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Modeling Pore-scale Two-phase Flow: on How to 

Avoid Gas Channeling Phenomena in Micropacked-

Bed Reactors via Catalyst Wettability Modification  

Francisco J. Navarro-Brull, Roberto Gómez* 

Institut Universitari d’Electroquímica i Departament de Química Física, Universitat d’Alacant, 

Apartat 99, E-03080, Alicante, Spain 

ABSTRACT. A model for the design of micropacked-bed reactors via correlations, capable of 

providing a reliable estimation of two-phase flow dynamics and mass-transfer coefficients, is 

lacking, especially when the particle size of the bed is around 100 μm. In this work, we present a 

validation of the use of the phase-field method for reproducing two-phase flow experiments 

found in the literature. This numerical simulation strategy sheds light on the impact of the 

micropacked-bed geometry and wettability on the formation of preferential gas channels. 

Counter-intuitively, to homogenize the two-phase flow hydrodynamics and reduce radial mass-

transfer limitations, solvent wettability of the support needs to be restricted –showing best 

performance when the contact angle ranges 60º and capillary forces are still dominant. The 

tuning of gas-liquid-solid interactions by surface wettability modification opens a new window 

of opportunity for the design and scale-up of micropacked-bed reactors. 
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Introduction  

Process intensification has been one of the most promising areas of study since it can enable 

novel reaction methods by scaling down the dimensions of chemical reactors. Packed-bed 

microreactors are well known because of the versatility for testing catalysts since they allow to 

quantitatively measure kinetics, performance, and deactivation.1–5  However, kinetic and 

transport phenomena rely on the complex hydrodynamic characteristics of these systems.6 

Among their advantages, these miniaturized packed bed reactors have unique heat- and mass-

transfer characteristics thanks to high surface-to-volume ratios that the miniaturization of the 

reaction channel and catalyst particles provides. Yet, this reduction of diameter and particle size 

entails a substantial pressure drop that is difficult to overcome since a numbering-up strategy 

―i.e. adding multiple reactor channels― will tend to cause flow maldistribution. Another option 

is to scale microreactors up to the range of milli-reactors (with reactor inner diameters in the 

order of tens of mm).6 In both cases, when the catalyst particles are smaller than ~500 μm, the 

hydrodynamics are usually dominated by viscous stress and interfacial tension at the liquid-gas 

boundary rather than by gravity and inertial forces.7,8 Larger scale packed-bed reactors in which 

the catalyst pellets are about 1-3 mm ―generally known as trickle-bed reactors― have semi-

empirical equations that are commonly used for design purposes.9 However, the inherent packing 

randomness combined with the strong capillary and viscous forces in micropacked-bed reactors 

preclude the use of simple and accurate modeling equations to predict mass-transfer coefficients 

under different conditions.  
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In the literature, several authors have applied visualization techniques to gain a physical 

understanding of micropacked-bed media. The usual approach is to use micro-fabricated plate-

beds.10–14 For example, Marquez built a series of microdevices with micropillars to have a clear 

2D visualization of the complex hydrodynamics at these scales.10 These authors showed that, 

even when using an ordered array of micropillars of 120 μm in diameter each, preferential 

channels of gas (i.e. gas channeling) were present. The different flow patterns obtained 

highlighted how some critical parameters ―fluid viscosity ratio, surface tension, and geometry 

including its wettability― determine the hydrodynamics of these miniaturized systems. 

Similarly, the use of small catalyst particles ―i.e. <500 μm of diameter approximately― in 

miniaturized packed-bed reactors present the following characteristic behavior (Figure 1):15 

 bed is usually saturated with liquid due to strong capillary forces; 

 gas exclusively flows through the packed-bed along preferential channels; 

 pre-wetting of the system or modification of flow rates do not significantly affect the 

path once the flow is stabilized.  

As a result of the preferential channels, poor radial dispersion and conversion are generally 

obtained.16,17 In contrast to the larger trickle-bed reactor scale, capillary forces strongly depend 

on particle size distribution, shape, and wettability of the catalyst. Thus, due to the inherent 

randomness of the packing and particle properties, it is possible to anticipate a lack of general 

reproducibility when carrying out reactions in these miniaturized systems. More importantly, a 

poor radial dispersion is obtained when preferential paths for the gas phase ―not for the liquid 

phase as it happens for trickle-bed flows― appear. The change of the fluid dynamic behavior 

when reducing the particle size, modifies the nature of preferential flow paths or “channels” 

being formed (see Figure 1). In this way, modeling strategies for trickle-bed reactors, which have 
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been based on empirical hypotheses, cannot be extended to miniaturized devices dominated by 

viscous stresses and interfacial tension forces.18 

 

 

Figure 1. Conceptualized representation of the hydrodynamic behavior for a macro-scale 

packed-bed reactor or trickle-bed reactor (top) and a miniaturized packed-bed reactor (bottom). 

The pie chart shows the volumetric fraction of solid, liquid and gas in the bed (reciprocal of 

porosity, liquid and gas hold-up, respectively). Adapted with permission from ref. 15. Copyright 

(2010) American Chemical Society 

 

Larachi et al. studied the influence of the bed geometry and particle size via wall microscopic 

visualization and residence time distribution (RTD).19,20 Wetting patterns and transient times (i.e. 

time required to achieve a steady state) were significantly affected when changing the particle 

size diameter from ~53-63 μm to 106-125 μm, whereas a change of the bed cross section 

geometry (circular or square) did not have a significant effect. This study helped visualize gas-
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liquid interaction right downstream gas and liquid reactor inlets and to understand how reduced 

particle sizes achieved earlier the high gas-liquid interaction regime (desired on this scale). In 

fact, mass transfer coefficients of miniaturized packed-beds are intimately linked to gas-liquid 

interactions ―where channeling phenomena are to be avoided―.21,22 If one tries to reduce the 

high pressure drop by increasing the reactor diameter, the mass-transfer coefficients are 

significantly reduced due to these preferential paths being formed. Moreover, the confinement of 

particles near the wall introduces structural irregularities that cannot be avoided. This increase of 

porosity near the wall promotes the appearance of another type of preferential channel known as 

wall channeling. In order to deal with these effects from the modeling point of view, one can use 

theoretical mass transfer coefficients with penalization factors that account for the radial 

dispersion and partial wettability.17  

Albeit flow regime maps can be depicted for each application, there is still a plethora of 

parameters ―i.e. liquid and gas velocities, the physical properties of the fluids, characteristics of 

the solid surfaces, inherent construction errors or even the design of the fluid inlets― that cannot 

be taken into account in simple models.16 For instance, the combined effect of capillary forces, 

viscous forces and wettability (impact of the contact angle) has not been elucidated until very 

recently with the aid of Hele-Shaw cell geometries.23–25 These studies are part of numerous 

efforts to understand multiphase flows through porous media similar to microparticulate packed-

beds in other areas of research: oil recovery26,27 and geological carbon dioxide sequestration,28,29 

among others.30 Interestingly, all these works show improvements when the wettability of the 

displacing fluid is restricted up to a certain value of contact angle.31 In liquid-liquid porous 

application domains, preferential channels are usually classified as either capillary or viscous 

fingering.32 The capillary number (Ca ≅ 𝜇𝑢/𝛾) is used to discern which kind of fingering may 
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occur, where 𝛾 is the surface tension, 𝜇 the viscosity and 𝑢 the velocity of the fluid being 

displaced. Interestingly, for capillary flow regimes (𝐶𝑎 ≪ 1), reducing the surface wettability of 

the particles can help to reduce flow maldistribution to some extent.24,33,34 

To understand the formation of preferential channels in micropacked-bed reactors (also known 

as miniaturized packed-beds), a computational model is proposed in this work. First, a literature 

case is used to validate the selected modeling approach (Phase Field Method, PFM) under 

different conditions. Later, we identify key parameters that can significantly reduce gas-

channeling problems such as packed-bed geometry and wettability. Our findings can be 

primarily used for the design of new catalysts/beds that improve the hydrodynamics in random 

micropacked beds at different scales, ultimately reducing several of the existing mass-transfer 

unknowns and limitations. 

Theory and numerical methods 

Two main approaches haven been proposed to address the question of simulating two-phase 

flows at the particle- or pore-scale: interface tracking and interface capturing.35 To simulate the 

bubble breakup and coalescence through a porous medium, two popular interface capturing 

approaches are the level set (LSM) and the PFM.35,36 Usually, PFM is preferred over LSM since 

it is a physically-based method and provides more accurate and efficient results.36,37 In addition, 

PFM can be successfully coupled with heat transfer equations38 at this simulation scale. Another 

strategy to model the two-phase flow commonly used is the Volume of Fluid Method (VoF).39–42 

However, the VoF method cannot capture the curvature of the interface properly, leading to 

spurious or parasitic velocities that need a special treatment37,43. Very recently, meshless 

methods, such as the Smoothed Particle Hydrodynamics (SPH) method have been also used and 
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validated for porous structures.44 Another interesting modeling approach is to combine multiple 

lengths and timescales, only focusing on the interface while solving Darcy (porous) formulations 

in saturated domains.45–49 

The main practical advantage of using the PFM is the minimum parameter tuning required to 

obtain accurate results36,37 and the ability to combine it with other physics of interest.38 Thus, in 

this work, we have used the finite-element method (FEM) to solve the PFM equations via the 

commercial software COMSOL Multiphysics™. Although a comprehensive explanation of the 

PFM formulae is given in the Supporting Information, a detailed description of the numerical 

schemes ―necessary to solve this system with a fourth-order partial differential equation― can 

be found in the literature.36,38,49  

Literature case review and model validation  

Micro-fabricated bed for two-phase flow studies 

Marquez carried out gas-liquid flow visualization studies through a micro-fabricated plate with 

different pillar array geometries10. Ethanol and polyethylene glycol 200 (PEG-200) were fed to 

the constructed micro-fluidic device made of polydimethylsiloxane (PDMS). The authors 

performed several experiments introducing one of these two liquids and air to modify the 

viscosity ratios and interfacial tension forces while maintaining the system geometry. In this 

way, they studied hydrodynamic interactions to identify relevant parameters while gaining a 

physical understanding of the flow pattern in packed-bed microreactors. Concretely, authors used 

a uniform packed ⌀ 120 μm micro-pillar configuration (A*
2 lattice) with a center-to-center 

distance of 150 μm. More details of the micro-fabricated device can be found in 10. 
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The dimensions and hydrodynamic parameters used in this work are shown in Table 1. The 

reader should note that, to limit computational costs, the geometry was reduced to a 

representative elementary volume (REV). Thus, the micro-fabricated device10 was not entirely 

modeled and, more specifically, the gas and liquid inlets and pillars were placed with the 

intention of minimizing their impact on the simulation results. Symmetry planes were used at the 

extremes of the domain. Albeit authors did not mention the quality of the construction, a zero-

centered Gaussian distribution curve with a standard variation for the micro-pillar position of 5 

μm was chosen. This random construction lumps together all the possible geometric and surface 

inhomogeneities that are inherent to the system. The visualization experiments10 were performed 

within a few hours (short term experiments) in order to maintain constant the value of the contact 

angle. No mention is made to any type of dimensional change observed during the experiments. 

Actually, the same device was used with induced either hydrophilic or hydrophobic surfaces, 

without any noticeable charge in the device geometry.  

 

Table 1. Liquid properties and dimensions of the domains for the simulations of micro-

fabricated bed devices by Marquez et al.10 

Simulation 

domain 

Liquid width  

[mm] 

height 

[mm] 

𝝁𝑳  

[mPa·s] 

𝝈  

[mN·m-1] 

𝒖𝑳   

[mm·s-1] 

𝒖𝑮  

[mm·s-1] 

𝜽 

1 ethanol 2.25 1.8 1 22 2.7 52.7 37.8º 

2 ethanol 2.25 1.8 1 22 2.7 52.7 6º 

3 PEG-200 2.25 1.3 37.7 44 6 50.3 45º 
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Different contact angles were used as boundary conditions (see Table 1). As the authors 

described,10 they modified the wettability of the PDMS with a plasma treatment. For the system 

with PEG-200/air, the authors did not specify the value of the contact angle. Given the nature of 

both solvent and surface, and in order to avoid artificially added capillary effects, a constant 

value of 45º was chosen for the contact angle. 

Computational resources are the limiting factor for two-phase flow simulations via PFM. At 

this simulation scale, it is not clear whether 3D models ―which require the use of high-

performance computers with hundreds or thousands of cores― are necessary in order to obtain 

more accurate results.40 Thus, in agreement with other authors, we believe that the 2D-model 

presented here could be used to understand the effect of relevant parameters that tend to be 

disregarded during reactor design. 

 As this microfluidic device is very thin with rather low velocities (laminar flow), the real 3D 

system was modeled according to the PFM and laminar 2D formulation as described in the 

Supporting Information. Triangular meshing and reduced time-step sizes were controlled by 

COMSOL MULTIPHYSICS (v4.4 and 5.2, COMSOL AB) numerical solvers using a backward 

differentiation formula. As mentioned earlier, the refinement of the mesh was performed solely 

in the vicinity of the gas-liquid interface where a 5μm finite element size was used for the rest. 

This approach significantly reduces computational cost and allows to obtain simulation results on 

the time scale of a few days using a computer with two 12-core Intel Xeon E5 processor. 

Hydrodynamic Model Validation of a Two-phase Flow 

For the air/ethanol system, Figure 2 compares the results where the wettability was modified 

(contact angle of 37.8º and 6º, respectively). Since the provided images of the actual experiments 

were captured at a much slower speed than the physics of interest, we selected three situations 
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where the flow pattern differed.  For the sake of visual comparison, similar color code is 

maintained both in experiment and simulation results.  

 

 

 

Figure 2. Comparison between flow patterns obtained in the experiments (left and center 

column) and via PFM-model simulation (right column) for the ethanol/air system. For the 

experiments, white/gray color represents the liquid, whereas black color indicates the gas phase 

and micro-pillar sections. For the simulation results (right column), gray color represents the 

micro-pillars instead. First row (a) has a direct feed of gas while second row (b) has an obstacle 

at the entrance to test inlet effects. The third column (c) corresponds to an increase in wettability 

of the liquid (change in contact angle from 35.7 down to 6º) manifesting gas channeling issues at 

these scales. Experimental results adapted with permission from ref. 10. (Copyright 2010) 

Marquez Luzardo, N. M.  
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In both cases, we can see that the simulated flow patterns reproduce liquid enclosures inside 

the gas bubbles as well as the fingering movement of the gas (Figure 2). The model geometry 

used in Figure 2b was slightly modified as well ―note the obstacle represented by a thin wall 

between two pillars located in front of an inlet. This was done in order to assess the impact of a 

significant inlet modification on the simulated flow patterns obtained. As mentioned, the case of 

a PEG-200/air two-phase flow was also simulated. Figure 3 shows a comparison of two flow 

patterns. 

  

 

Figure 3. Comparison of flow patterns obtained from the experiments (a) and from the 2D-

model (b) for the PEG-200/air system (Table 1, third row). For the experiments, white/gray color 

represents the liquid, whereas black color indicates gas phase and micro-pillars. For the 

simulation results, similar color code was chosen to ease the comparison. White arrows on the 

right indicate the velocity field showing a main preferential gas channel stream. Experimental 

results adapted with permission from ref. 10. (Copyright 2010) Marquez Luzardo, N. M. 

  

Again, we can see that the model matches the experimental micro-scale results. Particularly, 

the increase of surface tension of the liquid shortens the gas slugs and reduces the size of the 
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bubbles. The placement of obstacles nearby the gas and liquid inlets create enough perturbation 

to obtain characteristic flow paths within the reduced simulation domain.  

 

 

Figure 4. Self-similarity of the studied gas flow patterns. For the experimental results, colored 

points represent each of the subsampled fractal dimension obtained. The statistical distribution of 

the experimental results is also shown via embedded boxplot and violin plots. Within the 

interquartile range, square dots represent the averaged fractal dimension of simulation results.  

 

To quantify the statistical self-similarity between the flow patterns, the fractal dimension was 

computed by subsampling the experimental and simulation results (see SI). Despite the 

complexity of the transient flow under study, the fractal dimension of the simulated gas-flow 

patterns are contained within the interquartile range of the experimental data set (Figure 4). The 

expected differences are attributed to the inlet configuration and inhomogeneous geometry and 

material wettability,40 which are common uncertainties found experimentally.10 This agreement 
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points to the fact that PFM is a powerful tool able to capture and foresee the fundamental 

physical characteristics of the two-phase flow on the scale of the micropacked bed. 

 

Discussion: predicting and reducing gas channeling  

Once we validated the model, flow patterns as a function of some physical parameters can be 

further investigated. Concretely, the effect of gas and liquid flow rates as well as the contact 

angle is discussed for a micropacked-bed geometry intended for carrying out hydrogenation 

reactions.  

Packed-bed geometry and flow rate impact 

Two-phase flow CFD results have shown a strong dependence on the geometry being 

simulated, especially with particle diameters below 500 μm, where the hydrodynamics are 

dominated by viscous stress and interfacial tension forces. We have used two model systems to 

illustrate gas-channeling phenomena: 

1. A random 2D geometry that maintains void distances among variable diameter 

particles, mimicking a real porous skeleton. 

2. A 2D section from a 3D random arrangement computationally generated using a Monte 

Carlo approach.50,51 

In dealing with the first system, we can define now our REV as a rectangular domain of 1 mm 

in height and 0.5 mm in width, including a random distribution of particle diameters mean-

centered at 100 μm (Figure 5). Analogous boundary conditions to those described earlier were 

used. Thus, the following models will evaluate the evolution of a preferential gas channel 

through a micropacked-bed not affected by the reactor walls. To demonstrate the effect of 
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extreme case scenarios, volumetric flow rates of both fluids are ranging from 1 to 15 mL·min-1 

for the liquid and from 50 up to 200 mL·min-1 for the gas ―through a packed-bed of 10 mm of 

inner diameter― (see  

Table 2). As for the rest of fluid dynamics parameters, between the solvent and the gas 

(hydrogen), the interfacial tension is 20 mN·m-1 whereas the log of density and viscosity ratio are 

4 and 3, respectively. For these simulations, a constant contact angle of 45º for the wetting phase 

was considered. 

 

Table 2. Flow rates and superficial velocities applied for the analysis of gas channeling in a 2D 

packed bed geometry 

Simulation a b c d 

𝑭𝑳 [mL·min-1] 10 10 1 15 

𝑭𝑮 [mL·min-1] 50 200 100 100 

𝒖𝑳 [mm·s-1] 2.1 2.1 0.2 3.1 

𝒖𝑮 [mm·s-1] 10.6 42.4 21.2 21.2 

 

 

From the simulation results shown in Figure 5 (a, b, c, d and e), it can be seen how the main 

preferential gas channels and liquid hold-up did not differ significantly for different flow rate 

ratios. A reactant tracer was introduced with the gas to give an intuition of the residence time 

differences among the different cases. 
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Figure 5.  Array of particles simulating a miniaturized packed-bed showing gas channeling at 

different flow rates after flow stabilization. Color indicates the concentration of a reactant tracer 

in the gas. Even increasing four times the gas flow rate (from a to b) or the liquid flow rate by a 

factor of 15 (from c to d), long term flow paths show almost identical gas channeling behavior.  

A plot of liquid hold-up as a function of time is given in (e). 

 

These results illustrate one of the main limitations of packed-bed microreactors. In contrast to 

the behavior observed in trickle-bed reactors ―where the liquid, and not the gas, forms 

preferential channels―, wettability issues cannot be generally solved by increasing flow rates. 

Gas-channeling is mainly dependent on the (random) pore structure. This allows to gradually 

grasp the difficulty of obtaining simple correlations to predict design parameters. 
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Influence of the Contact Angle 

To the best of our knowledge, the effect of the contact angle in packed-bed microreactors has 

not been thoroughly studied yet. However, very recently it was found  that a partially wet bed led 

to the best yields in a packed-bed microreactor, outperforming batch results.52 However, this 

flow pattern was obtained as an optimal combination of gas and liquid flow rates rather than 

through surface wettability control. There is a growing interest in the effect of contact angle 

―including advanced modeling considerations― in capillary systems similar to packed-

beds.25,27,53,54 

As seen in the validation results (Figure 2a and b compared to c), varying the contact angle has 

a significant impact on gas channeling. Fluid-fluid wettability control has been recently 

demonstrated in Hele-Shaw packed cells for capillary flow regimes.24,33 We can further visualize 

this effect using the geometry defined in Figure 5 as well as boundary conditions for the case 

described in Table 2b (unfavorable conditions to see channeling effects).  Gas preferential paths 

for three different contact angles are shown (Figure 6) after 10 ms. The use of constant or static 

values of contact angle is an adequate modeling assumption with this working geometry and 

scale.55  

 

Page 16 of 36

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

17 

 

  

Figure 6. Simulation results of an organic solvent (l) and H2 (g) through a REV domain of a 

randomly packed columns of 100 μm in diameter (mean-centered). Results are calculated for (a) 

75, (b) 60 and (c) 45º contact angle values leading to an increase of gas channeling. The gas 

phase is represented in red and the liquid in blue. Green colors correspond to the gas-liquid 

interface, while small white arrows indicate the velocity field.  

 

Marquez also documented this particular behavior with the ethanol/air flow system. Authors 

mentioned explicitly how contact angle produced a significant impact on the flow pattern 

increasing the “snaking” movement of the bubbles being formed10. In this regard, both simulation 

and experimental results confirm the wettability impact when working at miniaturized scales in 

packed-bed reactors. Thus, the question that arises now is whether there is an optimum contact 

angle that keeps high liquid hold-up values but reduces gas channeling (i.e. higher conversion 

and selectivity). We can perform a contact angle study in a 2D domain obtained from a section of 

a realistic 3D packing (second method described above) and statistically analyze gas-channeling 
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as a function of the contact angle for a scaled-up reactor at high superficial velocity speeds (0.1 

m·s-1 and 0.05 m·s-1 for the gas and liquid, respectively). The velocity for the gas only doubles 

that for the liquid. This is consistent with reactions in which the substrate that reacts with the gas 

is dissolved in an appropriate solvent in such a way that its concentration has the same order of 

magnitude as the dissolved reactant.  

 

 

Figure 7. Histograms showing statistical results (time-average and standard deviation) of gas 

hold-ups (a, b, c, and d) as a function of contact angle. Below each histogram, a long exposure 

(time-averaged) pseudo-stationary saturation image (colored) of a 2D section packed-bed 

microreactor geometry with particles with of a mean-centered diameter at 100 μm (a̅, b̅, c̅, and d̅).  
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From the results shown in Figure 7, we can observe how increasing the wettability of the 

catalyst support produces more gas channeling. Instead of using a static image, a time average of 

the flow paths is computed, as if a long exposure image was taken, to better illustrate the gas 

channeling once the flow has been pseudo-stabilized. Specifically, the images in Figure 7 show 

surface maps of the local time-average values of the order parameter 𝜙. The change of 

wettability can be quantified by comparing histograms that measure the gas volume fraction 

longitudinally. Note how, while maintaining similar absolute values, the distribution sharpens 

below 60º indicating the formation of preferential paths (Figure 7d compared to 6b and c). This 

does not seem an intuitive result. It is usually accepted that the catalyst support and solvent 

should be chosen to properly wet the catalyst surface since is at the solid-liquid interface where 

the hydrogenation reaction takes place. However, when radial-mass transfer problems appear due 

to gas channeling phenomena, the affinity of the liquid to the surface of the substrate needs to be 

diminished at least down to 60º. If the surface affinity to the liquid is misguidedly increased, 

channeling (Figure 7d) starts to occur. Note that at contact angle values of 40 or 30º (Figure 8), 

capillary forces start to produce bubble entrapments that are well captured by the dispersion that 

appears at the histogram (Figure 8b). If, in contrast, the surface is chosen to behave as non-

wetting (above 90º as seen in Figure 7a̅), the gas phase starts displacing most of the liquid, 

resulting into a wider distribution with minimal deviation (Figure 7a), 
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Figure 8. Histograms (a and b) show the quantitative results of the gas hold-ups (and standard 

deviation) for two values of the contact angle. The time-averaged pseudo-stationary saturation (a̅ 

and b̅, colored) illustrates how the confinement of bubbles occurs within the porous skeleton as 

the surface wettability increases. The 2D micropacked-bed geometry was generated from a 3D 

packing with a distribution of particle diameters mean-centered at 100 μm. 

 

It is worth discussing further this significant hydrodynamic change for a contact angle of 60º. 

Let us first revisit recently published work in other areas where authors thoroughly explored, and 

rationalized channeling in porous media as a function of the contact angle either in experimental 

setups24,33 or with new theoretical models.25,53 Specifically, Trojer et al. stabilized the two-phase 
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flow fingering by modifying the surface wettability of Hele-Shaw packed cells with glass beads 

within capillary flow regimes.33 Similar findings have been uncovered in geological CO2 

sequestration28,29 or oil recovery26,56 systems. On all the cited experimental works, there is one 

common pattern: capillary fingering is significantly reduced when the wettability is restricted 

(above 60º for the wetting phase). 

The existence of a critical value of the contact angle around 60º during fluid invasion can be 

explained by the geometrical arrangement of the packed bed57. Irregular capillary forces are 

produced by the pore differences that appear among the different packing densities. When the 

particle arrangement nearly forms a regular lattice (either hexagonal or cubic close-packing), 

spheres tend to adopt tetrahedral pore structures where their centers form an angle of ~60º (see 

Figure 9). Under this close-packed arrangement, critical contact angle has been theoretically 

shown to appear when wettability is reduced above the 60-75º region,31 increasing the 

probability of violent injections of fluid invading the porous structure (also known as Haines 

jumps).  In this way, the physically-based PFM is not only able to reproduce experimental 

results, but also support these recent findings in other areas of research. 
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Figure 9. Sketch of a porous invasion mechanism31 in a dense arrangement of randomly packed 

spheres (a), where 𝜃 indicates the contact angle of the displaced phase. Histogram (b) of the 

neighboring particle angle 𝛼 for the 2D section of a closely-packed 3D geometry used in this 

work. 

Similar trends have been reported when using Hele-Shaw cells with 100 µm cylindrical posts 

instead of packed beads34.  By studying the capillary surface in a wedge, Concus and Finn58 

showed that a capillary surface is unstable if the relation  𝜃 + 𝛼/2 ≥ 𝜋/2 is not satisfied, where 

𝜃 are the contact and 𝛼 the corner angle.  
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Figure 10. Fingering map where Ca is the ratio between viscous forces and capillary forces 

(Ca = 𝜇𝐿𝑢/𝛾) and θ is the contact angle. Partially decreasing the global wettability of the 

particles can increase the mass transfer coefficient if viscous forces are controlled (e.g. lowering 

flow rates or increasing the reactor diameter). 

One should bear in mind that trying wettability modification should be the result of a trade-off. 

Reducing the liquid affinity of the surface in a marked degree will result in a poorly wetted 

catalyst which can be more detrimental than channeling, e.g. due to the appearance of non-

selective reactions and the occurrence of hotspots. The screening analysis performed and 

illustrated in Figures 7 and 8, identify the complex balance that the optimum contact-angle 

should achieve. The effect of contact angle in our simulations, supported by the experimental 

results mentioned above, can be sketched as in Figure 10. The green-shaded area indicates the 

region where the benefits of increasing the contact angle will be more significant ―capillary 

fingering regimes.  Reducing the gas-channeling via wettability control can lead to mass transfer 
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enhancements given the better radial distribution of the gas phase. If the interaction between the 

solvent and catalyst surface is designed to have an average contact angle of 60º, the aleatory 

nature of the packed-geometry may lead to hydrodynamic regimes where the fluid-fluid ‘violent’ 

invasions (or bursts) are continuously modified. This knowledge, supported by both our 

simulations and recent experimental results, demonstrate plenty of potential, especially when 

combined with the parameter tuning of the rest of operating conditions and design parameters. 

 A final comment should be devoted to discussing the significance of the values of contact 

angle for samples with a high degree of surface nonideality such as that of the particles in the 

packed bed. In the simulations presented above, a critical assumption is that the contact angle has 

a meaningful, definite value for the porous solid. In this respect, it has been shown that the 

contact angle can be measured in a straightforward way for packed beds composed of the typical 

substrates employed in heterogeneous catalysis, being the reported results in terms of surface 

interactions.59 

Conclusions 

In this work, we have dealt with the modeling and simulation of two-phase miniaturized 

packed-bed reactors. With the advances in new numerical methods and computational power, a 

physically-based model, named Phase Field Method (PFM), is applied to simulate two-phase 

flow in a microfabricated packed system found in the literature10. 

The main conclusions of this work are the following: 

 The phase-field method (PFM) is able to simulate a two-phase flow micro-system 

reasonably well as compared to real experiments. Its physically oriented mathematical 

approach handles the complex pore geometries and the gas-liquid topological changes. 
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 PFM confirms how, upon reducing the particle size down to the order of a few micros, 

forces such as viscous stress and interfacial tension become significant, leading to gas 

preferential channels whose presence cannot be diminished by increasing flow rates. 

 The proper control of surface contact angle can decrease significantly gas-channeling 

phenomena. Perhaps counter-intuitively, reducing the wettability of the particle surface 

to a certain extent (60 to 90º for capillary-driven flow regimes) leads to a flow regime 

where the gas-liquid-solid interaction is homogenously increased. The potential 

enhancement of gas-liquid interaction and reduction of gas channelling observed in our 

PFM simulations is backed by theory and supported by recent experimental studies in 

the literature.24,31,33,34 

 

As for the next steps, we believe that miniaturized packed-bed reactors with intermediate 

wetting characteristics and small bed particles are worth to explore when mass-transfer is limited 

by gas-channeling phenomena. An immediate consequence will be the increase of reproducibility 

leading to more reliable flow maps and correlations. However, the proper choice of catalyst 

support and solvent or a surface treatment to modify the wetabbilty is not always possible. Silica 

and alumina supports are known for their high wettability (low contact angles) regardless of the 

nature of the solvent.59 In those cases, hydroxyapatite materials interact with alcohols (e.g. 

ethanol or 1-propanol) allowing an intermediate wettability of the support Alternatively,  the 

addition of fine materials that alter the average contact angle of the bed can be proposed as an 

unstructured gas flow distributors. For instance, adding PTFE microbeads into the bed will 

reduce the affinity of hidrophilic liquids, promoting gas-liquid interaction and reducing gas 

channeling issues. Clearly, this is still a challenging area of research. The reduction of 
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preferential channels at the wall, especially relevant when reactor diameter is increased (scale-

up), is also within our scope for future research.  We believe that the new ideas presented in this 

work, and the ensuing advances in both theoretical and experimental results, will likely have 

significant and practical impact on the design micropacked-bed reactors. 
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Nomenclature 

Symbol SI Units Description 

𝝁 [Pa · s] viscosity 

𝒖 [m · s-1] velocity 

𝜸 [N · m-1] surface tension 

𝐂𝐚 [-] capillary number 

𝜽 [rad] contact angle 

𝑭 [m3 · s-1] volumetric flow rate 

𝑫𝒇 [-] fractal dimension 

𝝓 [-] order parameter 

𝑪 [mol · m-3] concentration  

𝒉 [-] hold-up  

𝜶 [rad] neighboring particle angle 
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Subscripts 

Symbol Description 

𝑳 Liquid phase 

𝑮 Gas phase 
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