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Abstract 

Ni-W electrodeposits have emerged as one of the most suitable alternatives to hard 

chromium mainly due to their remarkable mechanical and tribological properties. 

Additionally, advanced technologies that require materials resistant to high temperatures 

could benefit from the use of Ni-W coatings. In this work, the effect of thermal 

treatment at different temperatures (300ºC, 500ºC, 700ºC) on the characteristics of Ni-

W coatings obtained by direct and pulse plating was studied. The morphology, 

composition, crystalline structure, hardness, wear rate, friction coefficient and corrosion 

resistance of the thermally treated coatings were analyzed and compared with the 

performance of hard chromium coatings. Results indicate that the pulse plated Ni-W 

coatings show better mechanical and tribological properties than the ones obtained by 

direct current. A significant improvement of hardness in Ni-W layers was achieved by 

thermal treatment, mainly in the films grown by pulse plating, with minor changes in 

wear resistance and corrosion performance. 
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1. Introduction 

The high level of interest in Ni-W alloys during the last years can be explained by their 

remarkable physical properties and their numerous possible applications. Namely, Ni-W 

alloys exhibit good mechanical (tensile strength, hardness) and tribological (wear 

resistance) properties, oxidation resistance and high melting temperature that make 

them very attractive for engineering applications.
1-3

 One of the most claimed 

applications of Ni-W electroplating is as a more environmentally friendly alternative to 

hard chromium process in demanding industries like aviation and automotive.
4-6

 In 

addition, advanced technologies such as micro- and nano-electromechanical systems, 

sliding contacts or high-temperature superconductors, that require materials resistant to 

relatively high temperatures, while maintaining their mechanical properties, could 

benefit from the use of Ni-W alloys.
7,8

 

It has been demonstrated that pulse plating can lead to an enhancement of the functional 

characteristics of Ni-W coatings by means of a selective alteration of mass transport 

conditions and the consequent modification of the alloy composition and 

microstructure.
9-13

 In a previous work
14

 an acid Ni-W electrolyte based on sodium 

citrate was proposed and pulse plating and chemometric techniques were combined to 

obtain Ni-W coatings with improved uniformity, efficiency and hardness in comparison 

to those obtained by direct current. 

On the other hand, several researchers have proposed the application of a thermal 

treatment to improve the mechanical properties of Ni-W coatings.
15-19

 In this work the 

effect of thermal treatment at different temperatures (300ºC, 500ºC, 700ºC) on the 

characteristics of Ni-W coatings obtained from an acid citrate bath by direct and pulse 

plating have been studied and their structural and functional properties are compared to 

those of hard chromium coatings under the same experimental conditions. Most of the 
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published studies have focused on the characteristics and performance of Ni-W coatings 

obtained from ammoniacal citrate baths, which lead to higher faradaic efficiency but 

lower the tungsten content in the alloy.1 Furthermore, there are only a few researches 

that have analyzed the effect of temperature on Ni-W deposits obtained by pulse 

plating.
15,18,20,21

 In order to prepare advanced coatings that could meet the increasingly 

rigorous requests from leading industrial sectors, a deeper understanding of the 

properties of Ni-W electrodeposits is essential. 

2. Experimental Procedure 

Electroplating 

Ni-W coatings were electrodeposited on polished carbon steel substrates (UNE-EN 

10130, Ra ~ 1.574 µm, 9 cm
2
) from a sodium citrate solution. The electrodeposition was 

carried out under galvanostatic conditions by a multi-potentiostat VMP3 (Biologic 

Science Instruments, Grenoble, France) using a two-electrode configuration (separated 

by a distance of 3.5 cm), with a cell volume of 800 mL. 

Prior to the electrodeposition process, substrates were degreased in a commercial 

solution (45 g L
-1

 Uniclean 251, Atotech) at 60ºC and pickled and activated with 

hydrochloric acid (50% vol.) during 60 s. The electrolyte composition and plating 

parameters selected for this study were optimized in a previous work
14 

and are given in 

¡Error! No se encuentra el origen de la referencia.. Direct current (DC) (-0.04 A m
-2

) and a 

previously studied
14

 pulse current (PC) sequence (ic = -0.04 A m
-2

, tc = 31 ms, toff = 20 

ms) were applied to obtain the Ni-W coatings. A constant charge of 216 C m
-2

 was 

applied for both direct and pulse plated deposits, which was estimated to yield a 

thickness of 20 ± 1 m. 



5 

 

For comparison purposes, chromium coatings were obtained on substrates of the same 

characteristics. The plating bath and conditions used are shown in ¡Error! No se encuentra 

el origen de la referencia.. After the pretreatment described for Ni-W plating, the substrates 

were activated in a chromium electrolyte by applying an anodic current of 0.3 A m
-2

 

during 90 s. Chromium electrodeposition was carried out in a two-electrode 

electrochemical cell (electrodes were separated by a distance of 3.5 cm) with a volume 

of 800 mL by direct current (-0.3 A m
-2

). A charge of 1620 C m
-2

 was applied in order 

to have the same thickness than Ni-W layers. 

Thermal treatment 

The electroplated coatings were subjected to thermal treatment at various temperatures 

(300ºC, 500ºC, 700ºC) in a CWF 11/23 chamber furnace (Carbolite, Derbyshire, UK) 

under a controlled argon atmosphere. Samples were heated from room temperature to 

the selected temperature at a rate of 10 ºC min
-1

. Once the target temperature was 

reached, it was maintained for 1h. Cooling processes were also carried out inside the 

furnace under a controlled atmosphere until the samples reached room temperature. 

Characterization of the coatings 

The appearance of Ni-W surfaces was initially evaluated by visual inspection. The Ni-

W thickness was determined by X-ray fluorescence spectroscopy, with a Fischerscope 

XDAL-FD (Helmut Fischer, Hünenberg, Switzerland). A Talysurf Intra 50mm surface 

profilometer (Taylor Hobson, Leicester, UK) was employed to assess the surface 

roughness. Morphological observations of Ni-W surfaces were undertaken by means of 

a Carl Zeiss Ultra Plus field emission scanning electron microscope (Zeiss, Jena, 

Germany). Chemical composition of the coatings was determined by an Apollo X 

energy dispersive spectrometer (Ametek EDAX, New Jersey, U.S.A.). X-ray diffraction 

(XRD) measurements were performed with a X’Pert PRO MRD diffractometer (Cu 
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radiation, Cu = 1.5418 Å; PANalytical, Almelo, The Netherlands) from 2 = 5º to 2 = 

145º, with a step size of 0.04º and a counting time of 1 s per step. The grain size was 

estimated applying the Scherrer equation on the (111) XRD peak. 

Microhardness was evaluated on polished cross-sectional areas of Ni-W deposits, by 

using a Vicker’s microindenter Fischerscope HM2000 (Helmut Fischer, Hünenberg, 

Switzerland) with a load of 50 mN. Wear tests were conducted using a THT ball-on-

disk tribometer (CSM Instruments, Peseux, Switzerland) under unlubricated conditions, 

at room temperature. An alumina ball of 6 mm diameter was used as counter body and 

the tests were conducted using a 10 N load for Ni-W coatings and 5 N load for 

chromium coatings. The rotation speed was kept at 0.1 m s
-1

and the sliding distance was 

7000 m for Ni-W and 500 m for Cr. After some preliminary tests, different 

experimental conditions (e.g. applied load) were selected to study the tribological 

performance of Ni-W and Cr coatings due to the significantly superior wear 

performance of Ni-W deposits. The average friction coefficient, μ, was evaluated during 

the tests and the profilometer was employed to determine the width of the wear track for 

the studied samples, from which volume loss of the worn deposits was analyzed. The 

wear rate of the coatings was calculated by means of their volumetric wear factor, K, 

using equation (1),
22

 

  
 

  
     (1) 

where V is the wear volume, N is the normal load and d is the sliding distance. 

The corrosion performance of the electrodeposited samples was investigated in a 250 

mL three electrode Flat Cell (Princeton Applied Research, Oak Ridge, USA) placed 

inside a Faraday’s cage, by means of a 1287 potentiostat-galvanostat with a 1255B 

impedance interface (Solartron Analytical, Leicester, UK). All measurements were 
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conducted in an aerated 5 wt.% NaCl solution at room temperature with a geometrical 

working area of 1 cm
2
. A Ti-Pt mesh and Ag/AgCl/NaCl (3M) electrode (Princeton 

Applied Research, Oak Ridge, USA) were used as counter and reference electrodes 

respectively. First, the corrosion potential, Ecorr, was measured at open circuit and 

recorded during 30 min. Afterwards, a linear potentiodynamic sweep between Ecorr ± 15 

mV was performed at 0.1667 mV s
-1

and the polarization resistance, Rp, was calculated. 

In order to obtain the anodic and cathodic Tafel slopes (ba, bc), partial potentiodynamic 

scans (0.1667 mV s
-1

) on different samples obtained at the same experimental 

conditions were performed, scanning from the open circuit potential (OCP) towards the 

anodic or cathodic direction. The cathodic and anodic potentiodynamic scans were 

never carried out consecutively as it was observed that the cathodic scan modified the 

anodic response to some extent. The corrosion current density (icorr) was calculated by 

means of the Stern-Geary relation
23

. Corrosion data (Rp and icorr) are referred to the 

exposed geometric area of the sample. The reproducibility of the presented data was 

generally checked by using 6 to 10 replicates, and typical results are reported. 

3. Results and discussion 

Physical properties 

Appearance and thickness 

The obtained Ni-W coatings were grey, featuring a more whitish tonality than Ni 

deposits, presumably due to the presence of W. Visual inspection did not revealed 

differences in surface finish in coatings obtained by direct current (DC) and pulse 

plating (PP). Similarly, no significant changes in their colour and brightness after the 

thermal treatment were detected. 
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As expected, the Ni-W layers had a thickness of 20.0 ± 1.1 µm in both direct current 

and pulse plating conditions, which means a current efficiency of 40.2 %. Although 

current efficiency was quite low, presumably due to the hydrogen evolution reaction 

that accompanies alloy electrodeposition,
24

 it was still considerably higher than the one 

reported for hard chromium plating (10-20%).
25,26

 Moreover, layer thickness was 

uniform accross the Ni-W surfaces, unlike the typical inhomogeneous and poor 

throwing power of hard chromium.
27

 

Hardness 

Some of the most demanded attributes for Ni-W coatings are related to their mechanical 

and tribological characteristics, in order to ensure that they can satisfactorily replace 

hard chromium in several industrial applications. The hardness of the as-deposited 

coatings was 757  24 HV in the case of DC Ni-W coatings and 909  30 HV for PP 

Ni-W coatings. Pulse plating led to Ni-W layers with superior hardness, closer to the 

one obtained in as-deposited hard chromium layers (1152  24 HV). 

Fig. 1 shows the effect of thermal treatment temperature on hardness for the studied 

electrodeposits. The hardness of Ni-W coatings obtained by direct current increases 

considerably with the thermal treatment temperature up to 500ºC, reaching a maximum 

of 1151  82 HV. At 700ºC, the hardness of the DC Ni-W deposits drops slightly (1099 

 64 HV). On the other hand, the hardness of Ni-W layers obtained by pulse plating 

increased with the thermal treatment temperature, reaching a value of 1793  179 HV at 

700ºC, which is significantly higher than the hardness reported by other authors for Ni-

W coatings.
15-18,21

 

The evolution of the hardness of hard chromium coatings upon thermal treatment is also 

included in Fig. 1. As the temperature of the thermal treatment increased, the 
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performance of hard chromium layers deteriorates, i.e., the hardness is reduced by half 

its initial value (503  124 HV) at 700ºC. 

Tribological properties 

The effect of the annealing temperature on the wear resistance and the friction 

coefficient of the studied coatings is also shown in Fig. 1. The wear rate and the friction 

coefficient of as-deposited Ni-W coatings were lower than those of hard chromium 

coating. In spite of having applied considerably longer sliding distance for the Ni-W 

samples (Ni-W: 7000 m vs. Cr: 500 m), the depth of wear track after the ball-on-disk 

measurements was 4.8  1.2 µm for DC Ni-W, 4.4  1.1 µm for PP Ni-W layers and 7.4 

 1.1 µm for Cr coatings. Furthermore, the friction coefficient of DC Ni-W surfaces was 

0.53  0.04, of PP Ni-W was 0.50  0.02 and of Cr was 0.64  0.02. 

On the other hand, the values of the volumetric wear factor and friction coefficient 

remained low for the Ni-W coatings treated at different temperatures. DC Ni-W 

surfaces showed K values that ranged from 7.1 x 10
-7

  1.7 x 10
-7

 to 8.4 x 10
-7

  1.0 x 

10
-7

 mm
3
 N

-1
 m

-1
 and µ values of 0.50-0.54. In turn, PP Ni-W layers had lower K 

values, varying from 6.1 x 10
-7

  1.6 x 10
-7

 to 7.3 x 10
-7

  1.7 x 10
-7

 mm
3
 N

-1
 m

-1
, and 

lower µ, ranging from 0.47 to 0.50 depending on the applied temperature. In the case of 

Cr coatings, thermal treatment had an important effect on their wear characteristics, 

causing an increase in K from 1.1 x 10
-6

  2.0 x 10
-7

 mm
3
 N

-1
 m

-1
 for the as-deposited 

coatings to the completely wear out of the layer after the thermal treatment at 700ºC. 

Thermal treatment also led to an increase in friction coefficient, which varied from 0.64 

up to 0.87. The sensitivity of conventional hard chromium to temperature and the 

worsening of its wear properties at elevated service temperatures has been reported 

previously.
28,29
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The outstanding wear properties, even after a thermal treatment, exhibited by the 

developed Ni-W coatings in this research and their preeminence over hard chromium 

are superior than those previously reported.
20,30

 Particularly remarkably are the 

improved wear and friction characteristics of Ni-W deposits obtained by the proposed 

pulse plating sequence. 

Corrosion 

Fig. 2 shows the overall potentiodynamic behaviour of the studied coatings in 5 wt.% 

NaCl aerated media. The electrochemical corrosion parameters determined from the 

Tafel polarization data are listed in Table 2. The corrosion potential of the as-deposited 

coatings was ~ - 520 mV vs. EAg/AgCl/Cl
-
(3M).which agrees the values reported by other 

authors for Ni-W
31,32

 and hard Cr
33

 deposits in chloride media. Ecorr values of Ni-W 

coatings tended to increase slightly with thermal treatment, reaching values of ~ - 430 

mV vs. EAg/AgCl/Cl
-
(3M). The Ecorr values corresponding to chromium surfaces remained 

more stable after thermal treatment at different temperatures. On the other hand, the as-

deposited and annealed DC Ni-W and PP Ni-W samples did not show significant 

changes on polarization resistance, which remained in values nearby  1.5 kohm cm
2
. 

The registered Rp values are of the same order of magnitude as the results reported by 

other authors for Ni-W coatings with high W content in chloride media
31,34

 and they are 

similar to the Rp obtained for conventional hard chrome coatings at the same conditions 

(Table 2). 

According to the polarization curves corresponding to Ni-W coatings, the 

electrochemical corrosion performance was analogous in deposits obtained by direct 

current and pulse plating. The anodic polarization branches showed a monotonic 

increase of current with potential, with a slope in the anodic Tafel region, ba, of 54 ± 3 

mV dec
-1

 in DC Ni-W and 81 ± 3 mV dec
-1

 in PP Ni-W. The described anodic 
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polarization curves were similar to the one of as-deposited hard chromium (ba = 78 ± 7 

mV dec
-1

) and correspond to a uniform corrosion mechanism, ascribable to metal 

dissolution. In case of the cathodic polarization branches, the studied Ni-W coatings 

exhibited values of cathodic slopes, bc (DC Ni-W: - 528 ± 30 mV dec
-1

, PP Ni-W: - 620 

± 25 mV dec
-1

), characteristic of mass transport controlled processes. The diffusion 

process was more pronounced in chromium surface (bc = - 918 ±31 mV dec
-1

). 

Considering that the corrosion tests were carried out in neutral chloride solution, the 

mass transport control process could be related to the oxygen reduction reaction (ORR). 

At more negative potentials, a slope change was registered for all the as-deposited 

coatings, related to the water reduction reaction. After the thermal treatment, as the 

temperature increased, steeper cathodic slopes were obtained for all the studied coatings 

and higher mass transport controlled limiting current density was registered. The 

observed changes in Ecorr and in the cathodic Tafel slope of Ni-W deposits after the 

thermal treatment at different temperatures might be related to the formation of 

superficial oxides.
35

 

The estimated corrosion current density (icorr) by Stern-Geary approach was ~ 15 µA 

cm
-2

 for Ni-W coatings obtained by direct current and pulse plating. The value of this 

parameter is slightly higher than other results found in bibliography
31,34

 and higher than 

the value registered for chromium surfaces (~ 5 µA cm
-2

). There was a slight increase of 

the corrosion current density of the studied Ni-W surfaces with the thermal treatment 

temperature, though it was of the same order of magnitude as the as-plated coatings. 

The icorr of Cr coatings experienced an increment after thermal treatment, getting values 

comparables to Ni-W layers. 

Microstructural properties 
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In order to understand the functional properties of developed Ni-W coatings and the 

effect of the applied thermal treatment on their characteristics, a morphological and 

microstructural analysis of the surfaces was performed. 

Morphology 

The as-deposited and thermal treated Ni-W coatings were analyzed by means of field 

emission scanning electron microscope. A nodular structure was obtained both by direct 

current and pulse plating, with globular nodules of different sizes and gaps among them, 

indicating that they were composed of domains with different sizes.
36

 All the samples 

showed a cracked morphology visible both on the surface and across the section of the 

layers in Fig. 3. The formation of cracks can be mainly related to the significant 

hydrogen embrittlement and tensile stress formation that occurs during Ni-W 

electrodeposition.
24

 The residual stress of the coatings and its release by crack formation 

can also be caused by the free volume (voids) trapped in the grain boundaries deposition 

and its subsequent shrinkage. The amount of free volume created and stored is affected 

by the atomic radius difference between Ni and W, the grain size, the thickness and the 

deposition parameters.
37,38

 The applied thermal treatment did not seemingly affect the 

morphology of the Ni-W coatings, so that the nodular microstructure, the density and 

the width of the cracks were comparable irrespective of the annealing temperature (Fig. 

4). 

The roughness of the Ni-W electrodeposits obtained by direct and pulse current was 

similar (~1.10 ± 0.05 µm), showing a smoother surface finishing than the substrate. The 

surface roughness was not significantly affected by the applied temperature either. 

Contradictory results can be found in the literature
2,16,31

 regarding the corrosion 

performance of Ni-W coatings due to differences in the testing procedures and to the 

combined effect of different characteristics of the coatings, such as their composition, 
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structure, grain size and morphology. Taking into account the size and the density of 

cracks on the studied Ni-W coatings in this work, it is assumed that cracking is the 

dominant factor affecting their corrosion performance in a chloride medium. Thus, the 

limited corrosion resistance of Ni-W coating obtained by DC and PP can be ascribed to 

their cracked morphology, being their behaviour comparable to that of hard chromium. 

This assumption was corroborated by the inspection of the coatings after the corrosion 

tests by FE-SEM. In Fig. 5 the micrographs of Ni-W coatings treated at 700ºC after the 

potentiodynamic test are showed. Ni-W surfaces presented some protruding formations 

on the cracked regions constituted by blade-like crystals that fill the cracks and spread 

to the surrounding area. EDX analysis allowed confirming that the observed protrusions 

were iron oxides, presumably coming from the dissolution of the steel substrate. 

Microstructure 

The X-ray diffractograms of the Ni-W coatings are plotted in Fig. 6 and the estimated 

grain sizes by Scherrer’s equation are listed in Table 3. The peaks of the diffraction 

patterns for as-deposited and thermal treated Ni-W deposits correspond to pure fcc 

nickel and the (111) texture stands out, which is attributed to the preferred crystalline 

growth along this orientation due to the lower strain in that direction.
39

 A shift of this 

peak to lower angles with respect to pure fcc Ni was observed, which can be attributed 

to the tungsten atoms’ incorporation into the nickel lattice. According to Schuh et al.
40

, 

possibly a coexistence of a non-equilibrium solid solution with a metastable solid 

solution exists, even exceeding the solubility limits of W in the Ni-W alloy. Therefore, 

although the studied Ni-W layers have W content of 20.7 at. %, it is not surprising that 

they are constituted of a solid solution of W with Ni matrix.
16,39 

Pulse plated Ni-W coatings exhibit narrower XRD peaks than Ni-W layers obtained by 

direct current. Accordingly, the grain size is higher for as-deposited and thermal treated 
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PP Ni-W films (Table 3). From the XRD patterns, the existence of a small fraction of 

amorphous Ni-W in DC films cannot be ruled out. Actually, the lower hardness of DC 

Ni-W coatings might be ascribed to the formation of this fraction of amorphous phase 

during electrodeposition and the transition from the conventional Hall–Petch relation to 

breakdown behaviour (inverse Hall–Petch).
6,39,41

 The grain size of the Ni-W coatings 

did not show big changes with thermal treatment, which according to Marvel et al. can 

be explained by grain growth limitation factors,
42

 and demonstrates the thermal stability 

of the developed nanocrystalline films, compared to nanocrystalline nickel.
15,43

 On the 

other hand, hard chromium showed an increase of the grain size from 9 nm for as-

deposited coating to 58 nm for the one treated at 700ºC. The increase of grain size in 

chromium coatings can explain the decrease in hardness caused by thermal 

treatment.
44

,
45

 

According to XRD data, the applied thermal treatments does not induce remarkable 

changes neither in the width nor in the intensity of XRD peaks, both for DC and PP Ni-

W layers. Interestingly, a slight shift of the (111) peak to higher angles is observed as 

the annealing temperature increases, which can be associated with a shrinkage of the 

unit cell size. This phenomenon could be related to the W segregation at the grain 

boundaries during thermal treatment and the concomitant stabilization of the 

microstructure of Ni-W alloys. A similar behaviour has been observed in annealed Cu-

Ni alloys.
46

 Such effect probably hinders dislocation motion, contributing to the high 

hardness of the annealed films. The eventual presence of a second phase oxide particles 

also limiting grain growth could also contribute to improve hardness of Ni-W 

coatings.
42,47

 

The low wear rate and friction coefficient values for the developed Ni-W coatings 

compared to hard chromium can be understood on the basis of their high W content, 
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low grain size and cracked morphology.
15,39,48

 Both parameters did not undergo 

significant changes after thermal treatment, which indicates the thermal stability of the 

tribological characteristics of the developed Ni-W layers. Archard’s law predicts an 

inverse linear relation between wear rate and hardness, but Rupert and Schuh
49

 reported 

that wear resistance of Ni-W coatings can deviate from Archard scaling due to the 

nanocrystallinity and microstructural stability of the alloy. Furthermore, Sunwang et 

al.
18

 reported an improved hardness in Ni-W coatings obtained by reverse pulse plating 

after thermal treatment at 700ºC with a minimal decrease of wear resistance, which was 

attributed to minimal grain growth, grain boundary relaxation and the presence of an 

adhesive wear mechanism. Additionally, Wasekar et al.
20

 obtained Ni-W coatings with 

friction coefficient independent of applied load and hardness. 

The reduction of wear resistance in chromium layers with thermal treatment can be 

explained by the observed increase in grain size. Furthermore, thermal treatment may 

presumably cause an increase in stress relief, which can contribute to the deterioration 

of mechanical and wear characteristics of hard chromium.
44

 

4. Conclusions 

The effect of thermal treatment at different temperatures on the properties of Ni-W 

coatings obtained by direct current and pulse plating was studied. Pulse plating allowed 

obtaining Ni-W layers with better mechanical and tribological properties than by direct 

current, using the same electrolyte. This might be ascribed to the formation of a small 

fraction of amorphous phase during electrodeposition of Ni-W by direct current and to 

an inverse Hall–Petch behaviour. 

Thermal treatment caused a significant improvement of hardness, mainly in those 

samples obtained by pulse plating, rendering even higher hardness than the values 

reported in literature for this alloy after annealing at 700ºC. The observed increase in 
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hardness might be related to W segregation at the grain boundaries during thermal 

treatment and the concomitant stabilization of the microstructure of Ni-W alloys. On the 

other hand, the performance of hard chromium layers deteriorated with thermal 

treatment, reducing by half its initial hardness value at 700 ºC.  

The wear resistance of the developed Ni-W coatings outperformed the tribological 

characteristics of hard chromium. Moreover, unlike chromium surfaces, the wear rate 

and friction coefficient of the deposited Ni-W layers showed minimal changes after the 

applied thermal treatment presumably due to their nanocrystallinity and microstructural 

stability. 

The corrosion performance of the studied Ni-W coatings in chloride medium was 

affected by their cracked morphology but it was still comparable to that of hard 

chromium. 
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