
MirBot: A collaborative object recognition system for smartphones using
convolutional neural networks

Antonio Pertusa∗, Antonio-Javier Gallego, Marisa Bernabeu

Dpto. Lenguajes y Sistemas Informáticos, Universidad de Alicante, E-03690, San Vicente del Raspeig, Alicante, Spain

Abstract

MirBot is a collaborative application for smartphones that allows users to perform object recognition. This
app can be used to take a photograph of an object, select the region of interest and obtain the most likely
class (dog, chair, etc.) by means of similarity search using features extracted from a convolutional neural
network (CNN). The answers provided by the system can be validated by the user so as to improve the
results for future queries. All the images are stored together with a series of metadata, thus enabling a
multimodal incremental dataset labeled with synset identifiers from the WordNet ontology. This dataset
grows continuously thanks to the users’ feedback, and is publicly available for research. This work details
the MirBot object recognition system, analyzes the statistics gathered after more than four years of usage,
describes the image classification methodology, and performs an exhaustive evaluation using handcrafted
features, neural codes, different transfer learning techniques, PCA compression and metadata, which can be
used to improve the image classifier results. The app is freely available at the Apple and Google Play stores.

Keywords: Object recognition, image datasets, Convolutional neural networks, transfer learning,
multimodality, human computer interaction

1. Introduction

Object recognition is a highly active topic in com-
puter vision and can be particularly useful for mobile
devices [1, 2] as regards retrieving information about
objects on the fly. Visually impaired persons can also
benefit from these systems [3].

MirBot is a smartphone app that users can train
to recognize any object. The objects are categorized
according to lemmas (such as chair, dog, laptop, etc.)
selected from the WordNet lexical database [4]. A
user can employ MirBot to take a photograph and

∗Corresponding author.
Email addresses: pertusa@dlsi.ua.es (Antonio

Pertusa), jgallego@dlsi.ua.es (Antonio-Javier Gallego),
mbernabeu@dlsi.ua.es (Marisa Bernabeu)

select a rectangular region of interest (ROI) in which
the target object is located. The image, the ROI
coordinates and a series of associated metadata are
then sent to a server, which performs a similarity
search using k-Nearest Neighbors (kNN) and returns
the class of the most likely image, as shown in Figure
1. The app users can validate the system response in
order to improve the classification results for future
queries, and this feedback allows the database to grow
continuously with new labeled images.

MirBot is designed as a pedagogical game in which
a simulated robot can be trained in order to in-
volve users in an automatic learning process. As
pointed out in [5, 6], developing machine learning
tasks through games has proven to be a successful
approach to make users enjoy labeling data. From
the users’ perspective, the main distinctive feature of

Preprint submitted to Neurocomputing March 28, 2018

Usuario
Texto escrito a máquina
This is a previous version of the article published in Neurocomputing. 2018, 293: 87-99. doi:10.1016/j.neucom.2018.03.005

https://doi.org/10.1016/j.neucom.2018.03.005

Metadata

Class of the first image in the ranking
Updated class

Image and ROI
1- Image feature extraction

2- Prototypes matching

3- Ranking

Server

Figure 1: Architecture of the iOS app. This example corresponds to the longest user interaction sequence.

MirBot with regard to other apps is that it allows
them to train a personal image search system, thus
making the dataset dynamic and user driven.

This work extends the contents of the MirBot sys-
tem for object retrieval introduced in [7], which ini-
tially used handcrafted visual descriptors. The main
contributions of this paper with regard to the initial
work are a detailed description of the user interaction
process, the statistics related to the database gath-
ered after four years of usage, a new classification
methodology based on CNN features (neural codes)
obtained from pre-trained and fine-tuned models, the
study of PCA compression on different neural net-
works, the inclusion of metadata to complement the
neural codes and the evaluation results and conclu-
sions.

When a user submits a photograph, visual descrip-
tors are extracted and compared to the existing pro-
totypes in the dataset in order to predict the class
of the object. In the initial MirBot version [7], both
local features and color histograms were extracted

and combined to obtain the most likely class. In this
work, several convolutional neural network (CNN)
features have been added to these descriptors for use
in evaluation. The gap between the results obtained
using handcrafted descriptors and features extracted
from convolutional networks led the traditional im-
age descriptors in MirBot to be replaced with neural
codes in June 2015.

As pointed out in [8], finding images within large
collections is an important topic for the computer
vision community. Recent progress in object recogni-
tion has been built upon efforts to create large-scale,
real-world image datasets [9, 10] that are crucial for
developing robust image retrieval algorithms, in addi-
tion to considering the large amount of data required
in recent deep neural networks [11].

One of the main contributions of MirBot is a
dataset with a similar structure to that of ImageNet
[10], with the exception that all the images are gath-
ered with smartphone cameras and stored with their
associated metadata and with regions of interest.

2

In October 2016 we had 25, 292 validated images
distributed in 1, 808 classes. Although the MirBot
dataset still cannot be considered a very large collec-
tion, it is incremental and grows continuously thanks
to its users’ feedback. One important difference with
regard to other datasets such as [8] and [10] is that,
rather than employing images downloaded from the
Internet, users take pictures specifically for object
recognition. This signifies that MirBot images are
focused on the target objects and gathered with min-
imum occlusions and plain backgrounds. Our team
reviews the new images on a weekly basis in order
to avoid inappropriate, unfocused or wrongly labeled
samples, thus ensuring good quality data.

The MirBot dataset also includes a series of meta-
data that could be used to constrain the search
space. These metadata, which are detailed in [7],
are extracted from the smartphone sensors (angle
with regard to the horizontal, gyroscope, flash, GPS,
etc.), and have reverse geocoding information (type
of place, country, closest points of interest, etc.) and
EXIF camera data (aperture, brightness, ISO, etc.).
All the images are stored with their associated meta-
data. We have evaluated the performance using these
metadata in order to complement the image informa-
tion.

This work begins by describing the user interaction
interface in Section 2, and the methodology (Section
3) used for similarity search on the server side. The
evaluation results are described and discussed in Sec-
tion 4, followed by the conclusions in Section 5.

2. User interaction

As stated in [12], beyond the one-shot queries in
the early similarity-based search systems, the next
generation of systems attempts to integrate contin-
uous feedback from the user in order to learn more
about the query. MirBot is designed as an interactive
game and the objective of its interface is to minimize
the number of user interactions.

In order to avoid the dispersion that can be caused
when using free object identifiers, users can only as-
sign class names selected from the WordNet ontol-
ogy. The main advantage of WordNet is its semantic
structure, which prevents ambiguities in the labels.

WordNet synsets (synonym sets) are unique identi-
fiers for meaningful semantic concepts, and each of
them is linked to a definition, although they can be
related to different lemmas. Similarly to ImageNet,
we use the WordNet synsets as class identifiers.

In MirBot, only portrayable objects can be cho-
sen from the WordNet hierarchy, including the fol-
lowing root categories: animals (lexicographer iden-
tifier: 5), food/drinks (13), plants (20), and objects,
which include both WordNet natural objects (6) and
artifacts (17). WordNet considers that an artifact is
man-made whereas a natural object is not, but they
have been merged in MirBot in order to simplify this
concept for its users.

Figure 2 shows the block diagram of the user inter-
face. Before sending the query image to the server,
users can find settings in the app that allow to choose
whether they wish to perform the classification by
considering only their own images, so as to constrain
the search space, or by using the whole dataset.

Once the query has been submitted, the classes of
the K most similar images are retrieved using the
methodology described in Section 3, and the class of
the first image in this ranking is given to the user
for validation. If no images in the dataset are found
to be similar, then an unknown object message is
displayed and the user is asked to select a class from
the WordNet dictionary.

In the case of the user confirming the server re-
sponse, the image is labeled with that class and stored
in the dataset. Otherwise, an alternative list contain-
ing the classes of the top-K images in the ranking
is shown. If none of them correspond to the actual
class, the user can select a lemma (e.g., key) from
the WordNet nouns, and then a definition related to
this lemma (e.g., Metal device shaped...), which
corresponds to the synset (class identifier).

The messages and the robot images in Show

proposed class (see Figure 2) are dependent on the
distance min∀b d(a, b) between the query image a and
the most likely prototype b, in order to enhance the
users experience.

Two constant thresholds are used for this purpose:
λ, which indicates a certain answer (a very small dis-
tance from the query image to its closest prototype),
and θ > λ, which indicates that the object is un-

3

Figure 2: Diagram of the MirBot interface. The path from Server (after ROI selection) to Server corresponds to the user
validation process.

known (a very large distance to its closest prototype).
If min∀b d(a, b) < λ, then the message begins with

I’m pretty sure that this is.... If λ ≤ min∀b d(a, b) ≤
θ, then the range [λ, θ] is discretized into 10 lev-
els that trigger messages such as I’m almost sure
that..., I have many doubts, but ..., etc. Finally, if
min∀b d(a, b) > θ, then the user receives an answer
indicating the object is unknown, as there are no pro-
totypes in the database that are sufficiently close.

The messages and robot images in Show result

similarly depend on the validated answer. If the pro-
posed class is not correct, the closest common level
in the WordNet hierarchy determines the system re-
sponse (I was close, I was totally wrong, etc.).

Besides setting the WordNet class, users can also
manage their images in My pics and label them using
any text (e.g. My dog Toby). If the closest image in
the ranking contains a label, it is also shown to the
user in Show proposed class. Users can also learn
more about their objects with Wikipedia and consult
the WordNet hierarchy of a synset.

In the Android version, some gaming techniques
were implemented so as to involve more users. These
additions include an IQ measure for the robots, a
ranking of the best players and achievement badges.
The next version of the iOS app will also include these
features.

3. Methodology

After a photograph has been taken and sent to
the server, object classification is performed in order
to return an answer to the user. This section de-
scribes the image features and the similarity search
techniques used to retrieve the most likely class. At
present, only the image contents within the ROI are
used to extract the visual descriptors in order to per-
form the classification.

3.1. Visual descriptors

Visual descriptors are extracted from the image on
the server side. It is now also feasible to integrate fea-
ture extraction into a smartphone app [2]. However,
performing this on the server increases the flexibil-
ity of the system, as the descriptors and classifiers
can easily be updated without having to modify the
source code on the client side. Moreover, the incre-
mental nature of the proposed method (new classes
are continuously added) requires that the information
must be centralized.

Traditional local invariant descriptors [13], such as
SIFT [14] and SURF [15], and global descriptors such
as color histograms [16, 17] have been extensively
used for object recognition in literature. Some meth-
ods also combined different features, such as color
with local descriptors [18], or shape with color and
texture [19].

4

However, since 2013 most systems have relied on
deep learning, as convolutional neural networks have
dramatically improved the state of the art of visual
object recognition. As pointed out in [11], the ability
of these techniques to learn the representations di-
rectly from the raw data have revolutionized many
classification tasks related to image, video, speech
and audio.

The visual features used in the initial MirBot ver-
sion [7] were TopSURF local descriptors [20] and
global YCbCr color histograms weighted with a two-
dimensional Gaussian function. These features were
replaced with neural codes in July 2015, as they
clearly outperformed handcrafted descriptors. This
section describes the different features evaluated us-
ing the MirBot dataset.

3.1.1. Local handcrafted descriptors

In [7] we initially used the TopSURF [20] toolkit to
obtain a histogram of local descriptors for each image.
This method calculates the Speed-Up Robust Fea-
tures (SURF [15] interest points), and clusters them
[21] into a bag of features so as to yield a dictionary
of visual words. Those visual words that do not oc-
cur very frequently are emphasized using a tf-idf [22]
weighting technique. Finally, the descriptor consists
of a tf-idf histogram obtained by selecting those vi-
sual words with the highest score (the top T words).

Generic dictionaries1 of different sizes D were eval-
uated in order to calculate the tf-idf histograms, as
described in Section 4. A non-generic dictionary
trained with the MirBot data was also used for com-
parison purposes.

3.1.2. Global handcrafted descriptors

Standard SURF features do not consider color [17],
which can be relevant when attempting to identify
certain classes. The TopSURF descriptors in the ini-
tial version of MirBot [7] were, therefore, comple-
mented with color histograms in order to improve
accuracy.

Experiments with which to evaluate different color
spaces (RGB, HSV, CIE-LUV and YCrCb) were car-

1http://press.liacs.nl/researchdownloads/topsurf/

ried out, and the best results were obtained using
YCbCr, which has proven to be relatively robust to
changes in lighting. The color value of each pixel was
additionally weighted using a two-dimensional Gaus-
sian function to obtain a weighted color histogram,
as detailed in [7]. The goal of this weighting is to give
less relevance to the colors that appear on the edges
of the image and more weight to those on the middle,
which is where the objects to be recognized are likely
located, given their ROI.

3.1.3. Neural codes using pretrained models

Transfer learning is a common technique consist-
ing of training a network using a given dataset and
repurposing (or transferring) the features learned to
a different dataset or network [23]. This process usu-
ally obtains remarkable results when the features are
general (suitable for both base and target tasks).

We have evaluated several CNN models in order to
obtain the neural codes:

• AlexNet [24] is a CNN with 8 layers. Since it out-
performed previous methods by a large margin
in the ImageNet ILSVRC12 [25] challenge (which
contains about 1.3 million images distributed in
1,000 object categories), most image recognition
systems rely on CNNs.

• GoogLeNet [26] is a well-known CNN which
achieved the best results in the ImageNet
ILSVRC14 challenge. This network contains 22
layers but uses 12 times fewer parameters than
AlexNet, and is based on a series of chained In-
ception modules.

• VGG-16 and VGG-19 [27]. VGG-16 has 13 con-
volutional and 3 fully-connected layers, whereas
VGG-19 is composed of 16 convolutional and
3 fully-connected layers. Both topologies use
Dropout and Max-pooling techniques and ReLU
activation functions.

• Inception21k is an Inception v2 network based
on a GoogleNet with Batch Normalization [28].
We call this network Inception21k because it
was trained with the full ImageNet dataset
(14,197,087 images in 21,841 classes), unlike

5

AlexNet and GoogleNet, which were trained
with the 1,000 classes from the ILSVRC chal-
lenge.

• Inception v3 [29]. This architecture has 6 convo-
lutional layers followed by 3 inception modules
and a last fully connected layer. It has fewer
parameters than other similar models thanks to
the Inception modules whose design is based on
two main ideas: The approximation of a sparse
structure with spatially repeated dense compo-
nents and the use of dimensionality reduction to
maintain the computational complexity within
bounds.

• REsNet [30]. The deep REsidual learning Net-
work learns residual functions with reference to
the layer inputs rather than learning unrefer-
enced functions. This technique enables the use
of a large number of layers. We have used the
50-layer version for our experiments.

• Xception [31]. This model has 36 convolutional
layers with a redesigned version of Inception
modules which enable the depth-wise separable
convolution operation. This architecture outper-
forms the Inception results using the same num-
ber of parameters.

We have used the AlexNet and GoogLeNet im-
plementations from Caffe [32] as a basis. These
are almost identical to the original papers, with
pretrained models from the ImageNet ILSVRC12
dataset. The original Inception21k network was
trained by Mu Li for MXNet [33], although we
converted it to the Caffe framework by translating
the MXNet Batch Normalization layers to Caffe
BatchNorm layers with the learned mean and vari-
ance, followed by a Scale layer that applies the
learned scale (γ) and shift (β). We have publicly re-
leased this model at https://github.com/pertusa/
InceptionBN-21K-for-Caffe. In the case of the
VGG, Xception, ResNet and Inception v3, we used
the Keras [34] implementations with their default pa-
rameters.

The target images are forwarded through the pre-
trained network in order to obtain the visual de-
scriptors, which are vectors containing the neuron

output activations of the last hidden layer (exclud-
ing the output layer). For example, in the case of
AlexNet, this is the Caffe layer fc7 with 4, 096 values,
in GoogLeNet it is pool5/7x7 s1 with a dimension
of 1, 024, and in Inception21k it is the global pool

layer, which also has a dimension of 1, 024.
The main advantages of using the neural codes

with kNN rather than the output layer are that the
model can be used incrementally, the output classes
can be different to those used for training, and we
also obtain a ranking of the most similar images.

3.2. Prototype matching

Given a sample query, the class of the most likely
image among the set of prototypes is given to the user
for validation. In this scenario, the techniques chosen
for similarity search must be efficient and incremental
owing to the real-time constraints of the proposed
architecture, as users cannot wait long for a system
response.

As efficiency is crucial for our system and the
database is unbalanced (there are many more samples
of some classes than of others [35]), an approximate
nearest neighbor search technique has been chosen to
match the image descriptors from a query image with
the prototypes in the dataset.

This is done using the Spotify Annoy approximate
kNN method [36]. In the MirBot dataset, a good
compromise between accuracy and performance was
experimentally found by using an index of 100 trees
and setting the maximum number of nodes to 1, 000.
As MirBot should operate in real time, the index can-
not be rebuilt (this takes about 1 min) every time
a new image is added. The descriptors that were
not stored are, therefore, kept in the tree index in a
database table, and the kNN is obtained by perform-
ing the search in both the Annoy indexed prototypes
and in the descriptor table. The Annoy index is re-
built weekly.

In our previous work [7], the normalized cosine
similarity was used to compare the TopSURF de-
scriptors of two images, as in [20], whereas color his-
tograms were compared using the Jensen-Shannon di-
vergence [37]. Neural codes were compared using the
Euclidean distance.

6

https://github.com/pertusa/InceptionBN-21K-for-Caffe
https://github.com/pertusa/InceptionBN-21K-for-Caffe

Given a query image a, its K = 10 nearest neigh-
bor images from the set of prototypes are retrieved
according to their distance d(a, b). The classes of
the top-K images in this ranking with distances
d(a, b) < θ are then sent to the user for validation.
As stated in the previous section, if no images in the
dataset are found to be similar (min∀b d(a, b) > θ),
then an unknown object message is displayed and
the user is asked to select a class from the WordNet
dictionary.

In the initial MirBot system, TopSURF and color
descriptors were also combined to yield a distance
d(a, b) between two images:

d(a, b) = w · dt(a, b) + (1− w) · dc(a, b) (1)

where dt is the TopSURF distance, dc is the color
distance, and w is a parameter used to weight their
contribution in the final distance d(a, b).

4. Evaluation

4.1. Dataset

The dataset is freely available on request through
a web interface at http://www.mirbot.com/admin.
Researchers can explore the images by means of an
expandable tree view, and download them with their
metadata and features.

Some examples of the dataset can be seen in Figure
3. Images that are out of focus, have a misplaced
ROI, or are labeled with a wrong class can be marked
as unreliable by the MirBot administrators, who can
also delete samples with inappropriate contents.

As the data is dynamic, the statistics and success
rate change over time. The following evaluation re-
sults refer to the MirBot dataset on October 23, 2016.
On this date, 3, 431 users had added 25, 292 images
distributed in 1, 808 classes. Figure 4 shows the tem-
poral evolution of the data since MirBot has been
available.

Since the dataset is user-driven, some objects ap-
pear more frequently than others and the classes are,
therefore, unbalanced. Upon observing the Word-
Net root categories it will be noted that most images
are objects (18, 685), followed by animals (4, 928),

food/drinks (1, 113), and plants (546). Figure 5
shows the top 40 classes by the number of samples.

The evaluation is performed using a 5-fold cross
validation. Only the images belonging to the classes
with more than one prototype were used in these ex-
periments (24, 794 images from 1, 180 classes).

The accuracy is provided at two levels, top-1 and
top-10. In top-1, a true positive is considered when
the class of the closest prototype matches the query
class. In top-10, a true positive is considered when
the query class matches the class of any of its 10
closest prototypes. Note that this does not mean that
10 classes are considered, but rather the classes of the
10 closest prototypes, and if they share the same class
only one class is, therefore, taken into account.

4.2. Results using handcrafted descriptors

The MirBot base system introduced in [7] per-
formed similarity search using only TopSURF de-
scriptors and color histograms. The parameters were
experimentally set to M = 64 (color histogram size),
T = 100 (number of top words in TopSURF), and
D = 100, 000 (TopSURF dictionary size). The eval-
uation results obtained using these values are shown
in table 1.

Some experiments were performed by varying the
size of the color histogram M ∈ [32, 512], the number
of words T ∈ [50, 200], and the size of the dictionary
D ∈ [10000, 250000]. In all these configurations, the
success rate varied by a maximum of 0.2, and these
parameters do not, therefore, have a noticeable im-
pact on the accuracy.

In [7], a generic TopSURF dictionary of 100, 000
words was used. An experiment was also performed,
which consisted of replacing this dictionary with one
trained with the MirBot dataset in order to make the
clusters more specific to the target data. The top-1
success rate increased from 14.4 to 19.6 when using
the trained dictionary, as can be seen in table 1.

Surprisingly, the global color descriptor performed
significantly better than the TopSURF local descrip-
tor. The reason for this may be that some pictures
from the same object have similar lighting conditions,
as users tend to take them consecutively when the
system returns a wrong answer.

7

http://www.mirbot.com/admin

Figure 3: Example of images from banana (left) and computer mouse (right) classes. The bottom-right image with a red
background is marked as unreliable, as it is a smartphone.

Figure 4: Evolution of the number of images and classes over
time.

Features Top-1 Top-10
TopSURF generic 14.43 35.97
TopSURF trained 19.63 41.10
Color histogram 28.15 47.99
Combined (w= 0.1) 36.61 55.95
VGG16 66.64 86.56
VGG19 67.02 86.81
ResNet 71.13 88.74
Inception v3 65.93 85.51
Xception 70.52 88.88
AlexNet 48.79 76.96
GoogLeNet 57.56 83.54
Inception21k 61.03 86.07
Inception21k-direct 30.31 75.54

Table 1: Top-1 and top-10 average accuracy (in percentages)
using a 5-fold cross validation. The handcrafted features evalu-
ated include TopSURF using a generic dictionary with 100,000
words, TopSURF with a trained dictionary of the same size,
color YCrCb histograms, and the combined descriptor with
color and trained TopSURF with w = 0.1. Neural codes were
extracted from the last hidden layer and normalized using `2.
Inception21k-direct performs the classification directly using
the output layer rather than neural codes.

8

Figure 5: Number of images for the 40 top classes.

We have also evaluated the combination of color
and trained TopSURF descriptors (see Eq. 1), us-
ing the parameter w to balance their contribution.
Interestingly, although color outperforms TopSURF,
the combination of both descriptors increases the in-
dividual success rate for some values of w. The best
results were specifically obtained with w = 0.1, which
was significantly more successful than the color his-
tograms, as can be seen in table 1.

4.3. Results using neural codes

Different parameters can be selected to extract the
neural codes from an image. In particular, we have
evaluated alternative CNN models, input image scal-
ing techniques, neural activations from different in-
ner layers, and the benefit of normalizing the neural
codes using the `2 norm before performing the kNN
similarity search.

In our experiments we assessed that normalizing
the neural codes using the `2 norm consistently im-
proved the accuracy, as can be seen in table 2.
We also considered different image scaling methods
(isotropic or anisotropic rescaling) and alternative in-
put image sizes. As expected, the most adequate in-
put size and rescaling parameters are the same as
those originally used to train the networks. The neu-
ral codes were extracted from the last hidden layer,
but we also carried out experiments using different

layers. The last hidden layer obtained the best re-
sults in all cases and was, therefore, selected for the
following experiments.

Neural codes from different topologies (detailed in
Section 3.1.3) were also evaluated, and clearly out-
performed the handcrafted features, as shown in ta-
ble 1. MirBot initially used the combined Top-Surf
and color descriptor. However, GoogLeNet replaced
the handcrafted descriptors in June 2015, and from
October 2016 to the present the features have been
extracted with Inception21k, although given the eval-
uation results we plan to replace them with ResNet
soon.

Table 1 shows the 5-fold cross validation average
accuracy using the weights of the models trained with
the ImageNet 1,000 classes subset (ILSVRC12), with
the exception of Inception21k, which was trained
with the full ImageNet dataset.

As the evaluation results show, the pretrained
models obtain high success rates, especially when tak-
ing into account that the target classes are different
from those used for training. The best accuracies are
obtained with ResNet and Xception, which are those
that yielded the highest accuracies in the ILSVRC
contest.

Experiments were also performed by varying the
value of k. Table 2 shows the results obtained with
and without the `2 normalization of the neural codes.
As can be seen, the highest accuracies are obtained
with k = 1 and normalized codes. This low value of
k could be owing to the highly unbalanced dataset,
as some classes contain very few samples.

Besides transfer learning, we have also used the
SoftMax output layer of the Inception21k network
(namely Inception21k-direct), as this CNN was orig-
inally trained using the full ImageNet dataset and it
therefore contains most of the classes that are present
in MirBot. In these experiments we considered only
the activations of the output neurons belonging to the
MirBot classes that have more than one prototype.
In this case, only 20, 400 images were used for evalua-
tion, as 213 of the MirBot classes were not present in
the 21, 841 ImageNet classes. These results cannot be
directly compared to the transfer learning approaches
because the dataset is different, but we can obtain an
approximate success rate.

9

The top-1 accuracy (30.31) in Inception21k-direct
is much lower than that from the transfer learning
representations, whereas the top-10 (75.54) is also
lower but not to such a great extent. This discrep-
ancy can be explained by the fact that some im-
ages may fit in different classes, signifying that these
classes share a very similar content. For example, an
image of a person may be classified either as a human-
being, male, adult, or even homo-sapiens-sapiens.

4.4. Results with fine tuning and full training

Besides using the ImageNet pretrained weights, we
have also trained the best 5 CNN models (accord-
ing to the previous results) with the MirBot dataset.
This training was performed using a maximum of 500
epochs, a mini-batch size of 16 samples, and an early
stopping of 10 epochs. In the fine tuning experiments,
the original fully-connected (FC) layers were replaced
with three new FC layers in which the last one had
the same number of neurons as the amount of MirBot
classes (1,256) that contained more than one sample.
We have evaluated three learning approaches:

• Full training: The model is trained from scratch.

• Fine tuning last layers: Fine-tuning using the
weights of convolutional layers from ImageNet
and replacing the last fully-connected layers with
3 fully-connected layers whose weights must be
learned.

• Fine tuning from the middle: Fine-tuning start-
ing from the middle layer of the model whose
weights were originally trained using ImageNet.
The use of this scheme makes it possible to ad-
just more network weights for the new classes
than in the previous approach.

The evaluation results obtained using the SoftMax
activations of the trained models can be seen in Ta-
ble 3. Full-training accuracy is very low because the
number of samples in the MirBot dataset is not suffi-
cient to train models that contain a large number of
parameters and because the classes are highly unbal-
anced. The best results are obtained by fine-tuning
only the last layers, although the accuracy is still be-
low that obtained using the pretrained features and
kNN.

In order to assess the accuracy in the same scenario
employed with the pretrained models, experiments
were also performed by replacing the SoftMax layer
with a kNN after full training or fine tuning. This
was done by extracting neural codes from the last
hidden layer, normalizing them using `2, and then
returning the class of the closest prototype (k = 1)
in the training set. The results are shown in Table 4.
After testing different values, the size of the neural
codes was set to 1,256, with the exception of the first
column in this table (without training), in which they
have the size of the last hidden layer from the original
model.

It will be noted that, when fine-tuning the pre-
trained ILSVRC models starting from the middle lay-
ers and then use the normalized neural codes from
the last hidden layer in the prediction stage, the ac-
curacy outperforms the original pretrained models.
Moreover, in all cases the accuracy obtained using
the SoftMax output is clearly below that attained
when using neural codes with kNN in the prediction
stage.

4.5. Accuracy over time

We have also evaluated the handcrafted descriptors
and the neural codes with regard to the number of
images (see Figure 6). In this case, we performed
top-1 leaving-one-out experiments with the first 500
images that were added to the dataset, and then with
the first 1, 000 images, until all the images had been
considered. The goal of this experiment was to check
the evolution of the MirBot success rate over time.
For ease of viewing, only three representative CNN
models pretrained with ILSVRC12 data are shown in
Fig. 6.

The results of this experiment are very interesting.
After the initial spikes owing to the small number of
samples, the neural codes maintain an almost con-
stant success rate despite the increasing number of
classes. The main reason for this is that there are
more classes over time but also more images in the
database with which to compare them, thus signi-
fying that the success rate over time remains con-
stant with these descriptors. The accuracy for hand-
crafted descriptors, however, significantly decreased
over time, showing that they are less robust.

10

k=1 k=5 k=10
Network - `2 - `2 - `2
VGG16 63.00 66.64 57.08 60.94 55.04 58.92
VGG19 63.56 67.02 57.53 61.07 54.93 59.12
ResNet 69.77 71.13 62.70 64.73 60.54 62.29
Inception v3 67.12 65.93 61.39 59.91 58.86 57.86
Xception 68.68 70.52 62.54 65.15 60.88 63.33
AlexNet 46.31 48.79 45.99 48.45 46.29 48.53
GoogLeNet 56.87 57.56 54.94 56.48 54.20 56.16
Inception21k 60.02 61.03 58.98 60.33 58.37 59.92

Table 2: Top-1 accuracy using 5-fold cross-validation with and without `2 for different values of k.

Network
full

training
f. tune from
the middle

f. tune
last layers

VGG16 22.28 32.32 56.91
VGG19 21.15 30.24 56.83
ResNet 19.91 60.16 61.54
Inception v3 12.36 43.61 49.70
Xception 10.82 39.53 12.32

Table 3: Top-1 accuracy using the SoftMax output (without
kNN) for the different models and training strategies evalu-
ated.

Figure 6: Number of classes and temporal evolution of the top-
1 success rate for the evaluated descriptors when increasing the
number of images. A leaving-one-out experiment was subse-
quently performed for the first 500 images of the database, then
for the 1, 000 first images, and so on, until the full database
had been evaluated. The combined descriptor using TopSURF
and color histogram was evaluated with w = 0.1. Although the
number of classes increases with the number of images, the suc-
cess rate remained almost constant with the CNN representa-
tions unlike it happened using handcrafted features (ResNet
accuracy oscillated between 76.3 and 73.2, whereas the com-
bined descriptor accuracy decreased from 50.2 to 37).

4.6. Accuracy attained when increasing the minimum
number of samples per class.

A similar experiment was performed with regard
to the number of samples per class, during which the
accuracy was evaluated using those classes which con-
tain a minimum number of samples (from 1 to 100).
The first column in figure 7 shows the top-1 accuracy
using all classes, while the last one shows the accu-
racy attained when using only those classes with a
minimum number of 100 samples. The experiments
were performed with a 5-fold cross validation using
the best parameters found in the previous evaluation
(neural codes from the last hidden layer, `2 norm and
k = 1).

It will be noted that the top-1 accuracy increases
when more samples per class are available. As the
number of new classes converges (as shown in Figure
6) and new images are continuously added, the accu-
racy is expected to increase over time as the MirBot
dataset grows.

4.7. Evaluation using PCA compression
The neural codes can be compressed using Prin-

cipal Component Analysis (PCA). In [38] it is ob-
served that their dimensionality can be reduced very
substantially, e.g. to 128 dimensions with virtually
no accuracy loss. We have also evaluated the perfor-
mance of PCA to reduce the dimensionality of the
neural codes in the MirBot dataset with the different
network topologies.

PCA performs a linear dimensionality reduction
using Singular Value Decomposition (SVD) of the
data to project it to a lower dimensional space. For
the following experiments we used the LAPACK im-
plementation of the full SVD to automatically select

11

Without
training

Full training
F. tune from
the middle

F. tune
last layers

Network Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10
VGG16 66.64 86.56 38.99 63.80 47.60 69.60 61.51 73.14
VGG19 67.02 86.81 34.32 59.40 43.84 67.19 75.86 89.51
ResNet 71.13 88.74 37.81 61.44 77.70 90.68 73.51 89.70
Inception v3 65.93 85.51 22.64 46.76 60.94 78.88 67.35 83.02
Xception 70.52 88.88 25.31 45.11 58.83 78.14 65.65 81.26
Average 68.25 87.30 31.81 55.30 57.78 76.90 68.78 83.33

Table 4: Top-1 and top-10 results with the fully-trained or fine-tuned models using `2 normalized vector codes extracted from
the last hidden layer. 5-fold cross-validation experiments were performed in the same way as in Table 1.

45

50

55

60

65

70

75

80

85

90

0 10 20 30 40 50 60 70 80 90 100

to
p-

1

min number of samples per class

Vgg16
Vgg19

Resnet
Inceptionv3

Xception
AlexNet

GoogLeNet
Inception21k

Figure 7: Top-1 accuracy attained from 5-fold cross validation
using only those classes with a minimum number of samples.

the number of components such that the amount of
variance that needs to be explained is greater than
0.95.

As previously mentioned, the dimensionality of the
neural codes in our trained networks is 1256, whereas
the pretrained networks have a size of 4096 for VGGs
and AlexNet, and 2048 for ResNet, Inception v3 and
Xception.

Table 5 shows the new dimensionality obtained for
each type of network and training strategy after ap-
plying PCA compression with a threshold of 0.95.
Overall, the dimensionality is reduced from about
50% without training to 90% when fine-tuning from
the middle.

Table 6 shows the resulting performance using
PCA compression with the new dimensionality in

each case. It can be seen that PCA introduces an
accuracy loss. The best score with ResNet decreases
from 77.70 to 71.02, whereas other models such as
VGG19 decrease less (from 75.86 to 72.82).

These performance losses are a bit higher than
those obtained in [38], where virtually the same re-
sults were reported with PCA. One explanation for
this is that only one network – AlexNet [24] – was
evaluated in [38]. The weights of this network can be
easily compressed as they are very sparse [39], there-
fore the accuracy loss is smaller when using PCA on
these NC. However, recent networks such as ResNet
are much less sparse, therefore their PCA loss is
larger as it can be seen in Table 6.

Although accuracy decreases with PCA, it must be
considered these results are obtained using vectors
with a fraction of their original size. For example,
the ResNet neural codes with fine tuning from the
middle are compressed to 307 dimensions with a loss
of only 6 points.

The computational cost using PCA and Annoy is
shown in Table 7. PCA is significantly faster (12.3
times) than the original NC. However, it is slower
than the approximate nearest neighbors method (An-
noy) evaluated, which has a negligible accuracy loss
but at a larger memory footprint. Obviously PCA
compressed codes could also be searched with Annoy,
and in this case the computational cost is marginal.
In MirBot we are currently using the original neu-
ral codes with Annoy, but PCA with Annoy will be
considered if the number of images increases signifi-
cantly.

12

Network
Without
training

Full
training

F. tune from
the middle

F. tune
last layers

AlexNet 2175 527 531 644
VGG16 1980 686 116 655
VGG19 1939 332 22 728
ResNet 1036 174 307 601
Inception v3 776 514 41 88
Xception 1258 195 124 71
Average 1527 405 190 464

Table 5: Number of PCA components using a variance threshold of 0.95.

Without
training

Full training
F. tune from
the middle

F. tune
last layers

Network NC PCA NC PCA NC PCA NC PCA
AlexNet 48.79 46.65 36.74 32.83 32.85 29.14 53.53 50.23
VGG16 66.64 63.78 38.99 35.81 47.60 44.38 61.51 45.74
VGG19 67.02 64.27 34.32 32.55 43.84 32.99 75.86 72.82
ResNet 71.13 67.75 37.81 38.68 77.70 71.02 73.51 68.44
Inception v3 65.93 62.72 22.64 18.33 60.94 47.37 67.35 56.97
Xception 70.52 67.77 25.31 28.35 58.83 59.77 65.65 55.48
Average 65.01 62.16 32.64 31.09 53.63 47.45 66.23 58.28

Table 6: Top-1 results for uncompressed neural codes and PCA using all the networks and training schemes evaluated.

Network NC PCA NC+Annoy PCA+Annoy
AlexNet 180.3 25.2 7.8 3.37
VGG16 122.4 10.5 4.6 0.95
VGG19 121.3 9.0 4.7 0.54
ResNet 60.0 6.8 2.4 0.48
Inception v3 67.6 4.1 2.4 0.78
Xception 60.5 4.5 2.2 0.45
Average 86.4 7.0 3.26 0.64

Table 7: Comparison of the average time in milliseconds to search a query with NC, compressed PCA (brute-force, 4 threads),
Annoy (single thread) with the original NC, and Annoy (single thread) with the PCA compressed codes.

13

4.8. Metadata evaluation

As previously mentioned, the MirBot dataset also
includes a series of metadata, described in [7]. They
include information from the smartphone sensors, re-
verse geocoding and EXIF camera data. The meta-
data from the sensors correspond to the device in-
formation, geolocation data, and the accelerometer,
gyroscope, and network. In addition, given a latitude
and a longitude, reverse geocoding is performed in the
server with Gisgraphy2, which uses the Geo-Names
geographical database to obtain relevant data such
as the feature class and code that provide informa-
tion about the kind of place. The parameters of the
photographs are also stored using the exchangeable
image file format (EXIF), which includes 23 features
such as the aperture value, brightness, ISO speed,
white balance, etc. The complete list of the 79 meta-
data stored in MirBot can be seen in [7].

In order to evaluate the classification performance
using only these metadata, the features osversion and
model have been removed, along with all the informa-
tion related to an specific user such as its identifier.

Those metadata containing real or integer values
(such as pitch, sharpness, focal length, etc.) were
normalized in the interval [0, 1]. However, categori-
cal metadata (such as country, gis feature code, gis
feature class, etc.) were codified in a one-hot manner
as they have not any specific ordering. This way, the
distance between two categorical features can only be
1 if they are different or 0 if they match.

First, attribute selection have been performed in
order to rank the metadata and select the best sub-
set. For this we have applied several selection meth-
ods [40]: Best first, Genetic search, Greedy Stepwise,
Linear Forward Selection, Random Search, Scatter
Search V1, Subset Size Forward Selection, and Info-
Gain. After testing all these methods we applied a
voting scheme in order to select the best attributes.
The most voted attributes by the selection methods
are shown in Table 8, and they were chosen for the
next evaluation stage, ignoring the others.

One of the most representative metadata is the fea-
ture code [41], which stores the kind of place: Zoo,
Mall, University, Beach, etc. On the other hand, oth-
ers such as the angle, which we expected to perform

Sensors Location EXIF
pitch reliable location sharpness
selected area country focal length
wifi ocean brightness value
flash gis feature code color space

gis feature class subject area

Table 8: Most representative metadata using different at-
tribute selection methods with a voting scheme.

Classification type
Method Root 2nd level Class
kNN 73.67 51.73 7.31
RF 67.8 35.31 9.94
SVM 73.7 52.01 6.29

Table 9: Best results for each classifier using only the meta-
data.

well in the original MirBot version [7], were not se-
lected.

We performed an initial evaluation using only this
metadata subset without any image features. The
classification was done at three levels: Root level
(with the 5 main categories: animals, food and drink,
man-made objects, natural objects, and plants), the
second level of the WordNet hierarchy (with 92
classes), and the leaf level (with the 1119 classes).

Three classifiers were evaluated for this task: kNN
with k ∈ [1, 100]; Support Vector Machines (SVM)
with C ∈ [1, 1000]; and Random Forests (RF), with
the number of trees within the range [5, 1000].

Table 9 shows the best results for each classifier
using 5-fold cross-validation. The best results with
kNN were obtained with a very high value (k = 80),
the best results using RF were with 150-300 trees,
and with SVM the accuracy did not improve with
values of C larger than 10.

The results obtained for the first levels of the hier-
archy are surprisingly high considering that the clas-
sification is performed without any visual informa-
tion. An explanation for this is that the dataset is
unbalanced, therefore the baseline is also high, al-
though it is lower than the reported results. We have
checked the confusion matrices in order to assess that
the yielded classes are varied and there is no overfit-
ting.

Additional experiments were made by combining

14

the metadata with the neural codes from the images.
For this, both early and late fusion were performed.
In the case of late-fusion, the NC vector was concate-
nated to the metadata vector. Then, kNN, SVM and
RF were used on these data. For early-fusion, an ini-
tial classification was performed using the metadata
at the root level. Then only the NC codes from that
category were considered to be classified with kNN,
SVM and RF. As the accuracy with metadata is much
lower than the one obtained with neural codes, the
overall accuracy decreased in both early and late fu-
sion around a 6%.

A third approach was tested: given that the neu-
ral codes classifier is much more reliable, we only use
metadata when its confidence is low, that is when the
difference of the distances between the first and sec-
ond class returned is small. For the following exper-
iment we have used only one metadata, the feature
code, which experimentally was the most significant.

The algorithm is as follows: First we build a nor-
malized histogram of feature codes for each class in
the training set. Then, we classify a query using
ResNet. If the difference between the distances of
the most likely class and the second class returned is
smaller than a threshold ρ, we assume a low image
classifier confidence. In that case, the feature code
of the query is checked in the histograms of both
classes. If that feature code has a larger value in
the histogram of the second class than in the first
one, then we return it as the most likely class, chang-
ing this way the class order returned by the image
classifier.

We evaluated this setup using a threshold ρ = 0.02,
which is the average distance between the first and
second classes when a wrong result is returned by the
NC classifier. Using this threshold value, a 9.66%
of the samples were reranked with metadata. The
70.1% of these changes did not have effect as the cor-
rect class was neither the first or the second one re-
turned. In a 21.82 % of these changes the wrong class
was properly fixed, and only in a 4.29 % a correct
class switched by a wrong one. Overall, the Top-
1 accuracy using pretrained ResNet improved from
71.13 to 74.16.

As can be seen, a simple methodology using just
one metadata (the feature code) has improved the

accuracy in a two-stage setup. Although these re-
sults are promising, evaluation should be thoroughly
explored with additional metadata.

5. Conclusions and future work

This paper presents a description and evaluation
of an interactive image recognition system for smart-
phones. The proposed method, which is freely avail-
able 2 for iOS and Android devices, allows a user to
train an object recognition system using the classes
from a semantic dictionary.

One of the main research results of this work is
a multimodal dataset of images taken with smart-
phones and organized according to the WordNet on-
tology. This dataset is continuously growing as it is
user-driven. Its images are labeled and stored with
a series of metadata, within a ROI, with minimum
occlusions, and usually with plain backgrounds, as
they are specifically taken for this task and are not
downloaded from the Internet. A web interface allows
researchers to explore, review and download images,
metadata and descriptors.

An interaction methodology is also presented,
which allows users to easily set the image class in
a few steps, adding dynamic messages in order to
make the labeling process enjoyable. Besides setting
the class of the images, users can also train the sys-
tem to identify objects in their collections (such as
stamps, butterflies, fossils, etc.) using the optional
labels. However, most users treat the app as a casual
game rather than a tool. Interestingly, our most fre-
quent users are children, perhaps because they like
the idea of teaching a robot.

Evaluation has been performed using top-1 and
top-10 accuracy with different visual descriptors in
order to obtain a baseline for future studies. The per-
formance of color histograms, local features and dif-
ferent convolutional neural network representations
is assessed.

The results obtained using handcrafted descriptors
show that the combination of color and local descrip-
tors may increase the success rate when compared to

2http://www.mirbot.com

15

http://www.mirbot.com

using them independently. However, CNN features
outperform these descriptors by far, and their accu-
racy does not decrease with regard to the number of
images when the database grows, unlike that which
occurs with the handcrafted features. The usage of
neural codes and kNN rather than the SoftMax out-
put layer allows the system to be incremental when
new classes are added.

As can be seen in the evaluation section, using Im-
ageNet pretrained models to extract the neural codes
yields a high accuracy even when the MirBot classes
are different from those used to train the model. We
also evaluated different fine-tuning strategies in or-
der to adapt the weights to the data collected in
MirBot. The best results were obtained using fine-
tuning from the middle layers of a ResNet network,
which was more accurate than the pretrained models.
Moreover, we can conclude that the neural codes and
kNN clearly provide more accuracy than the com-
mon prediction strategy (using the SoftMax output),
as is shown in tables 3 and 4. We also verified that
adding the `2 norm improves the accuracy in all the
scenarios tested. The efficiency and performance of
PCA compression is also evaluated with the NC of
the different networks.

Metadata can complement the visual descriptors
using different multimodal techniques, such as early
fusion, late fusion, or with a joint approach (using
multimodal neural networks in a manner similar to
that of [42]). Initial early and late fusion experiments
were performed, showing an accuracy decrease of the
joint method due to the low accuracy of the meta-
data classifier. In order to avoid this, similarity met-
ric learning techniques [43] could be used in a future
work to give less importance to metadata. However,
a two-step methodology has shown to be adequate;
when the image classifier confidence is small, then
metadata is used to refine the results. A preliminary
evaluation using only one metadata (the type of lo-
cation) shows a significant accuracy improvement.

As the dataset is incremental, the classes are un-
balanced, which may be an issue for some classifi-
cation methods [44], although this can be overcome
by employing sampling methods, such as using only
those classes with a minimum number of prototypes.
The success rate of MirBot does not decrease over

time although the number of classes increases, and
this occurs because the number of images per class
also increases. The system is, therefore, continuously
improving, as more classes are detected without a de-
crease in the success rate.

In summary, the main contributions of this work
are: 1) an interactive workflow with which to per-
form object recognition and class validation; 2) a
public dataset that is continuously growing with its
users feedback, and which contains labeled images
and their associated metadata; 3) an analysis of dif-
ferent visual descriptors (handcrafted features and
neural codes from different CNN topologies) in this
dataset; 4) different transfer learning methods evalu-
ated for this task; 5) the conclusion that using nor-
malized neural codes from the last hidden layer with
kNN in the prediction stage provides a higher accu-
racy than the SoftMax output in all the cases eval-
uated; 6) approximate Nearest Neighbors techniques
usually yield better efficiency and accuracy than PCA
compression on neural codes; 7) metadata can be
used to improve the image classification results with
a two-stage architecture.

An evident future work is to further explore the
usage of metadata to improve the accuracy of the
visual classifier. In addition, the proposed dataset
could also be analyzed using hierarchical classifica-
tion methods. Although images from a root category
are probably too different to benefit from hierarchi-
cal techniques, metadata could be effectively used as
they may share common values in the case of certain
subclasses.

We are also planning to replace WordNet by Ba-
belNet [45] for the MirBot dictionary. BabelNet is a
multilingual ontology with similar organization than
WordNet but with many more concepts. Beyond hav-
ing many more synsets, a multilingual dataset could
be useful for example for taking a picture to some
food and retrieve its name in a foreign language.

Acknowledgment

This work was supported by the TIMUL project
(TIN2013-48152-C2-1-R) and the University Insti-
tute for Computing Research (IUII) from the Uni-
versity of Alicante.

16

References

[1] S. Bock, S. Newsome, Q. Wang, W. Zeng, X. Lin,
J. Lu, iImage: An image based information
retrieval application for the iPhone, in: 7th
IEEE Consumer Communications and Network-
ing Conference, CCNC, 2010, pp. 3–4. doi:

10.1109/CCNC.2010.5421733.

[2] A. G. Howard, M. Zhu, B. Chen,
D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, H. Adam, MobileNets: Efficient
Convolutional Neural Networks for Mobile
Vision Applications, CoRR.
URL http://arxiv.org/abs/1704.04861

[3] K. Matusiak, P. Skulimowski, P. Strumillo, Ob-
ject recognition in a mobile phone application
for visually impaired users, in: IEEE 6th Inter-
national Conference on Human System Interac-
tions (HSI), 2013, pp. 479–484. doi:10.1109/

HSI.2013.6577868.

[4] C. Fellbaum, WordNet: An Electronic Lexical
Database (1998). doi:10.1139/h11-025.

[5] L. Barrington, D. Turnbull, G. Lanckriet, Game-
powered Machine Learning., Proc. of the Na-
tional Academy of Sciences of the United States
of America 109 (17) (2012) 6411–6. doi:10.

1073/pnas.1014748109.

[6] L. von Ahn, L. Dabbish, Labeling images with a
computer game, in: ACM Conference on Human
Factors in Computing Systems, 2004, pp. 319 –
326. doi:10.1145/985692.985733.

[7] A. Pertusa, A.-J. Gallego, M. Bernabeu, Mirbot:
A multimodal interactive image retrieval system,
in: Pattern Recognition and Image Analysis,
Vol. 7887 of Lecture Notes in Computer Science.
6th Iberian Conference, IbPRIA, 2013, pp. 197–
204. doi:10.1007/978-3-642-38628-2.

[8] A. Torralba, R. Fergus, W. T. Freeman, 80 Mil-
lion Tiny Images: a Large Data Set for Nonpara-
metric Object and Scene Recognition., IEEE

Trans. on Pattern Analysis and Machine Intelli-
gence (PAMI) 30 (11) (2008) 1958–1970. doi:

10.1109/TPAMI.2008.128.

[9] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros,
A. Torralba, Undoing the damage of dataset
bias, Lecture Notes in Computer Science 7572
LNCS (part 1) (2012) 158–171. doi:10.1007/

978-3-642-33718-5_12.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li,
L. Fei-Fei, ImageNet: A large-scale hierar-
chical image database, in: IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR), 2009, pp. 2–9. doi:10.1109/CVPR.

2009.5206848.

[11] Y. LeCun, Y. Bengio, G. Hinton, Deep learn-
ing, Nature 521 (7553) (2015) 436–444. doi:

10.1038/nature14539.

[12] M. Lew, N. Sebe, C. Djeraba, R. Jain, Content-
based multimedia information retrieval: State of
the art and challenges, ACM Trans. on Multime-
dia Computing, Communications, and Applica-
tions 2 (1) (2006) 1–19. doi:10.1145/1126004.
1126005.

[13] K. Mikolajczyk, C. Schmid, Scale & affine invari-
ant interest point detectors, International Jour-
nal of Computer Vision 60 (1) (2004) 63–86.
doi:10.1023/B:VISI.0000027790.02288.f2.

[14] D. G. Lowe, Distinctive image features from
scale-invariant keypoints, International Journal
of Computer Vision 60 (2) (2004) 91–110. doi:

10.1023/B:VISI.0000029664.99615.94.

[15] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool,
Speeded-Up Robust Features (SURF), Com-
puter Vision and Image Understanding 110 (3)
(2008) 346–359. doi:10.1016/j.cviu.2007.

09.014.

[16] K. E. A. van de Sande, T. Gevers, C. G. M.
Snoek, Evaluating Color Descriptors for Object
and Scene Recognition, IEEE Trans. on Pat-
tern Analysis and Machine Intelligence (PAMI)

17

http://dx.doi.org/10.1109/CCNC.2010.5421733
http://dx.doi.org/10.1109/CCNC.2010.5421733
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1109/HSI.2013.6577868
http://dx.doi.org/10.1109/HSI.2013.6577868
http://dx.doi.org/10.1139/h11-025
http://dx.doi.org/10.1073/pnas.1014748109
http://dx.doi.org/10.1073/pnas.1014748109
http://dx.doi.org/10.1145/985692.985733
http://dx.doi.org/10.1007/978-3-642-38628-2
http://dx.doi.org/10.1109/TPAMI.2008.128
http://dx.doi.org/10.1109/TPAMI.2008.128
http://dx.doi.org/10.1007/978-3-642-33718-5_12
http://dx.doi.org/10.1007/978-3-642-33718-5_12
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1145/1126004.1126005
http://dx.doi.org/10.1145/1126004.1126005
http://dx.doi.org/10.1023/B:VISI.0000027790.02288.f2
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014

32 (9) (2010) 1582–1596. doi:10.1109/TPAMI.

2009.154.

[17] S. Jeong, Histogram-Based Color Image Re-
trieval, Tech. rep., Psych221/EE362 Project
Report, Stanford (2001).
URL https://pdfs.

semanticscholar.org/e884/

2a22aa486fd273606fcd5f8090619bbb468c.

pdf

[18] B. Fernando, E. Fromont, D. Muselet, M. Seb-
ban, Discriminative feature fusion for image
classification, in: IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2012, pp.
3434–3441. doi:10.1109/cvpr.2012.6248084.

[19] S. Banerji, A. Sinha, C. Liu, New image de-
scriptors based on color, texture, shape, and
wavelets for object and scene image classifica-
tion, Neurocomputing 117 (2013) 173–185. doi:
10.1016/j.neucom.2013.02.014.

[20] B. Thomee, E. M. Bakker, M. S. Lew, TOP-
SURF: A Visual Words Toolkit, ACM Interna-
tional Conference on Multimediadoi:10.1145/
1873951.1874250.

[21] J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zis-
serman, Object retrieval with large vocabu-
laries and fast spatial matching, in: IEEE
Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2007. doi:10.1109/CVPR.2007.

383172.

[22] G. Salton, M. J. McGill, Introduction to mod-
ern information retrieval, McGraw-Hill, Inc,
New York, NY, USA, 1986. doi:10.1108/

01435121111132365.

[23] J. Yosinski, J. Clune, Y. Bengio, H. Lipson,
How transferable are features in deep neural net-
works?, in: Proc. of Neural Information Process-
ing Systems (NIPS), 2014. arXiv:1411.1792.

[24] A. Krizhevsky, I. Sutskever, G. E. Hinton, Im-
ageNet Classification with Deep Convolutional
Neural Networks, in: Proc. Neural Information

and Processing Systems (NIPS), 2012. arXiv:

1102.0183.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei,
ImageNet Large Scale Visual Recognition Chal-
lenge, International Journal of Computer Vision
(IJCV)doi:10.1007/s11263-015-0816-y.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet,
S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich, Going Deeper with Convolu-
tions, in: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2015. arXiv:

1409.4842.

[27] K. Simonyan, A. Zisserman, Very deep convolu-
tional networks for large-scale image recognition,
2014. arXiv:1409.1556.

[28] S. Ioffe, C. Szegedy, Batch normalization: Ac-
celerating deep network training by reducing in-
ternal covariate shift, 2015. arXiv:1502.03167.

[29] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens,
Z. Wojna, Rethinking the inception architecture
for computer vision, CoRR abs/1512.00567.
URL http://arxiv.org/abs/1512.00567

[30] K. He, X. Zhang, S. Ren, J. Sun, Deep
residual learning for image recognition, CoRR
abs/1512.03385.
URL http://arxiv.org/abs/1512.03385

[31] F. Chollet, Xception: Deep learning with
depthwise separable convolutions, CoRR
abs/1610.02357.
URL http://arxiv.org/abs/1610.02357

[32] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, T. Dar-
rell, Caffe : Convolutional Architecture for Fast
Feature Embedding, in: ACM Conference on
Multimedia, 2014, pp. 675–678. doi:10.1145/

2647868.2654889.

[33] T. Chen, M. Li, N. Wang, M. a. Wang, Mxnet:
A flexible and efficient machine learning library

18

http://dx.doi.org/10.1109/TPAMI.2009.154
http://dx.doi.org/10.1109/TPAMI.2009.154
https://pdfs.semanticscholar.org/e884/2a22aa486fd273606fcd5f8090619bbb468c.pdf
https://pdfs.semanticscholar.org/e884/2a22aa486fd273606fcd5f8090619bbb468c.pdf
https://pdfs.semanticscholar.org/e884/2a22aa486fd273606fcd5f8090619bbb468c.pdf
https://pdfs.semanticscholar.org/e884/2a22aa486fd273606fcd5f8090619bbb468c.pdf
https://pdfs.semanticscholar.org/e884/2a22aa486fd273606fcd5f8090619bbb468c.pdf
https://pdfs.semanticscholar.org/e884/2a22aa486fd273606fcd5f8090619bbb468c.pdf
http://dx.doi.org/10.1109/cvpr.2012.6248084
http://dx.doi.org/10.1016/j.neucom.2013.02.014
http://dx.doi.org/10.1016/j.neucom.2013.02.014
http://dx.doi.org/10.1145/1873951.1874250
http://dx.doi.org/10.1145/1873951.1874250
http://dx.doi.org/10.1109/CVPR.2007.383172
http://dx.doi.org/10.1109/CVPR.2007.383172
http://dx.doi.org/10.1108/01435121111132365
http://dx.doi.org/10.1108/01435121111132365
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1102.0183
http://arxiv.org/abs/1102.0183
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1145/2647868.2654889

for heterogeneous distributed systems, 2016.
arXiv:1512.01274.

[34] F. Chollet, Keras, https://github.com/

fchollet/keras (2015).

[35] H. He, E. Garcia, Learning from imbalanced
data, IEEE Trans. Knowl. Data Eng. 21 (2009)
1263–1284. doi:10.1109/TKDE.2008.239.

[36] E. Bernhardsson, Annoy: Approximate nearest
neighbors in c++/python optimized for memory
usage and loading/saving to disk (2016).
URL https://github.com/spotify/annoy

[37] J. Lin, Divergence measures based on the Shan-
non entropy, IEEE Trans. on Information The-
ory 37 (1) (1991) 145–151. doi:10.1109/18.

61115.

[38] A. Babenko, A. Slesarev, A. Chigorin, V. S.
Lempitsky, Neural codes for image retrieval,
CoRR abs/1404.1777. arXiv:1404.1777.
URL http://arxiv.org/abs/1404.1777

[39] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli,
R. Venkatesan, B. Khailany, J. S. Emer, S. W.
Keckler, W. J. Dally, SCNN: an accelerator
for compressed-sparse convolutional neural net-
works, CoRR abs/1708.04485. arXiv:1708.

04485.
URL http://arxiv.org/abs/1708.04485

[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, I. H. Witten, The weka data
mining software: An update, SIGKDD Explor.
Newsl. 11 (1) (2009) 10–18. doi:10.1145/

1656274.1656278.
URL http://doi.acm.org/10.1145/1656274.

1656278

[41] Geonames feature codes.
URL http://www.geonames.org/export/

codes.html

[42] J. Mao, W. Xu, Y. Yang, J. Wang, A. L.
Yuille, Explain Images with Multimodal Recur-
rent Neural Networks, in: NIPS Deep Learning
Workshop, 2014, pp. 1–9. arXiv:1410.1090v1.

[43] A. Bellet, A. Habrard, M. Sebban, Similarity
Learning for Provably Accurate Sparse Linear
Classification, in: 29th International Conference
on Machine Learning, 2012. arXiv:1206.6476.

[44] R. Barandela, J.-S. Sánchez, V. Garćıa,
E. Rangel, Strategies for learning in class im-
balance problems, Pattern Recognition 36 (3)
(2003) 849–851. doi:10.1016/S0031-3203(02)
00257-1.

[45] R. Navigli, S. P. Ponzetto, BabelNet: The auto-
matic construction, evaluation and application
of a wide-coverage multilingual semantic net-
work, Artificial Intelligence 193 (2012) 217–250.

19

http://arxiv.org/abs/1512.01274
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://dx.doi.org/10.1109/TKDE.2008.239
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
http://dx.doi.org/10.1109/18.61115
http://dx.doi.org/10.1109/18.61115
http://arxiv.org/abs/1404.1777
http://arxiv.org/abs/1404.1777
http://arxiv.org/abs/1404.1777
http://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1708.04485
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://www.geonames.org/export/codes.html
http://www.geonames.org/export/codes.html
http://www.geonames.org/export/codes.html
http://arxiv.org/abs/1410.1090v1
http://arxiv.org/abs/1206.6476
http://dx.doi.org/10.1016/S0031-3203(02)00257-1
http://dx.doi.org/10.1016/S0031-3203(02)00257-1

	1 Introduction
	2 User interaction
	3 Methodology
	3.1 Visual descriptors
	3.1.1 Local handcrafted descriptors
	3.1.2 Global handcrafted descriptors
	3.1.3 Neural codes using pretrained models

	3.2 Prototype matching

	4 Evaluation
	4.1 Dataset
	4.2 Results using handcrafted descriptors
	4.3 Results using neural codes
	4.4 Results with fine tuning and full training
	4.5 Accuracy over time
	4.6 Accuracy attained when increasing the minimum number of samples per class.
	4.7 Evaluation using PCA compression
	4.8 Metadata evaluation

	5 Conclusions and future work

