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Abstract

At CoDaWork’03 we presented work on the analysis of archaeological glass composi-
tional data. Such data typically consist of geochemical compositions involving 10-12
variables and approximates completely compositional data if the main component, sil-
ica, is included. We suggested that what has been termed ‘crude’ principal component
analysis (PCA) of standardized data often identified interpretable pattern in the data
more readily than analyses based on log-ratio transformed data (LRA). The funda-
mental problem is that, in LRA, minor oxides with high relative variation, that may
not be structure carrying, can dominate an analysis and obscure pattern associated
with variables present at higher absolute levels. We investigate this further using sub-
compositional data relating to archaeological glasses found on Israeli sites. A simple
model for glass-making is that it is based on a ‘recipe’ consisting of two ‘ingredients’,
sand and a source of soda. Our analysis focuses on the sub-composition of components
associated with the sand source. A ‘crude’ PCA of standardized data shows two clear
compositional groups that can be interpreted in terms of different recipes being used at
different periods, reflected in absolute differences in the composition. LRA analysis can
be undertaken either by normalizing the data or defining a ‘residual’. In either case,
after some ‘tuning’, these groups are recovered. The results from the normalized LRA
are differently interpreted as showing that the source of sand used to make the glass
differed. These results are complementary. One relates to the recipe used. The other
relates to the composition (and presumed sources) of one of the ingredients. It seems
to be axiomatic in some expositions of LRA that statistical analysis of compositional
data should focus on relative variation via the use of ratios. Our analysis suggests that
absolute differences can also be informative.

Key words: Archaeometry, compositional data, glass, log-ratio analysis, principal
components analysis.

1 Introduction

At CoDaWork’03 Beardah and others (2003) presented some analyses that suggested that, for
some typical archaeometric glass compositional data, what has been called ‘crude’ principal com-
ponent analysis (PCA) of standardized data Aitchison, 1996, p. 186) often appeared to produce
more interpretable results than PCA of log-ratio transformed data (LRA). This is despite the fact
that authors such as Aitchison and others (2002), who advocate LRA, have described the former
approach as ‘meaningless’ and ‘inappropriate’.

Notwithstanding this description, and the theoretical reasons that support it, it is rather easy
to produce realistic examples (using both simulated and real data) where crude PCA produces
archaeologically interpretable results much more readily than LRA. The issues involved, with
examples, are explored in Baxter and others (2005), Baxter and Freestone (2005) and this paper.
The term ’crude PCA’ is used throught this paper to distinguish it from PCA of unstandardized
log-ratio transformed data.
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The fundamental practical problem in applying PCA to unstandardized log-ratio transformed data
is the well-known difficulty that analysis will be dominated by those variables with the highest
variance. For glass compositional data the variables with the largest variance on a log-ratio scale
are typically those with low absolute values on the untransformed scale, and these are often, though
not invariably, non-structure-carrying. Usually some form of variable selection is necessary before
LRA ‘succeeds’ in identifying interpretable structure, which is often the same as that suggested by
crude PCA, but not always as clear.

Technically, PCA is accomplished via an eigen-decomposition of the covariance or correlation
matrix of the (possibly transformed) data, or via a singular value decomposition of the data
matrix. A well-documented argument for not using crude PCA with compositional data is that
covariances and correlations do not have a meaningful interpretation. We do not dispute this, but
note that PCA can also be viewed simply as an unsupervised pattern-seeking method, the success
of which is determined by whether or not interpretable results are consistently obtained, as judged
by domain-specific considerations.

If there are p correlated variables, PCA tranforms the input data into p new uncorrelated variables
that are linear combinations of the originals. The first principal component has maximum variance;
the second has second maximum variance subject to the lack of correlation; and so on. As measured
by variance, therefore, the PCs are ordered in terms of their importance. The usual expectation
is that two- or three-dimensional plots based on the first few PCs will reveal any structure in the
data and, where interpretable stucture exists, this is often the case for glass compositional data
(with the caveat that obvious outliers may sometimes need to be stripped from an analysis if they
dominate the appearance of a plot).

It was suggested at CoDaWork’03 that in our LRAs we might have been missing structure revealed
by the ‘less important’ PCs. It is well-known that, in principle, this can happen and is easy enough
to check by inspecting all possible pairwise PC plots. For the record, in none of the analyses
reported in the references cited previously did LRA reveal structure using the less important
components.

These issues are investigated further in the third section of the paper, after establishing terminology
and notation in the next section.

2 Notation and terminology

Let n observations be available for p variables, X1, X2, . . . , Xp, with observation i for variable j
denoted by xij . The term completely compositional will be used for variables for which

∑
j xij =

100%, and sub-compositional for a subset of such a set of variables. If the data are sub-compositional
two approaches are possible. One is to convert the data to what Barceló-Vidal (2003) called fully

compositional data, by defining a residual variable as (100 −
∑

j xij). The other is to normalize
the variable sum to 100% and treat the normalized data as completely compositional.

In the LRA using PCA for completely compositional data recommended in Aitchison (1986),
centered log-ratios of the form

yij = log[xij/g(xi)]

are used, where
g(xi) = (xi1xi2 . . . xip)1/p

is the geometric mean of the data for the ith composition.

PCA of standardized data is based on

yij = (xij − x̄j)/sj

where x̄j and sj are the mean and standard deviation of variable j.



3 Example

Freestone and others (2000), in a study of primary glass compositions from archaeological sites in
Israel, distinguished between two types of glass termed Levantine I and Levantine II. The glass
studied came from geographically separated sites, with the Levantine II glass also later. Since the
original paper was published further analyses (some unpublished) have been added to the original
data and it is the expanded data set that is used here. Close inspection of the data suggests
that some cases may be misclassified, so here we treat the analysis as an unsupervised pattern
recognition problem for illustration, rather than taking the classification as given.

A simple model for the composition of primary glass is to assume that glass (G) is made from two
ingredients, sand (S1) and a source of soda (S2), combined in a recipe that is determined by a
mixing proportion, π. Thus

G = πS1 + (1− π)S2.

Analysis will focus on the sub-composition SiO2, Al2O3, CaO, FeO and MgO, components of the
sand assumed not to be present in the soda source. Of these components silica (SiO2) is invariably
dominant, with values in the rand 65.90% to 77.02% for our data. The components of the source
of soda are not used in our analyses, but the dominant component, Na2O ranges between 10.28%
and 18.87%.

3.1 Crude PCA

A PCA of standardized data, omitting seven obvious outliers, results in Figure 1, and shows two
clear compositional groups. For comparison with later figures the labelling into two groups, “x”
and “o”, is that suggested by this figure. The group to the right is very similar to, but not identical
with, the originally defined Levantine I; similarly, the group to the left is close to, but not identical
with, the originally defined Levantine II. Henceforth we use the terms Levantine I and Levantine

II to refer to the two chemical compositional groups defined by this figure.
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Figure 1: A biplot of the first two principal components of the Levantine sand compositional data, using standard-
ized data. Seven compositional outliers have been omitted. See the text for a discussion of the labelling.

Notwithstanding the use of crude PCA, the results make good archaeological sense. In our simple



model the soda may be regarded as ‘diluting’ the sand composition (i.e. the more soda the less
sand), so that even though it is not included in the statistical analysis it influences it because the
dilution has not been corrected for. The later Levantine II glass has notably lower levels of soda
and correspondingly higher levels of silica compared to Levantine I (for the groups in Figure 1 the
means of silica and soda are 69.6% and 15.7% for Levantine I and 74.2% and 12.5% for Levantine

II). The analysis of the standardized raw compositions is picking up these features of the data,
which are associated with known geographical differences that may also be interpreted as reflecting
a reduction in the availability of natron (the source of the soda) over time, and therefore an increase
in silica.

3.2 LRA of fully compositional data

If a residual is defined so that the data are fully compositional, Figure 2 results. Separation of the
two types previously defined is good, but by no means perfect, so that interpretation is equivocal.
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Figure 2: A biplot of the Levantine sand compositional data, using log-ratio analysis after converting to fully
compositional data by defining a residual (“Ot” in the plot). Levantine I is labelled “x” and Levantine II “o”. The
seven compositional outliers omitted from the previous figure have also been omitted here.

The dominant variables in the biplot are MgO and FeO. Bearing in mind what has been said about
such plots being determined by variables that may not be structure carrying, we investigate what
happens if we merge these two variables with the residual. Figure 3, which now shows very good
separation between the groups, results.

In Baxter and others (2005) it was suggested that where there is cluster structure in a set of
compositional data, defined by differences in the absolute values of some variables, crude PCA
would typically identify this structure. It was argued that with such structure it should be possible
to select a subset of the variables which, with the residual defined as the difference between 100%
and the sum of this subset, would lead to the definition of ratios that exhibited the same cluster
structure. This is what appears to be happening here, so that the cluster structure revealed in
both analyses is telling the same story. The crude PCA identifies the structure more directly.
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Figure 3: A biplot of the first two principal components of the Levantine sand compositional data, using log-ratio
analysis after converting to fully compositional data by defining a residual and merging FeO and MgO with the
residual. Levantine I is labelled“x” and Levantine II “o”. The seven compositional outliers omitted from Figure 1
have also been omitted here.

3.3 LRA of normalized data

An apparently similar result, but in fact one telling a different story, emerges if LRA, normalizing
the sum of the oxides to 100%, is used. This leads to the biplot of Figure 4. Here, Levantine I plots
mostly to the left and Levantine II to the right, but there is also overlap. The dilution effect has
been eliminated because of the use of relative values so that we are directly comparing the sands
used for the two types. On a first interpretation Figure 4 might suggest that the two types cannot
be associated unequivocally with distinct sources of sand. This is an archaeologically plausible
interpretation and, taken in conjunction with the analysis of standardized data, would imply that
while the recipe for glass making changed over time, the source of the raw materials did not.

As before, bearing in mind the fact that in LRA non-structure-carrying variables can obscure
interpretable pattern in the data, what happens if the dominant variables, MgO and FeO, are
removed from the analysis and the remaining variables renormalized? Figure 5 now results. This
separates Levantine I and Levantine II, as in Figures 1 and 3, but has a different interpretation.
Whereas the previous results could be interpreted as showing clusters associated with differences
in the absolute values of the variables, and hence a difference in the recipes used (i.e. lower silica,
higher soda versus higher silica, lower soda), here the clustering can be interpreted as suggesting
a change in the source of sand for the two types (i.e different make-ups of the sand sources). This
is more in accord with what we suspect from the archaeological evidence.

4 Discussion

To summarise, the crude PCA analysis and the fully compositional LRA analyses after variable
selection, suggest the same groups in the data. These arise because of differences in the absolute
values of some of the variables that can be interpreted in terms of a change in the recipe used to
make the glass. It is typical, in our experience, that crude PCA recovers such structure rather
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Figure 4: A biplot of the normalized Levantine sand compositional data, using log-ratio analysis. Levantine I is
labelled “x” and Levantine II “o”. The seven compositional outliers omitted from previous figures have also been
omitted here.
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Figure 5: A biplot of the first two principal components of the normalized Levantine sand compositional data,
using log-ratio analysis and omitting FeO and MgO. Levantine I is labelled“x” and Levantine II “o”. The seven
compositional outliers omitted from previous figures have also been omitted here.



directly. It is to be expected that LRA of fully compositional data, after suitable variable selection
and definition of a residual, will also recover this structure, and this also has been our experience.
It does so less directly than crude PCA. The correspondence between the two forms of analysis
undermines claims that crude PCA produces ‘meaningless’ results, if what one is interested in is
pattern recognition rather than the interpretation of covariance structure.

The LRA of normalized data produced superficially similar results, but in fact has a different
interpretation. Archaeologically there is no doubt that the two types reflect geographically and
chronologically distinct sites of production. Different recipes were used for glass-making, possibly
because the supply of one of the ingredients that introduced the soda in the recipe began to
‘dry-up’.

As far as the other ingredient, the sand, is concerned it is possible either that the same source
continued to be used, or that the source as well as the recipe changed. The normalized LRA
analysis bears directly on this question. The initial analysis produces results consistent with the
first possibility but, after omitting MgO and FeO and renormalizing the data, results consistent
with the second possibility are obtained. This, for archaeological reasons, is currently the preferred
interpretation, though research continues.

An axiom of LRA seems to be that compositions provide information on relative values and that
absolute diffences should not be of interest. The examples just described suggest that absolute
differences can be of interest, and that pattern seeking methods such as PCA can recover inter-
pretable structure based on the standardized compositional data. It seems to us indisputable that
analysis of standardized data sometimes produces more archaeologically interpretable results than
LRA, or does so with greater ease. The challenge for proponents of LRA is not to reassert the
theoretical cachet of the methodology, but rather to demonstrate its practical utility when applied
to typical archaeometric data and questions. In this context the issue of variable selection, and the
fact that for a focused choice of variables the results of normalized LRA can complement those from
crude PCA (or fully compositional LRA for those wanting to remain within an LRA framework),
are problems meriting further investigation.
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