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Summary 

1. The measurement of animal density may take advantage of recent technological 

achievements in wildlife video recording. Fostering the theoretical links between the patterns 

depicted by cameras and absolute density is required to exploit this potential. 

2. We explore the applicability of the Hutchinson-Waser’s postulate (i.e., when animal 

density is stationary at a given temporal and spatial scale, the absolute density is given by the 

average number of animals counted per frame), which is a counter-intuitive statement for 

most ecologists and managers who are concerned with counting the same individual more 

than once. We aimed to reconcile such skepticism for animals displaying home range 

behaviour.  

3. The specific objectives of this paper are to generalize the Hutchinson-Waser’s 

postulate for animals displaying home range behaviour and to propose a Bayesian 

implementation to estimate density from counts per frame using video cameras.  

4. Accuracy and precision of the method was evaluated by means of computer 

simulation experiments. Specifically, six animal archetypes displaying well-contrasted 

movement features were considered. The simulation results demonstrate that density could 

be accurately estimated after an affordable sampling effort (i.e., number of cameras and 

deployment time) for a great number of animals across taxa.  

5. The proposed method may complement other conventional methods for estimating 

animal density. The major advantages are that identifying an animal at the individual level and 

precise knowledge on how animals move are not needed, and that density can be estimated in 

a single survey. The method can accommodate conventional camera trapping data. The major 

limitations are related to some implicit assumptions of the underlying model: the home range 

centres should be homogeneously distributed, the detection probability within the area 

surveyed by the camera should be known, and animals should move independently to one 

another. Further improvements for circumventing these limitations are discussed. 

 

Key words 

Abundance, biased random walk (BRW), counts, movement, space occupancy, speed, 

terrestrial and aquatic wildlife surveys, video recording  
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Introduction 

 

How to accurately and precisely measure animal density (i.e., the number of animals 

per unit area) is a long-standing but not fully resolved question (Dénes, Silveira & Beissinger 

2015). With the recent technological achievements in wildlife video recording, managers and 

ecologists have gained powerful tools for improving terrestrial and aquatic wildlife surveys, 

which typically target animal distribution, abundance or behaviour (Burton et al. 2015). For 

example, unmanned aerial vehicles (UAVs) are currently used for a wide range of wildlife 

monitoring applications (Linchant et al. 2015), covering birds (Vas et al. 2015) to terrestrial and 

aquatic mammals (Martin et al. 2012; Hodgson et al. 2016).  In aquatic systems, the recent 

miniaturization and cost reduction of underwater video recording devices and the installation 

of cabled video observatories have broadened the remote, long-term and high-frequency 

monitoring of fish and their environments (Aguzzi et al., 2015; Matabos et al. 2015). An 

additional advantage of camera devices is the minimization of wildlife disturbance (Assis et al. 

2013; Vas et al. 2015) and researcher risk linked to surveying under difficult conditions and in 

hard-to-reach populations or areas (Martin et al. 2012; Hodgson et al. 2016; Goebel et al. 

2015). Overall, changing from conventional survey methods (e.g., physical mark-and-recapture 

surveys, visual censuses, trammel-net surveys, etc.) to camera-based wildlife assessment may 

represent a paradigm change in the current technological era. For example, photo-

identification (Moya et al. 2015) may become the input for spatial capture-recapture models 

(Chandler & Royle 2013). Concerning marine wildlife assessment, conventional methods (e.g., 

underwater visual census) are currently being complemented with data from underwater 

cameras (see Mallet and Pelletier (2014) for a review).  

 The technological advances in wildlife imaging have opened at least two new 

challenges and opportunities: developing novel algorithms for data mining and automated 

image interpretation (Aguzzi et al. 2015, Boom et al. 2014, Díaz-Gil et al. 2017;  reviewed in 

Dell et al. 2014) and fostering theoretical links between the patterns depicted by cameras and 

absolute animal density. Here, we focus on this second challenge because there continues to 

be debate on which method and camera metric should be preferred. Most of the proposed 

methods can be classified into two broad categories: empirical approaches that aim to 

correlate a given camera metric with independent estimates of density (e.g., Pelletier et al. 

2011; Bacheler et al. 2013; Schobernd et al. 2014; Campbell et al. 2015) and theoretical 

approaches that exploit different model-derived expectations regarding how animals move 
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and thus how they are expected to intercept a camera (e.g., Rowcliffe et al. 2008; Keeping & 

Pelletier 2014; Boschetti & Vanderklift 2015; Lucas et al. 2015).  

Most of the theoretical contributions are based on the encounter concept, which is 

defined as any non-instantaneous event during which an animal is continuously detected by a 

camera. The encounter rate (i.e., the number of encounters per unit time) depends not only on 

the animal density but also on the way the animal moves (Hutchinson & Waser 2007; Rowcliffe 

et al. 2008; Glennie, Buckland & Thomas 2015). This dependency imposes severe difficulties in 

practice. For example, the definition and measurement of speed is an elusive topic (e.g., 

average measures of foraging, maximum, critical or cruising speed by telemetry, forced swim 

tests, camera traps or GPS telemetry, among others), and accurate and standardized data on 

animal speed are relatively scarce. This scarcity is particularly apparent among aquatic animals 

(Boschetti & Vanderklift 2015), although see Hussey et al. (2015) for improvements. 

Fortunately, the speed dependency of encounters may be circumvented using an 

alternative metric: the association (Hutchinson & Waser 2007), which is defined as the number 

of ongoing occurrences within a given area and at a given instant. In terms of a camera survey, 

this metric may be translated as the number of animals counted within a given area in a given 

frame. According to Hutchinson & Waser (2007), the absolute animal density can be properly 

estimated from the averaged counts across n independent frames divided by the area actually 

surveyed by the camera, under the assumption that animal density is stationary at a given 

temporal and spatial scale. This unexpectedly simple postulate may seem quite counter-

intuitive for most ecologists and managers when considering the pros and cons of 

implementing a camera-based wildlife monitoring program because most methods are 

typically concerned with counting the same individual more than once (Ward-Paige, Mills 

Flemming & Lotze 2010; Campbell et al. 2015). This assessment is reinforced by the fact that 

many animals remain within a given area or home range (hereafter HR) most of the time, 

which is usually smaller than the extent of suitable habitat  (Börger, Dalziel & Fryxell 2008; Kie 

et al. 2010; Owen-Smith & Martin 2015; Tao, Börger & Hastings 2016). Certainly, in these 

cases, the probability of counting the same animal in several frames is non-negligible. This 

property is actually exploited in spatial capture-recapture models that explicitly require the 

detection of the same individual more than once and in more than one site (Chandler & Royle 

2013).   

In order to reconcile such skepticism, this work aims to demonstrate that animal 

density can be effectively estimated from animal counts averaged across several frames of a 

video survey if the probability density function of finding an animal in a given location is 

stationary, which is exactly the case for animals displaying home range (HR) behaviour. To 
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achieve this objective, we first introduce a movement model that describes a HR pattern of 

space occupancy with radial symmetry (as an approximation). Second, we generalize the 

Hutchinson-Waser’s postulate for any movement model leading to a HR pattern of space 

occupancy. Finally, several computer simulation experiments consisting of moving animals 

according to realistic (empirically estimated) movement parameters in an arena of known 

density are implemented, which allowed to assess the reliability of the method for obtaining 

accurate and precise density estimates after a sensible sampling effort (i.e., number of 

cameras and deployment time). Sensibility analysis are completed using six well-contrasted 

animal archetypes that were selected across taxa according to a number of variables that 

beforehand were presumed to affect the accuracy and precision of absolute density estimates 

from video surveys (body mass, size of the HR, speed and density). The limits of the method 

and the suitability of the implicit assumptions are discussed. 

 

Materials and Methods 

 

 HR space occupancy pattern as described by a Langevin process 

Several mechanistic models are able to reproduce the spatial patterns displayed by 

free-ranging animals, which consist of remaining within a relatively small area or HR most of 

the time (Börger et al. 2008; Van Moorter et al. 2009). Among them, for simplicity and 

convenience, we considered the biased random walk (BRW), which can be mathematically 

described as a special case of the Langevin equation (Gardiner 1990). Nevertheless, the 

derivation of the expected number of animals counted in a given frame (see below) is general 

for any movement model that results in a HR pattern. 

According to Dubkov and Spagnolo (2007), the Langevin equation is given by: 

 
   

  
                         eqn 1 

where       denotes the particle displacement. This formulation splits a deterministic force 

term (i.e., the potential field within which a particle is moving),          , from a stochastic 

stimulus term,        , which is Gaussian-distributed (white noise) with zero mean, zero 

covariance between the two dimensions (i.e., spatial coordinates), and the same variance (ɛ) in 

each spatial dimension. Concerning the deterministic force, the simplest choice for the case of 

a HR pattern is a harmonic, time-invariant, potential field given by: 

                      eqn 2 

where k denotes the strength of the harmonic force.  
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 The biological rationale behind this model is that animals move within a homogeneous 

environment following random stimuli with an additional rule that determines a tendency 

(drift) to remain around a specific point (the HR centre). The emerging pattern is a circular HR 

(Palmer et al. 2011). 

The numerical approximation of eqn 1 to the real trajectory sampled with a 

finite time step, ∆t, can be described according to Alós et al. (2016) by: 

                                   eqn 3  

where     denotes the position of the animal at time        (n being an integer),     is the 

position of the center of the HR, k is the central harmonic constant force attracting the animal 

toward     (eqn 2), and      is a stochastic term, normally distributed with zero mean and 

standard deviation in each dimension approximated according to Palmer et al. (2011) by: 

               

  
          eqn 4 

where ε is the variance of        in eqn 1. 

Provided that k and ε are difficult to interpret on the biological side, two biologically 

interpretable parameters (radius and speed) have been derived from them. The radius of the 

circular HR (area within which an animal has a 95% probability of being found when a large 

period of time is considered) can be approximated according to  Palmer et al. (2011) by: 

          
           

 
       eqn 5 

Similarly, speed can be defined as the square root of the averaged squared distance 

travelled from n to n+1: 

      
 

  
              

   
 

  
  

        

 
    eqn 6 

Note, however, that eqn 3 will be a reasonable approximation whenever the product 

k*Δt is small enough (e.g., 0.1). In that case, 

      
 

   
  

       

 
    

       

    
         eqn 7  

 

 Derivation of Hutchinson-Waser’s postulate for any animal displaying HR behaviour 

We derive the Hutchinson-Waser’s postulate according to the following assumptions:     

(i) A given camera detects (detection probability = 1) any animal within an area 

measured with negligible error (detection area).  

(ii) Animals move independently from one another.  
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(iii) Animals display a HR space occupancy pattern, and the HR centres are randomly 

and homogeneously distributed.  

The third assumption is particularly relevant. Note that strictly speaking, animal 

density is time- varying when it is naively (i.e., wrongly) defined as the number of individuals 

counted in a given area and at a given moment because animals move, and some of them may 

be continuously entering or exiting the area considered. However, when animals display HR 

behaviour, and according to eqn 1, a stationary probability density function,                of 

finding the animal at the position    exists, provided that the HR centre is located at     (Dubkov 

& Spagnolo 2007). This fact implies that under assumption (iii), animal density (thereafter, the 

density of the HR centres) is stationary at the spatial and temporal scales of the measurement 

period. In fact, the existence of     is independent of the nature of the stochastic term,      , in 

eqn 1 and guarantees that the underlying dynamic system is ergodic. Ergodicity ensures the 

equivalence of constructing     either by recording over infinite time the positions of a single 

animal or by averaging over space the positions of infinite (identical, in terms of HR size, HR 

centre and exploration rate) animals. 

When assumptions (i) and (ii) are met and     exists, the probability        that the 

camera (located at the origin for the sake of simplicity) detects an animal having its  HR centre 

at     is given by the probability density that the individual is located at   , conditional to the 

probability that the HR centre of this individual is at     , (             ), times the probability 

density of detection of the individual located at            integrated over the detection area, Z, 

of the camera: 

                              
 

 
      eqn 8   

Thus, the number of animals per frame that the camera detects is given by a Poisson 

distribution with mean: 

                        
         eqn 9 

where        denotes the density of the HR centres and the surface integral over     extends to 

the whole space. In the specific case of a homogeneous distribution (assumption iii), and 

since                         , the integral over     yields 1, hence, 

                                   
 

  
                       

 

 
  eqn 10 

where Z is the detection area of the camera where        is one. Thus, the observed number of 

counts in a given frame of the camera will be Poisson-distributed with characteristic 

parameter         . 

This derivation can be extended to the case where multiple cameras are deployed to 

allow between-camera variability to accommodate some environmental variations or 
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patchiness (i.e., the sites where cameras are deployed may display environmental differences, 

which may translate into differences in animal densities). In that case, the observed number of 

counts in frame i of camera j (   ) is assumed to be Poisson-distributed around a mean of   . At 

an upper level, the log-transformed values of    are assumed to be normally distributed 

around a general mean of µ with a standard deviation of sd (i.e., cameras are considered as a 

random factor):  

                            eqn 11 

               

                    

           

where D is the density of the HR centres, L is the radius of the detection area of the camera, 

and    is the standard deviation of the between-camera differences (  ). Therefore, the 

averaged density across cameras and its variance can be derived from the model parameters.   

 

 Reliability and applicability of the method across taxa 

Computer simulation experiments have been conducted to explore the reliability and 

sensitivity of the proposed derivation (in terms of accuracy and precision), and its usefulness 

and limitations (in terms of applicability to realistic scenarios). Conventional sensibility analysis 

implies to explore the effects of any combination of the involved variables. Here, provided the 

large number of variables potentially involved in affecting the quality of density estimates and 

the fact that most of them are correlated (see below), instead of exploring the full universe of 

combinations of the range of possible values for each of the considered variables, only a few  

number of them representing well-differentiated animal archetypes were selected. Archetypes 

were defined aiming to identify the key biological features of a given animal that may affect 

the quality of the estimates. Therefore, the pattern depicted in the results section should be 

interpreted as general guide since the archetypes are only defined by the selected variables 

and other species-specific characteristics are ignored (see more discussion below). 

 Selecting different animal archetypes   

A comprehensive search was conducted using Google Scholar and Web of Science to 

compile species of any taxa for which data on four variables that beforehand were presumed 

to affect the quality of density estimates (density, body mass, speed and HR size) were 

available. Different combinations of keywords (HR, biomass, density, abundance, movement, 

speed and velocity) were used. The reference list of any reference resulting from this primary 

search was in turn checked to identify additional data. Finally, when information for one of the 
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four variables was lacking for a given species, an additional search was completed with the 

species name as a keyword. Whenever possible, details of the method used to measure speed 

and density were recorded since they include different sources of bias, although we use the 

reported data irrespective of the method.. 

To select well-differentiated archetypes, a principal component analysis (PCA) was 

conducted to density, body mass, speed and HR size using the rda function as implemented in 

the vegan package (Oksanen et al. 2016) of the R software. All variables were log-transformed 

and scaled to have unit variance prior to the PCA.  

Simulation settings 

Invariant settings were preferred to facilitate the archetype comparisons. Accordingly, 

the radius of the circular area within which any animal is detected (camera radius) was defined 

in a way that, on average, m animals per frame are counted:  

                 
 

   
        eqn 12 

where D is the actual animal density of a given archetype. 

 A virtual camera was set at the centre of a squared scenario with side defined as: 

                                      eqn 13 

where Radius is the radius of the HR. The rationale of defining such a buffer (2*Radius) is that 

an animal with its HR centre outside the scenario considered (and thus not included in the 

simulation settings) has a negligible probability of being detected by the camera. The number 

of animals to be moved within such a scenario is given by side2*D. 

The HR centres of the simulated animals were randomly distributed within the virtual 

scenario (arena), and each animal was moved according to eqn 3. The movement parameters k 

and ε were estimated (eqns 5 and 6) using the data compiled as described above. Product ∆t*k 

was set to 0.1 to ensure negligible error related to the discretization of the movement 

equation (eqn 3). Note that this causes the time step, ∆t, to be scale invariant. Ten cameras 

were set in each simulation experiment. The positions of all simulated animals were actualized 

at each of 300 time steps. The number of animals within the area detected by the camera was 

recorded every 5 time steps from the 5th through the 300th time step (i.e., up to 60 frames per 

simulation experiment). Temporal autocorrelation in the counts of the same camera was 

tested with the acf function in the R program (http://www.r-project.org/). Up to 15 

independent simulation experiments (i.e., a new set of animals was created and moved in a 

new scenario) were replicated for each archetype. For each of these 90 experiments, the 

obtained dataset was a matrix of 60 rows (i.e., count of animals detected per frame in 60 

frames) and 10 columns (cameras). 
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 Estimating animal density 

Animal density was estimated by a Bayesian implementation of eqn 11 using the jags 

function from the R2jags package (Su & Yajima 2015). A uniform prior between -30 and 30 was 

set for µ, which translates into densities between 9.3×10-14 and 1.1×1013. A gamma-distributed 

prior with shape = 0.001 and rate = 0.001 were set for tolerance, which is the squared inverse 

of sd (eqn 11). For each dataset, five Markov chain Monte Carlo (MCMC) simulations were run. 

We drew 12,000 posterior samples, discarded the initial 2,000 iterations (burning period), and 

one out of 50 of the remaining iterations were kept to prevent autocorrelation (thinning 

strategy). The convergence of the MCMC chains was assessed by visual inspection of the 

chains and was tested using the Gelman-Rubin statistic (Plummer et al. 2006). A threshold 

value of 1.1 or less was assumed to suggest convergence (Gelman et al. 2013).  

 Accuracy and precision of density estimates  

Generally, the usefulness and applicability of any method depends on the effort 

needed to achieve a target accuracy and precision. Here, the effort can be expressed as the 

number of cameras and/or the deployment time. Accordingly, each of the 90 simulated 

datasets (i.e., the count of animals detected per frame in 60 frames of 10 cameras) was 

submitted to 60 analyses (i.e., the ith analysis included the first frame to the ith frame). 

Therefore, a total number of 5,400 analyses was completed (6 archetypes, 15 independent 

simulations and 60 analyses per simulation). 

 Accuracy refers to how close an estimated parameter is to the true value. Here, it was 

defined as the scaled root mean squared error (SRMSE; Walther & Moore, 2005): 

      
 

 
 

 

 
       

  
    ,      eqn 14 

where D was the true density,   was the median of the Bayesian posterior distribution, and n 

was the number of replicates (n = 15). 

Precision refers to the variability around the parameter estimate. Here, it was defined 

by the coefficient of variation (CV), which provides a scaled measure of precision, thus allowing 

a mean-independent comparison between archetypes (Walther & Moore 2005): 

   
      

  
          eqn 15 

where SD refers to the standard deviation, and    refers to the mean of the medians of the 

posterior distributions of the 15 replicated simulation experiments.  

Finally, coverage was assessed by the percentage of analyses for which the 95% 

Bayesian credibility interval (BCI) of the posterior distribution of the density estimate included 

the true value. 
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 A custom script in R was used for the full implementation (see Appendix S1 in 

Supporting Information). Furthermore, an additional simulation experiment was completed for 

assessing accuracy and precision when density is not spatially homogeneous (assumption iii) 

but patchy (see Appendix S2 for simulation details). 

   

Results 

 

 Selected archetypes and simulation experiments 

 Nearly a thousand references (n = 980) provided data for at least two of the variables 

that beforehand were presumed to affect  the quality of density estimates (density, body 

mass, speed and HR size), but data for all these variables were available for only 41 species 

(see Data Accessibility section and references list at Appendix S3). The correlation patterns 

between these variables were remarkable (see Fig. S1); further, the first two PCA axes 

explained 90% of the total variability (Fig. 1) and revealed two independent patterns: PC1 

(explaining 64.0% of the variance) was well correlated with density, HR size and biomass, and 

PC2 (explaining 25.6% of the variance) was well correlated with speed. Based on these two 

independent axes, six well-contrasted archetypes were selected by visual inspection. The 

features of the archetypes were assigned from a freshwater fish (Campostoma anomalum 

(Rafinesque, 1820)), a marine fish (Chaetodon baronessa (Cuvier 1829)), a marine mammal 

(Monodon monoceros (Linnaeus, 1758)), a bird species (Brachyramphus marmoratus (Gmelin, 

1789)), a terrestrial mammal (Alces alces (Linnaeus, 1758)) and a terrestrial reptile (Testudo 

graeca (Linnaeus, 1758)). Hereafter we refer them as freshwater fish-based (F/F-arch), marine 

fish-based (M/F-arch), marine mammal-based (M/M-arch), seabird-based (M/B-arch), 

terrestrial mammal-based (T/M-arch) and terrestrial reptile-based (T/R-arch) archetypes, 

respectively. The movement parameters for a BRW (k, ε, and ∆t in eqn 3) of these archetypes 

were estimated (eqns 5 and 6) from the values of speed and HR size reported in Table 1. 

Reliable values of camera radius (in relation to body mass) were obtained, ranging from 0.36 m 

to 630.8 m with m = 0.5 (eqn 12). However, in the specific case of the M/F-arch , the archetype 

with the smallest HR size, we fixed the mean number of counts per camera up to 1.5 to 

increase the number of animals to be simulated (Table 1).  
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 Assessing the success of density estimates 

After completing 5,400 analyses of the data from 90 simulation experiments, more 

than 90% of the BCIs included the true value irrespective of the sampling effort and archetype, 

suggesting the proper retrieving of the density (Fig. 2, Table 2).  

The general statement that accuracy and precision improve with an increase in 

sampling effort was supported in five out of the six archetypes (Fig. 2), but their densities were 

slightly underestimated. In those five cases, the averaged estimates of animal density did not 

show any substantial improvement after 1000-1500 frames. However, provided that the frame 

rate was archetype-specific, such a threshold implied different deployment times (Table 2). For 

example, for M/M-arch, accuracy improved 81% from low (50 frames, 14 hours of deployment 

time) to moderate sampling effort (1500 frames, 17 days) but only 15% from moderate to high 

sampling effort (3000 frames, 35 days). The figures for precision were similar (86% and 16%, 

respectively, Table 2).  

 When 10 cameras were deployed, the number of frames needed to reach a threshold 

of 10% accuracy ranged between 100 and 350 frames (Fig. 3a), which corresponded to 

deployment times ranging from 5 min to 75 days for each of the cameras, and depending on 

the archetype (Fig. 3b). After ranking the archetypes based on increasing deployment times, 

for F/F-arch, 9.3% accuracy and 10% precision were reached after 5 min 24 sec (250 frames); 

for M/B-arch, 9.6% accuracy and 9.7% precision were reached after 28.8 min (250 frames); for 

M/M-arch, 9.0% accuracy and 9.3% precision were reached after 28 hours 17 min (100 

frames); for T/R-arch, 6.4% accuracy and 6.6% precision were reached after 54 days 10 hours 

42 min (300 frames); for T/M-arch, 8.6% accuracy and 8.4% precision were reached after 75 

days 7 hours 48 min (350 frames). When a high effort level was considered (i.e., 3000 frames 

or from 1 hour for F/F-arch up to 1.7 years to T/M-arch), the SRMSE was under 6.5% for all 

species, with the exception of the M/F-arch. 

 Accuracy and precision improved at different rates depending on the archetype 

because they crucially depended on how well the stationary distribution was reached at a 

given temporal scale. The more time a species took in exploring a relevant fraction of its HR, 

the more sampling time was needed to reach a target quality for the density estimates. A 

greater sampling effort was needed either when animals moved slowly (e.g., T/R-arch) or HR 

sizes were large in relation to the exploration rate (e.g., M/M-arch and T/M-arch) (Fig. 3b). 

The case of the M/F-arch broke this general pattern. This species never reached a 10% 

error threshold for accuracy nor improved accuracy and precision after increasing the sampling 

effort (Fig. 3, Table 2). Likewise, the BCI of the posterior distribution was skewed in all cases 
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(approximately 20% of the BCIs were below the true value; Table 2). A plausible explanation 

for such a bias is discussed below. 

Finally, it is noteworthy that the Bayesian approach proposed here is still precise and 

accurate even in the cases of spatial patchiness, whenever cameras are deployed beyond a 

distance ensuring the absence of spatial autocorrelation (Appendix S2). 

 

Discussion 

 

A generalization of the Hutchinson-Waser’s postulate has been proposed here to 

estimate animal densities using terrestrial or underwater cameras (i.e., counts per frame) in 

species behaving according to the widely observed spatial behaviour that lead to the 

establishment of a HR area. The accuracy and precision reached for the density estimates after 

an affordable sampling effort provide further insight into the potential and comprehensiveness 

of the method. The results of the simulation experiments suggested that it would be sufficient 

to count animals in a few hundred frames adequately spaced in time to provide density 

estimates with SRMSEs smaller than 10%. In contrast, the optimal time the cameras should be 

deployed (i.e., the optimal rate at which the frames should be counted) is species-dependent. 

For ten cameras, less than an hour of sampling (i.e., approximately 250 frames) was necessary 

for fish and bird-based archetypes, but more than 24 hours (i.e., between 100-350 frames) was 

needed for archetypes with larger HR areas, for which the time to cover the full HR area may 

range from a fortnight to more than one year (Table 1). The best estimates in terms of both 

accuracy and precision were obtained for animals with high densities, small HRs in relation to 

the exploration rate and large body mass. Overall, the results from the Bayesian 

implementation of the model demonstrate that density can be precisely and accurately 

estimated after an affordable sampling effort, but generally, the faster the animal covers its HR 

area, the less sampling time is needed. Nevertheless, some of the archetype-specific results 

should be interpreted with caution. For instance, in the case of the M/B-arch, density was 

accurately estimated after a very short survey time, which is related with its large speed  and 

relatively small HR (Table 1). The speed value used in the simulation experiments has a 

relevant impact in the time needed for exploring a relevant fraction of the HR, thus a better 

reconstruction of the stationary probability can be obtained with smaller sampling effort for 

faster animals. However, speed definition is elusive and its magnitude is neither easily nor 

precisely estimated. Therefore, the patterns depicted in Fig 2 and 3 are suggesting a general 

guidance but species-specificities may modify the predicted effort needed for attaining a 
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desired accuracy and precision. Hence, the relationship between the optimal sampling design 

(i.e., the optimal number of cameras, number of frames per camera and deployment time) and 

the space occupancy pattern of the animal may be complex. Therefore, it is strongly 

recommended to complete a pilot study (i.e., case-specific simulation experiments) including 

both, species-specificities and case-related constraints (e.g., budget available or technological 

limitations of the cameras) to assess whether the optimal settings are fulfilling or not the 

objectives in terms of expected accuracy and precision. For this purpose, R code in Appendix 

S1 can be easily adapted. 

It should be noted, that a slightly systematic underestimation of the true density was 

detected in all simulations (Fig. 2). This bias may actually be an outcome of the simulation 

features instead of a methodological limitation. During the simulations, the virtual populations 

are bounded in the virtual scenario by the effective sampling area (eqn 13), and simulated 

animals could therefore move from inside the area to outside but not vice versa, leading to the 

aforementioned bias. 

In spite of these uncertainties, the method proposed here has several advantages 

when comparing with increasingly popular video survey methods based on distilling metrics as 

N-max (i.e., maximum number of animals in a given frame) as a proxy of abundance 

(Schobernd et al. 2014). From the conceptual side, the method proposed here provides an 

estimate for the absolute density, in contrast to the relative density provided by those 

alternative methods. In addition, animals must be only counted in a subsample of frames while 

for N-max a full video must be analysed, which may represent a relevant difference in the time 

needed for processing the videos. Metrics as N-max are justified by the fact that they 

guaranties that the same animal is not recounted. Counting the same animal twice or even 

more times is a problem for non-instantaneous estimation methods developed for video 

surveys (Ward-Paige et al. 2010; Campbell et al. 2015). However, recounting does not imply 

any bias for the method proposed here. When animals move according to a HR space 

occupancy pattern, there exists a stationary probability density function of finding a given 

animal at a given position. Although we have focused on the particular case of the BRW 

(Börger et al. 2008), the same rationale may be extended to any other potential field and form 

of the stochastic term that renders a confined pattern of space use. Contrasting, mark-

recapture methods, which are based on a completely different rationale, incorporate repeated 

identification of the same individuals (e.g., Efford 2004; Royle & Young 2008). Spatial explicit 

capture-recapture models aim to estimate the detection probability of any given animal, and that 

detectability can be disentangled from demographic processes (e.g. emigration/mortality and 

immigration/birth) given the history of captures (i.e., detections) of any given animal (Chandler 
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& Royle 2013). Certainly, our approach focuses in estimating animal density only. However, 

demographic rates could still be estimable by nesting the method proposed here into 

frameworks like those developed by fisheries assessment (Hilborn & Walters 1992). 

Another advantage of the method proposed here is that animal density can be 

estimated in a single visit to the sampled area. Simulation experiments were performed with a 

subsample of evenly distributed frames, being a convenience choice to facilitate the evaluation 

of temporal autocorrelation between frames. However, it may be any random subsample of 

the frames, after previously ensuring a safe between-frame period with temporal independence. 

Therefore, data from conventional camera trapping (i.e., camera is activated when an animal is 

present) can be easily adapted to this method. The benefit of motion-triggered camera surveys 

is that sampling time can be extended over longer periods of time and the resulting data can be 

broken down in smaller sampling units for analysis (Burton et al. 2015). Hence, the number of 

“0” data will be high but expected and with enough time the stationary probability density 

function of HR centres will be recovered. Certainly, other approaches can also obtain data from 

a single visit to the sampled location. For example, abundance can be inferred from occupancy 

models, which are primarily concerned with distribution (i.e., presence/absence), but in those 

cases individuals must be identified (recounting is a severe concern for the method (Royle 

2004; Guillera-Arroita 2017)), and repeat surveys within the single visit are required (Marques 

et al. 2017).  

 Another advantage of the proposed method is that, neither stringent assumptions nor 

precise data on movement features are needed to estimate densities (but to define the 

optimal sampling settings some rough idea is required, Appendix S1). When using wildlife 

video recording methods, specific models that relate animal density with encounter rates have 

been widely considered: the random encounter model (REM), derived from ideal gas models 

(Hutchinson & Waser 2007), and a closely related approach based on the Formozov-Malyshev-

Pereleshin (FMP) formula (Stephens et al. 2006; Keeping & Pelletier 2014), for which animal 

speed is assumed to be known (Rowcliffe et al. 2008; Cusack et al. 2015). A drawback of the 

REM and FMP is the non-instantaneous nature of encounters, which account for the speed-

related bias (Ward-Paige et al. 2010). Also, based on the encounter rates (i.e., detections are 

equivalent to encounters), distance sampling methods record distances from the observation 

point (typically line transects) to any detected animal (Buckland et al. 2001) and claim 

reasonable accuracy only if animals move at less than half the speed of the observer (Ward-

Paige et al. 2010). Thus, in general, encounter-related methods are highly dependent on the 

assumptions on how animals move (Rowcliffe et al. 2008; Keeping & Pelletier 2014; Glennie et 

al. 2015; Cusack et al. 2015). Different alternatives for circumventing this problem have been 
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proposed (Hutchinson & Waser 2007; Ward-Paige et al. 2010; Lucas et al. 2015). In some cases 

(e.g., line transects and camera traps), the encounter rate has been directly assumed to be a 

proxy for animal abundance (Marsden et al. 2016); in others, some assumptions are made 

regarding the movement pattern (Boschetti & Vanderklift 2015).  

 In contrast, the raw input for the method proposed here consists of instantaneous 

observations (e.g., frames from a video survey) that are not directly affected by speed 

(Hutchinson & Waser 2007). Nevertheless, accuracy and precision depend indirectly on 

movement features when sampling effort is constant. As stated before, HR behaviour is the 

result of a dynamic process in space and time (Börger et al. 2008); thus, species-specific 

sampling times are needed to successfully fit the stationary probability density function of 

finding an animal at a given position. 

 Some limitations of the method proposed here are related with departures from the 

implicit assumptions. Concerning the first assumption (i.e., the probability of detection is one), 

density estimation can be biased when imperfect detectability is not accounted for. When 

detection probability is known with high precision, robust density estimates will be obtained 

after changing λ (averaged counts) by pλ in eqn 11 (i.e., Nij ~ Poisson (p*λj)), where p is the 

detection probability. However when p is known with some uncertainty, such uncertainty 

should be properly propagated, which deserves further derivations out of the scope of this 

contribution. Imperfect detectability may be related with technical limitations of the camera 

(e.g., resolution in pixels, detection zone, trigger speed, etc.), object properties (e.g., animal 

size, crypsis) or environmental heterogeneity. In practice, the combination of all those factors 

will define a case-specific optimal sampling area (Rovero et al. 2013) and preliminary trials are 

highly advisable to fit the technical limitations of the camera, the species specificities and the 

area actually surveyed (e.g., Martin et al. 2012). For example, it is expected that bigger animals 

could be efficiently detected and sampled using a bigger detection area of the camera. 

Similarly, common sense suggests maximizing the area surveyed at lower densities. On the 

other hand, partial detectability due to environmental factors (e.g., plant cover or 3D 

environmental heterogeneity, turbidity of waters (Hannah & Blume 2016) or fog, etc.) could be 

solved by incorporating covariate effects on a detection probability function (Dénes et al. 

2015). Those covariate effects has been successfully implemented in other approaches 

(MacKenzie et al. 2002; Fewster et al. 2009; Joseph et al. 2009). Concerning the second 

assumption (i.e., animals move independently from one another), when animals do not move 

independently (e.g., shoals or herds), density estimates should be referred to groups and not 

directly to individuals. Other complex and overspread behaviours as territoriality implies that 

animal movement depends on the density of conspecifics, thus further derivation of 
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appropriate probability density functions (Potts & Lewis 2014) should be needed in those 

cases. 

 Patchiness represents a genuine violation of the third assumption (i.e., the HR centres 

are randomly but homogeneously distributed). However, the mixed model proposed (eqn 11) 

would be able to address patchy distributions whenever a large number of cameras is 

deployed at appropriate between-cameras distance. A pilot study could solve the problem of 

finding the optimal distance between cameras to minimize spatial autocorrelation in patchy 

scenarios (Appendix S2). Similarly, animal density may change along an environmental gradient 

(e.g., depth-related distributional range), but incorporating environmental covariates into the 

model is straightforward, as well. Nevertheless, all these particular cases deserve further 

attention.  

 The case of the M/F-arch demonstrates one of the potential limitations of the model in 

relation to the third assumption. This archetype aimed to represent species with both small HR 

size and low density. The distribution of counts per frame showed striking differences between 

cameras: some cameras overlapped with the HR of one (or a few) animal(s), which will be 

detected most of the time, while others watched an area without HR centres. This fact is 

worsened when the detection area of the camera is relatively small, which was the case for the 

M/F-arch (7.6 times its HR size; Table 1). Therefore, although the HR centres were 

homogeneously distributed at a broad spatial scale, they were not at the scale of the detection 

area of the cameras. In contrast, F/F-arch aimed to represent species with small HR size 

(similar to M/F-arch) but that were very abundant (405 times the density of M/F-arch; Table 

1). In this case, although the detection area was smaller, each camera was able to detect 

several animals, the stationary probability density function was properly reconstructed, and 

the density estimates were accurate and precise. Therefore, the case of the M/F-arch  is not 

actually a modelling problem but may represent an inappropriate sampling design, which 

could be improved by either increasing the number of cameras and eventually decreasing the 

deployment time or increasing the detection area of the camera whenever technically 

possible. Again, this type of problem would be easily detected with a pilot experiment 

(Appendix S1). 

Finally,  it is well known that movement parameters vary between individuals of the 

same population (Alós, Palmer & Arlinghaus 2012; Alós et al. 2016), and within individuals with 

time (i.e., age) due to changes in territory quality (Tao et al. 2016). The rationale of the method 

relies on the possibility of reconstructing the stationary probability density function by 

averaging over space the positions of identical animals in terms of movement features; thus, 
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the outcomes of between-individual variability in movement characteristics should be also 

considered in the future. 

In summary, absolute density may be accurately estimated for a great number of 

animals across taxa displaying HR behaviour from counting animals in frames adequately 

spaced in time, and after an affordable case-specific sampling effort, in a video recording 

survey. Notwithstanding the comprehensiveness of the method proposed here, a call of 

caution is necessary regarding the potential drawbacks listed above, and its merits and 

generality should be further explored.  
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Supporting Information 

 

Additional Supporting Information may be found in the online version of this article: 

Appendix S1. Guidelines to apply the model to a case study. 

Appendix S2. Evaluating accuracy and precision in patchy landscapes. 

Appendix S3. Supplementary bibliography. . 

Fig. S1. Bivariate correlations between densities, body mass, speed and HR size. 
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Figure 3  
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Figure legends  

 

Figure 1. Bi-plot of the principal component analysis (PCA) performed with four 

variables: HR size (km2), speed (m/s), biomass (g) and density (animals/km2). 

Variables are plotted as vectors, and the angle between them can be interpreted as 

the bivariate correlation in the multivariate space. The first two PCA components 

explained 89.6% of the total variance. The dataset was composed of 43 species: 

birds (n = 6), freshwater (n = 8) and marine (n = 12) fish, marine (n = 3) and 

terrestrial (n = 10) mammals and marine (n = 3) and terrestrial (n = 1) reptiles. 

Figures correspond to selected archetypes for simulation analyses. 

 

Figure 2. Estimated density with increasing sampling effort (number of frames analysed by 

10 cameras). Mean values (black points) and 95% BCIs of the medians from 15 posterior 

distributions of the density estimates. The red line corresponds to the true value, and the blue 

line indicates bias. Vertical axes are not scaled.  

 

Figure 3. Log-transformed scaled root mean squared error (SRMSE) of density estimates and 

linear fit lines with increasing sampling effort: frames analysed by 10 cameras (panel a) and 

deployment time for each camera (panel b). Black dotted and continuous lines correspond to 

threshold values of 10% and 5% of the SRMSE, respectively.  
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Tables 

 

Table 1. Input data, simulation features and estimated movement parameters for the selected archetypes. S/G-arch refers to the code for each archetype 

including the system (S) in which animals live: marine (M), freshwater (F) or terrestrial (T); and the group (G) animals belong: birds (B), fish (F), mammals (M) 

and reptiles (R). BM: biomass (g), HR: area of the HR (km2), D: density (animals/km2) and S: speed (m/s)were obtained from the literature (Data Accessibility 

section and Appendix S3). Simulation features: DR: detection radius of the camera (m); SEA: size of the scenario (km2); N: number of simulated animals; and 

P: minimum ∆t steps between consecutive frames to avoid temporal autocorrelation. The movement parameters (k, ε and ∆t) were estimated from HR and 

S.  

 

 

 

 

 

 

 

 

 

  

S/G-arch Species 
BM 

(g) 

HR 

(Km2) 

D 

(ind/Km2) 

S 

(m/s) 

DR 

(m) 

SEA 

(Km2) 
N P 

k 

(1/sec) 

ε 

(m2/s) 

∆t 

(s) 

M/B Brachyramphus  marmoratus 220 127 4.4 22.6 190 171.5 755 1 0.001445 19,499.4 69.2 

F/F Campostoma anomalum 34 3.5 10-05 1,250,000 0.629 0.36 5.5 10-05 68 10 0.076609 0.28490 1.3 

M/F Chaetodon baronessa 27.63 6.310-05 3,083.3 0.5555 12.4 0.001 4 15 0.050333 0.33821 1.9 

M/M Monodon monoceros 938,126 10,400 77 1.39 45.5 3,320.9 255,709 1 9.82 10-06 10,852.8 10,182 

T/M Alces alces 461,901 82 0.4 0.03379 630.8 131.8 53 5 2.69 10-06 23.4283 37,189 

T/R Testudo graeca 450 0.0171 1,700 0.00058 9.7 0.03 47 5 3.19 10-06 0.00579 31,360 
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Table 2. Accuracy (SRMSE), precision (CV%) and coverage (proportion of 95% BCIs including 

the true density value) for the selected archetypes. Accuracy and precision are referred to as 

the medians of the Bayesian posterior distributions. Three levels of sampling effort (number of 

frames obtained in total by ten cameras) are shown. Sampling time refers to the archetype-

specific period of time needed by a camera to obtain the number of frames indicated. 

Archetypes are ordered by accuracy. 

  Number 

of frames 

Sampling time 

(hours) 

Accuracy: 

SRMSE 

Precision: 

CV% 

Coverage 

M/M-arch      

  50 14.14 0.195 20.5 1± 0 

  1500 424.25 0.044 2.87 1± 0 

  3000 848.51 0.037 2.40 0.87± 0.35 

M/B-arch      

  50 0.10 0.180 18.8 1± 0 

  1500 2.88 0.052 4.93 0.93± 0.26 

  3000 5.77 0.043 3.40 0.87± 0.35 

T/R-arch      

  50 217.78 0.206 18.1 0.93± 0.26 

  1500 6,533.35 0.056 5.75 1± 0 

  3000 13,066.70 0.048 4.90 1± 0 

T/M-arch      

  50 258.26 0.208 20.8 1± 0 

  1500 7,747.81 0.058 5.92 0.93± 0.26 

  3000 15,495.63 0.058 5.88 0.93± 0.26 

F/F-arch      

  50 0.02 0.275 28.9 0.80±0.41 

  1500 0.54 0.079 7.78 0.80±0.41 

  3000 1.09 0.062 5.90 0.93± 0.26 

M/F-arch      

  50 0.04 0.256 22.0 0.87± 0.35 

  1500 1.24 0.270 28.4 0.87± 0.35 

  3000 2.48 0.264 27.5 0.80±0.41 

 

  


