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Abstract— Phase quality is a key element in the analysis of the
deformation of the Earth’s surface carried out with differential
synthetic aperture radar interferometry. Various decorrelation
sources may degrade the surface deformation estimates, and thus,
phase filters are needed for this kind of application. The well-
known Goldstein filter is the most widely used due to its simple
implementation and computational efficiency. In the past years,
improved filters have been proposed, which are based on this filter
but introduce variations in the data processing. The effectiveness
of these filters mostly depends on the size of the filtering window,
the weight of the smoothed spectrum, and the kernel used to filter
the spectrum. In this paper, we evaluate the performance of four
of these filters and present a new method that outperforms all
of them. The proposed filter is based on an iterative method in
which the original phase is denoised progressively with adaptive
filtering windows of different sizes. The effectiveness of the filter
is controlled by the interferometric coherence, a direct indicator
of the phase quality. Moreover, we introduce some modifications
regarding the processing of the power spectrum. Specifically, we
propose to smooth the original phase using a new filter which
is based on a Chebyshev interpolation scheme. The performance
of the new filter has been tested on both simulated and real
interferograms, acquired by RADARSAT-2 and the Uninhabited
Aerial Vehicle Synthetic Aperture Radar, which mapped two
different geological events that caused surface deformation.

Index Terms— Differential synthetic aperture radar interfer-
ometry (InSAR), Goldstein filter, phase noise filtering.

I. INTRODUCTION

D IFFERENTIAL synthetic aperture radar interferometry
(InSAR) is a powerful and established technique, which
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aims to detect and measure changes in the Earth’s sur-
face [1]–[5]. These changes, such as the ground deformation
caused by a volcanic eruption or an earthquake, have been
successfully monitored by exploiting the phase information
contained in differential interferograms. The quality of the
differential phase is very important for the subsequent analysis.
Unfortunately, there exist different sources of decorrelation [6]
(such as temporal decorrelation, volume decorrelation, and
coregistration errors) that degrade the quality of the phase.
In this context, interferometric phase filtering methods are
mandatory in order to improve its quality. This improvement
is especially needed for the phase unwrapping step [7], [8],
which may be unfeasible with low-quality and noisy phase
data. Filtering techniques also help recover phase measure-
ments in areas in which otherwise it would be impossible.
Nevertheless, a filtered interferogram has a lower effective
spatial resolution and information is spatially correlated, but
this caveat is acceptable considering the mentioned benefits
on unwrapping and lower noise level.

Different interferogram filters have been proposed over the
past years, being the well-known Goldstein filter [9], [10]
the most common and widely used, as it offers good results
in most cases and has a high computational efficiency. The
Goldstein filter is a frequency-domain filter, which weights the
2-D Fourier transform of the complex interferogram signal by
the absolute value of a smoothed version of itself. According to
its original formulation, the filter divides the original interfer-
ogram into overlapped windows of a fixed size. The spectrum
is smoothed in the frequency domain by the convolution with
a Boxcar or Gaussian kernel. Moreover, the effectiveness of
the filter is controlled by a real parameter defined between
zero and one, commonly named α, that is kept constant for
the whole interferogram. This parameter governs the filtering
strength and has to provide a tradeoff between noise reduction
and resolution loss.

An α-adaptive filter was proposed in [11]. In this modified
Goldstein filter, the values of α are selected as a function of
the interferometric coherence, a commonly used indicator of
the phase quality. Low-coherent (decorrelated) areas will then
be filtered with higher values of α, whereas high-coherent
interferogram parts will be filtered with lower values of α,
i.e., less filtered. The adaptivity of the α parameter to the
nonuniform distribution of the noise has improved the fringe
continuity preservation and limited the loss of resolution
caused by high values of α [11].

Another important parameter of the Goldstein filter and
its modified version is the selected window size. Larger
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filtering windows provide a better result in terms of noise
reduction but at the expenses of a resolution loss based on [11].
Suo et al. [12] introduced a new method in which each pixel is
filtered individually. The window size employed to filter each
pixel in the interferogram is adaptively computed as a function
of the pixel’s coherence and the phase standard deviation of the
whole interferogram. The results obtained show a very good
performance in terms of fringe continuity preservation even in
very dense fringe areas, but noise reduction is not enough in
areas with very noisy data.

Alternatively, a different strategy was proposed
in [13] and [14]. The method consists in iteratively filtering
the original interferogram with windows of decreasing size.
In each iteration, the coherence-adaptive Goldstein filter
is applied and the window size is reduced by half. That
filter displays a dramatic noise reduction and allows us to
recover useful measurements even with very noisy original
interferometric data. However, the main drawback of that
filter is that the detailed features of the deformation pattern
might be lost due to the repeated use of large filtering
windows, especially in the first iterations of the algorithm.

In this paper, a new interferometric phase filtering method
is proposed. The filter relies on the iterative and coherence-
adaptive Goldstein approach [14], but an improved methodol-
ogy has been applied. As in that filter, the filtering parameter
α is selected locally as a function of the coherence. However,
the spectrum smoothing is substituted by a filtering operation
which is performed in the spatial domain by means of adaptive
kernels based on Chebyshev polynomials of a given order.
According to the different filtering problems previously men-
tioned, the main objectives of the proposed method are: 1) to
effectively suppress the phase noise in wide areas, i.e., low-
frequency areas where weak phase gradients are present and
2) to preserve strong gradient information in small areas
related to surface deformation patterns caused by a geological
event.

This paper is organized as follows. Section II presents a
revision of the formulation of the original Goldstein filter and
the existing improved versions. In Section III, we detail the
different modifications that have been made to improve the
filtering quality. In Section IV, we evaluate the results both
for simulated data with different noise levels and real SAR
data mapping two geological events. Specifically, the pro-
posed algorithm has been tested with RADARSAT-2 data
mapping the Mount Etna’s volcanic eruption (Sicily, Italy) in
May 2008 and data acquired from the airborne Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) corre-
sponding to the Kilauea’s volcanic eruption (HI, USA) in
March 2011. Finally, the main conclusions are summarized
in Section V.

II. DISCUSSION ON THE GOLDSTEIN

FILTER AND ITS VARIANTS

A. Review of the Original Goldstein Filter

Initially proposed in [9], the Goldstein filter divides the
original noisy interferogram into small windows, or blocks,
of a fixed size. The spectrum S f of the filtered interferogram

is obtained as

[S f ] fx , f y = |[Sm] fx , fy |α · [S] fx , f y (1)

where S is the original spectrum of the interferogram window,
|Sm | is the absolute value of the smoothed spectrum, ( fx , fy)
are the 2-D spatial frequencies (in the azimuth and range
directions), and symbol · denotes the Hadamard or element-
by-element product. Parameter α is a real number defined
in the [0, 1] interval and has a big impact on the effec-
tiveness of the final filtering, since it defines the weight of
the smoothed spectrum with respect to the original spectrum.
For instance, if α = 0, the filtered spectrum will be equal
to the original spectrum (i.e., no filtering occurs), but the
filtering becomes more significant as the values of α increase.
Moreover, the window size is generally selected as a power
of 2 (32 × 32, 64 × 64 pixels . . .), which accelerates the 2-D
fast Fourier transform computation of the spectrum. In order
to avoid discontinuities at the boundaries between the blocks,
two adjacent filtering windows are usually overlapped.

The smoothing operation is achieved by a convolution of
the original power spectrum with a predefined square kernel,
such as a mean or a Gaussian kernel of a certain size
(e.g., 5 × 5 or 7 × 7).

The main drawback of this algorithm is related to the
selection of the filter parameter α, as it is chosen manually
(e.g., based on a visual inspection of the original noisy phase),
and it is kept constant for the whole interferogram. As stated
before, noisy interferograms would benefit from larger values
of α, but fixing a value of this parameter close to 1 could
cause a resolution loss, especially in dense fringe areas. Con-
sequently, a value of α = 0.5 is usually employed to ensure a
balance between noise reduction and fringe preservation.

B. Adaptive Goldstein Filters

In practice, some areas in the interferogram are more
affected by noise than others, i.e., noise is not uniformly
distributed in the scene. The use of a single filtering parameter
(α) leads to a nonoptimum noise reduction, as noisy areas
should be strongly filtered and high-quality areas should not
be overfiltered. Baran et al. [11] proposed an α-adaptive Gold-
stein filter in which the value of α in each filtering window
is computed as a function of the interferometric coherence,
a commonly used indicator of the phase quality. Coherence γ
quantifies the correlation between the two combined SAR
acquisitions and can be estimated as [15]

γ = E{S1S∗
2}√

E{S1S∗
1} · E{S2S∗

2}
(2)

where S1 and S2 are the two images forming the interferogram
and E{} corresponds to the mathematical expectation which,
in practice, is replaced by a spatial average inside an estimation
window. The module |γ | ∈ [0, 1] of the coherence is usually
employed to characterize the phase noise of the interferogram.

The probability density function of the phase φ was derived
in [16] as a function of the coherence γ and the number of
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Fig. 1. Phase standard deviation as a function of coherence and a number
of looks.

looks L used in its estimation

PDF(φ) = �(L + 1/2)(1 − |γ |2)Lγ cos(φ − φ0)

2
√

π�(L)(1 − |γ |2cos2(φ − φ0))L+1/2

+ (1 − |γ |2)
2π

F1(L, 1; 1/2; γ 2cos2(φ − φ0)) (3)

where � is the gamma function, F1 is the Gauss hypergeo-
metric function, and the expected phase φ0 can be set to zero
without loss of generality. The phase standard deviation σφ

can be computed as

σφ =
√∫

φ
(φ − φ0)2PDF(φ)dφ. (4)

The original Goldstein formulation was modified in [11] by
setting

α = 1 − |γ̄ | (5)

where |γ̄ | is the mean coherence of the effective filtering
window. Note that the effective window (nonoverlapped area)
is employed to compute |γ̄ | in order to prevent the mean
coherence from being affected by coherence values from the
overlapped areas. Consequently, low-coherence parts of the
interferogram are strongly filtered, as the values of α are larger,
and high-coherence parts are filtered less.

In addition to the adaptive values of the filtering parame-
ter α, a window-adaptive filter has been recently proposed
in [12]. Each pixel in the interferogram is filtered individually,
and the window size used for each pixel is computed as
a function of the local coherence and the phase standard
deviation of the whole scene.

Based on (3) and (4), Fig. 1 shows the phase standard
deviation as a function of the coherence for a different number
of looks. As explained in [12], the window size selected to
filter a pixel corresponds to the square root of the multilook
number provided by the crossing in Fig. 1 of the coherence
and the standard deviation. For instance, if a pixel’s coherence
is 0.4 and the computed phase standard deviation of the
interferogram is 0.5, the crossing point corresponds to a
number of looks equal to 16. Then, the pixel will be filtered
with a

√
16 size, i.e., a 4 × 4 window [12].

In addition, the filter proposed in [12] introduces some
modifications regarding the power spectrum processing. First,

the local phase gradients in the filtering window are extracted
prior to the filtering step. The local estimation of the phase
ramp allows us to center the spectrum and to obtain the
dominant frequencies inside the filtering window, which is
useful for resolution preservation. This step will be explained
in more detail in Section III-B.

Then, the spectrum of the slope-compensated samples in
the filtering window is multiplied by a 2-D sinc function [12].
Finally, the filtering parameter is modified to

α = 1 − |γ |2 (6)

where |γ | is the pixel coherence. This modification increases
the degree of filtering with respect to Baran’s modified filter
if the same window size is used. However, oversmoothing is
avoided, since the size of the filtering window is small for
high-coherence pixels, as shown in Fig. 1.

In general, both adaptive filters show good results, espe-
cially concerning the preservation of fringe details. It has
been proven that the pixel-by-pixel strategy preserves the
resolution of the original phase very clearly even in high-
density fringe areas. Nevertheless, in the case of very noisy
interferometric phases, none of these filters show good results
in noise reduction. The coherence-adaptive Goldstein filter
would need larger windows in order to effectively suppress
the noise at the cost of a resolution loss proportional to the
size of the filtering window. Large windows provide a better
estimate of the power spectrum of the interferogram patch,
as a large number of pixels are considered in the estimation.
Therefore, the smoothing operation is more significant, i.e., the
filter is better adapted to the signal. Furthermore, the size of
each filtering window in the pixel-by-pixel filter might not be
big enough. An important issue related to this filtering strategy
is that the adaptive window sizes are computed with regard to
the phase standard deviation of the whole scene. Unfortunately,
a single value of phase standard deviation does not reflect
correctly the noise level in all areas of the interferogram,
as noise is not uniformly distributed.

C. Recursive Adaptive Spectral Filter

In order to effectively suppress the phase noise with the
Goldstein filter, the combination of large filtering windows and
high values of the filtering parameter α is needed. An inter-
esting strategy for this purpose is to filter repeatedly the inter-
ferogram. This methodology has been proposed in [14] and
is named recursive adaptive spectral filter (RASF). The core
idea consists in applying the coherence-adaptive Goldstein
filter with filtering windows of decreasing size in an iterative
fashion. Since noise suppression is more effective with larger
filtering windows, large windows are employed in the first
iterations of the algorithm (for instance, the initial size could
be 256×256 pixels). In the subsequent iterations, the window
size is divided in half until it reaches the minimum size,
for instance, an 8 × 8 window. Additionally, a modification
concerning the filtering parameter is proposed. In this case,
the degree of correlation between the two combined SAR
images is estimated with phase values only. The phase-only
coherence estimate, or phase coherence ρ, can be computed
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Fig. 2. General scheme of the proposed filter.

by means of a spatial average inside an estimation window
with M samples as

ρ = 1

M

√√√√M−1∑
m=0

cos2(φm) +
M−1∑
n=0

sin2(φm) (7)

where φm is the mth phase sample in the estimation window.
As explained in [14], two different phase coherence maps are
computed at each iteration. The final correlation ρ̂ value from
which the filtering parameter α = 1 − ρ̂ will be calculated is

ρ̂ =
{

ρ − 	ρ, if ρ∗ > ρ

ρ∗, otherwise
(8)

where ρ is the original phase coherence, ρ∗ is the phase
coherence after subtraction of the local phase ramp, and
	ρ = ρ∗ − ρ.

The subtraction of the local phase ramp will increase the
values of the original phase coherence, i.e., ρ∗ > ρ. Then,
ρ − 	ρ < ρ and, consequently, the values of α will be larger
in comparison with the ones of the modified Goldstein filter.
Therefore, the resulting phase is likely to be more filtered. This
iterative filtering strategy has proved to be very effective in
noise reduction even with extremely noisy interferograms [14].

III. PROPOSED METHOD

The general scheme of the filter proposed in this paper is
represented with the block diagram of Fig. 2. The main steps
will be explained in detail in Sections III-A–III-C.

A. Kernel Generation

Conventionally, the Goldstein-filtered interferogram is
obtained by the 2-D inverse fast Fourier transform (2-D IFFT)
of the product of the smoothed spectrum and the original spec-
trum, that is, the 2-D IFFT of (1). The smoothing operation

is also performed in the frequency domain by means of a
predefined kernel, such as a Gaussian kernel or a mean kernel
of a fixed size. In our method, the smoothing operation is
applied in the spatial domain. Then, the original spectrum is
weighted by the spectrum of the smoothed block by means
of (1) as in the Goldstein filter case.

Furthermore, we propose a specific filtering kernel that is
derived from the combination of a Chebyshev interpolator
and the pseudoinverse. In order to derive this kernel, we start
by considering the approximation of a generic 1-D complex
function F(x) and then draw several results that finally lead
to a 2-D interpolation kernel for a generic 2-D function. Since
the derivation is somewhat long, we first state its main steps
and then justify them in detail.

Thus, we start by considering a function F(x), defined in
[−1, 1], and assume that its value is approximately known at
N abscissas x p, i.e., we assume that a set of values f̂ p is
available such that

f̂ p ≈ F(x p), (p = 1, 2, . . . , N) (9)

for N distinct abscissas x p in [−1, 1].
Next, we introduce an interpolator and perform other opera-

tions in several steps in order to obtain the convolution kernel.
Step 4 is where we obtain such a kernel. The steps are as
follows.

1) We assume that F(x) can be well approximated by a
Chebyshev sum of order Kx of the form

F(x) ≈
Kx −1∑′

k=0

ckTk(x) (10)

where the prime (’) indicates that the k = 0 summand
must be multiplied by 1/2, ck is a set of unknown
coefficients, and Tk(x) is the Chebyshev polynomial of
the first kind and order k

Tk(x) ≡ cos(k arccos x). (11)
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2) Using (9) and the model in (10), we estimate the set
of coefficients cp using the pseudoinverse of the linear
system implicit in (10).

3) For any x , we estimate F(x) by inserting in (10) the
coefficients cp obtained in the previous step.

4) If we fix a specific x and the abscissas x p are regularly
spaced, then the previous step delivers a convolution
kernel, given that (10) depends linearly on the coeffi-
cients cp .

5) All the previous steps can also be applied to a function
G(z) varying in a generic interval [a, b], simply by
introducing the change of variable

x = −1 + 2
z − a

b − a
. (12)

6) All the previous steps can be extrapolated to a 2-D
function in a straightforward way and, therefore, they
allow us to derive a 2-D kernel for a generic 2-D
function G(z1, z2).

Let us justify these steps. In step 1, we have interpolated
F(x) using a Chebyshev sum with Kx coefficients. This
interpolator is well known in the approximation theory for
its excellent performance. Actually, its minimax error is close
to that of the minimax polynomial [17, Th. 6.13], and the
interpolator converges to F(x) as Kx increases just assuming
that the function is continuous [17, Th. 6.5]. Besides, it allows
us to view F(x) as a signal whose spectrum is the set of
coefficients ck . To see this point, we must recall the basic
variable change in Chebyshev interpolation, which is

x = cos θ, θ ∈ [0, π]. (13)

In terms of θ , (10) is

F(cos θ) ≈
Kx−1∑′

k=0

ck cos(kθp) (14)

where

θp ≡ arccos x p. (15)

Thus, we are viewing the function as a cosine polynomial.
Note that since the cosine is an even function, if F(x) is
continuous, then F(cos θ) is continuous at all θ . This fact
mitigates the Gibbs phenomenon that usually occurs at the
interval edges when a function is being approximated with a
set of polynomials. Note that this is related to the approxima-
tion theory, and it is not related to the inclusion of an overlap
between the interferogram patches in the implementation of
the filter.

In step 2, we use the pseudoinverse to estimate the coeffi-
cients ck . Specifically, we first combine (9) and (10) into the
linear model

f̂ p ≈
Kx −1∑′

k=0

ck Tk(x p) (16)

which can be written in the matrix form as

f̂ ≈ Tc (17)

where

[f̂ ]p ≡ f p, [T]p,· ≡ t(x p), [c]k ≡ ck (18)

and

t(x) ≡
{

Tk(x), k > 0
1/2, k = 0.

(19)

Finally, the pseudoinverse provides the estimate of c

ĉ ≡ T† f̂ (20)

that minimizes in the coefficients ck the quadratic error

N∑
p=1

∥∥∥ f̂ p −
Kx −1∑′

k=0

ck cos(kθp)
∥∥∥2

. (21)

If there is only one vector ĉ minimizing this error, then the
pseudoinverse delivers it but if there is more than one ĉ
minimizing (21), then it delivers the one among them with
minimum energy, i.e., the one for which ‖ĉ‖2 is minimum.
This last feature is useful whenever there all less data samples
f̂ p than coefficients ck given that, in this case, the pseudoin-
verse delivers the “simplest” set ĉ in the sense that its energy
is minimum.

In step 3, we estimate F(x) at any x using ĉ. This estimator
is obtained by replacing ck with the elements of ĉ in (10). Its
matrix form is

F̂(x) ≡ t(x)T ĉ = t(x)T T†f̂ . (22)

Step 4 is a particular case of step 3, in which we take x = 0
and assume that the abcissas x p are regularly spaced and sorted
in the increasing order. In this case, we have that the vector
multiplying f̂ in (22) is a reversed convolution kernel. In other
words, if the sequence x p is infinite, then we may filter it using
the kernel

[kch ]p ≡ [t(0)T T†]N−p+1. (23)

Step 5 is straightforward, given that we may estimate the
function

F(x) = G

(
b + a

2
+ b − a

2
x

)
. (24)

We may now repeat the previous five steps for the 2-D
case and obtain similar results (step 6). Given a two-variable
function F(x, y), defined in [−1, 1] for both variables, and a
set of samples f̂ p taken at abscissas x p, yp , p = 1, 2, . . . , N ,
we start by introducing a bivariate Chebyshev model for
F(x, y)

F(x, y) ≈
Kx −1∑′

k=0

Ky−1∑′

r=0

ck,r Tk(x)Tr (y) (25)

and posing the linear system

f̂ p ≈
Kx −1∑′

k=0

Ky−1∑′

r=0

ck,r Tk(x p)Tr (yp). (26)

In the matrix form, this system reads

f̂ ≈ T2Dc2D (27)
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where

[f̂ ]p ≡ f p, [c2D]k+(r−1)Kx ≡ ck,r (28)

and

[T2D]p,k+(r−1)Nx ≡ [tx(x p)]k[ty(yp)]r . (29)

The pseudoinverse gives the coefficients’ estimate

ĉ2D ≡ T†
2D f̂ (30)

and the estimate F̂(0, 0) is given by

F̂(0, 0) ≡ t2D(0, 0)T T†
2D f̂ (31)

where

[t2D(x, y)]k+Kx (r−1) ≡ [tx (x)]k[ty(y)]r (32)

and where tx(x) and ty(y) have respective lengths Kx and Ky ,
and follow the definition in (19).

Finally, assume that the abscissas (x p, yp) are those in a
regular grid of size Nx × Ny and N = Nx Ny (this size
corresponds to the size of the convolution kernel). These
abscissas follow the equations:

x p = x0 + 	x(α(p) − 1) (33)

yp = y0 + 	y(β(p) − 1) (34)

for a fixed position (x0, y0) and positive increments 	x and
	y, where α(p) and β(p) are the only nonnegative integers,
such that p = α(p) + Nx (β(p) − 1) with 0 ≤ α(p) < Nx .

For this grid, we obtain from (31) the convolution kernel

[K]α+1,β+1 ≡ [
t2D(0, 0)T T†

2D

]
N−(α+Nx β)

(35)

where α = 0, 1, . . . , Nx − 1 and β = 0, 1, . . . , Ny − 1.
In practice, we assume that the convolution kernel is square,

i.e., we impose Nx = Ny and the polynomial order in
both the dimensions is the same (Kx = Ky). Both the size
of the kernel and the polynomial order have an impact on
the filtering results; however, the size of the convolution
kernel is more significant. Larger kernels will provide stronger
filtering. For this reason, the size of the convolution kernel
will vary in each filtering iteration as a function of the
patch size. In Section III-C, a more detailed explanation about
each window size will be given. Concerning the polynomial
order, lower values provide slightly more low-pass filtering.
However, we have verified that this has a minor impact on the
final filtering results.

According to the previous formulation, an example of an
11×11 convolution kernel is shown in Fig. 3. The polynomial
order in both the dimensions has been fixed to 20.

B. Local Fringe Frequencies’ Estimation

The terrain deformation caused by a geological event can
be visually observed in the differential interferogram by dense
fringe areas (for instance, around the volcano crater after an
eruption). It is known that the presence of interferometric
fringes affects the estimation of the correlation (coherence)
between the SAR acquisitions [15]. Consequently, any bias

Fig. 3. Example of an 11 × 11 convolution kernel based on 2-D Chebyshev
polynomials of 20 orders.

should be corrected before its estimation as in the context of
InSAR.

As detailed in [18], the phase of a complex differential
interferogram can be locally modeled by a 2-D sine function.
Then, inside a (2P+1) × (2Q+1) window, the phase signal
presents the following form:

Zp,q = e2π j ( fx p+ f yq) (36)

where { fx , fy} are the local 2-D frequencies at indexes (p, q)
and noise is omitted for simplicity. The dominant 2-D fre-
quencies inside the window centered on pixel (p0, q0) are
estimated with the maximum likelihood method [19] in the
spectral domain

{ f̂x , f̂y} = max
fx , fy

⎛
⎝

∣∣∣∣∣∣
p0+P∑

x=p0−P

q0+Q∑
y=q0−L

Zp,qe−2π j ( fx p+ fyq)

∣∣∣∣∣∣
⎞
⎠ .

(37)

The main phase component θ̂0 can be estimated as the
Fourier transform of z evaluated at { f̂x , f̂y} spatial frequencies.
Finally, the slope-compensated phase values ẑ at pixels ( p, q)
are expressed as

Ẑp,q = z p,qe−2π j [( f̂ x p+ f̂ yq)−θ̂0]. (38)

Notice that, without the presence of noise, the values of ẑ tend
to zero, as any residual phase gradient has been removed and
any phase offset has also been subtracted from the original
phase values.

C. Modified-Coherence-Adaptive and Iterative Filtering

In order to meet the objectives already mentioned, i.e., noise
suppression in wide and low-frequency areas and resolution
preservation in dense fringe zones, different modifications
regarding the filtering parameters are proposed.

As in the RASF, an iterative and adaptive filtering strategy
is proposed. We filter the original interferogram a num-
ber of times with decreasing filtering windows. Large win-
dows are employed in the first filter iterations, for instance,
a 256 × 256 window. The initial size is an input parameter
of the algorithm. At each iteration, the filtering window size
is reduced by half until a minimum size of 8 × 8 pixels is
reached. The filtering kernel is also adaptive, so it varies in
each iteration of the algorithm. The size of the kernel is the
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square root of the size of the filtering window. Then, it varies
from

√
256 × √

256 to
√

8 × √
8 (rounded to nearest integer).

Additionally, the subtraction of the local phase ramp by
means of (37) and (38) is employed in two different steps of
the proposed method. First, local fringes are removed from the
original phase prior to coherence estimation. In this regard,
the removal of the local phase ramp causes an increase in
the correlation, and then, coherence values provide a more
accurate estimation of the noise level. This coherence will be
used to compute the values of the filtering parameter α in each
iteration. In this step, conventional window sizes for coherence
estimation are used, for instance, 5 × 5 or 7 × 7 windows.
Note that, as coherence increases, the values of α will be
smaller than in other methods, but the iterative filtering will
progressively denoise the original phase. Moreover, the local
fringes are also removed from the original signal prior to the
filtering step, i.e., when an interferogram patch is extracted.
Then, only the spectrum of the remaining values (which are
considered as noise) is filtered, so the information related to
the deformation fringes is better preserved.

IV. RESULTS

Different data sets have been used to validate the effective-
ness of the proposed method. We first evaluate the algorithm
with four simulated interferograms in which different levels
of noise have been added. The performance of the proposed
method is compared quantitatively with the different filters
described in Section III. The capability of the proposed filter is
also tested with real SAR data corresponding to two different
geological events and SAR sensors.

A. Simulated Scenes With Different Noise Levels

The simulated phases are obtained as the sum of a smooth
2-D function corresponding to the peaks function in MAT-
LAB and a function with a high gradient which corresponds
to a 2-D arctangent function. This high gradient function
will be especially useful to detect overfiltering effects. The
simulated phase is shown in Fig. 4. The size of the scene
is 1000 × 1000 pixels.

According to (3) and (4), four different noise levels are
added to the original phase (see Table I for details). As noise
is randomly generated, we ran each simulation case over
100 times. For the sake of simplicity, noise is uniformly added
in the original data by fixing the number of looks L = 9 and
varying the mean coherence |γ̄ |. The standard deviation of the
noise varies between 0.509 and 2.569 rad. Note that the largest
phase standard deviation has been manually added to test the
performance of every method in an extremely noisy scene.

The performance of each filter is assessed by the number
of residues [7] and the mean square error (MSE), which is
defined as [19]

MSE = E{|arg(e j (φF−φideal))|2} (39)

where φF is the filtered phase and φideal is the noise-free
phase. As each simulated scene is generated multiple times,
the number of remaining residues and MSE values that we

Fig. 4. Noise-free simulated phase. (a) Smooth 2-D Gaussian function.
(b) Variable and increasing phase. (c) Final simulated phase.

TABLE I

CHARACTERISTICS OF THE FOUR SIMULATED INTERFEROGRAMS

present in this section corresponds to the mean values of all
the realizations.

It is important to point out that in order to correctly compare
the performance of all filters, the same parameters have been
employed when possible. Concerning the Goldstein filter, its
adaptive version, and the RASF, the smoothing operation
consists in a convolution with a 7 × 7 Gaussian kernel. The
spatial bandwidth of the Gaussian kernel is 2.5. Regarding
the pixel-by-pixel algorithm, the power spectrum is weighted
with a 3 × 3 sinc function. In our proposed method, the
Chebyshev-polynomial-based kernel is adaptive with regard
to the filtering window size, and the polynomial order is
fixed to 20. In addition, the overlap between two adjacent
filtering windows is set to 3/4 of the size of the filtering
window for all block-filtering methods. The rest of the filtering
parameters are summarized in Table II. Note that a patch size
of 256 × 256 has been used in both the original Goldstein
and adaptive Goldstein filters. This patch size is larger than
the one proposed in the original publications [9], [11], which
is 32 × 32 pixels. The reason of using this patch size is to
enhance the result provided by both conventional methods.
As stated previously, larger filtering windows offer better
results in noise reduction. Consequently, filtering results with a
32×32 window would have been much worse in terms of noise
reduction and residues removal, and hence, the comparison
with the rest of the methods would have not been reliable.
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TABLE II

FILTER PARAMETERS

Fig. 5. Filtering results of interferogram I1 with different methods.
(a) Original noisy phase. (b) Goldstein filter. (c) Adaptive Goldstein filter.
(d) Pixel-by-pixel filter. (e) RASF. (f) Proposed method.

In Fig. 5, we show the filtering results of the highest quality
interferogram I1. All the filters show good results in this case,
and the noise is globally suppressed. Also, fringe continuity
is preserved with all the adaptive methods but not with the
standard Goldstein filter, where clearly overfiltering effects
are visible in the dense fringe area of the central part of the
interferogram. This is due to the large value of the filtering

parameter α (0.9) for which noise reduction is almost total.
In this regard, the Goldstein-filtered phase is almost identical
to the true phase in wide areas with low- or null-frequency
ramps, for instance, in the bottom-right corner of Fig. 5(b),
as the filter is strong despite the phase quality is already high.
Consequently, in this case, the standard Goldstein method
offers the best result in noise reduction, but some fringes are
lost. In Table III, we show the filtering results according to
the quality criteria previously mentioned. We can see that the
few residues in the original phase are reduced to 0 in all the
cases. Among them, our method shows the best global result
in terms of MSE.

The results of filtering the interferogram I2 are shown
in Fig. 6, and summarized in Table III. As it can be
observed in Fig. 6(a), the noise level is clearly higher than
in the previous simulation, and the number of residues is
also larger. Although noise is almost completely suppressed,
the Goldstein-filtered phase is still overfiltered in the high-
density fringe area. Concerning the adaptive Goldstein and the
pixel-by-pixel filters, they both show good results, especially
in fringe preservation. However, noise reduction is not as
effective as with the other filters, and the final number of
residues is larger in comparison with the other methods. The
RASF filter shows a good performance in noise reduction and
the improvement in terms of remaining residues is almost total.
However, in this case, the resulting phase is overfiltered in
the high-gradient area, and some detailed features are lost.
Then, according to these two simulations, we can deduce that
our proposed method offers a larger improvement if the phase
gradient is high or the noise is high, proving that it achieves the
best balance between noise suppression and fringe preservation
in comparison with the rest of the methods.

The third simulation corresponds to interferogram I3, whose
original phase can be observed in Fig. 7(a). In this case,
the noise level is considerably higher than before and the
original number of residues is very large, as shown in Table III.
Then, completely, noise reduction cannot be achieved without
the use of large filtering windows. In addition, the estimation
of the local phase ramp inside the window becomes a very
challenging task, as even pure noise may present a dominant
component in its Fourier transform. Consequently, noise reduc-
tion along with fringe preservation is nearly unattainable.

As it can be observed in Fig. 7(b) and (c), both the standard
Goldstein and its adaptive version present almost the same
performance as a result of the low-coherence values. Then,
the filtering parameter α is very large, making the filtering
strong. The number of residues is also similar to these two
filters.

Concerning the pixel-by-pixel filter, the size of the individ-
ual filtering windows is not enough to completely suppress
the noise with just a single filtering operation, as shown
in Fig. 7(d). The number of residues of the filtered interfer-
ogram is the largest among all the filtering methods and so
does the MSE.

The RASF filter and the proposed method show the best
results both in residues’ suppression and MSE. In fact, the
improvement in terms of residues is almost identical, being
our method just 0.01% better. However, as this corresponds
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Fig. 6. Filtering results of interferogram I2 with different methods.
(a) Original noisy phase. (b) Goldstein filter. (c) Adaptive Goldstein filter.
(d) Pixel-by-pixel filter. (e) RASF. (f) Proposed method.

to the mean improvement after 100 realizations and the
number of samples (pixels) is large enough, a nonparametric
statistical test proves that the improvement is significant. More
specifically, in this simulation, a p-value equal to 9.731×10−6

is obtained. This value is below the statistical significance
of 0.01 which is usually employed.

The overfiltering can be limited with the use of smaller
filtering windows in the initial steps of the algorithm. In Fig. 8,
we show the filtered phases of the simulated interferogram
I3 with our method when different initial window sizes have
been employed. As expected, noise suppression becomes less
effective with smaller windows, but the phase is less likely to
be overfiltered. For instance, when an initial window size of
32 × 32 is used, the detailed features are correctly preserved,
but noise is less reduced in low-frequency areas. Nevertheless,
noise reduction is still very effective with a 32 × 32 initial
filtering window and the improvement is quite remarkable,
as shown in Fig. 8(c).

Fig. 7. Filtering results of interferogram I3 with different methods.
(a) Original noisy phase. (b) Goldstein filter. (c) Adaptive Goldstein filter.
(d) Pixel-by-pixel filter. (e) RASF. (f) Proposed method.

The last simulation corresponds to an extremely noisy
interferogram. The standard deviation of the noise is out of
the limit derived in [16] concerning the phase statistics and
represented in Fig. 1 (which is around 1.8 rad). The phase
standard deviation has been manually fixed to 2.569 rad in
order to add noise to the data. All the filtering results are
represented in Fig. 9. Apparently, the original phase seems
to be pure noise so that the phase structure is completely
masked by the noise, as shown in Fig. 9(a). As in the previous
simulation, the Goldstein filter and the modified Goldstein
filters offer the same results, as the coherence values are
close to 0, making the filter parameter α very large. However,
both filters do not recover useful measurements (even with
a 256 × 256 filtering window), and the original and filtered
phases seem to be the same. Concerning the pixel-by-pixel
filter, the maximum window size has been used to filter each
pixel in the image. Noise reduction is almost negligible with
this filter. However, as it can be seen in Fig. 9(e) and (f),
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Fig. 8. Filtering results of interferogram I3 with our proposed method with
different initial windows sizes. (a) 128 × 128. (b) 64 × 64. (c) 32 × 32.

both iterative filters are able to greatly suppress the noise
and, at least, to recover some parts of the original signal.
Moreover, our proposed method shows a better performance
in the spatial smoothness of the phase values, whereas the
RASF filter presents some artifacts and more discontinuities
in the filtered phase. Obviously, the recovering of the detailed
fringes is almost infeasible with such a degraded original
interferogram.

The filtering results for this interferogram are summarized
in Table III. As expected, only the iterative methods present a
major improvement in terms of the final number of residues.
It can be observed that the proposed filter offers again the best
result in terms of residues and MSE. Instead, the improvement
is much less significant with the other three filters.

From this last simulation, a potential problem of the pro-
posed method can be predicted. As previously mentioned,
the estimation of a reliable local phase ramp is a very
difficult task in extremely noisy areas, considering that even
a fully uncorrelated interferogram patch (pure noise) has a
dominant component in the frequency domain. Consequently,
wrong phase ramps could be estimated and readded at the
filtering step (Fig. 2), so that some nongenuine interferometric
fringes may be present in the filter’s output. According to
this situation, an analysis of the coherence and the phase
standard deviation can be considered to derive a minimum
threshold from which the filter should proceed. Below this
quality threshold, the filter should not run, and its output
should be the input noisy phase. In this case, the user would
know that there is no useful signal to be recovered. However,
a deep analysis of this situation should be carried out as it is
not an evident task and it would suppose an improvement of
the proposed method for such extreme cases.

Finally, in order to verify the effectiveness of the proposed
kernel against others, we filter interferogram I3 with our

Fig. 9. Filtering results of interferogram I4 with different methods.
(a) Original noisy phase. (b) Goldstein filter. (c) Adaptive Goldstein filter.
(d) Pixel-by-pixel filter. (e) RASF. (f) Proposed method.

method and two different convolution kernels. To provide a
better comparison, a single iteration with a 32×32 is applied.
According to our formulation, the size of the filtering kernel
is 6 × 6 pixels. The Chebyshev-polynomial-based kernel is
compared with a Gaussian and a mean kernel of the same
size. The resulting phases are represented in Fig. 10, and the
quantitative filtering results are shown in Table IV. As it can be
observed, the proposed kernel provides better filtering results:
the number of residues is much lower and so does the MSE
value.

B. Real Interferogram: RADARSAT-2 Data Over
Mount Etna Volcanic Eruption

In this section, we show the filtering results of a real
SAR differential interferogram corresponding to the Mount
Etna’s volcanic eruption in May 2008. More specifically,
the interferogram is the result of the combination of two
images acquired in dates 2008-05-05 and 2008-05-29 by the
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TABLE III

PERFORMANCE ANALYSIS OF DIFFERENT PHASE FILTERS
FOR EACH SIMULATED INTERFEROGRAM

TABLE IV

PERFORMANCE ANALYSIS OF OUR PROPOSED METHOD WITH
THREE DIFFERENT FILTERING KERNELS

RADARSAT-2 satellite in the beam mode FQ29. The near-
range and far-range incidence angles are 46.8° and 48.0°,
respectively. All the filters have been evaluated with full-
resolution (single-look complex) input data, and the polari-
metric channel is HH. The size of the processed interferogram
is 3700 pixels (range dimension) × 6000 pixels (azimuth
dimension). Note that the sea area in the right part of the scene
has been masked out and has not been filtered. All the filtering

Fig. 10. Filtering results of interferogram I3 in a single iteration with
three different kernels. (a) Gaussian kernel. (b) Mean kernel. (c) Chebyshev-
polynomial-based kernel.

TABLE V

PERFORMANCE ANALYSIS OF DIFFERENT PHASE
FILTERS FOR RADARSAT-2 DATA SET

parameters are the same as the ones of the simulations of
Section IV-A (they are summarized in Table II). The resulting
differential phases are shown in Fig. 11. As it can be seen
in Fig. 11(a), the scene presents a high level of noise, which
can be mainly due to temporal decorrelation (both images are
acquired at a revisit time of 24 days) and due to presence
of vegetation. The evaluation of the filtering results is shown
in Table V.

As expected, the number of residues of the original phase is
very large. A visual inspection of Fig. 11(d) demonstrates that
the noise reduction with the pixel-by-pixel filtering strategy
is limited in very noisy areas. This can also be deduced
from the large number of residues that the filtered phase
still has. Concerning the Goldstein filter and the coherence-
adaptive Goldstein filter, whose filtered phases are shown in
Fig. 11(b) and (c), the improvement in noise reduction is
noticeable, but the remaining number of residues is also high.
Consequently, the phase unwrapping step would be difficult.
From Fig. 9(e) and (f), we can see that noise can only be
significantly suppressed by filtering the original interferogram
multiple times as it is proposed in the RASF filter and with our
method. The RASF filter shows a good improvement in terms
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Fig. 11. RADARSAT-2 interferogram over the Mount Etna’s volcanic eruption filtered with different methods. (a) Original noisy phase. (b) Goldstein filter.
(c) Adaptive Goldstein filter. (d) Pixel-by-pixel filter. (e) RASF. (f) Proposed method.

of noise suppression, and the number of residues is greatly
reduced.

For a detailed comparison, we have extracted two different
areas of the interferogram. One of them corresponds to a
high deformation area caused by the volcanic eruption, where
strong phase gradients are present. The other region corre-
sponds to a highly decorrelated zone. As it can observed in the
bottom of Fig. 11, the details of the deformation are globally
well preserved by all filtering strategies. However, only the two
iterative methods assure a significantly cleaner phase while
preserving the strong gradients caused by the deformation.
Moreover, comparing Fig. 9(e) and (f), the filtered phase

around the volcano crater with our method exhibits smoother
and more continuous values than the RASF-filtered phase. This
is more noticeable if we compare the filtering results on the
noisy area displayed in the top of Fig. 11. The resulting phase
with our filter presents less discontinuities, whereas the RASF-
filtered phase is noisier and shows some artifacts. Finally,
regarding the quantitative results of each filter (summarized
in Table V), it is proven that our proposed method has the
best performance in terms of residues’ suppression. Conse-
quently, it is also proved that the proposed filter modifica-
tions improve the quality of the final phase with respect to
the RASF.
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Fig. 12. UAVSAR interferogram over the Kilauea volcanic eruption filtered with different methods. (a) Original noisy phase. (b) Goldstein filter. (c) Adaptive
Goldstein filter. (d) Pixel-by-pixel filter. (e) RASF. (f) Proposed method.

TABLE VI

PERFORMANCE ANALYSIS OF DIFFERENT PHASE FILTERS

FOR UAVSAR DATA SET

C. Real Interferogram: UAVSAR Data Over Kilauea
Volcanic Eruption

The second real data set corresponds to a UAVSAR interfer-
ogram mapping the Kilauea volcanic eruption in March 2011.
Images were acquired in dates 2010-01-06 and 2011-03-05.
The near- and far-range incidence angles are 21.9° and 65.7°,
respectively. The processed image size is 2000 × 1500 pix-
els (range × azimuth) and the interferograms correspond to
the HH polarimetric channel. Filtering results are shown in
Fig. 12.

All the filtering parameters are the same as in the previous
examples except for the dimensions of the window employed
to estimate the coherence, whose size is 3 × 12 pixels
(range × azimuth). These dimensions correspond to the num-
ber of looks used to compute the coherence map provided
by UAVSAR. The improvement in terms of the final residue
number is summarized in Table VI. All filters show a good
performance in noise suppression and fringe preservation.
Note that the quality of the original data is better than in
the Etna case. The pixel-by-pixel filter correctly preserves the
majority of the details of deformation, but noise suppression

is clearly not enough in the most noisy areas. For the rest of
the filters, the improvement in terms of residues is remarkable.
In fact, more than 97% of the residues are eliminated and the
interferometric phase fringes corresponding to the deformation
are well preserved. Finally, our proposed method still shows
the best results in terms of residues’ removal.

V. CONCLUSION

We have presented an improved interferometric phase filter
that is based on the conventional Goldstein filter formulation
in combination with an iterative methodology. The proposed
filter introduces some modifications with respect to another
known iterative approach, called RASF, that have shown to
improve the quality of the filtering. The use of adaptive
Chebyshev-polynomial-based kernels as the smoothing oper-
ator has proved to effectively suppress phase noise. Fur-
thermore, the adaptive windowing in each filtering iteration
has shown to progressively denoise the original phase, while
the interferometric fringes corresponding to the deformation
pattern are preserved. Additionally, the proposed method is
able to recover useful measurements even with extremely noisy
data.

The new method has been compared with four already
existing filters. For comparison purposes, we have employed
the same filtering parameters for all the filters (for instance,
the same window size in block-filtering methods). Also,
we have tried to maximize the filtering effectiveness of each
filter, e.g., by fixing a large α value in the conventional
Goldstein filter and using large filtering windows. It has been
shown that our proposed method offers the best filtering
results, both with simulated interferograms and real SAR data
from different sensors. In all the evaluated cases, the number
of residues is greatly reduced (almost to 100%). It has been
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proven that the proposed method offers a larger improvement
if strong phase gradients are present or when noise is very
high, showing that the main objectives of the filter, i.e. noise
suppression in combination with fringe continuity preserva-
tion, have been achieved. Finally, as a future work, we plan
to improve the proposed method by considering extreme noise
levels and including a minimum quality threshold from which
the filter should proceed, hence avoiding wrong phase ramps
estimates or phase artifacts that could be present in the filtered
signal if some areas are fully uncorrelated.
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