X∗; i.e., there is a subnet {a∗

tν
}ν∈N of the

latter sequence that w∗-converges to some element u∗ ∈ cl∗{a∗
t | t ∈ T }. This gives

limν btν = 〈u∗, x̄〉, and therefore(
u∗, 〈u∗, x̄〉) = w∗-lim

ν

(
a∗

tν
, btν

) ∈ cl∗C(0),

which justifies the nonemptiness of the set S in (3.8). Next we prove that S is w∗-
compact.

Indeed, by our assumption, the set A := {a∗
t | t ∈ T } is bounded in X∗, and so is

cl∗coA; the latter is actually w∗-compact due to its automatic w∗-closedness. Observe
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further that the set S in (3.8) is a preimage of cl∗C(0) under the w∗-continuous
mapping x∗ �→ (x∗, 〈x∗, x̄〉), and thus it is w∗-closed in X∗. Since S is a subset of
cl∗coA, it is also bounded and hence w∗-compact in X∗. This completes the proof of
assertion (i).

To prove assertion (ii), let x̄ be a strong Slater point of system (1.1) at p = 0,
and let

γ := − sup
t∈T

{〈a∗
t , x̄〉 − bt} .

Then we have the inequality

〈x∗, x̄〉 ≤ β − γ whenever (x∗, β) ∈ cl ∗C (0) ,

which justifies (ii) and thus completes the proof of the lemma.
Now we are ready to compute the coderivative norm ‖D∗F(0, x̄)‖ at the reference

point.
Theorem 3.5 (computing the coderivative norm). Let x̄ ∈ domF for the infinite

system (1.1) with an arbitrary Banach space X of decision variables. Assume that F
satisfies the strong Slater condition at p = 0 and that the coefficient set {a∗

t | t ∈ T }
is bounded in X∗. The following assertions hold:

(i) If x̄ is a strong Slater point for F at p = 0, then ‖D∗F(0, x̄)‖ = 0.
(ii) If x̄ is not a strong Slater point for F at p = 0, then the coderivative norm

(3.7) is positive and is computed by

(3.9) ‖D∗F(0, x̄)‖ = max
{
‖x∗‖−1

∣∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)
}

via the w∗-closure of the characteristic set (2.8) at p = 0.
Proof. To justify assertion (i), assume that x̄ is a strong Slater point for the

system F at p = 0. It follows from the proof of implication (i)=⇒(v) in Lemma 2.3
that we have (0, x̄) ∈ int(gphF). It gives

N ((0, x̄) ; gphF) = {(0, 0)} ,

and the conclusion in (i) follows from (2.3) and (3.7).
To prove assertion (ii), take x∗ ∈ X∗ such that (x∗, 〈x∗, x̄〉) ∈ cl ∗C (0); the latter

set is nonempty according to Lemma 3.4. Then there exists a net {λν}ν∈N ⊂ R
(T )
+

with
∑

t∈T λtν = 1 for all ν ∈ N such that∑
t∈T

λtνa∗
t

w∗−→ x∗ and
∑
t∈T

λtνbt → 〈x∗, x̄〉 .

Form further net elements p∗ν ∈ l∞(T )∗ by

p∗ν := −
∑
t∈T

λtνδt, ν ∈ N .

Since ‖p∗ν‖ = 〈p∗ν ,−e〉 = 1, the Alaoglu–Bourbaki theorem allows us to select a subnet

(without relabeling) such that p∗ν
w∗
−→ p∗ with ‖p∗‖ ≤ 1. Following the same reasoning

as in the proof of Corollary 3.3, we conclude that

(3.10) 1 = lim
ν∈N

∑
t∈T

λtν = ‖p∗‖ = 〈p∗,−e〉 .
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Moreover, we also obtain the inclusion

(p∗, x∗, 〈x∗, x̄〉) ∈ cl ∗co
{
(−δt, a

∗
t , bt)

∣∣ t ∈ T
}

,

which implies by Theorem 3.2 that

(3.11) p∗ ∈ D∗F(0, x̄)(−x∗).

Suppose now that x∗ = 0 in (3.11). Since p∗ 
= 0 by (3.10), we get from (3.11)
that

(3.12) D∗F(0, x̄)(0) 
= {0} ,

which yields by [31, Theorem 1.44] that F is not Lipschitz-like around (0, x̄), and
therefore it cannot satisfy the strong Slater condition by implication (i)=⇒(iv) in
Lemma 2.3. This contradicts the assumption of the theorem.

Thus x∗ 
= 0 in (3.11), and we derive from the latter relationship that

‖x∗‖−1
p∗ ∈ D∗F(0, x̄)

(
−‖x∗‖−1

x∗
)

,

which gives in turn that

‖D∗F(0, x̄)‖ ≥
∥∥∥‖x∗‖−1

p∗
∥∥∥ = ‖x∗‖−1

and hence justifies the inequality “≥” in (3.9).
It remains to prove the opposite inequality in (3.9). For the nonempty and w∗-

compact set S in (3.8) we have 0 /∈ S by Lemma 2.3, which ensures the w∗-upper
semicontinuity of the function x∗ �→ ‖x∗‖−1 on S. Thus the supremum in the right-
hand side of (3.9) is attained and belongs to (0,∞). Then condition (v) in Lemma 2.3
implies that (0, x̂) ∈ int(gphF) for some x̂ ∈ X , and so 0 ∈ int(domF). Moreover,
we have that p∗ ∈ D∗F(0, x̄) (−x∗) if and only if (p∗, x∗) ∈ N ((0, x̄) ; gphF), which
is equivalent to

(3.13) 〈p∗, p〉 + 〈x∗, x〉 ≤ 〈x∗, x̄〉 for all (p, x) ∈ gphF .

This allows us, by taking into account that 0 ∈ int(domF), to arrive at the equiva-
lences

(3.14) p∗ ∈ D∗F(0, x̄) (0) ⇐⇒ 〈p∗, p〉 ≤ 0 for all p ∈ domF ⇐⇒ p∗ = 0.

Observe, furthermore, that, since x̄ is not a strong Slater point for F at p = 0, we
have (0, x̄) /∈ int(gphF) and thus conclude by the classical separation theorem that
there is a pair (p∗, x∗) 
= (0, 0) for which relation (3.13) holds. Employing (3.14), we
have x∗ 
= 0 and p∗ ∈ D∗F(0, x̄) (−x∗).

Take now p∗ ∈ D∗F(0, x̄) (−x∗) with ‖x∗‖ ≤ 1 and suppose that x∗ 
= 0; the
arguments of the previous paragraph ensure the existence of such an element. By
Corollary 3.3 there is a net {λν}ν∈N ⊂ R

(T )
+ for which

γν : =
∑
t∈T

λtν → ‖p∗‖ = −〈p∗, e〉 ,

x∗
ν : =

∑
t∈T

λtνa∗
t

w∗−→ x∗, and
∑
t∈T

λtνbt → 〈x∗, x̄〉 .
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Taking M ≥ ‖a∗
t ‖ for every t ∈ T , we get the estimate

‖x∗
ν‖ ≤ Mγν whenever ν ∈ N

and also the limiting relationships

0 < ‖x∗‖ ≤ lim inf
ν∈N

‖x∗
ν‖ ≤ M lim inf

ν∈N
γν = M ‖p∗‖ ,

which ensure that p∗ 
= 0. It follows, furthermore, that

‖p∗‖−1 (x∗, 〈x∗, x̄〉) ∈ cl∗C(0).

Remembering, finally, that 0 < ‖x∗‖ ≤ 1, we arrive at the estimates

‖p∗‖ ≤
∥∥∥‖p∗‖−1 x∗

∥∥∥−1

≤ max
{
‖u∗‖−1

∣∣∣ (u∗, 〈u∗, x̄〉) ∈ cl∗C(0)
}

,

which justify the inequality “≤” in (3.9) and complete the proof of the theorem.

4. Characterizations of robust Lipschitzian stability for feasible solu-
tion maps. In this section we employ the above coderivative analysis combined with
appropriate techniques developed in linear semi-infinite/infinite programming to es-
tablish a coderivative characterization of robust Lipschitzian stability, in the sense
discussed in section 2, for the infinite inequality system F in (1.1) at the reference
point (0, x̄) with computing the exact Lipschitzian bound lipF(0, x̄).

The first result of this section establishes the coderivative necessary and sufficient
condition in form (2.4) for the Lipschitz-like property of F around (0, x̄) ∈ gphF in
the general setting under consideration.

Theorem 4.1 (coderivative criterion for robust Lipschitzian stability of linear
infinite inequalities). Let x̄ ∈ F(0) for the infinite inequality system (1.1) with a
Banach space X of decision variables. Then F is Lipschitz-like around (0, x̄) if and
only if

(4.1) D∗F(0, x̄)(0) = {0}.
Proof. The “only if” part follows from [31, Theorem 1.44] specified for the map-

ping F : l∞(T ) ⇒ X under consideration. Let us now prove the “if” part of the
theorem.

Arguing by contradiction, suppose that D∗F(0, x̄)(0) = {0} while the mapping F
is not Lipschitz-like around (0, x̄). Then, by the equivalence between properties (ii)
and (iv) of Lemma 2.3, we get the inclusion

(0, 0) ∈ cl∗co
{
(a∗

t , bt) ∈ X∗ × R
∣∣ t ∈ T

}
,

which means that there is a net {λν}ν∈N ∈ R
(T )
+ such that

∑
t∈T λtν = 1 for all ν ∈ N

and

(4.2) w∗-lim
ν

∑
t∈T

λtν(a∗
t , bt) = (0, 0).

Since the net {∑t∈T λtν(−δt)}ν∈N is obviously bounded in l∞(T )∗, the Alaoglu–
Bourbaki theorem ensures the existence of its subnet (with no relabeling) that w∗-
converges to some element p∗ ∈ l∞(T )∗, i.e.,

(4.3) p∗ = w∗-lim
ν

∑
t∈T

λtν(−δt).

D
ow

nl
oa

de
d 

04
/2

7/
18

 to
 1

93
.1

45
.2

30
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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It follows from (4.3) by the Dirac function definition that

〈p∗,−e〉 = lim
ν∈N

∑
t∈T

λtν = 1, where e = (et)t∈T with et = 1 for all t ∈ T,

which implies that p∗ 
= 0. It follows from (4.2) and (4.3) that

(p∗, 0, 0) = w∗-lim
ν

∑
t∈T

λtν(−δt, a
∗
t , bt) with p∗ 
= 0,

and therefore, by the explicit coderivative description of Theorem 3.2, we get the
inclusion p∗ ∈ D∗F(0, x̄)(0) \ {0}, which contradicts the assumed condition (4.1).
This justifies the sufficiency of the coderivative condition (4.1) for the Lipschitz-like
property of F around (0, x̄) and thus completes the proof of the theorem.

Our further goal is to compute the exact Lipschitzian bound lipF(0, x̄) of F
around (0, x̄). We are going to do it according to the distance representation (2.2) for
the exact Lipschitzian bound. To proceed, denote

(4.4) H(x∗, α) :=
{
x ∈ X

∣∣ 〈x∗, x〉 ≤ α
}

for (x∗, α) ∈ X∗ × R,

and observe the following representation (known as the Ascoli formula; see, e.g., [2]):

(4.5) dist
(
x; H(x∗, α)

)
=

[〈x∗, x〉 − α
]
+

‖x∗‖ ,

where [γ]+ := max{γ, 0} for γ ∈ R. Recall that we are under the convention 0/0 := 0.
The next proposition and the subsequent lemma, which are certainly of their

own interest, provide a significant extension of the Ascoli formula (4.4) to the case
of infinite systems of linear inequalities instead of the single one as in (4.4). These
results are essentially employed in what follows for computing the exact Lipschitzian
bound lipF(0, x̄). We refer the reader to [6, Lemma 2.3] and [7, Lemma 1] for related
results in the framework of semi-infinite programming and observe that in infinite
dimensions we use the w∗-closure of the characteristic sets C(p) from (2.8); see also
Example 4.4 below for more discussion.

From now on, given an extended-real-valued function f : X → R := (−∞,∞]
assumed to be proper (i.e., not identically equal to ∞), consider its Fenchel conjugate
f∗ : X∗ → R defined by

f∗ (x∗) := sup
{〈x∗, x〉 − f (x)

∣∣ x ∈ X
}

= sup
{〈x∗, x〉 − f (x)

∣∣ x ∈ dom f
}

,

where dom f := {x ∈ X | f (x) < ∞} is the effective domain of f . In what follows we
also use the standard notation epi f for the epigraph of f given by

epi f :=
{
(x, γ) ∈ X × R

∣∣ x ∈ dom f, f (x) ≤ γ
}

.

The following result gives an exact formula for computing the distance to a set
defined by a convex inequality via the corresponding conjugate function.

Proposition 4.2 (distance function for solutions of convex inequalities in Banach
spaces). Let g : X → R be a proper convex function on a Banach space X, and let

(4.6) Q :=
{
y ∈ X

∣∣ g(y) ≤ 0
}
.
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Assume the fulfillment of the classical Slater condition: there is x̂ ∈ X such that
g(x̂) < 0. Then the distance function to the set Q in (4.6) is computed by

(4.7) dist(x; Q) = max
(x∗,α)∈epig∗

[〈x∗, x〉 − α
]
+

‖x∗‖ .

Proof. Observe that the nonemptiness of Q in (4.6) yields that α ≥ 0 whenever
(0, α) ∈ epi g∗ and that the possibility of x∗ = 0 is not an obstacle in (4.7) under our
convention 0/0 = 0. Obviously the distance function dist(x; Q) is nothing else but
the optimal value function in the parametric convex optimization problem

(4.8) minimize ‖y − x‖ subject to g(y) ≤ 0.

Since the classical Slater condition holds for problem (4.8) by our assumption, we
have the strong Lagrange duality in (4.8) by, e.g., [39, Theorem 2.9.3], which gives

dist(x; Q) = max
λ≥0

inf
y∈X

{‖y − x‖ + λg(y)
}

= max
{

max
λ>0

inf
y∈X

{‖y − x‖ + λg(y)
}
, inf

y∈X
‖y − x‖

}
= max

{
max
λ>0

inf
y∈X

{‖y − x‖ + λg(y)
}
, 0
}

.

Applying the classical Fenchel duality theorem to the inner infimum problem above
for a fixed λ > 0 (observing to this end that Rockafellar’s regularity condition needed
for Fenchel duality is satisfied for this problem due to the continuity of the norm
function), we get

(4.9) inf
y∈X

{‖y − x‖ + λg(y)
}

= max
y∗∈X∗

{−‖· − x‖∗(−y∗) − (λg)∗(y∗)
}
.

It is well known in convex analysis that

‖· − x‖∗ (−y∗) =
{ 〈−y∗, x〉 if ‖y∗‖ ≤ 1,

∞ otherwise.

Implementing this into formula (4.9) and employing elementary transformations, we
obtain

inf
y∈X

{‖y − x‖ + λg (y)
}

= max
‖y∗‖≤1

{〈y∗, x〉 − (λg)∗ (y∗)
}

= max
‖y∗‖≤1, (λg)∗(y∗)≤η

{〈y∗, x〉 − η
}

= max
‖y∗‖≤1, λg∗(y∗/λ)≤η

{〈y∗, x〉 − η
}

= max
‖y∗‖≤1, (1/λ)(y∗,η)∈epi g∗

{〈y∗, x〉 − η
}
.

The latter representation yields, by denoting x∗ := (1/λ)y∗ and α := (1/λ)η, that

inf
y∈X

{‖y − x‖ + λg(y)
}

= max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

λ
{〈x∗, x〉 − α

}
.

Combining this with the formulas above, we arrive at

dist(x; Q) = max
{

max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

λ
{〈x∗, x〉 − α

}
, 0
}

= max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

{
λ
[〈x∗, x〉 − α

]
+

}
.
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It is easy to observe the following relationships held for any λ > 0:

max
(0,α)∈epi g∗

λ
{〈0, x〉 − α

}
= max

g∗(0)≤α
λ
(〈0, x〉 − α

)
= λ

(−g∗(0)
) ≤ λ inf

x∈X
g(x) ≤ λg(x̂) < 0.

Taking this into account, we have from (4.10) that

dist(x; Q) = max
(x∗,α)∈epig∗, ‖x∗‖≤1/λ

{
λ
[〈x∗, x〉 − α

]
+

}
= max

(x∗,α)∈epig∗
max

‖x∗‖≤1/λ

{
λ
[〈x∗, x〉 − α

]
+

}
= max

(x∗,α)∈epig∗

[〈x∗, x〉 − α
]
+

‖x∗‖ ,

which gives (4.7) and thus completes the proof of the proposition.
Now we are ready we establish the required extension of the Ascoli formula (4.5)

to the case of the infinite inequality systems under consideration.
Lemma 4.3 (distance to infinite linear inequalities in Banach spaces). Assume

that the infinite system F(p) in (1.1) satisfies the strong Slater condition at p =
(pt)t∈T . Then for any x ∈ X and any p ∈ l∞ (T ) we have the extended Ascoli
distance formula

(4.11) dist
(
x;F(p)

)
= max

(x∗,α)∈cl∗C(p)

[〈x∗, x〉 − α
]
+

‖x∗‖ .

If, furthermore, X is reflexive, then the distance formula (4.11) can be simplified as
follows:

(4.12) dist
(
x;F(p)

)
= sup

(x∗,α)∈C(p)

[〈x∗, x〉 − α
]
+

‖x∗‖ .

Proof. It is obvious to observe that the infinite system (1.1) is represented in

(4.13) F(p) =
{
x ∈ X

∣∣ g(x) ≤ 0
}
,

where the convex function g : X → R is given in the supremum form

(4.14) g(x) := sup
t∈T

(
ft(x) − pt

)
with ft(x) := 〈a∗

t , x〉 − bt.

The assumed strong Slater condition for F(p) ensures the fulfillment of the classical
Slater condition for g imposed in Proposition 4.2. To imply this proposition in the
framework of (4.13), we need to compute the conjugate function to the supremum
function in (4.14). The recent results in this direction [4, 18] yield that

epi g∗ = epi
{
sup
t∈T

(ft − pt)
}∗

= cl∗co

(⋃
t∈T

epi
(
ft − pt

)∗) = cl∗C(p) + R+(0, 1)

with 0 ∈ X∗, where the weak∗ closedness of the set cl∗C(p)+R+(0, 1) is a consequence
of the classical Dieudonné theorem; see, e.g., [39, Theorem 1.1.8]. Thus we get the
distance formula (4.11) from Proposition 4.2 in general Banach spaces.
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To prove the simplified distance formula (4.12) in the case of reflexive spaces,
suppose, on the contrary, that it does not hold. Then there is a scalar β ∈ R such
that

(4.15) max
(x∗,α)∈cl∗C(p)

[〈x∗, x〉 − α
]
+

‖x∗‖ > β > sup
(x∗,α)∈C(p)

[〈x∗, x〉 − α
]
+

‖x∗‖ .

This yields the existence of a pair (x∗, α) ∈ cl∗C(p) with x∗ ∈ X∗\{0} and α ∈ R

such that [〈x∗, x〉 − α
]
+

‖x∗‖ > β.

Taking into account that the space X is reflexive and that the set C(p) is convex
and employing the Mazur weak closure theorem, we can replace the weak∗ closure
of the C(p) above by its norm closure in X∗. This allows us to find a sequence
(x∗

k, αk) ∈ C(p), k ∈ N, converging in norm to (x∗, α) as k → ∞. Thus we get

lim
k→∞

[〈x∗
k, x〉 − αk

]
+

‖x∗
k‖

=

[〈x∗, x〉 − α
]
+

‖x∗‖ > β,

and therefore there is k0 ∈ N such that[〈
x∗

k0
, x
〉− αk0

]
+∥∥x∗

k0

∥∥ > β.

The latter surely contradicts (4.15), and this completes the proof of the lemma.
The following example shows that the reflexivity of the decision space X is an

essential requirement for the validity of the simplified distance formula (4.12), even
in the framework of (nonreflexive) Asplund spaces.

Example 4.4 (failure of simplified distance formula in nonreflexive Asplund spaces).
Consider the classical space c0 of sequences of real numbers converging to zero en-
dowed with the supremum norm. This space is well known to be Asplund while not
reflexive; see, e.g., [17]. Let us show that the simplified distance formula (4.12) fails
in X = c0 for a rather plain linear system of countable inequalities. Of course, we
need to demonstrate that the inequality “≤” is generally violated in (4.12), since the
opposite inequality holds in any Banach space. Form the infinite (countable) linear
inequality system

(4.16) F(0) :=
{
x ∈ c0

∣∣ 〈e∗1 + e∗t , x〉 ≤ −1, t ∈ N
}
,

where e∗t ∈ l1 has 1 as its tth component while all the remaining components are 0.
System (4.16) can be rewritten as

x ∈ F(0) ⇐⇒ x(1) + x(t) ≤ −1 for all t ∈ N.

Observe that for the origin z = 0 we have dist(0;F(0)) = 1, and the distance is
realized at, e.g., u = (−1, 0, 0, . . .). Indeed, passing to the limit in the inequality

x(1) + x(t) ≤ −1 as t → ∞
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and taking into account that x(t) → 0 as t → ∞, by the structure of the space of c0,
we get x(1) ≤ −1. Furthermore, it can be checked that

(e∗1,−1) ∈ cl∗C(0), 〈e∗1, x − u〉 ≤ 0 for all x ∈ F(0),

dist
(
z;F(0)

)
= ‖z − u‖ = 〈e∗1, z − u〉 =

〈e∗1, z〉 − (−1)
‖e∗1‖

.

On the other hand, for the pair (x∗, α) ∈ X∗ × R given by

(x∗, α) :=
(
e∗1 +

∑
t∈N

λte
∗
t ,−1

)
∈ C(0) with λ ∈ R

(N)
+ and

∑
t∈N

λt = 1,

we can directly check that ‖x∗‖ = 2 and hence[〈x∗, z〉 − α
]
+

‖x∗‖ =
1
2
,

which shows that the equality in (4.12) is violated for the countable system (4.16) in
the nonreflexive Asplund space X = c0 of decision variables.

Our next step is to derive a verifiable precise formula for computing the exact
Lipschitzian bound lipF(0, x̄) for the infinite system (1.1) in the general Banach space
X . As a preliminary result we need the following technical lemma.

Lemma 4.5 (closed-graph property of the characteristic set mapping). The set-
valued mapping l∞ (T ) � p �→ cl∗C(p) ⊂ X∗ × R is closed-graph in the norm×weak∗

topology of l∞(T ) × (X∗ × R); i.e., for any nets

{pν}ν∈N ⊂ l∞ (T ) , {x∗
ν}ν∈N ⊂ X∗, {βν}ν∈N ⊂ R

satisfying pν → p, x∗
ν

w∗−→ x∗, βν → β, and (x∗
ν , βν) ∈ cl∗C (pν) for every ν ∈ N we

have the inclusion (x∗, β) ∈ cl∗C (p).
Proof. Arguing by contradiction, suppose that (x∗, β) /∈ cl∗C (p). Then the

classical strict separation theorem allows us to find a pair (x, α) ∈ X×R with (x, α) 
=
(0, 0) and real numbers γ and γ′ satisfying

〈x∗, x〉 + βα < γ′ < γ ≤ 〈a∗
t , x〉 + (bt + pt)α for all t ∈ T.

Hence there exists a net index ν0 ∈ N such that

〈x∗
ν , x〉 + βνα < γ′ and ‖α (p − pν)‖ ≤ γ − γ′ whenever ν � ν0.

We have, therefore, that

〈a∗
t , x〉 + α (bt + ptν) = 〈a∗

t , x〉 + α (bt + pt) + α (ptν − pt)
≥ γ − ‖α (pν − p)‖ ≥ γ′ for all t ∈ T.

The latter implies that γ′ ≤ 〈z∗, x〉 + ηα for all (z∗, η) ∈ cl ∗C(pν) whenever ν � ν0.
Thus we arrive at the contradiction

〈x∗
ν , x〉 + βνα < γ′ ≤ 〈x∗

ν , x〉 + βνα, ν � ν0,

which completes the proof of the lemma.
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Now we are ready to establish the desired formula for computing the exact Lip-
schitzian bound of F around (0, x̄).

Theorem 4.6 (computing the exact Lipschitzian bound). Let x̄ ∈ F(0) for the
linear infinite inequality system (1.1) with a Banach decision space X. Assume that
F satisfies the strong Slater condition at p = 0 and that the coefficient set {a∗

t | t ∈ T }
is bounded in X∗. The following assertions hold:

(i) If x̄ is a strong Slater point for F at p = 0, then lipF(0, x̄) = 0.
(ii) If x̄ is not a strong Slater point for F at p = 0, then the exact Lipschitzian

bound of F around (0, x̄) is computed by

(4.17) lipF(0, x̄) = max
{‖x∗‖−1

∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)
}

> 0

via the w∗-closure of the characteristic set (2.8) at p = 0.
Proof. Let us first justify (i). We have seen in the proof of Theorem 3.5(i) that

our current assumptions imply that (0, x̄) ∈ int(gphF), which in turn yields by the
definition of the exact Lipschitzian bound that lipF(0, x̄) = 0 in this case.

Next we prove the more difficult assertion (ii) of the theorem, assuming that x̄
is not a strong Slater point for F at p = 0. Observe that by Lemma 3.4 the set
(3.8) under the maximum operation on the right-hand side in (4.17) is nonempty and
w∗-compact in X∗ and the maximum over this set is realized and hence it is finite.
The inequality “≥” in (4.17) follows from the estimate

lipF(0, x̄) ≥ ‖D∗F(0, x̄)‖
established for general mappings between Banach spaces in [31, Theorem 1.44] and
from formula (3.9) for computing the coderivative norm of the inequality system F in
(1.1) derived above in Theorem 3.5. It remains to prove the opposite inequality “≤”
in (4.17).

To proceed, let M := supt∈T ‖a∗
t ‖ < ∞, and observe that the inequality “≤”

in (4.17) is obvious when L := lipF (0, x̄) = 0. Suppose now that L > 0, and
consider any pair (p, x) sufficiently close to (0, x̄) in the limiting representation (2.2)
of the exact Lipschitzian bound lipF(0, x̄). We can confine ourselves to the case of
(p, x) /∈ gphF by L > 0. Furthermore, it follows from the structure of F in (1.1) that

(4.18) 0 < dist
(
p;F−1(x)

)
= sup

t∈T

[〈a∗
t , x〉 − bt − pt

]
+
.

Moreover, we have the relationships

〈a∗
t , x〉 − bt − pt = 〈a∗

t , x − x̄〉 + 〈a∗
t , x̄〉 − bt − pt

≤ M ‖x − x̄‖ + ‖p‖ for all t ∈ T,

which allow us to conclude that

0 < sup
(x∗,β)∈cl∗C(p)

[〈x∗, x〉 − β
]
+

= sup
(x∗,β)∈cl∗C(p)

{〈x∗, x〉 − β
}

≤ M ‖x − x̄‖ + ‖p‖ .
(4.19)

Consider further the set

C+ (p, x) :=
{
(x∗, β) ∈ cl∗C (p)

∣∣ 〈x∗, x〉 − β > 0
}
,

which is obviously nonempty, and denote

M(p,x) := sup
{‖x∗‖−1 ∣∣ (x∗, β) ∈ C+ (p, x)

}
.
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In our setting we have 0 ∈ int(domF) (cf. Lemma 2.3 and Remark 2.4), and therefore
p ∈ domF for all p ∈ l∞(T ) sufficiently close to the origin. In this case the set
C+(p, x) cannot contain any element of the form (0, β), since the contrary would
yield by the definition of C+(p, x) that β < 0, while Lemma 2.1 gives β ≥ 0. Thus we
get 0 < ‖x∗‖ ≤ M whenever (x∗, β) ∈ C+ (p, x) and, in particular, M(p,x) ∈ (0,∞].
It follows, furthermore, that

sup(x∗,β)∈cl∗C(p)

[〈x∗, x〉 − β
]
+

‖x∗‖
sup(x∗,β)∈cl∗C(p)

[〈x∗, x〉 − β
]
+

=
sup(x∗,β)∈cl∗C(p)

〈x∗, x〉 − β

‖x∗‖
sup(x∗,β)∈cl∗C(p)

{〈x∗, x〉 − β
} ≤ M(p,x),

where the latter inequality implies the estimate

L ≤ lim sup
(p,x)→(0,x̄), x/∈F(p) �=∅

M(p,x) := K.

Considering next a sequence (pk, xk) → (0, x̄) with xk /∈ F(pk) 
= ∅ and

L ≤ lim
k→∞

M(pk,xk) = K,

we select a sequence {αk}∞k=1 ⊂ R such that

lim
k→∞

αk = K and 0 < αk < M(pk,xk) as k ∈ N.

Take now (x∗
k, βk) ∈ C+ (pk, xk) with αk < ‖x∗

k‖−1 for all k ∈ N. Since the sequence
{x∗

k}k∈N ⊂ X∗ is bounded, it contains a subnet {x∗
ν}ν∈N that w∗-converges to some

x∗ ∈ X∗. Denoting by {pν}, {xν}, {βν}, and {αν} the corresponding subnets of {pk},
{xk}, {βk}, and {αk}, we get from (4.19) that

0 < 〈x∗
ν , xν〉 − βν ≤ M ‖xν − x̄‖ + ‖pν‖ .

Thus 〈x∗
ν , xν〉 − βν → 0, which implies by the construction above that βν → 〈x∗, x̄〉.

By Lemma 4.5 we get that

(x∗, 〈x∗, x̄〉) ∈ cl∗C (0) ,

and then Lemma 2.3 ensures that x∗ 
= 0.
To conclude proving the inequality “≤” in (4.17), observe that

‖x∗‖ ≤ lim inf
ν∈N

‖x∗
ν‖ ≤ lim

ν

1
αν

=
1
K

due to ‖x∗
ν‖ ≤ α−1

ν and limν αν = K, which gives

L ≤ K ≤ 1
‖x∗‖ ≤ max

{‖z∗‖−1 ∣∣ (z∗, 〈z∗, x̄〉) ∈ cl∗C (0)
}
.

Remembering the notation above, we complete the proof of the theorem.
Comparing, finally, the results on computing the coderivative norm in Theo-

rem 3.5 and the exact Lipschitzian bound in Theorem 4.6 allows us to arrive at
the unconditional relationship between the coderivative norm and exact Lipschitzian
bound of the infinite inequality system F with arbitrary Banach decision spaces. This
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was known before only for set-valued mappings between finite-dimensional spaces;
cf. formula (2.5) and the corresponding discussions in section 2.

Corollary 4.7 (relationship between the exact Lipschitzian bound and coderiv-
ative norm). Let x̄ ∈ F(0) for the infinite system (1.1) satisfying the strong Slater
condition at p = 0. Assume that the decision space X is arbitrary Banach and that
the coefficient set {a∗

t | t ∈ T } is bounded in X∗. Then

(4.20) lipF(0, x̄) = ‖D∗F(0, x̄)‖.
Proof. If x̄ is a strong Slater point for F at p = 0, then we get equality (4.20)

directly by comparing assertions (i) in Theorems 3.5 and 4.6 which ensure that

lipF(0, x̄) = ‖D∗F(0, x̄)‖ = 0.

On the other hand, if x̄ is not a strong Slater point for F at p = 0, then (4.20) follows
from comparing assertions (ii) in Theorems 3.5 and 4.6 which justify the same formula
for computing ‖D∗F(0, x̄)‖ and lipF(0, x̄) in (3.9) and (4.17), respectively.
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