
 
Doctoral School in Materials, Mechatronics  

and Systems Engineering 

 

 

Calcium Phosphate Powders for Biomedical 

Applications:  
 

Synthesis, Thermal Behavior and Non-Conventional Sintering 

 

Matteo Frasnelli  
 
 

 
 

April 2018
 

 

X
X

X
 c

y
c

le
 



 

CALCIUM PHOSPHATE POWDERS FOR 

BIOMEDICAL APPLICATIONS:  

SYNTHESIS, THERMAL BEHAVIOR AND 
NON-CONVENTIONAL SINTERING 

 
 
 

 

Matteo Frasnelli 

E-mail: matteo.frasnelli@unitn.it 

 

 

 

Approved by: 

Prof. Vincenzo Maria Sglavo, Advisor 
Department of Industrial Engineering 
University of Trento, Italy 
 
Prof. Sandra Diré, Advisor 
Department of Industrial Engineering 
University of Trento, Italy 

 

 

 

Ph.D. Commission: 

Prof. Gian Domenico Sorarù, 
Department of Industrial Engineering 
University of Trento, Italy 
 
Prof. Richard Todd, 
Department of Materials 
University of Oxford, United Kingdom 
 
Dr. Alessandra Sanson, 
CNR-ISTEC 
Faenza, Italy

 
 
 
 
 

University of Trento, 

Department of Industrial Engineering 

 

April 2018



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

University of Trento - Department of Industrial Engineering 
 
Doctoral Thesis 
 

Matteo Frasnelli - 2018 
Published in Trento (Italy) – by University of Trento 
 

 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

To my friend Andrea 

 



 



7 

 

Abstract 

 

The present work was focused on the synthesis of three different calcium phosphate 

powders with possible application as bioceramics, their chemical, structural and 

thermal characterization, and finally their consolidation into dense compounds by 

conventional and flash sintering techniques. 

In the first part, Mg-doped (0 - 2 mol% Mg2+) tricalcium phosphate powders with 

micrometric size were produced by solid state reaction, and the influence of dopant on 

their sintering behavior and, specifically, on the β→α phase transition was studied. It 

was shown that magnesium stabilizes β-phase and ensures, after conventional 

sintering, much better densification and final mechanical properties. Moreover, 

annealing treatments on sintered compounds are suitable to convert the retained α- 

into β-TCP only in presence of Mg.  

Un-doped β-TCP was additionally subjected to flash sintering, thus obtaining 

dense microstructure at temperatures lower than 1000°C in just 10 min and avoiding 

any phase transition. A specific physical model based on of thermal-balance equations 

was considered to investigate the flash sintering process in detail; it was possible to 

point out that thermal runaway is the main mechanisms that triggers the process, 

which could be described also in terms of electric behavior of the material, real sample 

temperature and flash onset. Moreover, the observed blackening effect and the 

development of an additional resistance contribution at the electrodes were taken into 

account and discussed. 

In the second part of the work, Mg-doped (0 - 5 mol% Mg2+) tricalcium phosphate 

nanometric (~ 20 nm) powders were synthetized by chemical precipitation, thus 

obtaining highly-defected CDHA easily convertible into β-TCP at 750°C. Magnesium 

doping was found to inhibit the first crystallization and to promote β-TCP formation 

directly. The nanopowders were conventionally sintered to produce dense (~90%) β-

TCP with sub-micrometric gran size. 

Flash sintering was also carried out on the nanopowders, demonstrating that the 

flash event can occur only after CDHA→β-TCP reaction, since the precursor is too 

resistive for allowing the electrical current flow. A non-linear electrical behavior was 

found for the β-phase, associated with the grain growth. Flash sintering was also 

applied in isothermal mode, producing dense sub-micrometric β-TCP at 900°C in just 

few seconds. It was also possible to build two maps relating the processing parameters 

for flash sintering on the basis of thermal model and the material behavior. 
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Finally, hydroxyapatite nanopowders were synthesized by chemical precipitation 

with different amount of Sr2+ replacing Ca2+ into the apatite structure (0 - 100 mol%). 

The nanopowders were deeply characterized from a morphological, chemical and 

structural point of view (SEM, TEM, ICP, XRD, FT-IR, 31P-NMR, 1H-NMR, N2 sorption) 

finding a relation between the experimental evidences and the amount of Sr.  
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Chapter I 

 

Introduction 

 

1.1 Calcium Phosphates 

1.1.1  Classes of bioceramics 

The concept and the definition of “biomaterial” has changed in the last few decades 

due to the new compounds that incessantly are recognized as suitable for medical 

applications, leading to a gradual delineation of the early and ambiguous idea of 

“material able to interact with biological systems”. A more complex and commonly 

accepted definition was proposed by prof. D.F. Williams in 2009 as a result of a 

detailed argumentation [1]: 

“A biomaterial is a substance that has been engineered to take a form which, alone or 

as part of a complex system, is used to direct, by control of interactions with 

components of living systems, the course of any therapeutic or diagnostic procedure, 

in human or veterinary medicine”. 

Hence, it can be stated that the key factor turning a simple material into a 

biomaterial is the control of its properties considering both the final biological 

application and the desired biological response. The “bio” prefix is not strictly related 

with the biological nature of the material itself (e.g. proteins), but can be assumed as 

a quality of any classes of material, like biometals (i.e. Ti6Al4V alloy) [2][3], 

biopolymers (e.g. polylactide PLA) [4], bioglasses (e.g. 45S5®) [5][6], and bioceramics 

(e.g. hydroxyapatite HA) [7][8]. Therefore, a more useful classification can be based 

on the biological response induced by the biomaterial, as proposed by prof. L.L. Hench 

[9]. The work is actually referred to bioceramics, but the description of the implant-

tissue interaction could be easily extended to the other classes of materials. However, 

a bioceramic can be defined as: 

- toxic, when the material induces the death of the surrounding tissue; 

- non-toxic and biological inactive, when the body isolates the implant by 

means of a thick fibrous tissue (i.e. periprosthetic capsule). Also indicated 

as almost inert, these materials are usually nonporous and morphologically 

fixed to the biological tissue by taking advantage of the surface 
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irregularities and defects. Examples of inactive bioceramics are alumina 

[10] and zirconia [11]; 

- nontoxic and biologically active (or bioactive), when an interphase forms 

between the implant and the biological tissue. The bonding layer can be 

composed by chemical bonds (bioactive fixation), as in the case of surface-

active dense ceramics (e.g. dense HA), or it can be characterized by the 

tissue ingrowth into the porous ceramic (e.g. porous HA) through a 

biological fixation; 

- non-toxic and resorbable, when the material gradually dissolves, and the 

surrounding tissue is stimulated to replace it. Example of bioresorbable 

ceramics are bioglasses and tricalcium phosphate, TCP [12]. 

Bioresorbable ceramics are the most promising materials and perfectly fit the 

latest requirements of tissue engineering, where the implant should not be considered 

just a substitute of the original biological functionality, but it should restore or improve 

such function by helping the body to heal itself (regenerative medicine). Regardless of 

the chemical composition of the released species, the material dissolution rate must 

at first match the repairing rate of the body tissue, in order to ensure good adhesion 

and sufficient mechanical strength during the entire treatment. Too slow dissolution 

leads to excessive elongation of the healing process, whereas too rapid dissolution 

could induce mechanical instability and, in addition, too high local concentration of 

released species and cytotoxicity. 

Among them, calcium phosphates (CaPs), object of the present study, represent 

one of the most promising class of biomaterials in the field of bone regeneration.  

 

1.1.2 Bone structure 

Due to the main application field of CaPs, a short overview about structure, chemistry, 

functionalities, and mechanical properties of natural bone is here reported. 

Bone is the solid anatomic portion forming the skeletal system of vertebrates, 

characterized by an extracellular matrix, basically type I collagen (~30 wt%), a 

mineralized fraction (~60 wt%), and water (~10 wt%). Because of the presence of cells, 

bones can be considered effectively as alive organs, in spite of the presence of 

inorganic compounds.  
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Apart from the quite evident support functionality for the body weight and the 

articular movements, bones provide protection to vital organs, transmit the sound 

inside the ears, contain stem cells (marrow), represent a storage for mineral elements, 

and buffer the pH fluctuation in the blood.    

Bone structure is a perfect example of hierarchical organization, where each sub-

level is characterized by a specific configuration and role (Fig. I-1). Starting from a 

macroscopic point of view, many type of morphologies are differentiate inside the 

human body, on the basis of their respective function: long, short, plate, and irregular. 

In any case, two main bone tissues are present in various relative amount and position 

[13]: 

- cortical (or compact); the external layer of the bones, with a thickness 

variable between less than a millimeter and few centimeters, according to 

the mechanical stress to which is subjected. Porosity is limited to ~6%; 

- cancellous (or trabecular); spongy tissue, with ~80% of porosity, placed in 

the inner part of the bone, constituted by an interconnected framework of 

rod/plate trabeculae of 50-300 μm, and able to well-support compressive 

loads. 

For what concerns the microscopic level, planar arrangements called lamellae 

(width 3-7 μm) are identifiable. Such platelets are stacked either according to a random 

direction, in the range ±30 deg, modelling every single trabecula of the cancellous 

tissue or wrapped into concentric layers around the so-called Haversian canals, 

forming cylindrical structures (diameter ~100 μm) named osteons, aligned to the bone 

direction within the cortical tissue. Yet, lamellae are composed by fibrils of 100 nm in 

diameter, resulting from the aggregation of collagen (type I) molecules and apatite 

nanocrystals, regularly placed every ~67 nm along the chains. 

 

 

 

Figure I - 1. Hierarchical structure of human bone. Reproduced from [14]. 
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The bone composition is completed by four main types of cells, located within 

the solid matrix of the tissue. The first one, osteoblasts, are formed by the 

differentiation of osteogenic cells in the bone marrow and are responsible of the bone 

formation. The process occurs in two steps, by secreting the collagen matrix, self-

assembled into fibrils, and the subsequential mineralization. As a matter of fact, the 

interaction between specific anionic proteins and the regularly-sequenced functional 

groups of the fibrils, leads to the stereochemical orientation of negative charges on the 

chains, and the consequent nucleation of free Ca2+ and PO4
-3 ions into apatite. 

Crystals growth and coarsening are inhibited by the restricted extracellular space 

among the staggered collagen molecules, and thus the final result is a regular 

succession of discrete and nanometric HA plates accounting for the bone hardness 

and isotropy. The bio-mineralization process starts 13 days after the matrix is formed, 

then proceeds very rapidly, up to 70%, within few days (primary mineralization). The 

remaining is over several years (secondary mineralization). Therefore, mature 

osteoblast cells are gradually trapped inside the bone tissue just created, behaving as 

stress sensors (osteocytes) or physical barrier on the top of the new tissue (lining 

cells). Finally, the last typology of bone cells is constituted by osteoclasts, responsible 

for the secretion of specific enzymes able to reabsorb the collagen matrix and 

solubilized the mineral fraction by locally enhance the acidity. The combined action of 

osteoblasts (creation) and osteoclasts (destruction) represents a classic dynamic-

equilibrium, leading to the complete replacement of the overall human skeleton every 

~60 days. 

As above introduced, the mineralized fraction of the human bone is basically 

composed by the so-called biological apatite, i.e. a multi-substituted hydroxyapatite 

Ca10(PO4)6(OH)2, covered with a variable hydrated layer. The most common ions 

replacing calcium are Na+, Mg2+, K+, whereas HPO4
2-, CO3

2-, Cl- , and F- can be easily 

found in place of de-protonate phosphates (B-type substitution) or the hydroxyl groups 

(A-type substitution) [15]. Consequently, the Ca/P ratio, very significant parameter to 

identify a calcium phosphate species, presents random deviations (positive or 

negative) from the HA stoichiometric value of 1.67. For instance, considering the 

generic formula of B-type carbonated apatite, namely one of the possible (locally) 

composition of the mineral human bone is 

𝐶𝑎10−𝑥(𝑃𝑂4)6−𝑥(𝐶𝑂3)𝑥(𝑂𝐻)2−𝑥 

(1a) 

where 0<x<2, the crystal neutrality imposing an increment of Ca/P up to 2 with 

the maximum CO3
-2 content. 
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Conversely, the partial hydration of the phosphate groups leads to a decrement 

of the atomic ratio up to 1.5, according to: 

𝐶𝑎10−𝑥(𝐻𝑃𝑂4)𝑥(𝑃𝑂4)6−𝑥(𝑂𝐻)2−𝑥 

(1b) 

where 0<x<1. In general, biological apatites differ from the synthetic ones by the 

lack of OH- and the presence of HPO4
2- [16]. The average chemical composition of 

bone is reported in Tab. I-1, with other human calcified tissues. 

 

 Enamel Dentin Bone HA 

     
Ca2+, wt% 36.5 35.1 34.8 39.6 
PO4

3- / HPO4
2-, wt% 54.3 51.8 46.6 56.7 

     
Ca/P, at. ratio 1.63 1.61 1.71 1.67 

     
Na+, wt% 0.50 0.60 0.9 - 
Mg2+, wt% 0.44 1.23 0.72 - 
K+, wt% 0.08 0.05 0.03 - 
     
CO3

2-, wt% 3.5 5.6 7.4 - 
F-, wt% 0.01 0.06 0.03 - 
Cl-, wt% 0.30 0.01 0.13 - 
     

a, ±0.003 Å 9.441 9.421 9.410 9.43 
c, ±0.003 Å 6.880 6.887 6.890 6.891 

     

 

Table I - 1. Chemical composition and structural parameters of human bone, enamel, dentin, and 

synthetic HA [17]. 

 

For what concerns the crystalline structure of biological apatites, detailed 

investigation is complicated by their nano-sized nature, quite similar to an amorphous 

material, and by the absence of a reference single crystal, as well. However, the lattice 

follows most likely the same arrangement of the synthetic HA, i.e. hexagonal P63/m, 

with cell parameters variably scattered around the reference values due to the 

multiplicity of the atomic substituents.  

Crystal morphology is described as plate-like shape [18] with thickness of 1.5-9 

nm and planar dimensions in the range 10-200 nm, the latest associable to the a-c 

plane of the crystalline cell. Due to the stereospecificity of the biomineralized process, 

the platelets are oriented with their c-axis along the collagen fibrils direction, i.e. 
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parallel to the bone axis in cortical tissue. The size and the relative dimension of the 

crystals strongly depends to the health state, the age and the species of the individual, 

although a single subject always shows a distribution of values. 

In conclusion, bones are a perfect example of composite materials with some 

mechanical properties that exceed those of their single elements and their combination 

(according to the phase rule). For instance, cortical bone presents fracture toughness 

and tensile strength larger than synthetic hydroxyapatite. Specifically, collagen matrix 

is responsible for elasticity and resistance to traction, whereas the mineralized fraction 

accounts for hardness, toughness, and resistance to compression (Tab. I-2). In 

addition, the internal architecture of the trabeculae can be reorganized on the basis of 

the load intensity, as well as the thickness of the cortical tissue [14]. 

 

  Compact bone Trabecular bone HA 

     
 Young’s modulus, GPa 14-20 0.05-0.5 80-110 
 Tensile strength, MPa 50-150 10-20 50 
 Compressive strength, MPa 170-193 7-10 400-900 
 Fracture toughness, MPa m0.5 2-12 0.1 0.7-1.2 
 Strain to failure, % 1-3 5-7 - 
     

 

Table I - 2. Mechanical properties of compact and trabecular bone tissues, and synthetic dense 

hydroxyapatite [19]. 

 

1.1.3 CaP-bone interaction 

As previously anticipated, the most important feature of CaP compounds is their 

capability to be solubilized by the biological fluids and thereby to promote new bone 

formation (i.e. osteogenesis). The mechanism is based on the partial dissolution of 

CaP ceramics and the consequent increment of Ca2+ and PO4
3- local concentration at 

the implant/bone interface. As a result, saturation level is exceeded and re-

precipitation as apatite microcrystals occurs on the host-bone surface [20]. The 

crystallization process may cause the incorporation of other ions (e.g. Mg2+, CO3
2-) 

and organic macromolecules as proteins and growth factors present in the surrounding 

biological fluids. Therefore, cell attachment, proliferation and differentiation are 

facilitated, as well as the secretion of new collagen matrix and the successive bone 

growth inside the ceramic porosity.  
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However, several authors [21][22] have suggested that the formation of HA 

crystals upon the bone mineralization and remodelling processes is intermediated by 

some transient precursor phases, although the exact mechanism remains 

controversial. In particular, amorphous calcium phosphate (ACP) has been identified 

in early mineralized tissue. Successively, ACP directly transforms into stoichiometric 

HA, or into non-stoichiometric apatites by passing through a further intermediate 

phase, characterized by HPO4
2- groups, such as octacalcium phosphate (OCP), or 

dibasic calcium phosphate dihydrate (DCPD).    

Dissolution can be performed by macrophages and osteoclasts, analogously to 

bone remodelling, or by extracellular activity, namely lowering the local pH. The 

process rate, key factor in the reliability of the implant, is strongly influenced by multiple 

factors; partially they depend on the ceramic, as well as chemical formulation (Ca/P 

ratio, ionic substituents), initial porosity, crystallite size, defects and residual stresses; 

partially on the environment conditions (pH, temperature, fluid convention). In general, 

resorption is enhanced by higher contact areas between CaP and biological fluids, 

thereby small grains / particles and macroporosity (~100 μm of diameter) [23]. The 

resulting rate should be comparable to the new bone growing rate, which in turn 

depends on age, sex, and health status of the patient, varying from 3 to 36 months 

[24]. 

In summary, the properties for which CaPs is used in medical application, in 

addition to the already cited bioactivity and resorbability, are [25]:  

- osteoinductivity: capability to induced bone healing or osteogenesis; 

- osteoconductivity: or osseointegration [26], capability to forma a connective 

interphase with the living bone, preventing relative movements without any 

fibral tissue involvement; 

- mechanical stability: capability to prevent mechanical failure, unless their 

brittle nature and the quite high level of porosity, resulting into low tensile 

and impact resistance. Because of that, CaPs are generally used as defect 

filler or coating on metallic grafts, avoiding as much as possible severe 

load-bearing conditions;    

- biostability: capability to maintain their biological properties in vivo; 

- crystallinity: amorphous fraction may cause too fast dissolution and 

cytotoxicity; 
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- wettability: or hydrophilicity, capability to attract water and proteins, 

enhancing the cell adhesion and differentiation. 

 

1.1.4 CaP chemistry 

The generic definition “Calcium phosphates” (CaPs) indicates the wide family of 

calcium salts derived by the neutralization of orthophosphate acid H3PO4 and its 

condensed forms. They can be considered effectively as ionic compounds, where Ca2+ 

ions are placed into the interstitials of a lattice formed by interconnected PO4
3- 

tetrahedra. Phosphate group is the basic unit of CaPs; is characterized by a central 

phosphorous atom, with oxidation number equal to +5, capable to bond four oxygen 

atoms in a tetrahedral arrangement. The additional electron is used to create a π bond, 

stabilized by resonance, whereas the ion globally carries a formal charge of -3, 

distributed on the three single-bonded oxygens. As a consequence, phosphate groups 

are in equilibrium with three conjugated bases, according to [27]: 

𝐻3𝑃𝑂4 + 𝐻2𝑂 ⇄ 𝐻2𝑃𝑂4
− + 𝐻3𝑂+          𝑝𝐾𝑎1 = 2.2 

(2a) 

𝐻2𝑃𝑂4
− + 𝐻2𝑂 ⇄ 𝐻𝑃𝑂4

2− + 𝐻3𝑂+          𝑝𝐾𝑎2 = 7.2 

(2b) 

𝐻𝑃𝑂4
2− + 𝐻2𝑂 ⇄ 𝑃𝑂4

3− + 𝐻3𝑂+          𝑝𝐾𝑎3 = 12.0 

(2c) 

Observing the equilibrium constant values, it can be noticed that all the four 

species are present in a phosphate aqueous solution, being their relative 

concentration dependent from the pH: completely deprotonated ion is predominant 

just in strong alkaline media. In addition, each species can form ionic salts with 

calcium. The compound multiplicity is further enlarged by the possible condensation 

between phosphate tetrahedra, following the simplified scheme:  

−𝑃 − 𝑂𝐻 + 𝐻𝑂 − 𝑃− →  −𝑃 − 𝑂 − 𝑃 − +𝐻2𝑂 

(3) 

According to the number of hydroxyl groups involved, the mechanism leads to 

the formation of linear, cyclic, or spatial polyphosphate; among them, the most relevant 

are pyrophosphate P2O7
4-, and metaphosphate PO3

- ions.   
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After these considerations, the complexity of the calcium phosphate chemistry is 

quite evident. An easier approach to univocally identify a CaP compound consists of 

representing the species through the general formula CxPy, where: 

(𝐶𝑎𝑂)𝑥 ∙ (𝑃2𝑂5)𝑦 ∙ (𝐻2𝑂)𝑧 

(4) 

and describing its stability field by a series of pseudo-binary equilibrium phase 

diagrams, based on the system CaO-P2O5 at different partial pressure of H2O (Fig. I-

2a and b).  

 

Figure I – 2a. Equilibrium phase diagram of the system CaO-P2O5 without presence of water. 

Colored vertical lines represent the stoichiometric compound β-TCP (blue), and α-TCP (red). 

Redrawn on the basis of [28] and [29]. 
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The stoichiometric ratio between calcium and phosphorous atoms (Ca/P) hence 

becomes one of the most common parameter used in the field. Compounds with Ca/P 

ratio in the range 1.5-1.67 are usually called apatites, word created by the geologist 

Werner (1786) on the basis of the Greek terms apatan (~to deceive) since in nature 

this kind of mineral is often confused with others. 

 

Figure I – 2b. Equilibrium phase diagram of the system CaO-P2O5 with 500 mm Hg of water 

partial pressure. Colored vertical lines represent the stoichiometric compound β-TCP (blue), α-

TCP (red), and HA (green). Redrawn on the basis of [28] and [29]. 

 

For instance, considering the complete absence of water, the equilibrium phase 

diagram predicts the presence of tricalcium phosphate Ca3(PO4)2 (TCP) at Ca/P ratio 

equal to 1.5. The stoichiometric compound is subjected to two consecutive phase 
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transitions: the first (1125°C) between β and α polymorphs; the second (1470°C) from 

α to α’. Melting point is reported around 1810°C, although small compositional 

deviations lead to eutectic points at 1288°C (Ca/P < 1.5) and 1578°C (Ca/P > 1.5) 

[29]. At the same time, biphasic regions of TCP with calcium pyrophosphate Ca2P2O7 

(CPP), and with tetracalcium phosphate Ca4(PO4)2O (TTCP) are present [28]. 

Conversely, in the presence of water, TCP side compounds are dicalcium phosphate 

CaHPO4 (DCP) and, up to 1550°C, hydroxyapatite Ca10(PO4)6(OH)2 (HA); solidus line 

is unchanged. 

In general, CaO-P2O5 equilibrium phase diagrams are a valid tool to produce, by 

a solid-state route or a wet-synthesis process, the desired CaP compound by mixing 

in the right amount calcium and phosphate source materials. Actually, the slow kinetic 

of some reactions has to be additionally considered, especially for what concerns 

reconstructive transformations, and the possibility of CaPs to accommodate slight 

stoichiometric imbalances as lattice defects, avoiding the formation of boundary 

phases. 

 

1.1.5 TCP 

Tricalcium phosphate Ca3(PO4)2 (TCP) is the calcium salt of the third acidic 

dissociation of (ortho)phosphoric acid. TCP can be found in three main forms: β-TCP, 

occurring at low-temperature, up to 1125°C and the high-temperature stable phases 

α (up to 1470°C) and α′ [30]. Among these, α′-TCP polymorph does not possess any 

biological interest, due to the restricted stability field and the spontaneous 

reconversion into α-TCP upon cooling [31]. Conversely, α-TCP can be retained at low 

temperature as metastable phase [32]. With respect to β form, it shows very different 

features, like monoclinic structure (space group P21/a, Z=24) [33], higher specific 

energy and, above all, higher resorption rate (0.0025 g L-1 at 25°C) [34], larger than 

bone growth. Therefore, biomedical applications in which α-TCP may be used are 

limited to CaP cements [35].  

β-TCP presents a rhombohedral crystal structure (space group R3c, Z=21), 

related to whitlockite (Ca18Mg2H2(PO4)14), a mineral phase found in dental calculi and 

urinary stones [36]. The unit cell is characterized by the parameters a = b = 10.4352 

Å, c = 37.4029 Å and α = β = 90°, γ = 120°, with a calculated volume of 3527 Å3. 

Within the structure are recognizable two different type of columns, aligned along the 

c-axis, reciprocally organized according to a hexagonal coordination.  
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In details, the two columns are based on the recurring polyhedral sequences: 

𝑃(1)𝑂4 − 𝐶𝑎(4)𝑂3 − 𝐶𝑎(5)𝑂6 

(5a) 

𝑃(3)𝑂4 − 𝐶𝑎(1)𝑂7 − 𝐶𝑎(3)𝑂8 − 𝐶𝑎(2)𝑂8 − 𝑃(2)𝑂4 

(5b) 

which show three not-equivalent phosphorous sites, and five not-equivalent 

calcium sites. The first sequence is the most relevant from a crystallographic point of 

view: being the total charge equal to +1, the electroneutrality of the crystal is ensured 

by a bivalent cationic vacancy every two polyhedral sequences. In other words, Ca(4) 

site exhibits an occupational factor of ~0.50. In addition, this plane-triangular interstice 

shows Ca-O bond length values higher than the sum of the respective ionic radii, 

revealing the underbonded nature of the metal ion. As a consequence, the presence 

of monovalent cations within the β-TCP lattice, as impurities or dopant agents, is 

accommodated by replacing Ca2+ into the Ca(4) position and filling up the vacancy 

[37]. 

Diametrically opposed is the behavior of Ca(5) site: the octahedral interstice 

exhibits Ca-O bond shorter than the ionic radii, and thus Ca2+ results overbonded. 

Introducing bivalent cationic substituents, above al Mg2+, calcium is replaced in this 

site up to complete saturation.   

β-TCP is considered either osteoinductive and osteoconductive; if placed in 

contact with the biological fluids, it can induce the precipitation of an apatitic layer 

which promotes bone growth. Its resorption rate (0.0005 g L-1 at 25°C) [34], makes 

TCP suitable for CaP bone cements, bone-substitution ceramics, and polishing agent 

in commercial toothpaste, as well [38]. It is also used as food additive (E341) [39].  

The easier route to produce TCP consists in solid-state reaction at high 

temperature (~1000°C) between calcium and phosphate source materials, 

conveniently mixed according the stoichiometric Ca/P ratio of 1.5. More than one 

process is equally feasible, starting from calcium carbonate and ammonium 

phosphate, DCP anhydrous [36], or CPP [40]. The direct precipitation of TCP from 

aqueous solutions is not possible [21], since the first product occurring, according to 

the Ostwald step rule [41], is the so-called calcium deficient hydroxyapatite (CDHA), 

and therefore an additional heating treatments above 800°C is needed to crystallize 

TCP [42]. Alternatively, tricalcium phosphate can be precipitated in organic medium, 

such as methanol [43]. 
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The β to α phase transition at ~1125°C constitutes the main technological issue 

encountered during the consolidation/densification of TCP components, especially 

upon high temperature process such as plasma spray coating [44]. As a matter of fact, 

the transformation is associated with an important volumetric expansion (7%) due to 

the different lattice volume and density of the two polymorphs, which introduces cracks 

and stops the shrinkage [45]. Moreover, the transition appears frequently irreversible 

upon cooling, leading to the presence of retained α phase at room temperature in the 

sintered TCP products, which changes the resorption rate of the material in the 

biological system.   

This behavior was firstly studied by Monma et. al [46], demonstrating that β→α 

reaction is a reconstructive process following a first-order kinetic. A large activation 

energy of 250 kcal mol-1 was determined, due to the complex reorganization of the 

crystal structure, and inhibiting α→ β reconversion, at least for cooling rate higher than 

10°C min-1. Nevertheless, some authors have reported β phase in quenched α-TCP, 

as the result of a partial reconversion in spite of the rapid cooling treatment performed 

[47][48]. The phenomenon has been recently clarified by Carrodeguas et al. [49], 

stating that β-TCP presence after quenching can be only due to β-stabilizing 

impurities, or to the incomplete β→α transformation upon heating. 

 

Figure I - 3. Equilibrium phase diagram of the system Mg3(PO4)2-Ca3(PO4)5. Redrawn on the 

basis of [50]. 
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In details, calcium-substitutional ions such as K+, Na+, Ag+, Mg2+, Sr2+ and Zn2+ 

have been proposed in previous works [37][51][52][53][54][55] as possible solutions to 

increase β→α temperature and facilitate β-TCP sintering. Among then, magnesium 

seems to exhibits the most appreciable results [56], proportional to the amount of Ca2+ 

ions replaced by Mg2+. An equilibrium phase diagram based on the system Mg3(PO4)2-

Ca3(PO4)2 was proposed by Ando [57] and successively revised by Enderle et al. [50]. 

Maximum magnesium solubility occurs for 14 mol% of Mg2+→Ca2+ substitution, 

corresponding to the completely occupation of both Ca(4) and Ca(5) sites; however, 

once Ca(5) interstice is saturated (9.1 mol% of Mg), β stability limit is maintained at 

1600°C (Fig. I-3).  

As previously reported, magnesium is naturally present in the mineralized 

fraction of the bone tissue. However, Mg doping biphasic HA/TCP formulation (9.5 

mol% Mg) has been successfully tested in vivo [53] showing good biocompatibility  

 

1.1.6 HA 

Hydroxyapatite Ca10(PO4)6(OH)2 (HA) is characterized by Ca/P ratio of 1.67 and by the 

presence of hydroxyl group within the lattice. Although the great chemical affinity with 

the mineral fraction of bone tissue, HA is the lesser soluble salt (0.0003 g L-1 at 25°C) 

[34] among CaPs. Because of that, HA is generally considered osteoconductive, but 

not osteoinductive; anyway, ionic substituent like CO3
2- lead to higher solubility and, 

as consequence, higher bioactivity. The clinical applications of hydroxyapatite regard 

repair of bone defects or fractures, ear prosthesis, dental surgery, drug delivery and, 

above all, coating on orthopedic / dental implants [7].  

The crystal structure of HA is bi-pyramidal hexagonal, with space group P63/m 

and cell parameters a = b = 9.418 Å, c = 6.884 Å, α = β = 90°, γ = 120°. At ¼ and ¾ 

of the c-axis, phosphate tetrahedrons are regularly placed on two basal planes [58]. 

Taking into account the HA unit cell, ten Ca2+ ions are placed within two non-equivalent 

interstices, six Ca(2) sites forming two staggered triangles, located above the 

phosphate basal plane, and four Ca(1) sites, aligned to the c-axis at the cell edges. 

Within the Ca(2) triangular channel, two OH- groups are placed aligned with the c-

axis. 

As well as for TCP, stoichiometric HA can be produced by solid state reactions 

between calcium and phosphate raw materials, properly mixed in the molar ratio 10:6. 

Additionally, wet-synthesis in aqueous media are equally feasible, as well as the 
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hydrolysis of other CaPs (DCP, TCP, CPP) at ~150°C, this allowing a better control 

on purity and grain size [59].  

The thermal stability of hydroxyapatite strongly depends to the partial pressure 

of water vapor [60]. For instance, equilibrium phase diagram at PH2O = 500 mm Hg [28] 

predicts at 1550°C the decomposition reaction of HA into α-TCP and TTCP: 

𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2 → 2 𝛼𝐶𝑎3(𝑃𝑂4)2 + 𝐶𝑎4(𝑃𝑂4)2𝑂 + 𝐻2𝑂 

(6) 

Anyway, partial dehydration of HA could take place around 850-900°C, leading 

to the formation of the so-called oxyhydroxyapatite according to the reversible process 

[61]: 

𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2 → 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2−2𝑦 + 𝑦 𝐻2𝑂 

(7) 

Sintering of HA has been investigated by several authors and recently reviewed 

[62] by covering either conventional and assisted techniques, performed on wet-

precipitated or commercial powders. For instance, nanometric HA powders can be 

fully-densified, without degradation or any secondary phases, by pressureless 

sintering in 1 hour (1100°C, 20°C min-1) [63], by HP in 30 min (20 MPa, 1200°C, 15°C 

min-1) [64], or by SPS in 1 min (50 MPa, 950°C, 100°C min-1) [65]. 

 

1.1.7 ACP and CDHA 

Amorphous calcium phosphates (ACPs) are a subcategory of CaPs where the atoms 

positions do not present long-range order. Basically, ACPs are the very first transient 

precursors of calcium phosphates synthesized by precipitation in aqueous media, due 

to their lower surface energy [66]. Their composition, in terms of Ca/P ratio, can vary 

between 1.18 and 2.5, according to the relative amounts of the reagents and to the 

solution pH [16]; in general, ACPs formation is promoted by higher concentration of 

Ca2+ and PO4
3-, and strong alkaline environment. With the specific term ATCP the 

amorphous apatitic compound with Ca/P ratio equal to 1.50 is usually indicated, 

namely the precursor of tricalcium phosphates.  

ACPs are used as component in CaP cements, dental or bone substitution 

applications, because of their ability to be solubilized at acidic pH and enhance the 

tissue remineralization. However, their resorption rate is very rapid [34], even more 

than α-TCP, and therefore local imbalances of pH and cytotoxicity may occur. 
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Despite the amorphous nature, a short-range order was detected in ATCP, 

corresponding to a spherical basic unit (~0.95 nm) called Posner’s cluster [67], with 

composition Ca9(PO4)6 and S6 symmetry [68], the same of β-TCP. Such clusters can 

arrange into larger structure of ~20-300 nm under the effect of large amount of 

adsorbed water. Anyway, ACPs tend to spontaneously crystallized into CDHA [69], 

especially if the compound is maintained in its mother solution under moderate stirring, 

or temperature is increased. Most likely, Posner’s clusters constitute the nuclei for 

CDHA crystal formation. 

Calcium deficient hydroxyapatite (CDHA) can be expressed by the generical 

formula: 

𝐶𝑎10−𝑥(𝐻𝑃𝑂4)𝑥(𝑃𝑂4)6−𝑥(𝑂𝐻)2−𝑥 

(1b) 

where 0<x<1, and Ca/P ratio is given by (10-x)/6, thus varying between 1.5 (x = 

1, TCP) and 1.67 (x = 0, HA). As a consequence, thermal treatments carried out at 

~800°C induce its transformation into biphasic mixture of β-TCP and HA, according to 

the level rule.  

CDHA is the synthetic compound which possesses the most similar composition 

to the mineralized bone tissue, thus is currently included in almost all the CaP cements 

commercially available [34]; its solubility is between which of β-TCP and HA, as 

expected. From a structural point of view, CDHA can be considered as stoichiometric 

HA lattice, but with point defects (atom vacancies) and more disorder, as easily 

observable in the related X-ray diffraction patterns.  

 

Figure I - 4. Schematic representation of the XRD main broad peak of CDHA, for Xc equal to zero 

(left) and equal to 1 (right). 
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With respect to stoichiometric and well-crystallized HA, CDHA spectrum shows 

a pronounced difference between the intensity of the 112 and 300 reflections (Fig. I-

4). Therefore, Landi et. al. [70] defined the apatite crystallinity degree Xc as: 

𝑋𝐶 = (1 −
𝐼112 − 𝐼300

𝐼300

) % 

(8) 

where Xc ranges from zero (i.e. I300 = I112/2), up to 100% (i.e. I300 = I112) like in 

HA. 

 

1.2 Sintering 

1.2.1 Conventional sintering 

As well as other ceramic materials, CaPs compounds are characterized by relatively 

strong chemical bonds, responsible for high melting points and brittle mechanical 

behavior. Thus, their production usually involves a thermal treatment at high 

temperature, lower than Tm, called sintering and performed on powder compact (i.e. 

the green body). The process leads to the gradual removal of the initial porosity and 

an increase of density associated to evident shrinkage and consolidation of the 

product in its almost-definitive shape. 

From a thermodynamic point of view, sintering is an irreversible process, 

associated with a decrease in the Gibb’s free energy of the system. Considering the 

absence of an external load, (i.e. pressureless sintering), the driving force of the 

process is the pressure gradient existing on the two side of a curved surface, according 

to the Laplace’s law [71]:  

∆𝑃 = 𝛾 (
1

𝑟1

+
1

𝑟2

) 

(9) 

where γ is the surface energy, and r1 and r2 the two principal curvatures of the 

considered surface. The model well describes a set of spherical granules (i.e. the raw 

powders) placed in contact upon the green body shaping. Therefore, either concave 

(r<0, i.e. interstices) and convex (r>0, particles) surfaces tend to assume a flat 

configuration (r=∞) to eliminate the pressure gradient, by accepting and donating 

atoms, respectively. The mechanism can take place in reasonable time because of 

the limited distance to be covered by the atoms. Analogously, it can be demonstrated 
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that the atom vacancy concentration, with respect with a flat surface, is higher for 

negative curvature, and lower for positive curvature. Once again, atom migration from 

convex to concave surfaces is spontaneously induced in order to nullify the vacancy 

gradient. 

Mass transport is governed by diffusional equations derived by the Fick’s law, 

where the diffusional coefficient D accounts for the specific source, mechanisms and 

path followed by the atoms. In general, the process is thermally activated and, as 

consequence, promoted by higher temperature. Nevertheless, diffusion through the 

surface requires less energy than through grain boundaries (GBs), and further less 

than lattice; therefore, it is the first active mechanism in a sintering treatment, leading 

to neck formation between particles, but not to densification. In general, the kinetic of 

sintering can be described by two equations, respectively referred to the neck growth 

and the shrinkage / densification as a function of time t [72]:  

(
𝑋

𝑟
)

𝑚

=
𝐻

𝑟𝑛
𝑡 

(10a) 

(
∆𝐿

𝐿0

)
𝑚 2⁄

= −
𝐻

2𝑚𝑟𝑛
𝑡 

(10b) 

where X and r are the semi-length and the curvature of the neck, ΔL the variation 

of the distance L0 between two grain centers, m and n numerical exponents depending 

on the mechanism, and H a function containing geometrical parameters and the 

diffusional coefficient of the system.  

The main stages of sintering can be described as: 

- initial stage: concavities near the contact points of the granules are reduced 

by gradually forming interparticle necks and GBs. Since the material 

shrinkage is almost negligible, the stage is also indicated as pre-sintering. 

- intermediate stage: pores have achieved an equilibrium shape but still 

constitute a continuous network; shrinkage and densification (~90%) occur 

by reducing the pore dimension and the distance between the grain 

centers. 

- final stage: pores become isolated at the grain edges, shrinking up to 

completely disappear. The microstructural evolution is additionally 

characterized by grain growth or coarsening. 
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For the specific case of pressureless sintering of CaP apatites Ca10-

x(HPO4)x(PO4)6-x(OH)2-x, neck formation was investigated as a function of the partial 

pressure of water in the system, and otherwise expressed as the variation of surface 

area S over time by the empirical relation [73]: 

𝑑𝑆

𝑑𝑡
= 𝑘(𝑇, 𝐶𝑎/𝑃) 𝑃𝐻2𝑂

0.68 𝑆8 

(11) 

where k is a kinetic coefficient depending on the process temperature and the 

chemical composition of the compound, namely related to the activation energy of the 

surface diffusion (~120 kJ mol-1). Water vapor seems to catalyze the first stage of 

apatite sintering. Interestingly, kinetic coefficients determined at 700°C are equal to 

9.2∙10-3 for Ca/P = 1.67 (stoichiometric HA), and 1.35 for Ca/P = 1.535 (CDHA 

precursor of β-TCP). In other words, surface reduction rate becomes almost 100 times 

larger by decreasing the Ca/P ratio, most likely due to an increment of Ca2+ and OH- 

vacancies in the apatite lattice, which promote the mass transport through surface 

paths.  

 

Figure I – 5a. Sintering trajectories of HA reproduced on the basis of [62]. Data collected by 

various authors: colored lines join data points related to the same sintering temperature. 
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As a direct consequence, grain growth and coalescence start before 

densification, significantly reducing the driving force for sintering at higher 

temperature. This phenomenon can account for decreasing the apatite sinterability 

with Ca/P ratio, as observed in literature [62]. One possible solution consists into the 

application of high heating rates up to ~800°C, in order to kinetically inhibit the surface 

reduction, or even to decompose CDHA into β-TCP / HA mixture, finely grind the 

product and restart a new sintering process.  

Successively, starting from ~750°C, volume and grain boundary diffusions are 

both activated (~440 kJ mol-1), leading to a progressive separation and closure of the 

porosity, which up to this moment was still interconnected and predominant [70]. Once 

again, curved grain boundaries achieve a thermodynamically stable flat configuration, 

with an equilibrium angle of ~120° and a coordination of 6, i.e. ideally hexagonal 

grains. The pinning action on the GBs mobility, previously carried out by the several 

pores present, is drastically reduced, and thus grain growth can occur according to: 

ln 𝐷 = ln 𝐾𝑡 −
𝑄

𝑅𝑇
 

(12) 

where D is the average grain size, K a pre-exponential coefficient, t the time, T 

the temperature, R the gas constant. The activation energy of the process (Q) for 

stoichiometric HA, results in the range 200-240 kJ mol-1, under the simplified 

hypotheses of negligible initial grain size (G0) and a kinetic exponential factor n equal 

to 1 [74].  

Sintering of β-TCP has been much less investigated in the literature than HA. 

Although the sintering behavior of these two CaPs is quite similar, it has to be recalled 

that sinterability decreases with the Ca/P ratio, and also β→α-TCP phase transition 

around 1150°C, extensively discussed above, limits the maximum process 

temperature. Moreover, small quantities of Ca2P2O7 (CPP) impurities strongly reduce 

β-TCP densification, inducing abnormal grain growth [75]. Interestingly, mixtures of β-

TCP / HA, indicated as biphasic calcium phosphates (BCPs), seem to exhibit lower 

sinterability than pure-single phases [76]. Because of such difficulties, β-TCP 

compounds are frequently consolidated by non-conventional techniques, such as hot-

pressing (HP) [77], spark plasma sintering (SPS) [78] or plasma spray [44]. 

Sintering trajectories of HA and TCP compounds are reported in Fig. I-5a and b, 

on the basis of a review paper [62]. In particular, just few cases of fully-dense β-TCP 

polymorphs (T<1150°C) are reported, starting from nanosized powders and 

performing pressureless or HP sintering. 
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Figure I – 5b. Sintering trajectories of TCP reproduced on the basis of [62]. Data collected by 

various authors: colored lines join data points related to the same sintering temperature. Empty 

points are referred to HP processes. 

 

1.2.2 Flash Sintering 

Flash sintering is an electrical field-assisted sintering (EFAS) technique recently 

proposed in order to consolidate ceramic green bodies at relatively low temperature 

and in short times. With respect to spark plasma sintering (SPS) (a field-assisted 

process which requires conductive dies and the application of high pressure [79]), 

flash sintering (FS) involves direct Joule heating of samples and much simpler 

equipment. At the same time, the extremely rapid heating rate (~100 °C min-1) 

simplifies the consolidation of meta-stable phases or non-oxide ceramics, inhibiting 

the grain growth and ensuring optimal final properties at the material (mechanical 

strength, transparency, …).  

Flash sintering technique was first proposed and investigated in 2010 by Cologna 

et al. [80], working on tetragonal 3YSZ nanopowders and achieving almost 
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instantaneous densification of the material at 850°C, with the application of 120 V cm-

1. Successively, the complete definition of FS was reported by Raj et al. in a US patent 

application [81] as follows: 

“A method of sintering a material comprising simultaneously exposing the 

material to an electric field and to heat, such that the material is sintered, wherein the 

electrical field is between 7.5 V/cm and 1000 V/cm, wherein the onset of sintering is 

accompanied by a power dissipation between 10 to 1000 mW mm-3, wherein the onset 

of sintering is accompanied by a non-linear increase in the conductivity of the material, 

and wherein the time between the onset of sintering and the completion of sintering is 

less than one minute” 

Such definition entails the electrical behavior of the considered material being 

described by a negative temperature coefficient (NTC) of resistivity, namely the main 

characteristic to enhance their conductivity (by migration of electrons, holes, ions, or 

defects) by increasing the temperature [82]. Moreover, the concept of flash event is 

introduced through the sintering onset, usually identified by the furnace temperature 

at which it occurs (Ton), and related with power and conductivity surges.  

Interestingly, very different ceramic materials have been tested under FS 

condition in the last few years, always showing the common phenomenology 

descripted above: 

- insulators: Al2O3 [83][84], BaTiO3 [85], KNbO3 [86], SrTiO3 [87]; 

- semi-conductors: TiO2 [88][89], ZnO [90], SiC [91], B4C [92], SnO2 [93]; 

- oxygen ion conductors: 3YSZ [94], 8YSZ [95][96], GDC [97][98]; 

- metal-like conductors: Co2MnO4 [99], MoSi2 [100], ZrB2 [101];  

The basic FS experimental equipment is quite easy and consists of a 

conventional furnace, two conductive electrodes (usually Pt alloy), a power supply (DC 

or AC) and a multimeter. Treatments can be additionally performed within a 

dilatometer in order to detect sample shrinkage, as well as CCD camera, UV/VIS 

spectrometer [102], or even X-ray diffractometer [88] can be accessorized to study the 

FS material behavior from different point of view. Also the specimen shape plays an 

important role in the overall process, affecting the geometry and the connection with 

the electrodes. The very first FS experiment [80] was carried out on dogbone-like 

samples with rectangular cross-section, where the electrodes were composed of Pt 

wires, inserted within two holes at the sample extremities. In spite of the peculiar 

geometry, such configuration remains the most adopted in literature, ensuring an 
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optimal connection with the power source, and regular field-lines in the central portion 

of the specimens. Other options consist into rectangular bars, with electrode wires 

coiled around the sample extremities, or cylindrical pellets coupled with plate 

electrodes. 

Flash sintering tests can be divided into two categories according to the thermal 

program adopted during the application of the electric field, namely constant heating 

rate (isochronal) or constant temperature (isothermal).  

In both the cases, three main stages are identifiable: 

- stage I or incubation; the system works in voltage control; 

- stage II or flash event; 

- stage III; the system works in current control. 

 

 

 

Figure I - 6. Schematic representation of the typical behavior of a ceramic material subjected to 

FS process: isochronal mode (left) and isothermal mode (right). 
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In a typical isochronal experiment (Fig. I-6), constant heating rate and constant 

electric field E are applicated to the material. Due to its high resistivity at low 

temperature, the current flowing through the sample is initially almost neglectable 

(stage I). Then, recalling the NTC condition, the increment in the furnace temperature 

leads to a gradual growth of the current, additional source of heat by Joule effect, and 

at the end, to an abrupt surge of both current and dissipated power (stage II). Starting 

from this instant, rapid shrinkage affects the material. In order to avoid system 

damages, the maximum current Jmax is limited to a preset value, and thus the treatment 

proceeds by maintaining a constant current (stage III) for a variable time. Very 

similarly, in an isothermal FS experiment, sample is maintained at a constant 

temperature, while the electric field is gradually increased (stage I). Once a critical 

value is reached, the current resulting from the combination of E and T rapidly arises 

up to the limit (stage II and III), causing material densification. 

After several works reported in literature, it is quite commonly accepted that the 

physical condition leading to the flash event in a ceramic material, conventionally 

heated and simultaneously crossed by current, is a positive combination of NTC of 

resistance and Joule effect, known as thermal runaway mechanism [103][104]. 

However, the explanation about the successive extremely fast densification of the 

material is still under discussion: some studies seem to prove the completely thermal 

nature of the process [105], whereas others hypothesize alternative mechanism based 

on Frenkel pairs nucleation [88][94], supported by the observation of luminescence 

phenomena. The key factor in the understanding of flash sintering is undoubtedly the 

exact determination of the real sample temperature (Ts) during the process, made 

difficult by the limited time window of the event. Moreover, the inner current flow 

causes a sensible temperature gradient between the specimen skin and core, and 

thus direct measurements realized by pyrometer tend to underestimate the actual 

sample temperature. The most common route consists into the application of physical 

[106] or mathematical [107] models in order to estimate Ts by a thermal balance of the 

system, and consequently to compare such previsions with experimental evidence. 

The only reference in literature of CaP flash sintering, is the recent work of Bajpai 

[108] regarding the achievement of almost fully-dense HA (dogbone specimens) in 

isochronal and DC conditions, at 1024°C and 1000 V cm-1. 
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Aim of the work 

Calcium phosphate bioceramics, especially hydroxyapatite and tricalcium 

phosphate, have been intensively studied in the last years because of their excellent 

biocompatibility, osteoinductivity, and bio-resorbability properties, which make them 

ideal candidates for bone regenerative medicine. Nevertheless, both chemistry and 

thermal behavior of calcium phosphates are still object of discussion in literature. For 

instance, sinterability of β-TCP is strongly affected by the phase transition into the α 

polymorph, which limits the biological and mechanical properties of the final sintered 

materials. 

The aim of the present work was to investigate the influence of magnesium as 

dopant of TCP, synthetized by two alternative different routes, on physical and 

structural properties and to produce dense β-TCP samples by using an innovative 

electrical field-assisted technique known as flash sintering. In addition, strontium 

substituted hydroxyapatite nanopowders were also synthesized and characterized, as 

possible drug release vectors. 
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Chapter II 

 

Materials and Methods 

 

2.1 Solid state reaction: Magnesium doping β-TCP 

Beta - Tricalcium phosphate powders were synthesized by solid-state reaction with 

different amount of Mg2+ doping ions. High purity raw materials, calcium carbonate 

(CaCO3, >99.95 wt%, Sigma-Aldrich), ammonium phosphate dibasic ((NH4)2HPO4, 

>99.0 wt%, Fluka) and magnesium oxide (MgO, 98.8 wt%, Farve) were mixed to obtain 

0, 1, and 2 mol% Mg2+ containing TCP; the corresponding samples were labelled as 

Mg0, Mg1 and Mg2 (Mg-TCP series).  

The high purity starting materials were weighted in stoichiometric quantity to 

obtain (Ca+Mg)/P molar ratio equal to 1.50; the mix was then homogenized in a ZrO2 

ball mixer with ethanol and dried at 80°C. The dried powders were placed into an 

alumina crucible and solid-state reaction was performed at 1000°C for 30 h (heating 

rate 10°C min-1, free cooling). 

According to previous works [109], the expected reaction is: 

(3 − 𝑥) 𝐶𝑎𝐶𝑂3 + 2 (𝑁𝐻4)2𝐻𝑃𝑂4 + 𝑥 𝑀𝑔𝑂

→ 𝐶𝑎3−𝑥𝑀𝑔𝑥(𝑃𝑂4)2 + (3 − 𝑥) 𝐶𝑂2 + 3 𝐻2𝑂 + 4 𝑁𝐻3 

(13) 

where the amount (mol%) of dopant can be expressed as Mg/(Ca+Mg)∙100 = 

x/0.03. 

 

2.2 Precipitation method: Magnesium doping β-TCP 

Calcium phosphate nanopowders (Ca/P ratio = 1.5) were synthesized by chemical 

precipitation via aqueous media in two different compositions, without any doping ions 

(nMg0) and with 5 mol% magnesium (nMg5) substituting calcium (nMg-TCP series). 

The n prefix was added to distinguish these nanometric-size compositions from the 

equivalent micrometric powders obtained via solid-state reaction and above described.  

Hence, nitrate solutions (50 ml, 0.6 M) were prepared starting from calcium 

nitrate tetrahydrate Ca(NO3)2 ∙ 4H2O (Sigma Aldrich, powder >99.0%) and, for the 
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doped composition, magnesium nitrate hexahydrate Mg(NO3)2 ∙ 6H2O (Fluka, powder 

99%) as well. For the phosphate solutions (50 ml, 0.4 M), ammonium phosphate 

dibasic (NH4)2HPO4 (Fluka, powder >99.0%) and ammonium hydroxide NH4OH (Carlo 

Erba, 30 vol%) were equimolarly mixed to obtain a buffer at pH ~9. The syntheses 

were carried out by rapidly adding the nitrate solution to the phosphate buffer, under 

vigorous stirring at room temperature, according to the reaction: 

(9 − 3𝑥) 𝐶𝑎(𝑁𝑂3)2 ∙ 4𝐻2𝑂 + 3𝑥 𝑀𝑔(𝑁𝑂3)2 ∙ 6𝐻2𝑂 + 6 (𝑁𝐻4)2𝐻𝑃𝑂4 + 6 𝑁𝐻4𝑂𝐻

→ 𝐶𝑎9−3𝑥𝑀𝑔3𝑥(𝐻𝑃𝑂4)(𝑃𝑂4)5𝑂𝐻 + 18 𝑁𝐻4𝑁𝑂3

+ (41 + 6𝑥) 𝐻2𝑂 

(14) 

where the molar amount (mol%) of Mg2+ replacing Ca2+ can be expressed as 

Mg/(Mg+Ca)∙100 = 100x/3 [110]. After 2 hours of aging, the resulting suspensions 

were repeatedly washed with distilled water, centrifugated (7000 rpm), and finally dried 

at 80°C overnight. 

 

2.3 Precipitation method: Strontium doping HA 

In a very similar way, HA nanopowders were synthesized by aqueous precipitation 

method with different Sr2+ contents, following the procedure described by Bigi et al. 

[111]. High-purity calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, 99 wt%, Sigma Aldrich 

A.C.S. reagent), and strontium nitrate anhydrous (Sr(NO3)2, 98%w, Alfa Aesar) were 

used to prepare the Ca+Sr nitrate solutions (50mL, 1.08 M overall); whereas 

ammonium phosphate dibasic ((NH4)2HPO4, >99.0 wt%, Fluka) and ammonium 

hydroxide NH4OH (Carlo Erba, 30 vol%) were once again mixed to obtain the 

phosphate buffer at pH ~10 (50 mL, 0.65 M).  

In order to avoid carbonatation, the syntheses were carried out in N2 constant 

flow, adding the phosphate solution to the nitrate solution at 90 °C under vigorous 

stirring. The solutions were additionally stirred at 90 °C in N2 static atmosphere for 5 

h; then, the white precipitates were repeatedly centrifuged (7000 rpm for 10 min), 

washed and finally dried at 80 °C overnight. The expected reaction was: 

(10 − 𝑦) 𝐶𝑎(𝑁𝑂3)2 ∙ 4𝐻2𝑂 +  𝑦  𝑆𝑟(𝑁𝑂3)2 + 6 (𝑁𝐻4)2𝐻𝑃𝑂4 + 8 𝑁𝐻4𝑂𝐻

→  𝐶𝑎10−𝑦𝑆𝑟𝑦(𝑃𝑂4)6(𝑂𝐻)2 + 20 𝑁𝐻4𝑁𝑂3 + (46 − 4𝑦) 𝐻2𝑂 

(15) 

Strontium content in the final HA powder was tailored changing the relative 

amount of Ca(NO3)2·4H2O and Sr(NO3)2 in the nitrate solutions, to obtain Sr/(Sr + Ca) 
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ratio of 0, 5, 10, 25, 50, 75 and 100 mol%; nanopowders were labelled as nSrX, where 

X= Sr mol% = 10y (nSr-HA series). 

 

2.4 Powder characterization 

2.4.1 ICP-OES 

Inductively Coupled Plasma - Optical Emission 

Spectrometry 

Purity and real doping content of powders (Mg-TCP, nMg-TCP and nSr-HA) were 

initially checked by ICP-OES (Spectro Ciros Vision CCD, 125–770 nm) using 

hydroxyapatite ultrapure standard (>99.995% trace metal basis, Sigma–Aldrich), a 

multi-element standard (Merck KGaA, type IV) and a specific Sr standard (1000 ppm, 

BHD SpectroSol). The samples were solubilized in ultrapure nitric acid (70 vol%) and 

diluted with pure water (reverse osmosis, σ < 0.1 μS cm-1), adding standards and Cs 

(100 g/L) as ionization suppressor. The emission lines chosen for the analysis were 

184 and 393 nm for Ca, 178 nm for P, 279 nm for Mg, and 217 nm for Sr. 

 

2.4.2 XRD 

X-Ray Diffraction 

Two different diffractometers were used to analyze the synthesized powders and the 

related sintered samples, taking advantage of the peculiar features of each instrument. 

Then, the spectra were analyzed by the Rietveld-base software Maud (ver. 2.55) [112].  

The first diffractometer is Rigaku DMAX III 4057A2, based on Bragg-Brentano 

configuration, working with Cu Kα as source radiation (8.08 keV) at 40 kV / 30 mA. 

Data were collected within the 2Theta range 10°–60°, with an angular resolution of 

0.03° and an acquisition time of 10 s/step. Due to the extreme precision of the source 

/ detector movements, this device is the best option for the peak position determination 

and, consequently, it was used to measure the cell parameters and the crystallite sizes 

of the phases detected. Instrumental broadening was taken into account by using Si 

powder standard (SRM 640b – NIST) for calibration. 

Conversely, a Debye–Scherrer diffractometer (Italstrutture CPS) equipped with 

curved detector and working at the same operating conditions (Cu Kα 8.08 keV, 40 kV 

/ 30 mA), allows to obtain higher signal/noise ratio with only 10 min acquisition time; it 

was therefore used for the quantitative analysis of the samples.  
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JCPDS cards chosen for the spectra refinement are summarized in Tab. II-1, 

with the corresponding densities ρcry (crystallographic) and ρth (measured). Under 

these conditions, the detection limit DL of the instrument can be estimated equal to 1 

wt% for a single crystalline phase. 

 

 

Table II - 1. JCPDS cards used for the refinement by Maud software, and density values of the 

related crystalline phases.  

 

2.4.3 FT-IR 

Fourier Transform – Infrared Spectroscopy 

FTIR spectra were acquired in the range of 4000–400 cm−1 (resolution=4 cm−1, 64 

scans) using an Avatar Thermo FTIR spectrometer. For the tests, sample powders 

were manually mixed in mortar with anhydrous KBr, uniaxially pressed in thin circular 

pellets, and analyzed in transmission mode. 

 

2.4.4 SS-NMR 

Solid State Nuclear Magnetic Resonance 

Solid state NMR analysis on 31P and 1H nuclei was performed using a Bruker 300WB 

instrument (nSr-HA series). Sample powders were compacted within ZrO2 rotors (d = 

4 mm), and placed in rotation under Magic Angle Spinning (MAS) at 11 kHz by flowing 

air. 

31P-MAS experiments were recorded at 121.49 MHz, both under proton-

decoupling (31P SP) and under cross-polarization (31P CP) configuration, using 

ammonium dihydrogen phosphate NH4H2PO4 as secondary reference. 31P SP tests 

consisted in a single pulse (π/2) of 3.6 μs, followed by a recycle delay of 300 s. High-

Phase Name JCPDS # 
ρcry, 

g cm-3 

ρth, 

g cm-3 

     

β-TCP β Tricalcium Phosphate 09-0169 3.12 3.07 

α-TCP α Tricalcium Phosphate 29-0359 2.81 2.86 

HA Hydroxyapatite 09-0432 3.08 3.14 

SrHA Strontiumapatite 33-1348 3.84 3.95 
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power proton decoupling were used during the entire signal acquisition (16 scan). 31P 

CP tests have been recorded with a contact time of 0.5 ms (100 scans).  

Conversely, 1H-MAS experiments were carried out at 300.13 MHz, π/2 pulse of 

5 μs, and 5 s of recycle delay (16 scans), using pure ethanol as secondary reference. 

 

2.4.5 Nitrogen sorption 

N2 physisorption analyses were carried out on a Micromeritics ASAP 2010 analyzer 

on the nanometric-size powders (nMg-TCP and nSr-HA series). Specific surface area 

(SSA) and pore volume distributions were calculated from N2 adsorption/desorption 

isotherms applying BET equation and BJH model, respectively. SSA values were also 

used to estimate the average particle dimensions D, by the well know relationship: 

𝐷 =
Ψ

𝜌𝑡ℎ 𝑆𝑆𝐴
 

(16) 

where ρth is the theoretical density of the considered material (see Tab 3) and ψ 

a particle shape factor.  

 

2.4.6 TEM 

Transmission Electron Microscopy 

Nanopowder size and morphology (nMg-TCP and nSr-HA series) were investigated 

by Zeiss EM10 TEM operating at 80 kV. Powders were dissolved in acetone and 

sonicated for 10 min; then the resulting suspensions were deposited on the copper 

grids, allowing solvent evaporation overnight. 

 

2.4.7 TG-DTA 

Thermogravimetric – Differential Thermal Analysis 

The thermal behavior of the synthesized powders was studied by a Netzsch 

Gerätebau STA409/DAS 414 system, using calcined alumina as reference. 

Experiments were carried out in static air with different constant heating rate (v = 2, 5, 

10, 20, 40 °C min-1), up to 1200°C.  
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Following an isochronal approach, indeed, it is possible to graphically determine 

the activation energy Q (J mol-1) of a detected thermal event from the Kissinger 

equation [6]:  

ln
𝑇∗

2

𝑣
=

𝑄

𝑅
 

1

𝑇∗

+ 𝑐𝑜𝑛𝑠𝑡 

(17) 

where T* represents the peak temperature (K) measured at the different heating 

rate v, and R the gas constant (8.31 J K-1mol-1).  

 

2.5 Thermal treatments 

2.5.1 Conventional sintering 

The sintering behavior of Mg-TCP series was initially studied by dilatometric analysis, 

shaping the powders into circular pellets (thickness ~3 mm, diameter 12 mm) by 

uniaxial pressing (for 5 min at 5 t). Horizontal-loading dilatometer (Linseis L75 Platinum 

Series) with Al2O3 ram and boat was employed and tests were performed with heating 

rate of 20°C min-1 up to 1550°C. Similarly, isothermal sintering was investigated on 

Mg0 composition, with heating rate of 40°C min-1 up to 900°C or 1100°C and 2 h 

holding time. 

In addition, the same type of green pellets was sintered in air atmosphere at 

1400°C (heating rate 10°C min-1, 2 hours holding time), and then alternatively 

subjected to two different cooling processes: a controlled cooling at -10°C/min inside 

the furnace (C series), and a quickly air-quenching outside the furnace (Q series). 

Similarly, nMg-TCP nanopowders were shaped into circular pellets (thickness ~3 

mm, diameter 6 mm) by uniaxial pressing (for 5 min at 5 t). Dilatometry were carried 

out at 20°C min-1 up to 1200°C, and sintering treatments at 10°C min-1, up to 1000 

°C. 

 

2.5.2 Annealing 

The possible reconversion of the retained α-TCP phase into β-TCP was investigated 

by performing an annealing treatment on previously sintered and quenched Mg-TCP 

samples (QA series). Two different approaches were adopted: constant heating rate 

(2 °C min-1) within the dilatometer (quartz boat and ram) and isothermal treatments at 
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700, 730, and 775 °C for 1, 2, 3, and 10 h (Mg1 composition, only). The latter samples, 

after the quantification of β-phase by XRD (wβ, weight fraction), were used to 

investigate the kinetic of α→β reconversion according to the Avrami equation: 

𝑓(𝑡) = 𝑤𝛽 = 1 − 𝑒−𝑘𝑡𝑛
 

(18a) 

where n is the Avrami parameter, depending on the transformation mechanisms, 

and k the kinetic factor, depending on the temperature according to the Arrhenius law: 

𝑘(𝑇) = 𝑘0 𝑒
−𝑄

𝑅𝑇⁄  

(19a) 

where k0 is the pre-exponential coefficient, Q the activation energy of the 

transformation and R the gas constant. Both equations can be linearized to determine 

n, k and Q:  

ln(− ln(1 − 𝑤𝛽)) = ln 𝑘 + 𝑛 ln 𝑡  

(18b) 

ln 𝑘 = ln 𝑘0 −
𝑄

𝑅
 
1

𝑇
 

(19b) 

 

2.5.3 Isochronal Flash Sintering 

Flash sintering experiments were performed on tricalcium phosphate powders (TCP 

and nMg-TCP) within the dilatometer above descripted. Cylindrical green pellets (d = 

8 mm, height = 2–5 mm) were shaped by uniaxial pressing the powder at ∼70 MPa, 

and then placed into the instrument between two Pt-Rh flat electrodes following the 

scheme in Fig. II-1. The electrical field was generated by a DC power supply 

(EW5R120, Glassman High Voltage Inc.); additionally, silver paste was applied on the 

sample surface to improve the electrical connection with the electrodes. Voltage and 

current were constantly detected by a multimeter (Keithley 2100, 1 Hz), while linear 

shrinkage and furnace temperature were simultaneously measured by the dilatometer.  

For all experiments, constant heating rate of 20 °C min-1 and current limit Jmax of 

2 mA mm-2 (i.e. 100 mA) were adopted, whereas different E fields (range 500-2000 V 

cm-1) were applied and maintained constant since the dilatometer furnace reached 

500°C. 
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Once the flash event occurred and the system was switched to current control 

(stage III), the sample was kept in this condition for a variable time.  

 

 

Figure II - 1. Schematic representation of the experimental setup used for the isochronal flash 

sintering tests. 

 

2.5.4 Isothermal Flash Sintering 

Some flash experiments were also performed in isothermal condition on dog-bone-

shaped specimens (see Fig II-2), limiting the maximum current flow at 7.5 mA mm-2. 

For this purpose, the synthesized nanopowders (nMg0 composition, only) were 

uniaxially pressed at ~150 MPa, obtaining samples with a rectangular central section 

of (1.5 x 3.1 x 12.0) mm, and pre-sintered at 800°C for 30 min.  

 

 

Figure II - 2. Dogbone-like sample used for the isothermal flash sintering tests. 

 

Two through-holes allowed to insert directly the Pt wires and connect the 

specimen to the electrical circuit described above; no conductive paste was applied. 
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Then, flash sintering treatments were carried out within a horizontal tubular furnace 

(Nabertherm P330) pre-heated and maintained at 900°C (Fig. II-3), whereas E field 

was gradually increased up to 750 V cm-1. 

 

 

Figure II - 3. Schematic representation of the experimental setup used for the isothermal flash 

sintering tests. 

 

2.6 Sintered body characterization 

2.6.1 SEM 

Scanning Electron Microscopy 

The microstructure of sintered specimens, as well as the morphology of the 

synthesized powders and the dimension of the hardness indentations were 

determined by Jeol JSM 5500 scanning electron microscope (SEM). 

 

2.6.2 Density – Archimede’s method 

In agreement with ASTM C830-00 standard, open porosity Popen (vol%) and 

densification ρ/ρth (%) of the sintered samples were determined by the Archimedes’ 

method using an analytical balance (Gibertini E42S, ± 0.1 mg) according to the 

equations: 

𝑃𝑜𝑝𝑒𝑛 = 100 
𝑊 − 𝐷

𝑊 − 𝑆
 

(20) 
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𝜌/𝜌𝑡ℎ  =  
100

𝜌𝑡ℎ

 
𝐷

𝑊 − 𝑆
 

(21) 

where D, S, and W represent dry, suspended, and saturated weight, and ρth the 

theoretical density of the material (see Tab II-1). In case of a multi-phase specimen, 

the overall density can be estimated as: 

1

𝜌𝑡ℎ

= ∑
𝑤𝑖

𝜌𝑖

 

(22) 

where wi and ρi represent the weight fraction (by XRD refinement) and the 

density of the i-th phase, respectively. 

 

2.6.3 Vickers Hardness 

The sintered Mg-TCP samples subjected to controlled cooling (C series) and air-

quenching (Q series) were molded in epoxy resin, polished with SiC papers (180 to 

1200 grit), and finished with 6 μm diamond abrasive. Then, the specimens (3 for each 

composition) were subjected to Vickers indentation, using an indenter set up to 

achieve the applied load (equal to 5 kg) in 30 s, with 5 s holding time. The indentations 

performed were observed and measured by SEM up to collect at least 3 acceptable 

data for each different sample (i.e. 9 values for each composition). Vickers hardness 

was calculated as:  

𝐻𝑉 =
1.8544 𝐹

𝑑2
 

(23) 

where F is the indentation load and d = (d1+d2)/2, representing the average value 

between the two-measured diagonal length of a single indentation. 

 

2.6.4 Mechanical Strength – Piston-on-three-ball test 

The mechanical characterization of Mg-TCP series was integrated by biaxial flexure 

test (piston-on-3-ball load scheme) carried out on circular pellets (thickness ~3 mm, 

diameter ~20 mm, 5 for each composition). The samples were shaped by cold-

pressing the powders at the same previously reported conditions (5 min at 5 t), 

sintering and cooling processes being maintained similar to those for C and Q series 
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described above. According to ISO 6872 standard, the maximum tensile stress σmax 

(MPa) for a specimen subject to this load configuration can be calculated as [113]: 

𝜎𝑚𝑎𝑥 =
−0.2837𝑃(𝑋 − 𝑌)

𝑡2
 

(24a) 

𝑋 = (1 + 𝜈) ln (
𝑐2

𝑅2
) + (

1 − 𝜈

2
) (

𝑐2

𝑅2
) 

(24b) 

𝑌 = (1 + 𝜈) [1 + ln (
𝑎2

𝑅2
)] + (1 − 𝜈) (

𝑎2

𝑅2
) 

(24c) 

where P is the failure load, ν the Poisson ratio (assumed equal to 0.27), a the 

radius of the circle passing through the 3 balls center (6.29 mm), c the piston radius 

(0.98 mm), R and t the radius (mm) and the thickness (mm) of the disk specimen, 

respectively. Tests were performed at 0.025 mm s-1 (i.e. displacement control) with an 

Universal Testing Machine (MTS - MPS 810). 

 

2.7 Thermal modelling of FS 

As already discussed in the Introduction, the real temperature of a material subjected 

to FS conditions is a crucial step to understand the phenomenon and to identify the 

technical parameters necessary to induce the process.  

A green body of mass m and specific heat Cp is considered; the following thermal 

balance can be introduced: 

𝑚𝐶𝑝

𝑑𝑇

𝑑𝑡
= 𝑊𝑖𝑛 − 𝑊𝑜𝑢𝑡 

(25) 

More specifically, the positive power contribution Win is due to Joule heating 

effect:  

𝑊𝑖𝑛 = 𝑉𝐼 = 𝑅𝐼2 = 𝑉2 𝑅⁄  

(26) 
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where V is the voltage, I the current, and R the resistance, according to the first 

Ohm’s law. Conversely, the term Wout is due to the temperature differences between 

specimen (Ts) and furnace (Tf), causing a negative thermal flux from the material by 

radiation (~ΔT4) and through the two electrodes (~ΔT): 

𝑊𝑜𝑢𝑡 = 𝜎𝑆𝐵휀𝑆𝑟𝑎𝑑(𝑇𝑠
4 − 𝑇𝑓

4) + 2ℎ𝑐𝑜𝑛𝑡𝑆𝑐𝑜𝑛𝑡(𝑇𝑠 − 𝑇𝑓) 

(27) 

where σSB is the Stefan-Boltzmann constant, ε the optical emissivity, hcont the 

contact conduction coefficient, Srad and Scont the specimen surfaces involved in the 

specific thermal exchange mechanism. More in detail, the second term describes the 

heat losses through the imperfect interface between specimen and electrodes, 

characterized by mixed conduction mechanism through the contact points, and 

convection through the cavity / open porosity [114]. The present model assumes a 

uniform temperature Ts throughout the specimen.  

The overall balance can be therefore written as: 

𝑚𝐶𝑝

𝑑𝑇𝑠

𝑑𝑡
= 𝑉𝐼 − 𝜎𝑆𝐵휀𝑆𝑟𝑎𝑑(𝑇𝑠

4 − 𝑇𝑓
4) − 2ℎ𝑐𝑜𝑛𝑡𝑆𝑐𝑜𝑛𝑡(𝑇𝑠 − 𝑇𝑓) 

(28) 

Finally, the evolution of the sample temperature between two consecutive 

instants ti and ti+1 can be expressed by: 

𝑇𝑠 𝑖+1 = 𝑇𝑠 𝑖 +
𝑡𝑖+1 − 𝑡𝑖

𝑚𝐶𝑃

[𝑉𝑖𝐼𝑖 − 𝜎𝑆𝐵휀𝑆𝑟𝑎𝑑 𝑖(𝑇𝑠 𝑖
4 − 𝑇𝑓 𝑖

4 ) − 2ℎ𝑐𝑜𝑛𝑡𝑆𝑐𝑜𝑛𝑡 𝑖(𝑇𝑠 𝑖 − 𝑇𝑓 𝑖)] 

(29) 

This approach was further adapted to the two different FS configuration applied 

on TCP. All the adopted physical constants are summarized in Tab. II-2 and further 

discussed in Chapt. 3.1.  

 

Symbol Quantity Value Unit Ref. 

     
Cp Specific Heat 0.7 J g-1 K-1 [115] 
ε Optical Emissivity 0.8 /  

hcont Contact Conductivity 10 W m-2 K-1 [114] 
σSB Stefan-Boltzmann Constant 5.67∙10-8 W m-2 K-4  
Rg Gas Constant 8.31 J K-1 mol-1  
     

 

Table II - 2. Physical constants used in the thermal equations. 
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An alternative way to determine Ts is to employ an electrical property of the 

material, for instance the resistivity ρs, that depends on the temperature: 

𝜌𝑠 = 𝜌0𝑠 exp (
𝑄𝑠

𝑅𝑔𝑇𝑠

) 

(30) 

Such equation shows an Arrhenius-like trend, that is typical of an ionic conductor 

[82], with ρ0s as a pre-exponential coefficient, Qs the activation energy of the process, 

and Rg the perfect gas constant. In addition, the same relation can be extended at the 

resistance of the samples, being the two quantities linked by geometrical parameters: 

𝑅𝑠 =
𝜌𝑠𝐿0

𝜋𝑟0
2 = 𝑅0𝑠 exp (

𝑄𝑠

𝑅𝑔𝑇𝑠

) 

(31) 

However, Qs and ρ0s (or R0s) can be graphically determined by fitting the 

measured resistivity before the flash event, when Ts ≈ Tf, according to the linearized 

form: 

ln 𝜌𝑠 = ln 𝜌0𝑠 +
𝑄𝑠

𝑅𝑔

1

𝑇𝑓

 

(32) 

Finally, by extending the Arrhenius behavior beyond the flash event, the sample 

temperature Textra can be extrapolated by inverting the above equation: 

𝑇𝑒𝑥𝑡𝑟𝑎 =
𝑄𝑠

𝑅𝑔 ln(𝜌𝑠 𝜌0𝑠⁄ )
 

(33) 

 

 

2.7.1 Cylindrical samples – Isochronal FS 

For the cylindrical specimens with radius r and length L, considering the axial-

symmetry of the FS configuration adopted, the heat losses by contact occur basically 

through the base surfaces of the ceramic samples, placed in contact with the flat 

electrodes, whereas the radiative area corresponds to the lateral surface of the 

cylinder. In addition, being the tests performed within the dilatometer, it is possible to 

measure the instantaneous length variation and calculate the actual surface, under 

the hypothesis of an isotropic shrinkage e of the material: 
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𝑒 =
𝐿0 − 𝐿𝑖

𝐿0

=
𝑟0 − 𝑟𝑖

𝑟0

  

(34) 

𝑆𝑟𝑎𝑑 𝑖 = 2𝜋𝑟0𝐿0(1 − 𝑒)2 

(35) 

𝑆𝑐𝑜𝑛𝑡 𝑖 = 𝜋𝑟0
2(1 − 𝑒)2 

(36) 

Eq. 29 becomes: 

𝑇𝑠 𝑖+1 = 𝑇𝑠 𝑖 +
𝑡𝑖+1 − 𝑡𝑖

𝑚𝐶𝑃

[𝑉𝑖𝐼𝑖 − 2𝜋𝑟0(1 − 𝑒)2 (𝜎𝑆𝐵휀𝐿0(𝑇𝑠 𝑖
4 − 𝑇𝑓 𝑖

4 ) + ℎ𝑐𝑜𝑛𝑡𝑟0(𝑇𝑠 𝑖 − 𝑇𝑓 𝑖)) ] 

(37) 

Nevertheless, such thermal approach can be further used to predict the 

conditions leading to the flash event or, from a different point of view, to estimate the 

onset temperature Ton at which the applied electric field induces the massive current 

flow inside the material, and its shrinkage. In order to do that, the electrical quantities 

should be conveniently converted into their local forms: 

𝑉 = 𝐸𝐿0  

(38) 

𝐼 = 𝐽𝜋𝑟0
2 

 (39) 

𝑊𝑖𝑛 = 𝑉𝐼 = 𝐸𝐽 𝜋𝑟0
2𝐿0 =

𝐸2

𝜌𝑠

𝜋𝑟0
2𝐿0 

(40) 

For these calculations, the sample dimensions are assumed constant at their 

initial values: this is quite realistic being the shrinkage almost negligible up to the flash 

event. Therefore, Eq. 28 becomes: 

𝑚𝐶𝑝

𝑑𝑇𝑠

𝑑𝑡
=

𝐸2

𝜌0𝑠

exp (−
𝑄𝑠

𝑅𝑔𝑇𝑠

) 𝜋𝑟0
2𝐿0 − 2𝜋𝑟0 (𝜎𝑆𝐵휀𝐿0(𝑇𝑠

4 − 𝑇𝑓
4) + ℎ𝑐𝑜𝑛𝑡𝑟0(𝑇𝑠 − 𝑇𝑓)) 

(41) 

and dividing both the terms for the sample volume 𝜋𝑟0
2𝐿0: 
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𝑑𝑇𝑠

𝑑𝑡
=

1

𝛿𝑔𝑟𝑒𝑒𝑛𝐶𝑝

[
𝐸2

𝜌𝑠0

 exp (−
𝑄𝑠

𝑅𝑔𝑇𝑠

) −
2𝜎𝑆𝐵휀

𝑟0

(𝑇𝑠
4 − 𝑇𝑓

4) −
2ℎ𝑐𝑜𝑛𝑡

𝐿0

(𝑇𝑠 − 𝑇𝑓)] 

(42) 

where δgreen is the density of the green specimen. Then, a change of integral 

variable is performed on the basis of the heating treatment adopted (i.e. constant rate 

v): 

𝑇𝑓 = 𝑇0 + 𝑣𝑡 

(43) 

𝑑𝑡 = 𝑑𝑇𝑓 𝑣⁄  

(44) 

𝑑𝑇𝑠

𝑑𝑇𝑓

=
1

𝛿𝑔𝑟𝑒𝑒𝑛𝐶𝑝𝑣
[

𝐸2

𝜌𝑠0

 exp (−
𝑄𝑠

𝑅𝑔𝑇𝑠

) −
2𝜎𝑆𝐵휀

𝑟0

(𝑇𝑠
4 − 𝑇𝑓

4) −
2ℎ𝑐𝑜𝑛𝑡

𝐿0

(𝑇𝑠 − 𝑇𝑓)] 

(45) 

and the overall equation is transformed in an adimensional form: 

𝑑𝑇�̃�

𝑑𝑇�̃�

= 𝑎 exp (−
1

𝑇�̃�

) − 𝑏 (𝑇𝑠
4̃ − 𝑇𝑓

4̃) − 𝑐 (𝑇�̃� − 𝑇�̃�) 

(46a) 

�̃� =
𝑅𝑔

𝑄𝑠
𝑇 𝑎 =

𝐸2

𝜌0𝑠𝛿𝑔𝑟𝑒𝑒𝑛𝐶𝑝𝑣
 𝑏 =

2𝜎𝑆𝐵 𝑄𝑠
4

𝑟0𝛿𝑔𝑟𝑒𝑒𝑛𝐶𝑝𝑣𝑅𝑔
4 𝑐 =

2ℎ𝑐𝑜𝑛𝑡𝑄𝑠

𝐿0𝛿𝑔𝑟𝑒𝑒𝑛𝐶𝑝𝑣𝑅𝑔
 

 

(46b) 

A representative example of the differential equation shape is reported in Fig. II-

4, corresponding to E = 1000 V cm-1, v = 20 K min-1, and δgreen = 1.80 g cm-3 (~ 60% 

of the theoretical density of β-TCP). The equation was solved by Wolfram Mathematica 

software (ver. 10.3) using NDSolve command and imposing Ts equal to Tf at 300 K as 

the boundary condition. 

According to the thermal model, the process can be divided in two main steps: 

- At the beginning, sample and furnace temperature are substantially the 

same, being the current flow in the material negligible. Hence, the heating 

treatment is governed by the furnace; 
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- Upon the flash event, the sample temperature significantly diverges from 

the furnace temperature. The heating control is completely managed by the 

Joule effect. 

As a consequence, the onset of the flash event could be found by imposing a 

switchover condition between the furnace and the Joule regimes, namely when the 

Joule heating contributions (~a) equals the furnace heating by radiation (~b) and by 

the imperfect contact between specimen and electrodes (~c), the latter being 

considered in thermal equilibrium with the furnace [116][106]: 

𝑎 exp (−
1

𝑇�̃�

) = 𝑏𝑇𝑓
4̃ + 𝑐𝑇�̃� 

(47) 

this representing the red plot in Fig. II-4. The onset temperature Ton is given by 

the intersection of the lines and is well approximated by the relation: 

𝛽 𝑎 exp (−
1

𝑇𝑜�̃�

) = 𝑏𝑇𝑜𝑛
4̃ + 𝑐𝑇𝑜�̃� 

(48) 

where β is an empirical correction coefficient to compensate the approximation 

between the switchover condition (Eq. 47) and the onset temperature prevision (Eq. 

48) [116].  

 

Figure II - 4. Graphical representation of the differential thermal equation (Eq. 46, black line) and 

the switch condition (Eq. 47, red line). Dashed line represents the relation Ts = Tf. 
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Finally, returning to the real physical quantities: 

𝑇𝑜𝑛 =
𝑄𝑠

𝑅𝑔

(−ln [
2𝜌0𝑠

𝛽𝐸2
(

휀𝜎𝑆𝐵

𝑟0

𝑇𝑜𝑛
4 +

ℎ𝑐𝑜𝑛𝑡

𝐿0

𝑇𝑜𝑛)])
−1

 

(49) 

This equation is used to fit the experimental data about the flash onset 

temperature, observed by changing the electric field E and the length L0 of β-TCP 

cylindrical specimens. It is quite interesting that the system is completely described 

through the electric features of the materials (Qs and ρ0s, i.e. resistivity) and the heat 

exchange parameters (ε and hcont), whereas Cp or δgreen are no longer present in this 

final expression. 

 

2.7.2 Dogbone samples – Isothermal FS 

For dogbone-like specimens, despite the more complex geometry, the above 

equations are simplified by removing the heat losses by conduction: the samples are 

suspended by the Pt wires within the furnace, and the contact interface between 

electrodes and material is not significant. The radiative surface Srad was calculated as 

the lateral area of the rectangular central section (u x w x z), and assumed constant 

up to the flash event: 

𝑆𝑟𝑎𝑑 = 2𝑢(𝑤 + 𝑧) ≅ 190𝑚𝑚2 

(50) 

Therefore, the sample temperature evolution can be expressed by: 

𝑇𝑠 𝑖+1 = 𝑇𝑠 𝑖 +
𝑡𝑖+1 − 𝑡𝑖

𝑚𝐶𝑃

[𝑉𝑖𝐼𝑖 − 𝜎𝑆𝐵휀𝑆𝑟𝑎𝑑(𝑇𝑠 𝑖
4 − 𝑇𝑖𝑠𝑜

4 )] 

(51) 

where Tiso is the target temperature of the furnace, which is a constant. 

As for the FS descriptive equations, a slightly different approach is adopted, 

based on the isothermal model proposed by Todd et al. [105]. According to that, if the 

difference between the constant furnace temperature Tiso and the real sample 

temperature Ts is expressed as: 

∆𝑇 = 𝑇𝑠 − 𝑇𝑖𝑠𝑜 

(52) 
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the produced power (Win) and the evolved power (Wout) can be written, for the 

specific geometry, as: 

𝑊𝑖𝑛 = 𝑢𝑤𝑧
𝐸2

𝜌0𝑠

exp (−
𝑄𝑠

𝑅𝑔(𝑇𝑖𝑠𝑜 + ∆𝑇)
) 

(53) 

𝑊𝑜𝑢𝑡 = 2𝑢(𝑤 + 𝑧) 𝜎𝑆𝐵휀((𝑇𝑖𝑠𝑜 + ∆𝑇)4 − 𝑇𝑖𝑠𝑜
4 ) 

(54) 

and represent, respectively, the heating and the cooling curves of the system.  

 

The flash event occurs when, by imposing a sufficiently intense electric field E*, 

the heating curve increases to become tangential to the cooling function (Fig. II-5). 

Therefore, once the material is overheated beyond a critical ΔT* by means of Joule 

effect, the power losses increase less than the power produced, and a thermal-

runaway mechanism takes place. The condition of tangency is realized when both Win 

= Wout and dWin/dΔT = dWout/dΔT are verified: 

 

𝑢𝑤𝑧
𝐸2

𝜌0𝑠

exp (−
𝑄𝑠

𝑅𝑔(𝑇𝑖𝑠𝑜 + ∆𝑇)
) = 2𝑢(𝑤 + 𝑧) 𝜎𝑆𝐵휀((𝑇𝑖𝑠𝑜

4 + ∆𝑇4) − 𝑇𝑖𝑠𝑜
4 ) 

(55a) 

𝑢𝑤𝑧
𝐸2

𝜌0𝑠

exp (−
𝑄𝑠

𝑅𝑔(𝑇𝑖𝑠𝑜 + ∆𝑇)
) (

𝑄𝑠

𝑅𝑔(𝑇𝑖𝑠𝑜 + ∆𝑇)2
) = 8𝑢(𝑤 + 𝑧) 𝜎𝑆𝐵휀(𝑇𝑖𝑠𝑜 + ∆𝑇)3 

(55b) 

which allow to define the critical E* and ΔT*: 

 
4𝑅𝑔

𝑄𝑠

(𝑇𝑖𝑠𝑜 + ∆𝑇∗)5 − (𝑇𝑖𝑠𝑜 + ∆𝑇∗)4 + 𝑇𝑖𝑠𝑜
4 = 0 

(56a) 

𝐸∗ = (
8(𝑤 + 𝑧)

𝑤𝑧

𝜎𝑆𝐵휀𝜌0𝑠𝑅𝑔

𝑄𝑠

exp (
𝑄𝑠

𝑅𝑔(𝑇𝑖𝑠𝑜 + ∆𝑇)
) (𝑇𝑖𝑠𝑜 + ∆𝑇∗)5)

1 2⁄

 

(56b) 
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The material heating is then usually limited by the power supply system, 

switching the control from voltage to current. The produced power starts to decrease, 

up to intersect the cooling curve and achieving a new equilibrium, according to: 

 

𝑊𝑖𝑛 = 𝑢𝑤𝑧 𝐽2𝜌0𝑠 exp (
𝑄𝑠

𝑅𝑔(𝑇𝑖𝑠𝑜 + ∆𝑇)
) 

(57) 

 

 

Figure II - 5. Graphical representation of the cooling curve Wout (Eq. 54, blue line), the heating 

curves Win in the voltage control step (Eq. 53, red lines) for different electric fields, and the heating 

curves Win in the current control step (Eq. 57, orange line). Critical conditions E* and ΔT* are also 

reported. 
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Chapter III 

 

Results and Discussion 

 

3.1 Solid state reaction: Magnesium doping β-TCP 

This chapter is partially based on the published work: 

Frasnelli M, Sglavo V.M: Effect of Mg2+ doping on beta-alpha phase transition in 

tricalcium phosphate (TCP) bioceramics, Acta Biomaterialia 33 (2016): 283–289. 

 

3.1.1  Powder characterization 

ICP-OES data are summarized on Tab. III-1, providing (Ca+Mg)/P atomic ratios very 

similar to the stoichiometric value of 1.50, typical for TCP. Other elements, such as 

Na, K, Sr, and Fe, were detected in quantity lower than 50 ppm. Conversely, 

Mg/(Ca+Mg) molar ratio, especially for the Mg1 composition, is slightly different from 

the nominal value. Nevertheless, such variations are taken into account in the 

following discussion by plotting the measured quantities as a function of the real Mg2+ 

amount (i.e. by ICP). 

 

Sample 
nominal Mg, 

mol% 
Mg/(Ca+Mg), 

mol% 
(Ca+Mg)/P, 

at. ratio 
Formula 

MW, 
g mol-1 

      
Mg0 0 0.00 ± 0.04 1.500 ± 0.001 Ca3(PO4)2 310.18 
Mg1 1 0.79 ± 0.04 1.507 ± 0.001 Ca2.98Mg0.02(PO4)2 309.86 
Mg2 2 2.03 ± 0.04 1.508 ± 0.001 Ca2.94Mg0.06(PO4)2 309.23 

      

 

Table III - 1. Chemical composition of the synthesized powders, determined by ICP-OES, 

proposed formula and estimated molecular weight MW. 

 

For what concerns the crystalline phase composition, all powders show the 

typical reflection pattern of β-TCP polymorph, as reported in Fig. III-1. By increasing 

the dopant content peaks gradually shift to higher 2θ angles, thus proving the effective 
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incorporation of Mg2+ ions within the TCP structure and the consequent distortion of 

the crystalline cell. In addition, no signals related to MgO are present in the spectra.  

Anyway, small and negligible amounts of HA can be detected and quantified by 

the weak peaks at ~31.77°, in agreement with the positive deviations from the Ca/P 

ratio of 1.50, as predicted by the CaO–P2O5–H2O phase diagram of Fig. I-2 [28][29]. 

Most likely, this is due to the incomplete reaction between H3PO4 and HA at ~800°C, 

during one of the last thermal decompositions leading to the formation of TCP by solid-

state route [109]. 

3 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2 + 2 𝐻3𝑃𝑂4 (𝑟𝑒𝑠) → 10 𝐶𝑎3(𝑃𝑂4)2 + 6 𝐻2𝑂 

(58) 

 

 

Figure III - 1. XRD patterns collected on the synthesized Mg-TCP powders. Blue vertical lines 

represent β-TCP (#09-0169) JCPDS reference. 

 

Spectrum refinement (Tab. III-2) by Rietveld-based software allowed also to 

determine the cell parameters (a and c) for the Mg-TCP series, confirming the gradual 

cell contraction as a result of the M(5)-O bond stabilization [117]. Also the average 

crystallite size is subjected to an evident drop, moving from ~700 nm (Mg0) to ~300 

nm (Mg2), similarly to the Sr-doped HA system (Chapt. 3.3) where the presence of 

secondary Me2+ ions promotes the crystal nucleation and inhibits their growth [118]. It 

has to be pointed out that crystallite size values higher than 200-300 nm can not be 

considered absolutely meaningful, due to the predominant contribution of the 
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instrumental broadening on the peaks; however, the observed trend as a function of 

Mg2+ presence is thought to be still significative. 

 

Sample 
β-TCP, 

wt% 
a, 0.1 nm c, 0.1 nm XS, nm 

HA, wt% 

      

Mg0 98.0 ± 0.0 
10.4357 ± 

0.0006 
37.3890 ± 

0.0002 
706 ± 

90 
2.0 ± 
0.3 

Mg1 94.0 ± 0.0 
10.4259 ± 

0.0006 
37.3850 ± 

0.0002 
515 ± 

37 
6.0 ± 
0.4 

Mg2 98.0 ± 0.0 
10.4071 ± 

0.0003 
37.3540 ± 

0.0002 
301 ± 

24 
2.0 ± 
0.3 

      

 

Table III - 2. Refined unit cell parameters (a and c), crystallite sizes (XS) and phase quantities 

obtained by XRD. 

 

The thermal behavior of the synthesized Mg-TCP powders is reported as DTA 

plot in Fig. III-2 

 

 

Figure III - 2. DTA curves of the synthesized Mg-TCP powders, carried out at different constant 

heating rate, and corresponding Kissinger plot: light blue dots (2 K min-1), turquoise dots (5 K 

min-1), and dark blue dots (10 K min-1). 
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According to the literature [50], two endothermic signals characterize all the 

compositions: a weak peak around 1500-1600 K, related with β→α transition and 

postponed by increasing Mg2+ , and a more intense event at 1750 K, associable to 

α→α′ reverse transformation.  

The isochronal approach points out how by increasing the heating rate v for the 

same Mg-TCP composition, peaks are gradually shifted, sharper and intense. As for 

the β→α event (inserts), linear fitting of the identified temperatures by using Kissinger 

equation (Eq. 17) provides the activation energy of the process for the different 

specimens (Tab. III-3). For the undoped composition Mg0, a value of 237 kcal/mol was 

calculated, in good agreement with the value 250 kcal/mol reported in the literature 

[46]. This significantly large amount of energy can be justified taking into account the 

reconstructive nature of the phase transition considered, involving a drastic change in 

the lattice from rhombohedral to monoclinic structures. Conversely, the substitution of 

0.79 and 2.03 mol% Ca2+ by Mg2+ leads to much higher activation energies, 310 and 

421 kcal/mol, respectively, associated to the thermodynamic effect of the enhanced 

structural stability of β-TCP polymorph.   

 

 Mg0 Mg1 Mg2 

    
Differential Thermal Analysis    

    
β→α temperature, K    

    
at 2 K min-1 1469 1528 1586 
at 5 K min-1 1485 1540 1597 
at 10 K min-1 1498 1552 1605 

    
Kissinger fitting, Eq. 17    

    
Slope, K-1 119277 156004 212142 
Intercept -67 -88 -120 

R2 0.999772 0.994097 0.999789 
Q, kcal/mol 237 310 421 

    
Dilatometry    

    
β→α temperature, K 1501 1553 1682 

Shrinkage at 1800 K, % 2.24 5.76 9.01 
    

 

Table III - 3. Collected data about the thermal behavior of Mg-TCP powders: β→α temperatures 

by DTA and dilatometry, final shrinkage and Kissinger fitting details. 
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The positive effect of Mg has implications for the sintering behavior of the 

powders as well. As it can be noticed from the dilatometric plot of Fig. 14, sintering 

starts at ~1200 K, but once β→α transition occurs, shrinkage is almost completely 

arrested, as a consequence of the TCP lattice expansion [53]. Nevertheless, an 

increment of transition temperature from 1500 K (Mg0) to 1680 K (Mg2) leads to 

enhance the final shrinkage from 2 to 9 %, respectively. 

 

Figure III - 3. Dilatometric plot of the synthesized Mg-TCP powders: light blue line (Mg0), 

turquoise line (Mg1), and dark blue line (Mg2). Triangles indicate β→α temperatures, which are 

additionally plotted as a function of Mg amount (insert).  

 

3.1.2 Conventional sintering 

Tab. III-4 summarizes the XRD quantitative results of Mg-TCP samples sintered at 

1400°C, and then alternatively cooled at 10°C/min (C series), or quenched in static air 

(Q series). The target temperature was chosen accordingly to DTA observation, in 

order to completely transform each composition into α-TCP and, in this way, to 

investigate the dopant influence on the α- metastability upon cooling. In detail, the 

maximum β→α temperature at 10°C/min (i.e. heating rate of the sintering treatments) 

was determined for Mg2 composition equal to 1332°C (1605 K); in addition, two 

additional hours of isotherms should ensure the thermodynamic equilibrium of the 

entire specimen.  

Crystalline compositions of Mg0, indeed, confirm the previous hypothesis: 

regardless the cooling treatment, at room temperature the sintered material is formed 
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entirely by metastable α-TCP, as expected. Conversely, Mg1_C exhibits 46 wt% of β 

phase, this proving the partial and spontaneous reconversion of α-TCP into β-TCP 

upon the cooling process. By increasing the dopant amount, Mg2_C is even 

completely formed by β-TCP. Therefore, it can be pointed out that Mg also provides a 

positive contribution on β stabilization, inhibiting the α meta-stabilization upon cooling, 

very likely decreasing the activation energy of the α→β process. The effect, 

proportional to the dopant amount, has further kinetic consequences. By observing the 

Q series, Mg1 composition is completely α-TCP, whereas Mg2 appears partially 

reconverted (64 wt% β) despite the quenching treatment. In other words, Mg increases 

the critical cooling rate required to retain α phase at room temperature, allowing to 

accelerate the post-sintering treatments of β-TCP compounds. 

 

Sample 
β phase, 

wt% 
α phase, 

wt% 
ρth, 

g cm-3 

    
Mg0_C 0 ± 0 100 ± 0 2.86 
Mg1_C 46 ± 2 54 ± 0 2.97 
Mg2_C 100 ± 0 0 ± 0 3.06 

    
Mg0_Q 0 ± 0 100 ± 0 2.86 
Mg1_Q 0 ± 0 100 ± 0 2.86 
Mg2_Q 64 ± 2 36 ± 2 2.99 

    

 

Table III - 4. Crystalline composition (by XRD) and theoretical density ρth of the sintered Mg-TCP 

specimens, subjected to controlled cooling (C series) or quenching (Q series).   

 

Sample 
Popen, 
vol% 

Pclosed, 
vol% 

ρ/ρth, 
% 

HV, 
MPa 

σB, 

MPa 

      
Mg0_C 25 ± 1 5 ± 1 70 817 ± 60 31 ± 1 
Mg1_C 20 ± 2 6 ± 1 74 1109 ± 153 18 ± 2 
Mg2_C 8 ± 1 8 ± 1 84 1370 ± 83 32 ± 2 

      
Mg0_Q 29 ± 1 1 ± 1 70 439 ± 84 9 ± 1 
Mg1_Q 22 ± 1 2 ± 1 76 675 ± 91 11 ± 3 
Mg2_Q 11 ± 2 4 ± 1 85 856 ± 104 5 ± 3 

      

 

Table III - 5. Open porosity Popen, closed porosity Pclosed, relative density ρ/ρth, Vickers hardness 

HV, and mechanical strength σB of the sintered Mg-TCP specimens, subjected to controlled 

cooling (C series) or quenching (Q series). 
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For what concerns the microstructure of the sintered samples, Archimedes’ 

measurements (Tab. III-5) are in good agreement with the preliminary conclusions 

drawn by dilatometry: shrinkage was arrested upon the first sintering stages, when 

porosity is still predominant (20-30 vol%) and interconnected. Only for the Mg2 

composition, β→α transition takes place when pores are partially isolated, i.e. open 

porosity is comparable with closed porosity, and 85% densification was achieved. As 

expected, cooling process does not seem to influence such features. 

Further microstructural evidences can be found by observing the SEM images 

(Fig. III-4) of the polished and indented sample surfaces. Within the impression area, 

plastic deformation induces the closing of the interconnected porosity; diagonals are 

clearly visible and no cracks at the edge are present.  

 

 

Figure III - 4. SEM images of representative Vickers indentation on the Mg-TCP sintered 

samples: C series (first row), and Q series (second row).  

 

Vickers hardness results are summarized in Tab. III-5 and, as expected, the 

values grow with the dopant amount, from ~800 MPa (Mg0_C) to ~1350 MPa 

(Mg2_C), being the hardness strictly related with the microstructure and sintering 

behavior. At the same time, quenching introduces evident thermal stresses, leading to 

a decrease of 400-500 MPa but maintaining the same trend (Fig. III-5). Moreover, the 

samples presenting the most disperse data are Mg1_C and Mg2_Q, the only two 

cases of biphasic composition (β and α phase) after the respective cooling treatment. 

Surprisingly, the mechanical resistance σB of the sintered pellets does not 

increases linearly with Mg2+; no regular tendencies along C or Q series can also be 

observed. The only clear conclusion is that the thermal stresses induced by quenching 

reduce the material strength. However, the specimens interrupting the linear and 

positive trend along the single series are, also in this case, the biphasic composition 

Mg1_C and Mg2_Q. Despite the lack of performed measurements and the few 
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compositions considered, an explanation of this effect based on residual stresses can 

be proposed. More in detail, β to α transition taking place during sintering causes a 

volumetric expansion which completely involves the material, since β phase turns into 

α completely. In this way, residual stress can be easily relaxed, also considering the 

high temperature involved (1400°C). Then, upon cooling, Mg2+ promotes α to β 

spontaneous reconversion, associable with a volumetric shrinkage. If this reverse 

transition takes place completely (Mg2_C), residual stress can be once again relaxed 

during the controlled cooling. Conversely, if the reconversion occurs just partially, and 

both α and β phases are retained at room temperature, a residual tensile stress around 

~10 MPa arises within the material, decreasing the final mechanical strength. 

 

 

Figure III - 5. Open porosity Popen, relative density ρ/ρth, Vickers hardness HV, and mechanical 

strength σB of the sintered Mg-TCP specimens, as a function of Mg dopant amount: black line (C 

series), and red line (Q series). Crystalline phases detected by XRD have been also reported for 

clarity. 

 

3.1.3 Annealing 

The dilatometric plots of the sintered and quenched Mg-TCP specimens, 

subjected to an annealing treatment at constant heating rate (2°C/min), are reported 

in Fig. III-6. All compositions exhibit a very similar thermal expansion, with an average 

linear coefficient of 11.2∙10-6 °C-1.  

Then, just for the doped samples, a linear contraction is clearly observable 

around 1000 K, more intense for Mg1_A composition. By considering the 
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corresponding results about the crystalline phase composition by XRD (Tab. III-6), the 

event is associable with the reconversion of the retained α-TCP into β: undoped TCP 

is still formed by α phase, only, whereas Mg1_A and Mg2_A are both β phase.  

 

Figure III - 6. Dilatometric plot of the sintered and quenched Mg-TCP samples (A series): light 

blue line (Mg0), turquoise line (Mg1), and dark blue line (Mg2). Triangles indicate α→β 

temperatures. 

 

Actually, this transition can occur also in absence of any dopant agent, as shown 

by Monma et al. [46], although the annealing treatment was applied to finer powders 

and not to massive bodies. Simply, if the active surface of the particles is reduced by 

sintering, a reconstructive process like α→β, governed by mass transport and, 

therefore, strictly dependent from the temperature, would require longer time to occur. 

Once again, Mg acts on the activation energy of the transition, allowing the complete 

reconversion into β and proportionally decreasing the α→β temperature. 

 

Sample 
β phase, 

wt% 
α phase, 

wt% 
α→β temperature, 

K 

    
Mg0_A 0 ± 0 100 ± 0 / 
Mg1_A 100 ± 0 0 ± 0 1038 
Mg2_A 100 ± 0 0 ± 0 933 

    

 

Table III - 6. Crystalline composition (by XRD) and α→β temperature of the sintered and 

quenched Mg-TCP specimens, subjected to annealing at 2°C/min by dilatometry (A series). 
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Moreover, it should be recalled that β→α transition is related with a lattice 

expansion; therefore, the inverse reaction is likely combined with a contraction, 

proportional to the amount of meta-stabilized α. Therefore, a linear shrinkage of ~0.1% 

for Mg2, having only 36 wt% of α after quenching, is reasonably smaller than the 

measured ~1% for Mg1, being 100 wt% α.  

As an additional information, XRD spectra of Mg2 composition is reported in Fig. 

III-7 by varying the thermal treatment adopted. 

 

 
 

Figure III - 7. Crystalline phase evolution of a representative composition (Mg2) as a function of 

the different heating and cooling treatments: controlled cooling (Mg2_C), quenching (Mg2_Q), 

and annealing (Mg2_A). Symbols are referred to JCPDS cards #09-0169 (β-TCP, blue triangles), 

#09-0348 (α-TCP, red squares), and #09-0432 (HA, green circles), respectively. 

 

Finally, the kinetic of α→β was investigated by carrying out isothermal annealing 

treatments at different times and temperatures. Mg1 sintered and quenched 

specimens were selected for the test, being possible for this composition to completely 

retain α-TCP at room temperature. As it can be noticed in Fig. III-8 (central), 

experimental points show a sigmoidal increment of the β-TCP transformed fraction wβ, 

by increasing the annealing time and temperature. For instance, after 3 h treatment 

(i.e. 10800 s, ln t ≈ 9.3), 15% (700°C), 34% (730°C), and 90% (775°C) reconversion 

occurred. 
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Therefore, each temperature series were fitted by using the linearized Avrami 

equation (Eq. 18b), leading to the determination of the corresponding kinetic factors 

k(T). Slopes of the model lines, corresponding to the Avrami coefficient n, have been 

forced to be the same for the three series. In addition, activation energy Q of the 

process was calculated from the linear regression of kinetic factors, performed by 

using the Arrhenius law (Eq. 19b). Tab. III-7 shows the fitting parameters and the 

achieved results: for Mg1 composition, α→β is governed by n = 1.32 and Q = 66 

kcal/mol, substantially lower than the value of 310 kcal/mol needed for β→α transition 

and compatible with the previous considerations. 

 

 

 

Figure III - 8. Avrami plot of the isothermal annealing treatments performed on Mg1 composition: 

black lines and points (700°C), red lines and points (730°C), and blue lines and points (775°C). 

From the left, linearized fitting (a) and cumulative plot (c) of the transformed phase wβ. On the 

right, kinetic coefficient as a function of temperature (b). 
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Temperature, °C 700 730 775 

             

Avrami linear fitting, Eq. 18b    
    

Slope 1.3151 1.3151 1.3151 
Intercept -13.9 -13.3 -11.5 

R2 0.955917 0.964365 0.918607 
Avrami coeff. n 1.32 1.32 1.32 
Kinetic factor k 9.19∙10-7 1.67∙10-6 1.01∙10-5 

    
Arrhenius linear fitting, Eq. 19b    

    
Slope, K-1 -33224 
Intercept 20.1 

R2 0.931190 
Q, kcal/mol 66 

    

 

Table III - 7. Linear fitting parameters of the β-TCP weight fractions wβ of Mg1 composition (by 

XRD) as a function of annealing time and temperature. Estimated Avrami coefficient n and 

activation energy Q of the α→β transition have been also reported.  

 

3.1.4 Isochronal Flash Sintering 

The following chapter is partially based on the published paper: 

Frasnelli M, Sglavo V.M: Flash sintering of tricalcium phosphate (TCP) bioceramics, 

J. of the European Ceramic Society 38 (2018): 279-285.  

 

3.1.4.1 Flash sintering behavior 

The undoped TCP powder, shaped into cylindrical specimens and placed within the 

dilatometer, was subjected to different flash sintering tests at constant heating rate of 

20°C min-1, as reported above. Fig. III-9 shows the linear displacement detected 

during the sintering process, under constant electric field; the conventional dilatometry 

(i.e., with no field) is once again reported for comparison.  
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Figure III - 9. Dilatometric plots of TCP cylindrical specimens under conventional (i.e. no field) 

and FS conditions (10 min at 2 mA mm-2). Numbers refer to the applied electric field (V cm-1); 

vertical dotted lines represent the temperature range of β→α transition, determined by the first 

derivative of the conventional curve. 

 

The FS curves show three effects: 

- the starting point of the shrinkage, coincident with the onset temperature 

Ton of the flash event, is strongly anticipated by E, from 1125 K (900 V cm-

1) to 965 K (1500 V cm-1); 

- the shrinkage takes place very rapidly, with an average rate of ~2 µm/s, 

whereas the conventional sintering proceeds at ~0.15 µm/s and, after the 

transition β→α, even more slowly (0.02 µm/s); 

- for the entire FS process, the furnace temperature Tf remained below the 

β→α temperature. 

As a direct consequence, the final shrinkage after only 10 min current control is 

around 20%, much higher than 2.3% value obtained without field: the relative density 

is 79% (900 V cm-1), 86% (1000 V cm-1), and 93% (1500 V cm-1). Apparently, no phase 

transition occurs. 
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Figure III - 10. Representative example of FS test carried out at 1000 V cm-1: electric field, 

current, power density, and resistance as a function of the process time; raw data (red lines) and 

smoothed data (black lines). 

 

The behavior of TCP during flash sintering can be better understood through the 

evolution of its electrical features (Fig. III-10), which is quite similar to that reported in 

the literature for other materials [103]. Basically, the first stage of the process is 

characterized by the absolute constancy of the voltage and by the linearity of the 

logarithm of resistance, according to the Arrhenius law (Eq. 31); current and power 

density are both almost negligible, due to the limited temperature. As the test 

proceeds, and consequently Tf increases, the resistance decreases and the current 

starts flowing gradually through the material. This increment is not linear, but much 

more rapid: in few minutes the current limit is reached, and a power spike is detected 

in combination with a resistance drop. These phenomena clearly identify the onset of 

the flash event, as well the beginning of the rapid shrinkage observed by dilatometry. 

Then, the process must be switched to constant current mode, although all the 

electrical variables appear very scattered. The extended interface between the 

ceramic and the electrodes, indeed, seems to enhance the continue creation of 

multiple current paths, causing sparks and instantaneous variations of the field.  

After these phenomenological considerations, the influence of the main 

technological variables, i.e. applied electric field and initial sample length L0, on the 

overall FS process is quantified in terms of Ton. The aim is to determine the physical 

conditions inducing the flash event in TCP material and to find a descriptive model to 

explain and optimize such technology. 
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Figure III - 11. Experimental onset temperature Ton of the flash event, as a function of the applied 

electric field E, for sample length L0 equal to 3.5 mm (red dots) and 5.0 mm (blue dots). Colored 

bands represent the best fits by using Eq. 49, considering an error of ± 0.1 mm on L0. 

 

 
 

Figure III - 12. Experimental onset temperature Ton of the flash event, as a function of the sample 

length L0, for applied electric fields E of 1000 V cm-1 (red dots), 1200 V cm-1 (blue dots), and 1500 

V cm-1 (green dots). Colored bands represent the best fits by using Eq. 49, considering an error 

of ± 20 V cm-1 on E. 
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Fig. III-11 summarizes the experimental onset temperatures of two different L0 

series of specimens (3.5 and 5.0 mm) for different E: as observed in the dilatometric 

plots and reported for different materials [95], the field increment corresponds to a 

strong decrease of the furnace temperature at which flash occurs. In these specific 

conditions, Ton values are in the range 960-1130 K with the application of 1500-900 V 

cm-1, respectively. It is quite meaningful that, if β-TCP was conventionally sintered in 

isothermal condition at 900°C (1173 K), temperature is not sufficient to activate any 

densification mechanisms, at least after 1 h (Fig. III-13), whereas at 1100°C (1373 K) 

the material shrinkage is just ~5% after 2 h. As a consequence, it can be stated that 

flash sintering allows to reduce both time and temperature with respect to conventional 

treatments. 

 

Figure III - 13. Dilatometric plot of the Mg0 composition, sintered in isothermal condition at 900°C 

(dashed line) and at 1100°C (solid line). 

 

In addition, L0 shows an apparently incoherent effect: flash event seems to be 

anticipated by longer samples, despite the higher mass and radiative surface. Such 

behavior is further confirmed in the second plot (Fig. III-12), relative to the onset 

temperature of three different E series (1000, 1200, and 1500 v cm-1) by varying L0. In 

addition, the dependence between Ton and sample dimension is strong and basically 

linear up to ~3-4 mm, and then suddenly becomes almost irrelevant. 
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Figure III - 14. Representative trends of the sample field fraction Es/E as a function of the initial 

sample length L0, by varying the temperature. 

 

The proposed explanation for this behavior consists in the introduction of an 

additional resistance term, independent from the sample length and correlated with 

the probable bias drop at the material-electrode interface, namely the contact 

resistance Re. Therefore, the overall resistance R evaluated at the electrodes during 

the FS test (as V/I ratio) can be expressed as: 

𝑅 = 𝑅𝑒 +
𝜌𝑠 𝐿0

𝜋𝑟0
2  

(59) 

In other words, the system can be represented as two resistors in series, both 

described by their own Arrhenius law, the second one being directly proportional to L0. 

Therefore, the fraction of electric field actually supplied to the material can be 

expressed as: 
𝐸𝑠

𝐸
=

𝑅𝑠

𝑅𝑠 + 𝑅𝑒

=
𝐿0

𝐿0 + (𝑅𝑒𝜋𝑟0
2 𝜌𝑠⁄ )

 

(60) 

The relationship is plotted against L0 in Fig. III-14, as a function of temperature: 

it is clear that the contact resistance affects to a greater extent shorter samples, which 

are subjected, around the flash event range, only to 60-80% of the nominal field. For 

instance, specimens with L0 minor than ~3 mm and tested at 1200 V cm-1, apart from 
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Re, are effectively subjected to ~1000 V cm-1, in good agreement with the experimental 

data of Fig. III-12. 

Therefore, the contact resistance can be graphically quantified by Eq. 59, by 

plotting the total resistance R at three temperatures (lower than Ton), for a series of 

TCP specimens with different initial length L0 (Fig. III-15). The intercepts of the linear 

fits provide the values of Re (T), which is reported in the form of Arrhenius plot to 

determine the thermal parameters Re0 and Qe (Tab. III-8). 

 

 

Figure III – 15. Graphical determination of the contact resistance Re and its thermal parameters 

Re0 and Qe. On the left, total resistance R determined at different temperatures by changing the 

initial length L0 of the specimens, and linear fitting according to Eq. 59. On the right, Arrhenius 

plot of the so-determined Re values (Eq. 31). 

 

Finally, this contribution is subtracted from the total resistance R curves, 

obtaining the sample resistivity ρs as a function of temperature for various tested 

specimens (Fig. III-16); the average values of ρs0 (0.0013 Ωm) and Qs (82 kJ/mol) are 

in good agreement with similar previous work [84]. Since the resistivity curves are 

basically linear and parallel, the activation energy Qs, proportional to the slope, shows 

slightly dispersive values; conversely, the line intercepts, equal to the logarithm of ρs0, 

are quite randomly scattered and the use of an average value, unfortunately, is one of 

the major source of error in the following data modelling. 
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Once the real electric behavior of TCP material is determined through ρs0 and 

Qs, Eq. 49 can be finally refined to fit the measured Ton points. More in detail, since 

the contact conductivity hcont and the empirical correction coefficient β influence the 

fitting function in different ways (affecting the curve concavity / ~slope and its vertical 

onset, respectively) the two parameters were optimized simultaneously, but forcing 

the hcont values to be equal for all experimental points series. The best fits are reported 

in Fig. III-11 and III-12 (β = 0.12-0.17) as colored bands, and appear completely 

coherent with the experimental observations. It can be stated, therefore, that the flash 

onset is mainly induced by a thermal runaway mechanism, well described by a power 

balance of the system. The influence of L0 is now clearer: the longer the specimen, 

the lower is the heat dissipation by conduction, and therefore the thermal condition for 

flash event are achieved earlier. 

 

 

Figure III – 16. Arrhenius plot of the sample resistivity ρs (linear section) of TCP specimens with 

various initial lengths L0  (mm, values reported in the legend), subjected to FS tests at different 

electric fields E. 

 

For L0 values lower than ~3 mm, the model diverges due to the prevalent contact 

resistance contribution, as explained before. In order to extend the validity and the 

accuracy of the fitting function, one possibility could be to take into account the actual 

sample field Es rather than the nominal E, as well as the thermal parameters ρs0 and 

Qs for each different specimen, instead of the related average values. Nevertheless, 

this method would lead to a series of discrete points and not to a continuous function 

able to describe with sufficient precision the FS process on TCP material. 



75 
 

 

Arrhenius Linear Fitting  

  

Contact Resistance Re, Eq. 31  
  

Slope, K-1 11512 
Intercept -3.2 

R2 0.998820 
Qe, kJ/mol 96 

R0e, Ω 0.04 
  

Sample Resistivity ρs, Eq. 32  
  

Average Slope, K-1 9868 
Average Intercept -6.6 

Qs, kJ/mol 82 
ρ0s, Ωm 0.0013 

  

 

Table III - 8. Activation energies and pre-exponential coefficients of contact resistance Re, and 

sample resistivity ρs, graphically determined by Arrhenius-like approaches. 

 

3.1.4.2 Microstructure and crystalline phases 

Optical images collected in Fig. III-17 show the appearance of a representative TCP 

specimen after FS.  

Focusing on the middle-cross section of the cylindrical sample, an 

inhomogeneous and burnished area is clear starting from the cathodic side (left) and 

proceeding to the core. Its extension, as observed after a large variety of tests, seems 

to be strictly proportional to the duration and to the intensity of the current control 

stage; namely, it is related to the number of electrons passing through the material 

upon the flash event. In the literature, similar blackening phenomena have been 

observed for other ceramic oxides [119] and explained by considering the partial 

reduction of the materials at the cathode, under poorly oxygen conditions.  

As a matter of fact, the conduction mechanisms of β-TCP has been reported in 

the literature as being governed by ionic migration for temperatures higher than 800°C 

[120]. Similarly to HA, where the hydroxyl groups are responsible for the high 

temperature conductivity [121], oxygen ions O2- have been proposed as the most 

probable charge carriers in β-TCP, with an activation energy of 1.25 eV [122]. 

However, migration of Ca2+, or H+ from partially protonated phosphate groups could 

also be possible [120].  
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Figure III - 17. Optical and SEM images of a representative TCP sample (1500 V cm-1): a) middle 

cross section (fracture surface); b) anodic surface; c) central portion of the bulk; d) blackened 

portion at the cathodic side. 

 

Consequently, the following mechanism was here proposed to explain the 

blackening phenomenon. Specifically, the mutual charge transfer between the 

electrons (from the circuit) and the O2- ionic carriers is realized at the ceramic-

electrode interfaces through the reaction: 

1

2
 𝑂2 + 2 𝑒− +  𝑉𝑂

∙∙ ⇌ 𝑂𝑂
× 

(61) 

At the cathode surface, half molecule of environmental gaseous oxygen reacts 

with the electrons, forming one atomic oxygen Oo
x, which occupies a lattice vacancy 

VO
∙∙, becoming formally neutral. Then, the charge transport in the material takes place 

by the O2- migration toward the anode or, from the opposite point of view, by the VO
∙∙ 

migration toward the cathode. At the anode surface, the inverse reaction occurs, with 

the production of O2 gas, vacancies and electrons that balance the overall mass-

charge of the system. Unfortunately, the cathodic reaction is strictly connected with 

the formation of a triple junction between oxygen / ceramic / electrode, that constitutes, 

as a matter of fact, the limiting factor of the entire process.  

In the specific case of planar electrodes and cylindrical specimens, the oxygen 

supply is quite poor, especially when the material starts to densify and the open 
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porosity decreases. As a consequence, another semi-reaction occurs at the cathodic 

surface, involving TCP: 

𝑃𝑂4
−3 +  𝛿 𝑉𝑂

∙∙ + 2𝛿 𝑒− → 𝑃𝑂4−𝛿
−3 + 𝛿 𝑂𝑂

× 

(62) 

Substantially, the lack of O2 is accommodated by the partial reduction of the 

phosphate groups PO4
-3; phosphorous atoms locally assume a valence equal to 5-δ, 

thus resulting in a highly defected structure and in the black coloring. Therefore, the 

combination of Eq. 62 with the anodic reaction gives the global mechanism governing 

the current control stage: 

𝑃𝑂4
−3 → 𝑃𝑂4−𝛿

−3 +
𝛿

2
 𝑂2 

(63) 

where it is quite clear, once again, that lower partial pressure of oxygen promotes 

the phosphate reduction and the blackening phenomena. On the other hand, a 

conventional heating treatment in air should allow, very likely, the oxygen diffusion 

within the specimen and the restoration of stoichiometric defects. Such effect was 

observed for flash sintered nano-TCP samples, where the heating ramp was 

maintained for additional ~10 min after the current were turned off (Chapt. 3.2).  

 

 
 

Figure III - 18. EDXS spectra of a representative TCP specimens after FS, relative to the anodic 

and cathodic bulk regions. 
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However, another peculiar characteristic of the FS specimens, shown in Fig. III-

17, is the presence of an almost glassy and irregular layer (~200 μm) near the anodic 

side. According to the chemical reactions discussed before, the formation of gaseous 

oxygen at the anode interface could be responsible for a higher electrical resistance, 

very likely the predicted and quantified contact resistance Re, thus causing local 

overheating and microstructural inhomogeneities. The surface shows some residues 

of oxidized silver paste and, only for some samples, a very small yellowish area, 

developed toward the bulk. For this latter, EXDS analysis (Fig. III-18) confirms the 

presence of Ag+ ions diffused in the ceramic as a result of a secondary anodic reaction, 

whereas no silver was detected in the cathodic region. 

Apart from these localized phenomena, the bulk appears homogeneous and 

dense, with some intergranular porosity and hexagonal-like grains of 5-7 µm. It is 

meaningful to recall that such microstructure was achieved after only 10 min maximum 

current application, whereas much longer conventional sintering process is able to 

ensure just 70% density, because of the β→α transition.  

Interestingly, SEM image of the blackened cathodic zone provide evidences of 

the local formation of a liquid phase, being the microstructure typical of a melted and 

re-solidified material with a randomly oriented pattern. Probably, the partially reduction 

of the lattice induces a resistivity decrease, associated to greater VO
∙∙ population, and 

therefore the current is preferentially canalized through the blackened zone, this 

leading to local thermal runaway and higher temperature. In any case, the CaO-P2O5-

H2O phase diagram (Fig. I-2) predicts, for Ca/P ratios slightly higher than 1.50, solidus 

around 1560 K [49]. 

As for the crystalline composition of FS specimens (Tab. III-9), the bulk material 

is essentially constituted by β-phase and just a very small amount (6 wt%) of α-TCP, 

thus validating the flash sintering as reliable technique to avoid the material transition 

(Fig. III-18).  

 

 

 

 

 

 

 

 

Table III - 9. Crystalline composition (by XRD) of the main portions of a representative FS 

specimen.  

 
β phase, 

wt% 
α phase, 

wt% 
HA phase, 

wt% 

    
Cathode 99 ± 1 0 ± 0 1 ± 0 

Bulk 87 ± 2 6 ± 1 7 ± 1 
Anode 62 ± 2 38 ± 2 0 ± 0 
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Figure III - 19. XRD patterns of different portions (cathode, anode, and bulk) of a representative 

TCP specimen (1000 V cm-1). Symbols are referred to JCPDS cards #09-0169 (β-TCP, blue 

triangles), #09-0348 (α-TCP, red squares), and #09-0432 (HA, green circles), respectively. 

 

Conversely, the anodic layer was mainly affected by the phase transformation, 

due to the strongly localized contact resistance, while the blackened area, in spite of 

the re-solidified structure, is formed entirely by β-TCP, very likely for kinetic reason. 

Similar behaviors were reported in other ultra-fast heating processes applied on TCP, 

as well as selective melting laser [123] and plasma spray [44]. 

Finally, the thermal balance of Eq. 37 was verified on different FS specimens, by 

plotting the calculated sample temperature Ts as a function of time (Fig. III-20). It 

should be recalled that, for the physical model here adopted, TCP samples are 

perfectly isotropic and homogeneous during the entire flash process. Although the 

previous considerations pointed out the presence of limited material portions clearly 

subjected to higher temperature, the approach can be still considered valid for the 

main part of the sintered body. 

As expected, the curves exhibit quite similar trends to the power profiles, the 

differences between Tf and Ts being substantial once the Joule effect exceeds the 

furnace radiation. Upon the flash event, the sample temperature rapidly increases by 

~400 K, and then fluctuates around an almost steady-state where β stability limit is 
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repeatedly surpassed for few seconds, in agreement with the small amount of α-TCP 

detected. Therefore, Eq. 37 is adequately calibrated on TCP system [91]. 

 
 

Figure III - 20. Time evolution of the sample temperature Ts according to Eq. 37, for different test 

conditions (E and L0): light blue line (1000 V cm-1 and 3.5 mm), turquoise line (1200 V cm-1 and 

3.5 mm), dark blue line (1500 V cm-1 and 3.5 mm), and dark red line (1200 V cm-1 and 5 mm). 

Horizontal dotted lines represent the temperature range of β→α transition. 

 

Regardless such random effects, it can be noticed that the highest Ts value (1450 

K) is achieved in the test performed at lower E and L0. In other words, the minor 

available power is completely compensated by the higher furnace temperature at 

which the flash event occurs, which it clearly postponed. Moreover, if the adopted 

emissivity value increases from 0.8 to 1, the maximum temperature estimated by Eq. 

37 is ~40 K lower. 

The thermal model approach seems to be consistent for the TCP system, both 

in the prevision of the flash event onset temperature, and in the real sample 

temperature estimation. However, if the resistivity ρs is correlated with the estimated 

Ts, the resulting Arrhenius plot (Fig. III-21) shows an evident deviation from linearity, 

less strong than in Tf trend, but still present at the flash onset. It should be recalled 

that the material resistivity is not affected by the contact resistance, i.e. by the 

overheated anodic layer. Nevertheless, the model can not be considered completely 

reliable after the flash event, the reduction in the sample resistivity due to sintering and 

the higher conductivity of the blackened zone being ignored. As a matter of fact, if ρs 

linearity is hypothetically extended to the entire process, the extrapolated temperature 
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Textra would increase from 1190 K to 1705 K in the last 4 s treatment, which would 

correspond to a heating rate of 130 K s-1, quite unlikely. In conclusion, the real material 

behavior upon the flash event should follow an intermediate path, partial reduction and 

sintering accounting for the change in resistivity, although localized thermal gradient 

can cause re-solidified β-TCP microstructure. 

 

 
 

Figure III - 21. Arrhenius plot of the sample resistivity ρs of a representative TCP specimen (1000 

V cm-1 and 3.5 mm) as a function of different temperature: furnace temperature Tf (red line and 

dots), sample temperature Ts (Eq. 37, black line and dots), and extrapolated sample temperature 

Textra (Eq. 33, blue line and dots). Vertical dotted lines represent the temperature range of β→α 

transition. 

 

3.2 Precipitation method: Magnesium doping β-TCP 

3.2.1  Powder characterization 

The chemical composition of nMg-TCP nanopowders, determined by ICP (Tab. III-10), 

is in good agreement with the nominal content of Mg, this confirming the reliability of 

the synthesis route here adopted. Other metal ions, such as Na+, K+, Ba2+, and Sr2+, 

were detected in quantity lower than 40 ppm. Positive deviations from the metal/P ratio 

= 3/2 is observed, which could lead to the formation of HA as minor phase upon 

calcination [124]. Therefore, the expected products of the chosen reaction synthesis 
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(Eq. 14), namely Ca9-3xMg3x(HPO4)(PO4)5OH, should be expressed more correctly by 

the generic formula: 

𝐶𝑎10−3𝑥−𝑧𝑀𝑔3𝑥(𝐻𝑃𝑂4)𝑧(𝑃𝑂4)6−𝑧(𝑂𝐻)2−𝑧 

(64) 

where 0 < z < 1 corresponds to the amount of HPO4
2- groups. Therefore, Mg 

content expressed in mol% is equal to 300x/(10z), and metal/P ratio is given by 

(10z)/6.  

 

 nMg0 nMg5 

   
nominal Mg, 

mol% 
0 5 

   
Mg/(Ca+Mg), 

mol% 
0.01 ± 0.04 4.79 ± 0.04 

   
(Ca+Mg)/P, 

at. ratio 
1.519 ± 0.001 1.507 ± 0.001 

   
chemical formula Ca9.11(HPO4)0.89(PO4)5.11(OH)1.11 Ca8.61Mg0.43(HPO4)0.96(PO4)5.04(OH)1.04 

   
MW, 

g mol-1 
954.98 944.09 

   

 

Table III - 10. Magnesium content and metal/P ratio of the synthesized powders, determined by 

ICP-OES, proposed chemical formula and estimated molecular weight MW. 

 

The characteristic functional groups PO4
3-, HPO4

2-, and OH- were detected by 

FT-IR analysis (Fig. III-22) for both compositions, showing good correspondence with 

the values reported in literature [125]. Regardless the dopant presence, phosphate 

bands can be observed at 1093 and 1036 cm-1 (ν3, broad), 962 cm-1 (ν1), 602 and 565 

cm-1 (ν4, sharp), and 471 cm-1 (ν2, weak); hydroxyl bands can be identified at 3570 cm-

1 (ν stretching), and 630 cm-1 (δ bending). The peak description is completed by the 

very broad signal centered at 3427 cm-1, associated to adsorbed water, and the 

vibration at 877 cm-1, accounting for by HPO4
2- groups [126]. Although the atmosphere 

was not controlled during the reactions, no evidence of CO3
2- vibrations (1466 and 

1411 cm-1) can be pointed out. With respect to the differences between nMg0 and 

nMg5 spectra, the latter shows broadening of the phosphate ν4 and ν3 bands and 

consequent disappearance of OH signals, due to the multiplicity of the chemical 

environment (Ca and Mg) surrounding PO4
3- groups. Moreover, a minor number of 
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hydroxyl groups are present in the doped structure, according to the proposed 

chemical formulas. 

 

 
 

Figure III - 22. FT-IR spectra of the synthesized nMg-TCP nanopowders.  

 

 
 

Figure III - 23. XRD patterns collected on the synthesized nMg-TCP powders. Green vertical 

lines represent HA (#09-0432) JCPDS reference. 
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XRD spectra (Fig. III-23) confirm the apatitic structure of the nanopowders; both 

patterns perfectly match with the HA characteristic reflections. Peaks are very broad 

and noisy, as expected for nanostructured and defected material, especially for the 

doped composition where the main peak (~31.8 deg) partially covers the minor side 

reflections.  

 

 
 

Figure III - 24. XRD profile fitting performed in the 2θ range 27-37 deg: experimental data (black 

circles), deconvoluted peaks (grey lines), and total fitted curve (red line). 

 

In addition, the defected nature of CDHA lattice clearly emerges from the profile 

fitting analysis of the diffracted signal in the 2θ range 27-37 deg (Fig. III-24): the 

difference between 112 and 300 intensities is highlighted [127] and allows to calculate 

a crystallinity degree Xc (Eq. 8) of 26% (nMg0) and 14% (nMg5); these values agree 

with typical values for calcium phosphate powders synthesized by precipitation route 

[70]. 

The average extension of the coherent crystalline domains (i.e. crystallite size) 

are 9 nm (nMg0) and 6 nm (nMg5), respectively. The presence of secondary Me2+ ions 

seems to make the crystallization more difficult, as also observed in the present work 

for Mg-TCP micro-powder (Chapt. 3.1) [128] and for the Sr-HA system (Chapt. 3.3) 

[118]. Moreover, if compared with the spectrum of the undoped composition, very 

small shifts toward higher 2θ angles (~0.36 deg) affect the nMg5 diffraction peaks, this 
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resulting from the crystalline cell contraction [129] due to the replacement of Ca2+ ions 

by smaller Mg2+ ions. No other crystalline phases, like MgO or other calcium 

phosphates, were detected. The whole crystalline features are summarized in Tab. III-

11: 

 

Sample a, 0.1 nm c, 0.1 nm XS, nm XC, % 

     
nMg0 9.533 ± 0.002 6.889 ± 0.001 9 ± 1 26 
nMg5 9.538 ± 0.004 6.877 ± 0.003 6 ± 1 14 

     

 

Table III - 11. Refined unit cell parameters (a and c), crystallite sizes (XS) and crystalline degree 

(XC) obtained by XRD, based on HA structure (JCPDS #09-0432). 

 

 

 

Figure III - 25. TEM images of nMg0 (a and b) and nMg5 (c and d) compositions at different 

magnifications. Courtesy of prof. S. Polizzi - Unive. 
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TEM images (Fig. III-25) of the synthesized compositions show, in both cases, 

particles with short nano-rods shape and narrow length distribution of 25 ± 3 nm 

(nMg0) and 18 ± 3 (nMg5). Mg-doped nanoparticles are slightly smaller and 

proportionally less elongated than pure composition, exhibiting a higher tendency to 

aggregate. By increasing the magnification, particles appear uniform and completely 

dense. No evidence of any amorphous external layer was observed [130]. Finally, the 

regular distance between the lattice fringes reported in the inset is equal to 0.34 nm, 

this being associated with the d-spacing of the apatitic (002) plane [131][132][133].  

Under the hypothesis of nanoparticles with ideal rod-like shape, and taking into 

account the theoretical crystalline HA density (i.e. 3.14 g cm-3) [134], specific surface 

area SSA was calculated by the ratio between average surfaces and volumes based 

on TEM measurements: values equal to  210 ± 41 m2g-1 and 329 ± 33 m2g-1 were 

obtained for nMg0 and nMg5, respectively (Tab. III-12). These values are almost twice 

the corresponding SSA measured by N2 sorption, equal to 116 and 158 m2 g-1: this 

point out that particles are essentially dense and the nanorod are slightly flattened, 

with a nearly plate-like morphology more accentuated in nMg5 than nMg0. 

As a matter of fact, the ads/des isotherms (Fig. III-26) of nMg0 composition 

resemble IVa-type curves, specific for meso-porous powders with small interactions 

(i.e. capillary condensation) between N2 and particles. As for the hysteresis, nMg0 is 

characterized by H2-type loop, namely characteristic of interconnected and narrow 

pores. Conversely, nMg5 shows IIb-type curves with H3-type loop shape, associated 

with interstitial voids between aggregate of plate particles [135]. Accordingly, doped 

composition also shows larger total pore volume TPV and smaller interparticle pore 

dimensions (~10 nm).  

 

Sample nMg0 nMg5 

   
TEM   

   
Ave. Length, nm 25 ± 3 18 ± 3 

Ave. Diameter, nm 7 ± 2 4 ± 1 
Ave. Volume, nm3 1087 ± 525 275 ± 75 
Ave. Surface, nm2 660 ± 191 278 ± 50 
Ave. SSA, m2 g-1 210 ± 41 329 ± 33 

   
N2 sorption   

   
SSA by BET, m2 g-1 116 158 
TPV by BJH, cm3 g-1 0.402 0.493 

ØADS pore, nm 14 12 
   

 

Table III - 12. Morphology features of nMg-TCP particles, by TEM and N2 sorption techniques. 
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Figure III - 26. N2 isotherms of Mg-TCP nanopowders: nMg0 (blue line), and nMg5 (green line). 

 

The thermal behavior of synthesized Mg-TCP nanopowders is reported as TG-

DTA plot in Fig. III-27. Both diagrams are characterized by a first endothermic weight 

loss in the 300-500 K range, simply due to adsorbed water evolution (8-10 wt%). Then, 

nanopowders slowly continue to release H2O, from the protonated phosphate groups 

which form pyrophosphate ions as intermediate product [136]:  

2 𝐻𝑃𝑂4
2− → 𝑃2𝑂7

4− + 𝐻2𝑂 

(65) 

The weight loss is more evident (~2%) in nMg5, this accounting for the larger 

amount of adsorbed water, likely due to higher SSA, and the major presence of 

protonated phosphates HPO4
2-. In addition, a small exothermal event is detected at 

647 K, as a result of residual ammonium nitrate decomposition [137]: 

𝑁𝐻4𝑁𝑂3 → 𝑁2𝑂 + 2 𝐻2𝑂 

(66) 

Finally, the formation of β-TCP takes place by the reaction between the 

pyrophosphate ions and the hydroxyl groups [110], related with the last and well 

defined weight loss at 1061-1114 K (nMg0): 

𝑃2𝑂7
4− + 2 𝑂𝐻− → 2 𝑃𝑂4

3− + 𝐻2𝑂 

(67) 
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Figure III - 27. Differential Thermal Analysis (DTA, left axis) and thermogravimetry (TG, right 

axis) of Mg-TCP nanopowders (20 K min-1): nMg0 (blue line), and nMg5 (green line). Vertical 

dashed lines represent the temperature range (by TG) of CDHA→β-TCP reactions. 

 

CDHA→β nMg0 nMg5 

   
Thermogravimetry, 20 K min-1   
   

Initial temperature, K 1061 992 
Final temperature, K 1114 1022 

Weight loss, % 0.73 0.51 
   

Total Weight loss, % 9.21 12.08 
   
Differential Thermal Analysis   

   
at 5 K min-1 1045 / 

at 10 K min-1 1060 / 
at 20 K min-1 1084 / 
at 40 K min-1 1097 / 

   
Kissinger fitting, Eq. 17   

   
Slope, K-1 41428 / 
Intercept -27 / 

R2 0.977910 / 
Q, kcal/mol 82 / 

   

 

Table III - 13. Collected data about the thermal behavior of Mg-TCP powders: CDHA→β 

temperatures by TG and DTA, final weight loss and Kissinger fitting details. 
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Once again, the behavior of the doped composition is slightly different from pure 

CDHA: the transition is anticipated at 992-1022 K and its DTA signal is completely 

covered by a strong exothermal crystallization peak. Probably, a consistent fraction of 

apatitic amorphous phase was formed upon the first reaction, due to the inhibiting 

effect of Mg2+ on the crystallization. At the same time, magnesium decreases the 

activation energy of the second reaction, involving both crystalline and amorphous 

fractions in β-TCP formation.  

Finally, nMg0 nanopowder show the endothermic signal of β→α-TCP transition 

at 1441 K, ~60 K before the corresponding Mg0 micropowder obtained by calcination, 

this proving the higher reactivity due to the nano-sized nature of the material. As 

expected, no transition was detected for the nMg5 composition up to 1470 K, the β 

stability field being increased by the dopant. 

In summary, the two-step formation of β-TCP from CDHA for the synthesized 

powders is: 

𝐶𝑎10−3𝑥−𝑧𝑀𝑔3𝑥(𝐻𝑃𝑂4)𝑧(𝑃𝑂4)6−𝑧(𝑂𝐻)2−𝑧 

↓ − 
𝑧

2
 𝐻2𝑂 

𝐶𝑎10−3𝑥−𝑧𝑀𝑔3𝑥(𝑃2𝑂7)𝑧/2(𝑃𝑂4)6−𝑧(𝑂𝐻)2−𝑧 

↓ − 
𝑧

2
 𝐻2𝑂 

𝐶𝑎10−3𝑥−𝑧𝑀𝑔3𝑥
(𝑃𝑂4)6(𝑂𝐻)2−2𝑧 

↓ 

3𝑧 𝐶𝑎3−𝑥𝑀𝑔𝑥(𝑃𝑂4)2 + (1 − 𝑧) 𝐶𝑎10−3𝑥𝑀𝑔3𝑥(𝑃𝑂4)6(𝑂𝐻)2 

(68) 

 

In other words, one molecule of Mg-CDHA precursor produces 3z Mg-TCP and 

1z Mg-HA. In this way, is quite evident that the crystalline composition of the final 

calcium phosphate, i.e. the Ca/P ratio of the precursor, is strictly dependent on the 

initial amount of HPO4
2- groups, and consequently from the synthesis pH, rather than 

the Ca/P ratio of the mixed reagents [138][77].  

Completely analogue results could be achieved by the level rule application on 

the CaO-P2O5-H2O equilibrium diagram. Specifically, nMg0 and nMg5 should produce 

3.96 mol% (12 wt%) and 1.37 mol% (4 wt%) of Mg-HA as secondary phase. 
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Figure III - 28. DTA curves of nMg0 composition, carried out at different constant heating rate, 

and corresponding Kissinger plot: light blue dots (5 K min-1), turquoise dots (10 K min-1), blue dots 

(20 K min-1), and dark blue dots (40 K min-1). 

 

The kinetic of CDHA→β-TCP process for the undoped composition was further 

investigated by isochronal DTA approach (Fig. III-28). By using Kissinger equation 

(Eq. 17), linear fitting of the identified peak temperatures allows to calculate an 

activation energy of 82 kcal/mol, in perfect agreement with the value reported in the 

literature [42]. The whole set of TG-DTA data are reported in Tab. III-13. 

The validity of the proposed reaction mechanism was tested for both 

compositions, by two heating treatments (20 °C min-1) up to 730 and 750°C, followed 

by air quenching. All XRD spectra (Fig. III-29) match β-TCP reference lines; only 

nMg0, after calcination at 730°C, still shows the broad signal of CDHA. As expected, 

in the absence of doping the reaction requires higher temperature / time to completely 

occur. Moreover, the refined grain sizes are 102 ± 6 nm (nMg0) and 158 ± 7 nm 

(nMg5): once β-TCP is formed, magnesium promotes grain growth (Tab. III-14). No 

crystalline HA signals are detected in significant intensity, and therefore the slight Ca/P 

excess was completely accommodated by the TCP lattice. 

Therefore, the obtained β-TCP powders can be more easily expressed by the 

general formula Ca3-xMgx(PO4)2, where Mg mol% content is equal to x/0.03.  
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Figure III - 29. XRD patterns collected on the nMg-TCP powders, calcinated at 730°c (left) and 

750°C (right). Blue vertical lines represent β-TCP (#09-0169) JCPDS reference. 

 

Sample 
XS, 
nm 

Formula 
MW, 

g mol-1 

    
nMg0 102 ± 6 Ca3(PO4)1.97 307.80 
nMg5 158 ± 7 Ca2.86Mg0.14(PO4)1.99 307.03 

    

 

Table III - 14. Refined grain size (XS), proposed formula and estimated molecular weight (MW) 

of the calcined nMgTCP powders. 

 

3.2.2  Conventional sintering 

The high reactivity of nanostructured powders in terms of sintering is quite clear 

by observing the dilatometric plot of Fig. III-30, where nMg0 and nMg5 compositions 

are compared with pure TCP micropowder produced by solid-state route (i.e. Mg0). 

The basic idea is to convert upon sintering the CDHA precursor to dense β-TCP thus 

avoiding an intermediate calcination step.  
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Figure III - 30. Dilatometric plot of the synthesized nMg-TCP nanopowders: blue line (nMg0), 

and green line (nMg5). Dashed lines represent, respectively, derivative curves near the 

CDHA→β-TCP transitions. For comparison, dilatometric plot of Mg0 powder (black line) is 

reported.  

 

For both nanopowders, the shrinkage starts immediately as a consequence of 

the adsorbed water evolution and HPO4
2- condensation. According to the TG-DTA 

data, the event is more pronounced in the doped composition. Then, CDHA→β-TCP 

transition occurs (easily identifiable by the derivative of the curves) and the material 

densification begins. The maximum shrinkage rate is basically the same (~1.2 μm s-1) 

for both compositions; nMg0 is once again stopped by the β→α event at ~1500 K, 

whereas nMg5 is β-stabilized by the doping presence. In any case, large final 

shrinkage and densification values (86% and 91%) were achieved.  

 

 
 

Figure III - 31. SEM images of nMg-TCP specimens subjected to conventional sintering at 10 °C 

min-1 up to 1000 °C. Bar scale is referred to 1 μm. 
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Similarly, conventional sintering at 10°C min-1 up to 1000°C was performed on 

nMg-TCP pellets produced by uniaxial pressing. SEM micrographs (Fig. III-31) are 

representative of homogeneous microstructures, characterized by residual sub-

micrometric porosity, especially in nMg0, and polyhedral grains of ~500-600 nm. It 

must be pointed out that the sintering target temperature was limited at 1000°C to 

avoid the β→α transition in the undoped specimen. However, it would be possible to 

further optimize the treatment by introducing an isothermal step or, just for the Mg 

doped composition, by increasing the final temperature. 

 

 

3.2.3  Isochronal flash sintering 

Different flash sintering tests were performed in dilatometer at 20°C min-1 on circular 

green pellets of nMg-TCP nanopowders, as above described. In this case, the electric 

field was the only variable parameter, whereas sample length was assumed constant 

(~4.5 mm) by carefully weighing 0.2 g of nanopowder for each specimen. Compared 

to FS experiments carried out on TCP micropowder, the adopted length was sufficient 

to make the contact resistance contribution almost negligible. In addition, sample 

diameter was decreased from 8 to 6 mm, reducing in this way the ceramic / electrodes 

interface and promoting the oxygen exchange with the environment.    

Fig. III-32a and b shows the linear displacement detected upon FS for nMg0 and 

nMg5 compositions. Conventional dilatometry (i.e. no field) is reported for comparison.  

Also in these cases, the onset temperature Ton for the flash event, i.e. the point where 

the material behavior deviates from the conventional shrinkage curve, is anticipated 

by E. Surprisingly, the effect is less pronounced here than in TCP micropowder (Chapt. 

3.1); for instance, with the application of 1000 V cm-1 and 2 mA mm-2, nMg0 shows the 

flash event at 1162 K, about 80 K above Mg0. As a matter of fact, green body resistivity 

should reasonably decrease with particle size, due to the larger contact area among 

particles, thus anticipating the condition for the flash event [139].   

In any case, the shrinkage rate is much larger, with an average value of ~4 μm 

s-1. As for the dopant influence, magnesium seems to promote the process, further 

decreasing the flash onset temperature (e.g. 1133 K at 1000 V cm-1) and accelerating 

the shrinkage up to ~8 μm s-1. It has to be pointed out that for the E here applied all 

flash events occur after the CDHA precursor transforms into β-TCP, and before its 

transition into α-TCP. 
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Figure III – 32a. Dilatometric plots of nMg0 under conventional (i.e. no field) and FS conditions 

(Jmax = 2 mA mm-2); the numbers refer to the applied electric field (in V cm-1). Triangles represent 

the onset temperature of the flash event, while black star approximatively indicates the 

CDHA→β-TCP transition, determined by the first derivative of the curves (dashed lines). 

 

 
 

Figure III – 32b. Dilatometric plots of nMg5 under conventional (i.e. no field) and FS conditions 

(Jmax = 2 mA mm-2); the numbers refer to the applied electric field (in V cm-1). Triangles represent 

the onset temperature of the flash event, while black star approximatively indicates the 

CDHA→β-TCP transition, determined by the first derivative of the curves (dashed lines). 
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Figure III - 33. Representative example of FS tests carried out at 1000 V cm-1: electric field, 

current, power density, and resistance as a function of the process time; nMg0 (blue lines) and 

nMg5 (green lines). Stars represent, respectively, CDHA→β-TCP transition.  

 

Indeed, the evolution of the electrical features of the material as a function of 

time is strongly defined, before the flash event, by the crystallization of β-TCP as a 

new phase with completely different structure and properties with respect to the initial 

CDHA. Moreover, the reaction is correlated with a slight weight loss and consequent 

volumetric contraction, which add up to the water desorption contribution occurring up 

to 800 K. Therefore, being the electric field set up on the initial length L0 of the 

specimens, the first stage of the FS process (i.e. voltage control) is characterized by 

gradually increasing E, as shown in Fig. III-33 for both compositions. Current and 

power follow the already described runaway-like behavior, with nMg5 reaching the 

flash condition ~60 s before nMg0. Then, upon FS event, the signals become very 

noisy, as previously observed for the plate electrode configuration. 

Anyway, the most interesting trend concerns the resistivity, here reported as 

logarithmic plot. Before the CDHA→β-TCP transition (stars), curves show basically 

the same tendency; the linear regression according to the Arrhenius law (Eq. 32) leads 

to the thermal parameters ρ0s = 45 Ωm and Qs = 60 kJ mol-1 (nMg0), and ρ0s = 202 

Ωm and Qs = 50 kJ mol-1 (nMg5). These values are quite unusual and would 

correspond to a resistivity of 60-80 kΩ m at 1000 K. Once the transition takes place, 

the slope dramatically decreases as consequence of β-TCP formation. Unfortunately, 

since the ionic conduction in polycrystalline solids is inhibited by the grain boundaries 

[140], β-crystallite growth (up to ~100 nm) leads to a not-linear reduction of the 
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resistivity, and this prevents the thermal parameters determination by the usual 

graphical linearization. For the doped composition the scenario is even more 

complicated, since the simultaneous exothermic crystallization event, detected by 

DTA, further reduces the material resistivity by supplying the reaction heat to the 

system. Anyway, the material resistivity at the flash event is 404 Ωm (1162 K) for 

nMg0, and 450 Ωm (1133 K) for nMg5. 

In summary, it can be stated that: 

- The temperature at which β-TCP is formed represents a lower limit for Ton, 

since CDHA is too resistive to allow a sufficient current flow through the 

material, at least for E ≤ 2000 V cm-1; 

- β-TCP resistivity, apparently, does not follow an Arrhenius-like trend due to 

the influence of not-linear grain growth; 

- The presence of Mg seems to slightly decrease the material resistivity, 

leading to a more intense Joule heating (i.e. W = E2/ρs) in the voltage-

controlled step of the process, and therefore anticipating the flash onset. 

The effect could be related to the promoted grain growth, or to a secondary 

source of heat (i.e. exothermal event). 

 

 
 

Figure III - 34. Experimental onset temperature Ton as a function of the inverse of the electric 

field E, for nMg0 (blue dots) and nMg5 (green dots) composition.  
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After these considerations, the quantification of the electric field influence on the 

overall process, in terms of onset temperature of the flash event, results quite difficult 

if the above thermal approach (Eq. 49) is adopted. Therefore, a semi-empirical model 

was proposed, trying to find the easiest relation between the experimental data for Ton 

and E. Specifically, if the electric field is determined for each test just before the 

corresponding flash event, thus taking into account the sample shrinkage up to these 

points, a simply inverse proportionality can be find (Fig. III-34), according to the 

equation: 

𝑇𝑜𝑛 = 𝑎 +
𝑏

𝐸𝑜𝑛

 

(69) 

where Eon represents the electric field at the onset point of the flash event. 

 

Sample 
Eon, 

V cm-1 

Ton, 

K 

a, 

K 

b, 

K V cm-1 
R2 

      

 596 1287    
nMg0 1091 1162 1018.35 159553 0.99973 

 2099 1096    
      
 570 1221    

nMg5 1077 1133 1027.11 111074 0.99944 
 2109 1078    
      

 

Table III - 15. Experimental data and linear fitting parameters of the flash onset temperature (Ton) 

as a function of the electric field (Eon). 

 

The fitting parameters a and b are summarized in Tab. III-15 with the 

experimental data. Once again, the influence of Mg doping on the system is pointed 

out: the flash event is anticipated and less sensitive to field variations. 

Conversely, sample temperature estimation (Ts), according to Eq. 37, does not 

require the material resistivity, but it is based on the direct measurement of V and I. 

Representative examples of temperature profiles are reported in Fig. III-35 for both the 

compositions, referred to FS treatments with E = 1000 V cm-1, and 2 mA mm-2 of 

current limit (solid lines). Also in these cases, the curves show a runaway-like 

tendency, exceeding the β→α transition temperature determined by dilatometry (i.e. 

1490 K) and scattering around ~1520 K for the entire current-control stage. The 

maximum temperature reached by the material could be decreased by further limiting 
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the current (i.e. 0.5 mA mm-2, dashed line) but, at the same time, the Joule heating 

contribution to sintering will be lower, as well as the shrinkage rate after the flash event. 

In other words, a compromise between process time and amount of α-phase should 

be found by choosing the optimum Jmax.  

 

 
 

Figure III - 35. Time evolution of the sample temperature Ts according to Eq. 37, for nMg0 (blue 

lines) and nMg5 (green line) compositions. Tests were carried out at 1000 V cm-1 with different 

current limits Jmax: solid lines (2 mA mm-2), and dashed line (0.5 mA mm-2). Horizontal dotted line 

represents β→α transition temperature. 

 

Moreover, as it was previously described for TCP micropowder, higher current 

limits promote the blackening phenomenon at the specimen cathodic side. For what 

concerns nMg-TCP compositions, it was observed that extending the heating ramp for 

~10 min after the current was turned off, specimens FS at 0.5 mA mm-2 appear 

completely white, whereas at 2 mA mm-2 a small black spot (~300 μm) is still 

detectable. 

As a matter of fact, XRD spectra of FS specimens (Fig. III-36) processed with a 

current limit of 2 mA mm-2, show the presence of 39 wt% of α-phase for nMg0 

composition. As expected, nMg5 sample is completely constituted by β-phase, since 

magnesium postponed the transition temperature. 
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Figure III - 36. XRD patterns of nMg-TCP specimens after flash sintering (1000 V cm-1 and 2 mA 

mm-2). Symbols are referred to JCPDS cards #09-0169 (β-TCP, blue triangles), and #09-0348 

(α-TCP, red squares), respectively. 

 

3.2.4  Isothermal flash sintering 

The undoped composition (i.e. nMg0) was additionally subjected to isothermal flash 

tests carried out on dog-bone-shaped specimens. Before that, samples were 

subjected to pre-sintering treatment at 800°C for 30 min, in order to convert the CDHA 

precursor into β-TCP and to obtain an easier system to investigate. However, the 

following discussion and data are specifically referred to a single FS test carried out 

at 900°C and 7.5 mA mm-2 of current limit, being the comparison more convenient. In 

detail (Fig. III-37), electric field was gradually increased by consecutive ramps and 

constant steps (500 and 620 V cm-1). Since the final value of ~745 V cm-1 was reached, 

flash event occurred after few seconds and a maximum in the dissipated power 

function was detected (~68.5 s). As usual, system control switched immediately from 

voltage to current, slightly decreasing the electric field to compensate the material 

temperature raising. After ~10 s, power supply was shut down. 

The most meaningful frames of the test are collected in Fig. III-38. The difference 

between sample and furnace temperature, and the thermal gradients as well, can be 

qualitatively appreciated by the coloration assumed by the specimen.  
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Figure III - 37. Representative example of isothermal flash sintering carried out on nMg0 

composition at 900°C and 7.5 mA mm-2: dissipated power (black line) and applied electric field 

(red line). Numbers are referred to the time (s) at which frames of Fig. III-38 were acquired. 

 

 
 

Figure III - 38. Video frames of the isothermal flash sintering test (900°C and 7.5 mA mm-2) on 

nMg0 composition. Time values have been also reported for easier comparison with the other 

figures. 
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Initially (60 s), under the application of 620 V cm-1, the flowing current is low, but 

sufficient to allow the identification of a brighter spot in proximity of the anodic junction, 

in agreement with previous observations on Mg0 micropowder (Chapt. 3.1). Then, the 

central portion of the dogbone becomes gradually hotter, up to the flash instant (68.5 

s) at which very intense light emission occurs, combined with an almost instantaneous 

and asymmetric reduction of length. Anyway, few additional seconds are sufficient to 

make the shrinkage uniform along the entire sample, and balance the initial curvature. 

Finally, the last frame (85 s) proves that the material overheating, although less intense 

than during the current control stage, is maintained for at least five seconds since the 

system was switched off. 

The treatment leads to an almost completely dense microstructure (Fig. III-39) 

with polygonal and submicrometric grains, homogeneous along the overall sample 

cross-section. Interestingly, the blackening phenomenon is restricted to a very narrow 

stripe (width ~150 μm) connecting the dogbone holes, clearly visible at different 

magnifications on the external surface (a and d) and identifiable as the preferential 

path crossed by the current.  

 

 
 

Figure III - 39. SEM images of a representative nMg0 specimen flash sintered at 900°C and 7.5 

mA mm-2: a) external surface of the specimen near the wire connection. Dog-bone shape (black 

lines) and current path (red lines) are reported for clarity; b) and c) specimen section (fracture 

surface); d) current path focusing on the external surface; e) and f) bulk microstructure (fracture 

surface). Values on the scale bars are in microns. 

 

In this case, the typical features of a melted and slowly re-solidified material are 

present; starting from the center, it is possible to recognize shrinkage cavity, dendrites, 

intragranular cracks, equiaxial grains, and abnormal growth. However, such altered 

microstructure seems to present just a limited extension through the bulk material 
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(deep ~100 μm), being confined on the specimen skin (b and c). No remarkable 

differences between anodic and cathodic side were detected. 

 

Figure III - 40. Sample temperature evolution (Eq. 51) as a function of time (black line) and its 

derivative (dashed red line) of nMg0 specimen flash sintered at 900°C and 7.5 mA mm-2. 

Numbers are referred to the time (s) at which frames of Fig. III-38 were acquired; red triangles 

identify the linearity range of the resistivity. 

 

Once again, Eq. 51 allows to estimate the sample temperature (Fig. III-40) during 

the test; the material achieved a maximum of 1594 K (for less than a second, at the 

flash event) and then is cooled down to ~1500 K (71 s) and ~1450 K (75 s). Shrinkage 

and related densification processes take place in this range, namely in 5-6 s. Anyway, 

it should be remembered that the model is affected by three main limitations: 

- the starting sample dimensions were considered constant during the entire 

process. Obviously, this approximation is reasonable up to the flash event 

itself; 

- the sample temperature was assumed uniform, at each instant, along the 

overall rectangular portion of the specimen. Although the core/skin gradient 

could be neglected due to the small sample dimensions, video frames 

showed asymmetries both for shrinkage (curvature) and emission (hotter 

anode). 
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- The specific heat of TCP (Cp) was considered constant during the entire 

process, despite of the large temperature range considered and the 

porosity influence.  

 

As a matter of fact, the equation 51 would predict the thermal equilibrium 

between sample and furnace (Ts = Tiso) at 85 s, whereas the dogbone sample is still 

hotter. Moreover, power (and temperature) spike could have been mainly dissipated 

by the limited re-solidified area, accounting for the initial anisotropic shrinkage of the 

sample. 

Despite the considered approximations, the thermal model is still well accurate 

to describe the material behavior at least up to the flash event, i.e. before any 

preferential current path or densification. Specifically, if the measured resistivity is 

correlated with the estimated sample temperature (Fig. III-41a and b), after an initial 

transient the material shows the conventional Arrhenius-like trend, characterized by 

an activation energy Qs = 101 kJ mol-1 and a pre-exponential coefficient ρ0s = 0.00533 

Ω m. Conversely, the resistivity tendency with time appears quite irregular, due to the 

gradual increment of Ts, and the flash event is associated with the usual function drop. 

 

 
 

Figure III – 41a. Material resistivity as a function of time Numbers are referred to the constant 

field steps (V cm-1); red triangles identify the linearity range of the resistivity (red line).  
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According to the estimated thermal parameters for resistivity, the isothermal 

approach described by Eqs. 56a and 56b provides the necessary conditions for the 

flash event at 1173 K, a critical electric field E* of 720 V cm-1, and a consequent 

material overheating ΔT* of 188 K or, in other words, a sample temperature Ts
* equal 

to 1361 K. Such values are in good agreement with previous data, being both 

conditions achieved approximately 1 s before the flash event (67 s), when the sample 

temperature derivative abruptly increases. 

 
 

Figure III – 41b. Material resistivity as a function of sample temperature (right). Numbers are 

referred to the constant field steps (V cm-1); red triangles identify the linearity range of the 

resistivity (red line).  

 

Once the material resistivity behavior is defined by Qs and ρ0s, the isothermal 

model can be applied to different furnace temperature Tiso to calculate E* and the 

corresponding sample temperature Ts
* (Fig. III-42). As expected, by increasing the 

furnace temperature, critical sample temperature grows almost linearly, whereas 

critical field exponentially decreases. 

In this way, it is possible to build up a processing map (Fig. III-42), which takes 

into account the temperature limitations imposed by the phase transitions. Specifically, 

if the specimens are previously calcined or pre-sintered, CDHA→β-TCP transition 

(1084 K) does not constitute a lower limit for FS (orange area). Conversely, the single-

step process (i.e. β-TCP conversion-and-sintering) requires a minimum isothermal 
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stage at 1084 K and fields in the range 695-1188 V cm-1. For higher E value, the 

corresponding critical sample temperature would exceed β→α-TCP limit (1441 K); 

obviously, the same for Tiso (green area). 

 
 

Figure III - 42. Processing map for isothermal flash sintering of nMg0 nanopowder, in terms of 

electric field and furnace temperature. Vertical and horizontal lines represent CDHA→β-TCP 

(1084 K) and β→α-TCP (1441 K) transition temperatures, determined by thermal analysis. 

Colored area represents the suitable range of E and Tiso, for as-synthesized powders (green) and 

for pre-calcined powders (orange). 

 

Nevertheless, Ts
* is the critical value beyond which the system follows a thermal 

runaway path, and not the maximum temperature achieved by the sample, strictly 

dependent to the current limit. As a consequence, the real “safety zone” of the 

processing map should be further limited. In a much more conservative approach the 

maximum sample temperature Tmax is estimated as the value at which the current limit 

is reached under the hypothesis of an Arrhenius-like behavior for the resistivity: 

𝑇𝑚𝑎𝑥 =
𝑄𝑠

𝑅𝑔

 (ln
𝐸

𝜌0𝑠 𝐽𝑚𝑎𝑥

)
−1

 

(70) 

Therefore, by varying the current limit Jmax, a family of curves can be drawn for 

different applied fields (Fig. III-43). 
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Figure III - 43. Estimated sample temperature at the flash event as a function of current limit 

(left), by changing the electric field (steps of 50 V cm-1). β→α-TCP (1441 K) transition 

temperature is also indicated (dashed line). On the right, current limits at 1441 K, by varying the 

electric field. 

 

Additionally, considering β→α-TCP limit at 1441 K (dashed line), a set of points 

defining the current limits at which the transition starts can be easily identified by the 

curve intersection. These points can be plotted as a function of E defining the straight 

line (i.e. J = E/ρs) between β and α-TCP stability fields. According to that, an isothermal 

FS treatment carried out at 1173 K and 720 V cm-1, requires 2.93 mA mm-2 current at 

the most, in order to avoid any α-phase formation; by increasing the field up to 1188 

V cm-1, the limit is moved forward to 4.84 mA mm-2.  

In conclusion, it has to be pointed out that the last method could lead to excessive 

limitations on the process parameters, since the temperature reached by the material 

at the flash event (J=Jmax) most likely affects only a restricted portion of the overall 

specimen, namely the preferential current path located on the surface. 

 

3.3 Precipitation method: Strontium doping HA 

This chapter is partially based on the published work: 

Frasnelli M, Cristofaro F, Sglavo V.M, Dirè S, Callone E, Ceccato R, Bruni G, Cornaglia 

A.I, Visai L: Synthesis and characterization of strontium-substituted hydroxyapatite 



107 
 

 

nanoparticles for bone regeneration, Materials Science & Engineering C 71 (2017): 

653-662. 

 

3.3.1  Powder characterization 

Starting from the chemical composition of nSr-HA powders, ICP-OES data (Tab. III-

16) show that the real amount of Sr2+ in the synthesized powders is slightly lower than 

the nominal one. The metals-over-phosphorous atomic ratio, with respect of the 

stoichiometric Ca/P value of 1.667 for pure HA, appears very similar for the 

intermediate samples, whereas positive (+5%) or negative (7%) deviations can be 

observed for the Sr poorest and richest compositions, respectively. Considering the 

chosen reaction synthesis (Eq. 15), the expected product should be expressed by the 

general formula Ca10-ySry(PO4)6 (OH)2, where Sr mol% is equal to y/0.1. Nevertheless, 

taking into account the measured amount of phosphorous and, consequently, the 

amount of phosphate ions, the electro-neutrality of the crystal is ensured by changing 

the quantity of hydroxylic groups, according to the formula: 

𝐶𝑎10−𝑦𝑆𝑟𝑦(𝑃𝑂4)6±𝑧(𝑂𝐻)2∓3𝑧 

(71) 

Essentially, the disproportion into the metals-over-phosphorous ratio is arranged 

by the OH- ions. It should be pointed out that the possible presence of partially-

protonated phosphate groups (e.g. HPO4
2- or H2PO4

-) into the as-synthesized powders 

has not been considered in the proposed solution.  

 

 
nom. Sr2+, 

mol% 

Sr/(Ca+Sr), 

 mol% 

(Ca+Sr)/P, 

at. ratio 
Formula 

MW, 

g mol-1 

      

nSr0 0 0.0 1.743 Ca10(PO4)5.74(OH)2.78 993 

nSr5 5 4.2 1.771 Ca9.58Sr0.42(PO4)5.65(OH)3.06 1009 

nSr10 10 7.4 1.614 Ca9.26Sr0.74(PO4)6.05(OH)1.84 1042 

nSr25 25 21.3 1.670 Ca7.87Sr2.13(PO4)5.99(OH)2.04 1105 

nSr50 50 45.2 1.652 Ca5.48Sr4.52(PO4)6.05(OH)1.84 1222 

nSr75 75 74.2 1.537 Ca2.58Sr7.42(PO4)6.50(OH)0.49 1379 

nSr100 100 100.0 1.570 Sr10(PO4)6.37(OH)0.89 1496 

      

 

Table III - 16. Chemical composition of the synthesized nanopowders, determined by ICP-OES, 

proposed formula and estimated molecular weight MW. 
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Figure III - 44. FT-IR spectra of the synthesized nSr-HA nanopowder. Vertical dashed lines are 

referred to the ν4 domain (500-700 cm-1) selected for the profile fitting. 

 

The vibration bands related to PO4
3- and OH- groups detected in the FT-IR 

spectra (Fig. III-44), perfectly match with the values reported in literature [141]. In more 

detail, considering the undoped composition nSr0 (i.e. calcium hydroxyapatite), 

phosphate bands can be observed at 1092 and 1034 cm-1 (ν3, broad), 962 cm-1 (ν1), 

602 and 565 cm-1 (ν4, sharp), and 472 cm-1 (ν2, very weak); hydroxyl bands can be 

found at 3572 cm-1 (ν stretching), and 633 cm-1 (δ bending). The peak description is 

completed by the very broad signals at 3440 cm-1 and 1630 cm-1, associated to 

adsorbed water, whereas no evidence of CO3
2- vibrations (1466 and 1411 cm-1) can 

be pointed out, proving the reliability of the synthesis route avoiding apatite 

carbonatation. By increasing the dopant content, up to the complete Sr2+ → Ca2+ 

substitution (i.e. nSr100), the phosphate bands seem to shift to lower frequencies, 

reaching 1076 and 1028 cm-1 (ν3, broad), 947 cm-1 (ν1), 594 and 561 cm-1 (ν4, sharp), 

and 463 cm-1 (ν2, very weak). Conversely, OH signals maintain their positions, but 

gradually fade out until being almost negligible.  

The effect is highlighted by investigating the FT-IR spectra in the 500-700 cm-1 

range, corresponding to the ν4 domain and to the OH bending vibration (Fig. III-45). 

According to the literature [7], deconvolution and peak integration were performed in 

this region, taking care to previously normalize the spectra by the ν3 signal, by 

introducing six components: hydroxyls, surface phosphates [142] (HPOx and POx), 

and three different internal phosphates PO4
3- (Tab. III-17a and III-17b).  



109 
 

 

 internal PO4
3- (1) internal PO4

3- (2) internal PO4
3- (3) 

 
Pos., 

±2 cm-1 

Rel. Area, 

% 

Pos., 

±2 cm-1 

Rel. Area, 

% 

Pos., 

±2 cm-1 

Rel. Area, 

% 

       

nSr0 565 34.6 574 18.1 602 16.7 

nSr5 564 29.1 574 18.1 603 22.6 

nSr10 563 19.8 571 26.0 602 22.6 

nSr25 563 34.4 573 11.4 600 30.9 

nSr50 561 25.2 571 21.5 598 22.7 

nSr75 559 25.5 572 12.1 595 25.5 

nSr100 561 35.0 573 9.5 593 26.6 

       

 

Table III - 17a. Deconvoluted signals of the FT-IR phosphate ν4 region (500-700 cm-1): bulk 

components. Position and integrated area percentage for each component have been reported. 

 

Focusing on the differences between nSr0 and nSr100 spectra (Fig. III-45), the 

latest clearly shows the HPOx component at low frequencies, and the almost complete 

absence of the OH signal. More generally, by increasing the Sr amount, the sum of 

HPOx and POx integrated areas (i.e. surface components) gradually grows. 

 

 surface HPOx surface POx δ OH- 

 

Pos., 

±2 

cm-1 

Rel. 

Area, 

% 

Pos., 

±2 cm-1 

Rel. Area, 

% 

Pos., 

±2 cm-1 

Rel. Area, 

% 

       

nSr0 538 0.4 606 3.0 633 27.4 

nSr5 537 8.2 616 3.7 634 18.4 

nSr10 540 6.4 614 8.3 635 17.0 

nSr25 538 4.2 610 5.6 633 13.6 

nSr50 538 8.3 604 12.4 633 9.9 

nSr75 538 17.0 603 13.8 633 6.0 

nSr100 538 9.1 599 14.3 633 5.4 

       

 

Table III - 17b. Deconvoluted signals of the FT-IR phosphate ν4 region (500-700 cm-1): surface 

components. Position and integrated area percentage for each component have been reported. 
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Figure III - 45. FT-IR profile fitting performed on the phosphate ν4 region (500-700 cm-1): 

experimental data (black line), deconvoluted peaks (grey line), and total fitted curve (red line). 

 

Similarly, Sr2+ influence on the hydroxyapatite structures appears through the 

XRD patterns, reported in Fig III-46. For the mono-cationic compositions, i.e. nSr0 and 

nSr100, the quite resolved reflection perfectly fit the corresponding HA (calcium 

hydroxyapatite) and SrHA (strontium hydroxyapatite) references (see Tab. II-3), 

respectively. No others crystalline phases can be detected. Again, the intermediate 

compositions show a transitional behavior, with the peaks gradually broadening and 

shifting to lower angles, and a qualitative increase of the noise.  

Therefore, it can be stated that the simultaneous presence of Sr2+ and Ca2+ has 

been completely arranged by the hydroxyapatite lattice by forming a single-phase, 

which appears progressively more defected and nanocrystalline, as it can be 

confirmed by the calculated crystallite size (XS) reported in Tab. III-18. For instance, 

the extension of the coherent crystalline domains is 52 nm (nSr0), 19 nm (nSr10) and 

41 nm (nSr100). 
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Figure III - 46. XRD patterns collected on the synthesized nSr-HA powders. Green and red 

vertical lines represent, respectively, HA (#09-0432) and SrHA (#33-1348) JCPDS references. 

 

 

 

Figure III - 47. Linear interpolation of the refined cell parameters (by XRD) as a function of the 

real Sr amount (by ICP): a and c (black line), c/a ratio (red line). R2 values have been also 

reported. 
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Conversely, the refined cell parameters a and c, as well their ratio c/a (Fig. III-

47), both show a linear increment in dimension, explicable with the higher ionic radius 

of Sr (0.113 nm) respect to Ca (0.099 nm) [132]. In other words, the crystalline cell 

gradually grows by extending mainly the c dimension (z axis) than the basal one a (xy 

plane). From these data, it is possible to calculate the real density ρ of the powders 

by: 

𝜌 =
𝑍 𝑀𝑊/2  

𝑉𝑐𝑒𝑙𝑙  𝑁𝐴

=
𝑍 𝑀𝑊/2  

𝑎2𝑐 sin (𝜋/3)  𝑁𝐴

 

(72) 

where Vcell is the volume of the unit-cell considering the trigonal structure of 

hydroxyapatite, Z the number of atoms contained in the unit cell (equal to 2), and NA 

the Avogadro number (6.022∙1023 mol-1). MW is the molecular weight, based on the 

ICP chemical composition of each powder (Tab. III-16), which needs to be divided by 

2 since the considered formula is formed by two unit-cells. The obtained values are 

slightly larger (+ 1-8%) than the corresponding values extrapolated from the 

crystallographic densities ρcry of stoichiometric HA and SrHA (Tab. III-18). Most likely, 

MW values were overestimated by considering only PO4
3- groups and disregarding 

HPOx and POx surface species, as demonstrated by FT-IR.  

 

Sample 
a, 

Å 

c, 

Å 

c/a, 

± 0.001 

XS, 

± 1 nm 

ρ, 

± 0.01 g/cm3 

ρcry, 

± 0.01 g/cm3 

       

nSr0 9.423 ± 0.001 6.881 ± 0.001 0.730 52 3.12 3.08 

nSr5 9.435 ± 0.003 6.899 ± 0.002 0.731 31 3.15 3.11 

nSr10 9.461 ± 0.004 6.921 ± 0.003 0.732  19 3.22 3.14 

nSr25 9.507 ± 0.005 6.974 ± 0.004 0.734 30 3.36 3.24 

nSr50 9.609 ± 0.008 7.087 ± 0.007 0.738 25 3.58 3.42 

nSr75 9.668 ± 0.005 7.166 ± 0.004 0.741 19 3.95 3.64 

nSr100 9.776 ± 0.002 7.289 ± 0.002 0.746 41 4.12 3.84 

       

 

Table III - 18. Refined unit cell parameters (a and c), crystallite sizes (XS) and real density (ρ) 

obtained by XRD. For comparison, crystallographic densities (ρcry) have been extrapolated from 

the values of stoichiometric HA and SrHA.  

 

Fig. III-48 shows representative SEM and TEM image of the synthesized 

nanopowders. Particles exhibit a rod-like shape, with growing tendency to aggregation 

increasing the Sr amount. At the same time, the major axis of the particles significantly 
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increases, moving from 45 nm (nSr0) to 124 nm (nSr100) and showing an elongated 

morphology. Most likely, strontium presence decreases the surface energy γs of the 

apatite crystals, promoting both the particle growth and the grain boundary formation 

(i.e. larger number of smaller crystallites) during the synthesis reaction. 

 

 
 

Figure III - 48. Representative SEM and TEM images of nSr0 and nSr100 compositions. Bar 

scale into the inserts are both referred to 100 nm. 

 

 
 

Figure III - 49. N2 isotherms and pore size distribution (insert) of nSr50 nanopowder: adsorption 

data (black square and line), and desorption data (red square and line). In the insert, vertical lines 

represent the average pore diameter Ø under adsorption (black) and desorption (red) conditions. 
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Also N2 sorption results (Fig. III-49) are in good agreement with the previous 

considerations. All samples show IIb-type isotherms with H3 hysteresis loop and no 

plateau at high pressures, this being representative of meso – macro porous powder 

aggregates.  

Specific Surface Area and average pore diameters are randomly scattered 

around 50 m2 g-1 and 30 nm, respectively (Tab. III-19). By using Eq. 16, SSA can be 

related with particle dimension D measured by TEM, and the real density ρ computed 

by XRD spectra refinements, to calculate the geometrical parameter ψ, i.e. the 

adimensional ratio between particle length and diameter. Considering the wide size 

distributions, and the elongated morphology of powders as well, ψ values are quite 

reasonable and prove that the nanoparticles are completely dense. Therefore, the 

measured porosity is likely due to the interparticle voids within the aggregates. 

 

 TEM BET BJH Eq. 16 

Sample 
D, 

nm 

SSA, 

m2 g-1 

Total Pore Volume, 

cm3 g-1 

ØADS pore, 

nm 

ØDES pore, 

nm 
ψ 

       

nSr0 45 ± 14 34 0.324 39 55 5 ± 1 

nSr5 72 ± 15 47 0.308 27 38 11 ± 2 

nSr10 83 ± 24 61 0.396 26 29 16 ± 5 

nSr25 98 ± 17 35 0.170 19 20 12 ± 2 

nSr50 113 ± 32 56 0.331 23 26 23 ± 6 

nSr75 121 ± 22 53 0.262 17 21 25 ± 5 

nSr100 124 ± 42 33 0.285 36 47 17 ± 6 

       

 

Table III - 19. Particle length D (by TEM), SSA and pore distribution (by N2 sorption), and 

geometrical parameters ψ. 

 

Finally, the powder characterization was completed with the study of the local 

environment of phosphorous and hydrogen atoms in the apatitic structure, as reported 

for the representative composition (nSr50) in Fig. III-50. 

1H MAS spectra show the broad water peak at 5-7 ppm and, in some cases, a 

variable number of small signals (1-3 ppm) very likely due to surface adsorbed water 

[143]. The most meaningful output is the sharp peak at -0.21 ppm (nSr50) assigned to 

the apatitic hydroxyl resonance [144]. 
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Figure III - 50. Representative solid-state NMR spectra (nSr50 composition): 1H MAS (blue line), 
31P CP-MAS (red line) and 31P SP-MAS (black line). 

Figure III - 51. 1H MAS profile fitting performed on the -2.01.5 ppm region: experimental data 

(black line), deconvoluted peaks (grey line), and total fitted curve (red line). 
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By observing the complete nSr-HA series (Fig. III-51), the effect of Sr amount is 

clearly pointed out by shift to higher fields (from 0.22 to -0.53 ppm) and enhanced 

asymmetry of the crystalline OH resonance. Deconvolution and peak integration in the 

region -2.0-1.5 ppm was performed to quantify such differences, by adopting a central 

main component (crystalline OH), and two additional species S1 and S2 to fit the peak 

sides. Since the spectra exhibit poorly resolved peaks, especially for the central 

compositions, signal elaboration was carried out by initially fixing the main component 

position at the corresponding peak maximum, and systematically refining the other 

features one at a time (position of the side components, widths and intensities). 

Eventually, a last computational cycle was performed by unlocking all previous 

bounds. The integrated area of the crystalline OH component (Tab. III-20) gradually 

decreases despite of the observed broadening. Once more, the complete Sr2+→Ca2+ 

replacement leads to reverse this trend, with the narrowing of the OH peak. 

Unfortunately, no clear trend for the S1 and S2 components was found, not allowing 

any further discussion.  

 S1 crystalline OH S2 

Sample 

δ, 

±0.05 

ppm 

FWHM, 

±15 Hz 

Rel. 

Area, 

% 

δ, 

±0.05 

ppm 

FWHM, 

±15 Hz 

Rel. 

Area, 

% 

δ, 

±0.05 

ppm 

FWHM, 

±15 Hz 

Rel. 

Area, 

% 

          

nSr0 -0.29 70 1.3 0.22 144 81.7 0.73 187 17.1 

nSr5 -0.28 243 13.3 0.01 187 70.7 0.64 227 16.0 

nSr10 -0.35 188 4.8 -0.02 218 80.8 0.76 216 14.4 

nSr25 -0.44 265 8.3 -0.07 268 77.8 0.95 278 13.9 

nSr50 -0.60 152 10.1 -0.21 322 77.0 0.91 250 12.9 

nSr75 -0.63 167 16.6 -0.22 302 78.0 0.71 130 5.5 

nSr100 -0.83 115 5.5 -0.53 117 76.9 -0.10 193 17.6 

          

 

Table III - 20. Deconvolution of the OH signal in the 1H MAS NMR spectral region -2.0–1.5 ppm. 

Position, broadening (as Full Width at Half Maximum) and integrated area percentage for each 

component have been reported. 

 

The 31P NMR spectra (Fig. III-50) reveal a single peak at 3.21 ppm (nSr50), 

associated to the phosphate PO4
3- environment. However, by running the analyses 

under cross-polarized conditions (31P CP-MAS), the signal appears more asymmetric, 

and two lateral components are clearly detectable below the main peak. Since this 

specific pulse program emphasizes the response of 31P nuclei close to 1H atoms, the 

minor components can be identified as partially-protonated phosphate groups, namely 

-POx and -HPOx [145], placed on the particle surfaces.  
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Figure III - 52. 31P SP MAS profile fitting performed on the -5.010.0 ppm region: experimental 

data (black line), deconvoluted peaks (grey line), and total fitted curve (red line). 

 

 

 surface POx internal PO4
3- surface HPOx 

Sample 

δ, 

±0.05 

ppm 

FWHM, 

±6 Hz 

Rel. 

Area, 

% 

δ, 

±0.05 

ppm 

FWHM, 

±6 Hz 

Rel. 

Area, 

% 

δ, 

±0.05 

ppm 

FWHM, 

±6 Hz 

Rel. 

Area, 

% 

          

nSr0 3.13 93 25.8 2.80 43 53.0 2.51 74 21.2 

nSr5 4.48 300 9.4 3.03 116 77.7 2.27 146 12.9 

nSr10 4.71 222 1.9 2.89 148 79.9 2.10 193 18.2 

nSr25 5.13 291 7.5 3.22 214 57.4 2.05 290 35.1 

nSr50 5.82 331 4.3 3.21 316 90.5 0.39 296 5.2 

nSr75 4.83 338 21.2 3.17 270 62.6 0.72 417 16.2 

nSr100 3.46 111 24.5 3.14 39 52.7 2.91 82 22.8 

          

 

Table III - 21. Deconvolution of 31P SP-MAS NMR spectra in the range -5.0–10.0 ppm. Position, 

broadening (as Full Width at Half Maximum) and integrated area percentage for each component 

have been reported. 
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Therefore, 31P SP-MAS spectra deconvolution was performed by adopting three 

components: a central main component (internal PO4
3-), and two additional species -

POx and -HPOx to fit the peak sides (Tab. III-21). 

Similarly to FT-IR and XRD, the main signal (Fig. III-52) gradually broadens and 

shifts to lower fields up to nSr50 composition. Beyond this value, trends are inverted: 

internal phosphate peak moves toward high fields and an abrupt decrease of linewidth 

occurs for the fully substituted nSr100 composition. Unfortunately, minor components 

seem to follow no regular trends with Sr amount. 

 

3.3.2  Data comparison 

Complementary analytical techniques, such as TEM, XRD, FT-IR and NMR, 

allowed to investigate the effect of Sr2+→Ca2+ replacement under different points of 

view. In addition, by comparing data from various sources, additional considerations 

can be drawn. As discussed above, strontium causes a gradually reduction of the 

crystal surface energy γs of hydroxyapatite, leading to more elongated particles (i.e. 

higher ψ factors), smaller crystallite size XS, and an anisotropic expansion of the unit 

cell, being c axis more affected than a direction. Although c/a ratio linearly changes 

with the dopant content, the consequence on the final particle size appears relevant 

for limited Sr amounts, whereas it is more attenuated for larger Sr quantities (Fig. III-

53).  

 
Figure III - 53. Particle dimension D (by TEM), as a function of c/a ratio (by XRD refinement), by 

increasing the Sr amount. 



119 
 

 

Further indications of the radical modifications induced by the cationic 

replacement can be deduced from FT-IR and NMR spectra, since both analytical 

techniques are extremely sensitive to the local chemical environment changes. The 

deconvolution of phosphate ν4, 31P SP-MAS, and 1H MAS signals allowed to prove the 

existence of partially-protonated POx and -HPOx surface groups, which qualitatively 

grow with the Sr content and the particle dimension. Moreover, clear trends about 

internal PO4
3- and crystalline OH groups were identified by removing the contribution 

of the minor side species. By plotting the integrated area of FT-IR δ OH peaks vs. the 

refined c/a ratio (Fig. III-54), an inverse-proportional dependency is obtained. In other 

words, the preferential elongation of crystalline cell along the c axis induced a 

decrease of probability of allowed OH vibrations. If the crystalline structure of 

hydroxyapatite is considered, hydroxyl groups are embedded within planar triangle 

sites [58] formed by Me2+ ions (M(2) type), and oriented along the c axis. By increasing 

the Sr amount, and correspondingly the c parameters, the spatial density of O-H bonds 

decreases, as well as the related FT-IR signal intensity. In addition, the progressive 

presence of strontium (electron configuration [Kr] 5s2) instead of calcium (electron 

configuration [Ar] 4s2) into the M(2) sites, leads to higher electron densities around the 

hydroxylic groups (i.e. more shielded protons), thus inducing the observed upfield-shift 

of the OH component in 1H MAS spectra.    

 

 
 

Figure III - 54. δ OH relative area (by FT-IR deconvolution), as a function of c/a ratio (by XRD 

refinement), by increasing the Sr amount.  
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Conversely, the vibrational frequency decrease of ν4 phosphate components (1) 

and (3), and the downfield-shifts of the internal PO4
3- signals in 31P SP-MAS spectra 

are due to the increment of the reciprocal distance between phosphate groups upon 

the lattice expansion, leading to the energy loss of some P-O bonds [146].   

Further considerations can be drawn by plotting the linewidth of the internal PO4
3- 

and crystalline OH deconvoluted signals, as a function of the Sr amount determined 

by ICP (Fig. III-55). Recalling that in NMR analysis line broadening is associated with 

the multiplicity of chemical species surrounding a specific nucleus (i.e. 1H and 31P, in 

this case), nSr50 composition is quite clearly the most disordered structure, where 

both Me2+ ions are perceived as point defects, being in equal number. Nevertheless, 

all nanopowders exhibit just one and homogeneous crystalline phase, gradually 

evolving between the two limit compositions nSr0 and nSr100. The latter composition 

appears coherently ordered and easier to crystallize (i.e. higher XS). 

 

 
 

Figure III - 55. Linewidth (FWHM) of the central components of the deconvoluted NMR signals, 

as a function of Sr amount: crystalline OH (by 1H MAS, blue line), and internal PO4
3- (by 31P SP-

MAS, red line). 

 

Finally, for nSrHA the properties are strictly related with the surface of the 

nanoparticles; no apparent regular trends were found as a function of dopant amount, 

or by comparing results from different techniques. In particular, SSA and HPOx / POx 

deconvoluted components from FT-IR or NMR spectra seem to vary randomly, 

regardless the Sr content within the apatite lattice. It has to be considered that natural 
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or synthetic apatites are actually characterized by the presence of an amorphous 

hydrated layer on their surfaces [147], where the partially-protonated phosphate 

groups are mainly located, and thus forced to interact with the adsorbed water. 

Therefore, a more complete investigation of such surface features should be realized 

by previously removing the random contribution of water, for instance by drying the 

synthesized nanopowders before their characterization. 
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Chapter IV 

 

Conclusions 

 

4.1 Solid state reaction: Magnesium doping β-TCP 

Magnesium-doped TCP powders with micrometric size were successfully produced by 

solid state synthesis, resulting in a monophasic β-phase able to completely 

accommodate the dopant presence (from 0 to 2 mol% Mg2+). With respect to pure 

TCP, the partial substitution of Ca2+ by Mg2+ leads to a structural stabilization of the β 

lattice and to a consequent increment of the β→α activation energy, up to 420 kcal 

mol-1 for 2 mol% Mg2+ content. Therefore, the transition into the α phase is postponed 

upon heating, and a much higher densification level (85%) can be achieved by 

conventional sintering in spite of the poor reactivity of the starting powders, with better 

mechanical properties (hardness and flexural strength). At the same time, it is shown 

that magnesium promotes the α→β kinetic reconversion upon cooling, further limiting 

the presence of retained α-phase into the sintered TCP. Residual stresses due to the 

coexistence of both β and α polymorphs in similar amount (~50:50) were quantified as 

~10 MPa. 

Annealing treatment at ~750°C, performed on sintered TCP bodies to reconvert 

the possible metastable α-phase, was demonstrated to be effective only for the doped 

composition, since magnesium promotes β-formation both from the kinetic and 

thermodynamic points of view. With 1 mol% Mg2+, the activation energy for the 

reconversion process was 66 kcal mol-1. 

Un-doped β-TCP was subjected to several tests under flash sintering 

configuration. The treatments were successfully realized on cylindrical green pellets 

at constant heating rate, and a dense microstructure was achieved at temperature 

lower than 1000°C in just 10 min (1500 V cm-1, 2 mA mm-2), thus avoiding any 

expansion related to β→α transition. The phenomenon seems to be triggered by the 

combination of Joule effect and Negative Thermal Coefficient for electrical resistivity, 

which induce a thermal runaway mechanism.  

For the considered system, a simplified thermal-based model well describes the 

entire process: the flash onset can be accurately predicted as a function of the process 

parameters and the real temperature reached by the material can be estimated, as 

well. The flash event (i.e. the point where an abrupt resistivity drop and density 
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increase are observed) is anticipated, in terms of time and furnace temperature, by 

higher electric field and longer specimens (> 4 mm), whereas the maximum current 

influences the real temperature reached by the materials and, consequently, the 

shrinkage rate. As a matter of fact, current density higher than ~2 mA mm-2 can lead, 

for the considered geometry, to the gradual formation of α-phase in the final β-TCP 

sintered samples. 

The present investigation pointed out that the use of planar electrodes and 

cylindrical specimens limits the oxygen exchange at the material/electrode interface. 

As direct consequences, the anodic surface develops an additional resistance 

contribution, predominant for specimens shorter than 3-4 mm, while at the cathodic 

side the partial reduction of the phosphate groups can occur, this resulting in a limited 

blackened area. Such secondary reaction mainly occurs upon the flash and it is 

proportional to the duration and the current intensity: the current flow can be channeled 

into the blackened area, locally leading to higher temperature gradient (~130 K s-1) for 

few seconds and even to liquid phase formation. 

In conclusion, it was shown that flash sintering represents a reliable consolidation 

technique for producing β-TCP ceramics starting from micrometric powders, sensibly 

reducing time and temperature of the process. 

 

4.2 Precipitation method: Magnesium doping β-TCP 

Magnesium-doped TCP nanopowders (0 and 5 mol% Mg2+) were successfully 

produced by precipitation from aqueous solutions; highly-defected and nanostructured 

CDHA plate-like particles (~20 nm) with Ca/P ratio equal to 1.5 were obtained as first 

reaction product.  

Also in this case, the Mg2+ presence in the apatitic lattice strongly influences the 

system: with respect to un-doped CDHA, crystalline cell is slightly contracted and its 

crystallization from the mother liquor is inhibited. As a consequence, thermal 

conversion into β-TCP is preceded by an intense exothermal event, and anticipated 

by ~50°C. 

The powders were shown to be highly reactive when subjected to conventional 

conversion-and-sintering treatments at 10°C min-1 up to 1000°C and dense (~90%) β-

TCP microstructures with final 500-600 nm grain size were achieved. 

Flash sintering in isochronal mode was successfully applied on cylindrical green 

pellets produced with the synthesized nanopowders, and very rapid densification was 
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recorded especially for Mg-doped samples. Interestingly, it was demonstrated that 

CDHA phase is too resistive, at least for electric field lower than 2000 V cm-1, to ensure 

the critical condition needed to trigger the thermal runaway mechanism; therefore, the 

flash event can occur only after β-TCP formation. In addition, β-phase is characterized 

by a rapid resistivity reduction with increasing the temperature, thus deviating from the 

expected Arrhenius-like behavior, most likely because of the non-linear grain growth 

of the new crystals. A semi-empirical relation describing the inverse proportionality 

between the applied field and the flash onset was found, pointing out the higher 

conductivity of Mg-doped material. On the other hand, the high reactivity of the 

nanopowders leads to larger amount of retained α-phase in the undoped sintered 

sample (absent in presence of Mg), if compared to TCP micropowders, 

Flash sintering was also applied in isothermal mode on the undoped 

composition, previously calcinated to β-TCP, thus obtaining an almost fully dense 

microstructure (~500 nm) at 900°C in just few seconds (745 V cm-1 and 7.5 mA mm-

2). Once again, a thermal model was proposed to describe and predict the flash 

conditions and the real sample temperature. On these basis, and considering the 

limitation imposed by the β→α transition, it was possible to build two different 

processing maps including and relating furnace temperature, electric field and current 

limit. 

 

4.3 Precipitation method: Strontium doping HA 

Strontium-doped HA nanopowders (0, 5, 10, 25, 50, 75, and 100 mol% Sr2+) were 

successfully synthesized by precipitation from aqueous solutions, always generating 

a single crystalline phase where Ca2+ and Sr2+ ions are placed in the same lattice 

positions. 

It was shown how the progressive substitution of the cations induces several 

modifications in the considered system. For example, the presence of a second ion in 

the apatitic structure, being perceived as point defect, inhibits the crystallization and 

intermediate bi-cationic compositions are constituted by smaller crystallites (~25 nm) 

with respect to pure Ca-HA and Sr-HA nanopowders (~50 nm). 

On the other hand, the powder morphology is influenced by the Sr presence, the 

particles being gradually elongated along the c direction. Analogously, crystalline 

structure is affected by the expansion of the unit cell, more pronounced for c 

parameter. As a direct consequence, functional groups are rearranged within the 

apatitic lattice, P-O bonds become progressively weaker and OH spatial density 

decreases. 
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