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ABSTRACT
Results of a study of electronic energy loss of low keV protons
interacting with multilayer graphene targets are presented. Proton
energy loss shows an unexpectedly high value as compared with
measurements in amorphous carbon and carbon nanotubes. Fur-
thermore, we observe a classical linear behavior of the energy loss
with the ion velocity but with an apparent velocity threshold around
0.1 a.u., which is not observed in other carbon allotropes. This sug-
gests low dimensionality effects which can be due to the extraordi-
nary graphene properties.
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1. Introduction

The use of the interaction of energetic particles with solid matter is a useful tool in fun-

Q1
Q2

damental areas of physics and technological applications in material science, biomedicine,
nuclear and space industry, material characterization and new spectroscopies applied to
nano-science (1). Particle interactionwithnanostructures is oneof themost interestingphe-
nomena, where the crucial parameter to study is the amount of deposited energy and how
it is transferred to themedia. Nowadays, the emergence of true possibilities to obtain ultra-
thin films allows us to study the phenomena of electronic excitations by energetic ions at
very low energies. New research on flat nanostructures, such as graphene (2,3), presents
extensive possibilities to study their extraordinary physical and chemical properties under
different configurations and environments, including radiation exposure.

Graphene is emerging as one of the most attractive materials for particle sieving includ-
ing gases, liquids and other kind of molecules. A recent review of graphene-based mem-
branes covers these topics (4). Graphene in apristine state is impermeable to almost all ther-
mal atoms andmolecules, especially hydrogen andheliumunder ambient conditions (4–6).
On the other hand, particles with high kinetic energy can pass through graphene layers,
but interacting with highly dense electron cloud, transfer much more energy to graphene
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than to bulk systems (6). This conclusion is supported by the recent time-dependent den-
sity functional theory (TD-DFT) calculations. For energetic ions, like proton and helium, theQ7
transferred energy per unit path length through electronic excitations turns out to be at
least twice as high as that corresponding to graphite and amorphous carbon (7–9).

The kinetic energy, charge state and trajectories of the particles are affected in a different
manner by materials which have a well-differentiated electronic and crystalline structure.
For particles at energies less than 10 keV, these interactions play a significant role in sput-
tering, ion implantation and in various characterization techniques (e.g. Low Energy Ion
Scattering-LEIS), inwhichparticlesprobe the first fewatomic layers of nanostructuredmate-
rials (10,11). In the energy range considered in thiswork, experimental data on the stopping
cross section in anymaterial is very scarce and deserves to be studied to extend tests of the
reliability of theoretical models and semi-empirical data compilations (12,13). These results
which may present considerable differences with bulk results deserve to be investigated.

In this progress report, we discuss experimental measurements of the electronic energy
loss of protonbeams transmitted throughmultilayer graphene (MLG) films. Theproton inci-
dent energy range goes from 1 to 10 keV. To our knowledge, there exists no other similar
data on such a material, to which our experiments could be compared. Hence, we com-
pare our experiments with data obtained for protons in amorphous carbon and nanotubes
obtained in our laboratory and abroad. In the Figure 1, we show a sketch of our experimentQ8
where ions interact with graphene and nanotubes.

2. Experiment

2.1. Sample description

We obtained a set of commercial samples from the Graphenea company (14). Briefly, as
the company claims, graphene layers were synthesized by CVDmethod on a Cu substrate.Q9
TheMLG films were prepared by transferring and stacking independently 10 (10) graphene
layers on auser requested substrate, in amultiple transfer procedure (non-ABBernal config-
uration). In our case, all samples were transferred onto Quantifoil gold TEM grid substrates
(15) and suspended over 2µm holes. The transfer procedure of these samples follows the
method described in the work of Ochoa et al. (16) and patented by Graphenea. The nomi-
nal thickness of these films is 3.45 nm, considering that the theoretical graphene thickness
is 0.345 nm. Raman analysis of the stacked graphene layers shows spectra characteristic of
graphene,whichmeans the layersarenot interactingamong themselves. The same resultwas
obtained recently by Chen et al. in fabricating two stacked monolayers (17).

2.2. Energy lossmeasurements

Todetermine theelectronic energy loss,weuse the transmissiongeometry,where ionspass
through very thin self-supported films, with thicknesses preferably less than 20 nm, which
are less than the proton penetration depth in our low energy range. A brief description of
the experimental arrangement is given hereafter. Multilayer graphene samples are placed
in front of the beam with a five-axis precision manipulator. The operating pressure in the
ion gun system is 5× 10−4 Pa and the energy loss measurements were performed in the
collision chamber with a pressure around of 4× 10−6 Pa.
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Figure 1. Sketch of the experiment. Ion beam hitting MLG and MWCNT targets.

Ions are generated by a Colutron hot discharge source (18), then accelerated, focused,
and mass and charge selected, to obtain protons with energies in the range of 1 to 10 keV.
To avoid damage to the samples, a common practice in this kind of experiment is to dimin-
ish to aminimumvalue the ion beam current, which is reduced to obtain fluencies less than
6× 109 protons/cm2. The proton energy is measured using a spherical sector electrostatic
energy analyzerwith a resolution of less than 1%at FWHM. Protons are detected usingmul-
tichannel plates MCP in a Chevron configuration. Ions entering the analyzer were detected
with an angular acceptance of 0.5°, at 0° and at 3° with respect to the ion beam direction.
Detection at 3° is used to avoid an overlap of the incident energy distribution with that
coming from the target and used to prevent excessive bombardment of theMCP detectors
located at 0°. This overlapping is due to the presence of pinholes in the sample, allowing
passage of the incident beam.

In Figure 2, we show the energy distributions for protons after passing through theMLG
target, measured at 0° (blue full circles) and 3° (red empty circles). The incident energy was
5 keV. A slight difference in energy is observedwhich is due topossible path length enlarge-
ments caused by the effect ofmultiple scattering phenomena. The nuclear loss is neglected
due to the small scattering angles with respect to the incident direction. Roughly speaking,
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Figure 2. This plot shows energy distributions of transmitted protons through the MLG target. These
distributionsweremeasured at 0° (blue full circles) and 3° (red empty circles), with respect to the incident
direction,with anangular acceptanceof 0.5°. The incidentbeam, indicatedbyanarrowat 5000 eV, passes
through pinholes in the target and its energy distribution overlaps with the right wing of the proton
distribution coming from the target. Elastic loss, or nuclear stopping power, is negligible in this case.

passage through10 layers of carbonmeans anestimatednuclear loss of 20 eVat 3°withpro-
tons at 5 keV (12). We consider that these differences fall within the experimental error. We
can observe that the present energy distributions show large tails at the lower energy side
in contrast to the energy distributions observed inmetallic filmswhich have a Gaussian-like
shape (19). To evaluate the proton electronic energy loss, we use themost probable energy
in the energy distribution (peak position) and the energy loss, in eV/A, is calculated using
the nominal thickness of MLG sample, which corresponds to 3.45 nm. The uncertainty in
our energy measurements has been minimized and it is less than 1%, which is equivalent
to 10–20 eV.

3. Experimental results and discussion

Figure 3 shows the most probable electronic energy loss, in eV/A, as a function of the pro-
ton velocity (in atomic units) for protons interacting with carbon allotropes. Red symbols
correspond to our measurements on MLG targets. Our results show a linear behavior as
a function of velocity, with a surprising and not expected feature, an apparent velocity
threshold merge at 0.1 a.u. (250 eV) velocity. Another interesting characteristic is that the
proton energy loss in MLG is larger as compared with the values obtained for amorphous
carbon and nanotubes (12,13,20,21). The isolated point at 0.63 a.u. (10 keV) corresponds
to a test measurement to verify linearity. In between 5 and 10 keV, we did not perform
measurements, in order to avoid target damage. For comparative purposes, we include
data for protons energy loss in amorphous carbon (blue symbols), obtained from data
compilations (13). Also shown are the experimental energy losses for protons in carbon
nanotubes of different dimensions. Green symbols correspond to proton energy loss data
in a multi-wall carbon nanotube with an internal diameter of 5 nm and an external diame-
ter of 27 nm, which correspond to a wall thickness 11 nm (20). Black symbols correspond to
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Figure 3. Proton electronic energy loss in eV/Å as a function of ion velocity in a.u. Exhibited data
correspond to targets of graphene multilayers (MLG), amorphous carbon and nanotubes, for two dif-
ferent dimensions, see text. The dotted lines are given to guide the eye to the intercept point of the
linear extrapolation. Red symbols correspond to our measurements. Blue symbols are proton energy
losses in amorphous carbon (13). Green and black symbols correspond to proton energy loss in MWCNT
nanotubes, see text (20,21).

proton energy loss data in nanotubes with an internal diameter of 74 nm and an external
diameter of 85 nm, corresponding to a wall thickness of 5.5 nm (21). In the case of amor-
phous carbon and carbon nanotubes, we observe a linear behavior for the energy loss, as a
function of proton velocity, with different slopes.

Our experimental results are compared with recent ab initio calculations. These
approaches combine classical molecular dynamics and TD-DFT to describe proton inter-
action with graphene (7,8). Their study is focused on the energy transfer to graphene when
protons travel perpendicular to the hexagonal structure of graphene in two specific points,
in themiddle of the C–C bond and in themiddle of the hexagon. A common feature of their
results is the large energy per unit path length transferred to graphene in the energy range
of our experiment and the non-linearity of energy loss as a function of velocity. The energy
loss as a function of the incident energy (see Figure 4) turns out to be highest for passage
between the middle of the C–C bond.

In Figure 5, we repeat part of the information appearing in Figure 3. In this plot, we show
a comparison between our experiment and theory. To compare our experiment with the
mentioned theories, we take the energy transfer value, corresponding to a single graphene
layer as given by those calculations. We multiply that energy transfer by the number of
layers of the MLG and then divided by the total thickness of the target, which is 34.5 Å.
Symbols in Figure 5 are blue symbols (up and down triangles) correspond to calculations
made by Bubin et al. (8), where up triangles correspond to energy transferred by the proton
to electrons belonging to the C–C bond and would correspond to the maximum particle Q10
energy loss in Figure 4. Down triangles would correspond to theminimum energy loss due
to the low electron density present in the hexagon. Red symbols are the same as in Figure 3.
Black symbols correspond to calculations performed by Krasheninnikov (7) and have the
samemeaning as the blue ones. Also shown in Figure 5, for reference, a black line indicates
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Figure 4. Sketch of proton interaction with graphene used in the theoretical approaches (7,8).
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Figure 5. Proton electronic energy loss in eV/Å as a function of ion velocity in a.u. For comparison with
our measurements, we include data from recent theoretical calculations, which combine both classical
molecular dynamic and time-dependent density functional theory. Blue data correspond to data from
ref. (8) and black symbols correspond to data calculated in the same framework, ref. (7), see text for
detailed explanation of symbols. The red line is the linear approximation to our experimental data. The
amorphous carbondata are approximatedby ablack solid line,which also represent, approximately, data
obtained from the MWCNT (5,22), see Figure 3.

proton energy loss in amorphous carbon. Both calculations indicate that the energy losses
in graphene should be higher than in amorphous carbon. Our experimental data appear to
lie close to the high limit (middle C–C bond) of the energy losses, predicted by reference (7)
and, the ring center contribution to energy loss, which corresponds to the lowest electron
density region, agree with the amorphous carbon data.

Despite similarmethods of calculations, there are significant differences between results
of the two theoretical but discussion of these approaches is beyond the scope of this work.
However, both theories agree in their prediction of high energy transfer to graphene by
energetic protons.

While thehigher energy loss trendof the experimental data agreeson thewholewith the
indications of theory that the energy losses in graphene are higher than in amorphous car-
bon, one also needs to consider other possible reasons such as contaminations. There are
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different sources of contamination one can consider. These are water molecule and hydro-
carbon adsorption, and also some residual PMMA in transferring graphene layers. Thework
ofOchoa et al. (16), onwhich theGraphenea samples are based, suggests that themain con-
taminant should be water. Their model of a graphene multilayer derived from a detailed
spectroscopic ellipsometry study and XPS includes a circa 1.1 nm effective interlayer thick-
ness of a contamination layer consisting predominantly of water and traces of the other
contaminants. Based on this, using the semi-empirical calculations from Ziegler (12), we
can estimate the contribution of 1.1 nm of mainly water to the energy loss at 5 to be 35 eV.
This would reduce the energy loss protons in Figure 3 and 5 by 0.35 eV/A, which would still
result in a significantly higher energy loss than that of amorphous carbon.

Note also that F.Maoet al. (9), usingTD-DFT, alsopredict highenergy losses forHe+
2 inter-

acting with graphene layers, reaching three times the results obtained by Echenique et al.
(23). For instance, for helium ions at 1 keV (0.1 a.u. of velocity), the energy loss in graphene
predicted for by F. Mao is around 11 eV/Å, meanwhile, Echenique gives 3.3 eV/Å. Also,
recent experiments of slow highly charged ions interacting with graphene layers report
that the energy loss and charge exchange of ions in two-dimensional materials show sig-
nificant differences with respect to bulk solids (24,25). The high energy losses differ by an
order of magnitude with respect to results obtained by TRIM (12). Q11

The higher energy loss for protons, found in our experiments and which recent calcula-
tions would fairly explain, can be traced to the unusual properties of graphene. Assuming
that the measured energy loss is due to electronic excitations, and graphene with a high
electronmobility can react very fast to thepresenceof the intruder, near the surface,with its
subsequent fast screening (25). This phenomenonproduces a very high and fast flux of elec-
trons against the energetic proton producing a high momentum transfer which translates
into a high graphene stopping power on the particle.

Another interesting feature appearing in our experiments is the apparent velocity
threshold in theprotons energy loss,which appears around0.1 a.u. of velocity (see Figure 5).
From the theoretical point of view, calculations of stopping power at low energies in the
frame of the free electron gas model, using linear response theory, non-linear DFT and the
transport cross sectionmodel (22,26), predict that the stopping power is linear with the ion
velocity. However, experiments show that this prediction is not necessarily true for protons
andhelium inmetals and insulators. For instance, thepredictedproportionalitywith the ion
velocity of the stoppingpower of transitionmetals (Cu, Ag andAu) for protons breaks down
drastically at some very low velocities displaying two well-differentiated regimes (27). This
phenomenon is explained considering the existence of a threshold effect for electron–hole
pair excitation, where the valence electrons in thesematerials, mainly non-free d electrons,
need a minimum of energy to be excited. Recently, this phenomenon of non-linearity with
the ion velocity has been studied with TD-DFT calculations (28), obtaining a more realistic
description of stopping power for H and He in metals like Au. This work finds very good
quantitative agreement with experiments, describing the deviation from the ion velocity
proportionality.

In the case of large band-gap insulators, such as LiF and KCl, a threshold effect was found
for protons, deuterium and helium ions. Data obtained indicated a velocity threshold of
around 0.1 a.u., below which particles pass through the material without energy loss, i.e.
no electron excitations. For insulators, the electron excitations are suppressed due to a
minimum excitation energy, the energy band gap of these materials plays a fundamental
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role. The interaction of low energy protons, in these cases, was described by invoking the
creation of negative ions and charge interchange via electron promotion (29–33).

In the case of protons interactingwith graphene at low energies, theremay be sufficient
time for successive charge transfer, leading to negative ion formation as this occurs on, e.g.
graphite (34), in which case it is a negative ion and not a fast proton passing through a high
electron density cloud, which could then affect the scattering process and energy loss.

Thiswork deserves to be extended to the case of different numbers of graphene layers in
the target. We consider this work as a starting point to study several low dimensional struc-
tures under particle irradiation and its effect onparticles dynamics. These interesting results
might be used in technological applications in nanostructures material characterization,
radiation protection, ‘solar protons cells’ in space energy storage.
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